A mapping and
memory chip
hardware which
provides
symmetric
reading/writing of
horizontal and
vertical lines

by D. L. Ostapko

This paper describes a mapping and memory
chip hardware for enhancing the performance of
an APA display. The approach describes a
modification to the primary port of a quasi-two-
ported memory. This modification allows several
contiguous horizontal or vertical bits to be read
or written in one cycle. The number of bits that
can be stored is given by the number of memory
chips. The hardware modifications can be on or
off chip, and if on chip, the chip can still be used
as a conventional memory chip. Simple
modifications to the hardware will support
different screen sizes.

Introduction
Following the adage that a picture is worth a thousand
words, considerable effort has been put forth in developing

©Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems, Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

pleasing electronic displays. One approach that shows
considerable promise in providing arbitrarily complex,
flicker-free images is the All-Points-Addressable (APA)
display. This type of display uses a random access memory
to store the image information point by point. The image
data contained in the memory can then be used to refresh
the display screen at a frequency that is adequate to prevent
flicker. Matick et al. [1] give a good summary of APA
displays as well as several proposed memory chip
modifications. The memory chip proposed in that paper
provides the basis for the chip described in this paper. The
usual limitation of an APA display is the bandwidth of the
memory subsystem. The chip proposed in [1] contains a
quasi-second port as well as modifications to the primary
port. This paper describes a mapping and additional
hardware that further improve the memory bandwidth by
allowing a single memory access to modify a series of pixels
in either the horizontal or vertical direction [2].

System description

In order to simplify the explanation of the mapping and the
memory chip hardware, the particular configuration shown
in Figure 1 is assumed. Several modifications to this
configuration are described later.

D. L. OSTAPKO

393

394

Application data
and READ/WRITE commands

T—

Data manipulation
Address calculation

by 43

Chip
15

_ Buffer
Bit
select

.0@

Blt seloct w— Serializer
Display - -

I System configuration.

The generation of data and read or write commands is
assumed to be provided by the application. Since the data
width to the memory is 16 bits, the data must be presented
as a series of read or write commands for horizontal or
vertical strings having a maximum of 16 bits. Each
command will also include the X, Y coordinates where the
string is to begin on the display screen and a mask of length
16 indicating which of the 16 data items are to be stored or
retrieved, so that after any required shifting the mask bits
can be used directly as chip enable signals. Horizontal strings
are stored to the right and vertical lines downward from the
starting address X, Y, where X and Y are in the interval 0 to
1023. It is assumed that none of the addresses corresponding
to bits in the strings extends beyond the maximum screen
coordinates.

Data manipulation and address calculation is the process
of determining the actual signals that must be sent to each
memory chip. The data manipulation consists of a circular
shift or rotation of the data and mask by an amount
determined by the X, Y coordinates of the starting location
on the screen. In addition to the data and mask bit, each
memory chip must also receive a bit increment and a word

D. L. OSTAPKO

increment signal. The bit address, word address, and enable
signals are broadcasted to each chip. The transformations
necessary to determine these signals are given in the next
section. The importance of this mapping between memory
locations and display screen locations is that any contiguous
16 horizontal or vertical bits on the screen are mapped to 16
different memory chips and can, therefore, be stored or
retrieved in one memory cycle.

The 16 memory chips shown in Fig. 1 are assumed to be
64K-bit chips organized as 256 words by 256 bits. This
provides enough storage for a 1024 by 1024-pixel display
screen. These chips are assumed to have a quasi-second port
with a 256-bit buffer and bit and word increment logic on
the primary port similar to that described in [1]. In the
following text, it is assumed that bit and word addresses are
provided simultaneously, which simplifies the description of
the required on-chip logic. If they are multiplexed, a single
modified incrementer can be used. Each chip will also
receive a 4-bit code defining the chip number. This code
may be either on or off chip.

The purpose of the serializer is to take the appropriate bits
from the chip buffers and generate the data stream that is
used to control the intensity of the beam being scanned
across the screen. In this application, the first bit of all
buffers is sent to the screen followed by the second bit, etc.
The proposed chip requires a modification to the serializer
logic, which is described later.

