
A mapping and
memory chip
hardware which
provides
symmetric
reading/writing of
horizontal and
vertical lines

by D. L. Ostapko

This paper describes a mapping and memory
chip hardware for enhancing the performance of
an APA display. The approach describes a
modification to the primary port of a quasi-two-
ported memory. This modification allows several
contiguous horizontal or vertical bits to be read
or written in one cycle. The number of bits that
can be stored is given by the number of memory
chips. The hardware modifications can be on or
off chip, and if on chip, the chip can still be used
as a conventional memory chip. Simple
modifications to the hardware will support
different screen sizes.

OCopyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

pleasing electronic displays. One approach that shows
considerable promise in providing arbitrarily complex,
flicker-free images is the All-Points-Addressable (APA)
display. This type of display uses a random access memory
to store the image information point by point. The image
data contained in the memory can then be used to refresh
the display screen at a frequency that is adequate to prevent
flicker. Matick .et al. [11 give a good summary of APA
displays as well as several proposed memory chip
modifications. The memory chip proposed in that paper
provides the basis for the chip described in this paper. The
usual limitation of an APA display is the bandwidth of the
memory subsystem. The chip proposed in [11 contains a
quasi-second port as well as modifications to the primary
port. This paper describes a mapping and additional
hardware that further improve the memory bandwidth by
allowing a single memory access to modify a series of pixels
in either the horizontal or vertical direction [2].

System description
In order to simplify the explanation of the mapping and the
memory chip hardware, the particular configuration shown
in Figure 1 is assumed. Several modifications to this
configuration are described later. 393

IBM J . RES. DEVELOP VOL 28 NO. 4 JULY 1984 D. L. OSTAPKO

The generation of data and read or write commands is
assumed to be provided by the application. Since the data
width to the memory is 16 bits, the data must be presented
as a series of read or write commands for horizontal or
vertical strings having a maximum of 16 bits. Each
command will also include the X, Y coordinates where the
string is to begin on the display screen and a mask of length
16 indicating which of the 16 data items are to be stored or
retrieved, so that after any required shifting the mask bits
can be used directly as chip enable signals. Horizontal strings
are stored to the right and vertical lines downward from the
starting address X , Y, where X and Yare in the interval 0 to
1023. It is assumed that none of the addresses corresponding
to bits in the strings extends beyond the maximum screen
coordinates.

Data manipulation and address calculation is the process
of determining the actual signals that must be sent to each
memory chip. The data manipulation consists of a circular
shift or rotation of the data and mask by an amount
determined by the X , Y coordinates of the starting location
on the screen. In addition to the data and mask bit, each

394 memory chip must also receive a bit increment and a word

increment signal. The bit address, word address, and enable
signals are broadcasted to each chip. The transformations
necessary to determine these signals are given in the next
section. The importance of this mapping between memory
locations and display screen locations is that any contiguous
16 horizontal or vertical bits on the screen are mapped to 16
different memory chips and can, therefore, be stored or
retrieved in one memory cycle.

64K-bit chips organized as 256 words by 256 bits. This
provides enough storage for a 1024 by 1024-pixel display
screen. These chips are assumed to have a quasi-second port
with a 256-bit buffer and bit and word increment logic on
the primary port similar to that described in [I]. In the
following text, it is assumed that bit and word addresses are
provided simultaneously, which simplifies the description of
the required on-chip logic. If they are multiplexed, a single
modified incrementer can be used. Each chip will also
receive a 4-bit code defining the chip number. This code
may be either on or off chip.

from the chip buffers and generate the data stream that is
used to control the intensity of the beam being scanned
across the screen. In this application, the first bit of all
buffers is sent to the screen followed by the second bit, etc.
The proposed chip requires a modification to the serializer
logic, which is described later.

The 16 memory chips shown in Fig. 1 are assumed to be

The purpose of the serializer is to take the appropriate bits

Screen to memory mapping
Figures 2(a) and 2(b) show the mapping of the screen image
onto the memory chips. It is seen that each bit of a
horizontal string of length 16 or less is placed into a different
chip. Each is placed in the corresponding location of that
chip except for the bit increment for those bits that are
separated from the starting point by an even byte boundary,
where an even byte boundary is a coordinate that is a
multiple of 16. The mapping of 16 vertical bits is somewhat
more complicated. For vertical lines, each bit is placed in the
corresponding location of different quadrants of different
words. The rule is that the quadrants increase by 1 modulo 4
and the word address increases by 1 each time the quadrant
becomes 0. This sequencing through quadrants and words is
best described by associating a 4-bit quantity with a position
in the vertical line, where the two low order bits define the
quadrant and the two high order bits define the two low
order bits of the word address. Sequencing through the
locations then corresponds to sequencing through the
consecutive numbers 0 to 1 5 . Because of this sequencing, the
word address must be increased by four for those bits in the
string that are separated from