Screen to memory mapping

Figures 2(a) and 2(b) show the mapping of the screen image
onto the memory chips. It is seen that each bit of a
horizontal string of length 16 or less is placed into a different
chip. Each is placed in the corresponding location of that
chip except for the bit increment for those bits that are
separated from the starting point by an even byte boundary,
where an even byte boundary is a coordinate that is a
multiple of 16. The mapping of 16 vertical bits is somewhat
more complicated. For vertical lines, each bit is placed in the
corresponding location of different quadrants of different
words. The rule is that the quadrants increase by 1 modulo 4
and the word address increases by 1 each time the quadrant
becomes 0. This sequencing through quadrants and words is
best described by associating a 4-bit quantity with a position
in the vertical line, where the two low order bits define the
quadrant and the two high order bits define the two low
order bits of the word address. Sequencing through the
locations then corresponds to sequencing through the
consecutive numbers 0 to 15. Because of this sequencing, the
word address must be increased by four for those bits in the
string that are separated from the starting point by an even
byte boundary. The important property of the mapping is
that 16 horizontal or vertical bits can be written to memory
in one cycle because no two bits are mapped to the same
chip.

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Although 16 horizontal or 16 vertical bits can be mapped
from/to the memory in one read/write cycle, it is also
important to determine the computational and hardware
complexity of the mapping. The complexity is manifested in
the data manipulation and address calculation process and
in the hardware and signal lines for the memory chip and
the serializer.

Address calculation and data manipulation

The bit and word addresses that are to be broadcasted to the
memory chips fnust be generated from the X, Y coordinates
of the starting point of the line. Since the horizontal and
vertical modes differ, each must be considered separately.

e Horizontal mode

From Fig. 2, it is seen that the 6 low order bits of the bit
address are given by the integer part of X divided by 16 and
the 2 high order bits are given by ¥ modulo 4. Thus,

Bit address (7, 6, 5,4, 3,2, 1,0) = Y(1, 0), X(9, 8,7, 6, 5, 4).

The word address is given by the integer part of Y divided by
4. Thus,

Word address (7, 6, 5,4, 3,2, 1,0)= Y(9,8,7,6, 5, 4, 3, 2).

Figure 2 shows that incrementing the coordinates of a
point by one unit in either the horizontal or vertical
direction moves the point to the next chip. Therefore, the
chip number that contains a location X, Y is given by (X +
Y) modulo 16. This quantity is used to define the amount of
right circular shift that must be applied to the data. Thus,
the properly aligned data and enable signals are given by

Data = (X + Y) modulo 16) shift of input data
and
Enable = (X + Y) modulo 16) shift of input mask.

Since every even byte is placed in a different bit position, the
number of chips that receive a chip increment is given by

(X + 16) modulo 16 or X modulo 16. This vector of (16 — X
modulo 16) number of 0s followed by (X modulo 16}
number of Is must also be shifted by (X + Y) modulo 16 as
were the data and enable signals. Thus,

Bit increment = ((X + Y) modulo 16) shift of (16 — X
modulo 16) number of Os concatenated
with (X modulo 16) number of 1s.

Since all horizontal lines are in the same word,
Word increment = 16 number of 0s.

In order to inform the memory chips that the reading or
writing mode is horizontal, the mode signal is used and

Mode = 0.

Any other signals such as those necessary to distinguish

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

o b ¢ g-h i j kI mnop
a By n 8 v ApvE ome s ey
AB¢C GH P I KL MNOP «« o
123 T8 9104 1213141516 o o w0
()b ¢ gh i j k1l mnoop « s o
’B»y 78 ¢k ApvEom s s
(M) B ¢ BH L) K LMNOP e e
(D23 5T 8 9104 1213444516+ o s
[N g b i jk b monoo poeoes
EB;{ O L kX gy o T e s
%sc‘ CH T JKLMNNOP « « o
23 T8 904 1213141546 ¢ & o
B gh ik tmaop o
By 78 vk N v € 0.
%50 G) kLN OP
| "[,‘8. 310 121314 45 18 -

(a) Display screen image, (b) memory representation.

between read and write, and between primary and secondary
ports, and any multiplexing signals that may be used are not
described.

o Vertical model

The address of the first bit in the vertical line is the same as
that calculated for the horizontal mode. However, this bit is
to be placed in chip number (X + Y) modulo 16. In the
vertical mode, the on-chip hardware adds the chip number
to the 2 low order bits of the word address concatenated to
the 2 high order bits of the bit address. Before the address

D. L. OSTAPKO

396

High
. o 6. Word
Word bro—miea= 03 | add :
address e 2 ((individual
(broadcast) H = chip)
‘ oy
Adder
Mode
Chip no.
o storage
High4 T BH
2
(R ST
Bit 6 address. '
address 6 Incrementer fFsaammma—e | (individuat
(broadcast) ‘ chip)
Bit) .
inc.

| Additional logic for memory chip.

can be broadcasted to all chips, (X + Y) modulo 16 must be
subtracted from the appropriate portion of the address. The
2 high order bits of the bit address must be decreased by

((X + Y) modulo 16) modulo 4 or (X + Y) modulo 4. Thus,

I

Bit address (7, 6) Y modulo 4 — (X + Y) modulo 4

= —X modulo 4.

The 6 low order bits of the bit address remain unchanged,
thus,

Bit address = (—X modulo 4), X(9, 8, 7, 6, 5, 4).

The 2 low order bits of the word address are modified by
subtracting the integer part of (X + ¥) modulo 16 divided by
4. Thus,

Word address (1, 0) (integer of Y/4) modulo 4

— integer of (X + Y) modulo 16)/4
(integer of ¥/4) modulo 4

— (integer of (X + Y)/4) modulo 4

(integer of —X/4) modulo 4.

1l

The 6 high order bits of the word address remain unchanged;
thus,

Word address = Y(9, 8, 7, 6, 5, 4), (integer of —X/4) modulo
4,

D. L. OSTAPKO

The expressions for the data and enable signals also remain
unchanged. Thus,

Data = ((X + Y) modulo 16) shift of input data
and
Enable = ((X + Y) modulo 16) shift of input mask.

All vertical lines have the same bit address before
modification by the chip number. Thus, the bit increment
that is broadcasted is given by

Bit increment = 16 number of Os.

Vectors of bits in the vertical direction are placed in
successive words as a result of the modification by the chip
number. Thus, the number of chips that receive a word
increment of 4 is given by (¥ + 16) modulo 16 or Y modulo
16. The vector of (16 — Y modulo 16) number of Os
followed by (Y modulo 16) number of 1s must also be
shifted by (X + Y) modulo 16. Thus,

Word increment = ((X + Y) modulo 16) shift of (16 — Y)
modulo 16) number of Os concatenated
with (Y modulo 16) number of 1s.

The mode signal that indicated that reading or writing is to
be in the horizontal mode is

Mode = 1.

From the above equations, it is seen that the address
calculations and data manipulations are relatively simple. It
should be possible to implement them in either hardware or
software.

On-chip address translation

The additional on-chip hardware must accept or store a 4-bit
chip number and selectively perform a 4-bit addition
depending on the mode signal. Figure 3 shows the structure
of this added logic.

The translation affects only the 2 low order bits of the
word address and the 2 high order bits of the bit address. Let
BH be the 2 high order bits of the bit address and WL be the
2 low order bits of the word address. The function
performed is an addition of the 4-bit chip number to the
four bits formed by concatenating WL and BH. The 4-bit
result of the addition, ignoring carry out, defines the new
WL and BH in the same order as in the input. The four bits
that define the chip position or number can be either on-
chip storage or signal pins that are connected to the
appropriate signals.

It should be noted that the portion of the word and bit
addresses that may be altered by their respective
incrementers is disjoint from the portion that is modified by
the 4-bit adder. Therefore, the incrementers can be removed
or implemented off-chip without affecting the logic necessary
to allow both horizontal and vertical reading/writing.

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Chip Chip 0

64 bits/one scan line
[———n

J 1-1023--1-3,1-15 l 0-1008--0-16,0-0J

address 4 ls10n [

Chip 1

Serializer

J 1-1008»1-16,1-0T (}1009--0-17,0-1]

B . I;l(;22 j

Raster scan

Shift

Chip 15

[z.1020 I

F-IOZZ-»1-30,1-14 l awzs--o—u,o-ﬂ ‘

I Memory to raster conversion.

Removing the function provided by either incrementer
eliminates the bit addressability in that direction. Without
bit addressability, each read/write must begin on an even
byte boundary. Thus, the choice of bit addressability in both,
one, or neither direction is possible as well as the choice of
an implementation that is on-chip, off-chip, or multiplexed.
It is also possible to implement the addition function off-
chip. The added function does not prevent the usual
operation of the memory chip in that the adder is
completely disabled in mode 0.

Memory to raster scan conversion

In addition to algorithmically simple logic for address
generation and data manipulation, and a small amount of
additional on-chip hardware, it is also important that screen
refresh be easily performed.

Figure 4 shows the scheme necessary for serializing the
output bit stream. The scheme requires only one
modification to the typical raster generation scheme. In a
typical application, each of the 16 memory chips would load
its 256-bit secondary port buffer using the same word
address. From Fig. 2, it is seen that 4 scan lines are
contained in the data stored in the 16 buffers.

The scan data are formed by taking 16 bits, 1 from each
of the buffers in order, incrementing the bit location in all
buffers, then taking another 16 bits until 4 scan lines have
been generated. In the typical organization, the order in
which the 16 bits are taken from the chips is constant and

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

begins with chip number 0. The modification that is
introduced is that the starting location within the chips is
incremented by 1 modulo 16 after each scan line is
completed. Since there are 4 scan lines stored per memory
word, the scan origin will be 0 for every memory word
address that is 2 multiple of 4.

Conclusions

This paper has presented a mapping and hardware
modifications that allow symmetric reading/writing of
horizontal and vertical lines from/to the refresh memory of
an APA display. In addition to eliminating the asymmetric
relation between reading/writing horizontal and vertical
lines, the bandwidth to memory has effectively been
increased. The extra hardware is modest and can be
implemented in a variety of ways. If the extra logic is placed
on-chip, the chip can still operate as a conventional memory
chip.

In addition to being suitable for a 1024 by 1024-pixel
display, small variations of the on-chip logic allow the screen
size to be doubled in either direction. Doubling the screen
size in either direction doubles the number of chips to 32
and the data path width to 32; doubling in both directions
increases the number of chips and the data width to 64. The
number of bits necessary to describe the chip number
increases to 5 or 6. In addition, the on-chip adder increases
to 5 or 6 bits. Doubling the X dimension of the screen
increases to 3 the number of low order bits of the word

D. L. OSTAPKO

397

398

address that are passed through the adder. Doubling the ¥
dimension of the screen increases to 3 the number of high
order bits of the bit address that are passed through the
adder. Doubling in both directions increases both WL and
BH to 3 bits. It should be possible to design efficient on-chip
hardware that allows the flexibility necessary for these
alternate configurations. Further modifications of the same
hardware allow either horizontal lines or rectangular blocks
to be written in one memory cycle [3].

Acknowledgments

The author would like to acknowledge the contributions and
encouragement of George Almasi, Stuart Burroughs, Daniel
Ling, and Andrew Stankosky in the development of these
algorithms and hardware.

References

1. Richard Matick, Daniel T. Ling, Satish Gupta, and Frederick
Dill, “All Points Addressable Raster Display Memory,” IBM J.
Res. Develop. 28, 379-393 (1984, this issue).

2. D. L. Ostapko, “A Mapping and Memory Hardware for Writing
Horizontal and Vertical Lines,” Invention Disclosure (YO881-
0529, serial 509697), August 1981.

3. S. H. Burroughs and D. L. Ostapko, “A Mapping and Memory
Hardware for Writing Rectangles and Horizontal Lines,”
Invention Disclosure (YO883-0085), February 1983.

Received January 26, 1984

D. L. OSTAPKO

Daniel L. Ostapko /BM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Ostapko joined IBM in
1968 in East Fishkill, New York, where he worked on models for
wirability analysis and prediction. In 1971, he transferred to
Poughkeepsie, New York, where he worked on reliability,
serviceability, availability, test pattern generation, and effective use
of hardware redundancy. He was involved in the development of
design automation algorithms for PLAs, including minimization, test
pattern generation, mapping algorithms for folding PLAs, and a
hardware design language. In 1978, he transferred to the Thomas J.
Watson Research Center, where he developed algorithms for
subdividing PLAs and investigated memory chip hardware for
enhancing the performance of an all-points-addressable display. He
is currently involved in the definition and programming of a highly
parallel processor. Dr. Ostapko received a B.S. and a B.S.E.E. from
Trinity College in Hartford, Connecticut, in 1963 and 1964 and an
M.S. and a Ph.D. in electrical engineering from Northwestern
University in Evanston, Illinois, in 1966 and 1968.

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

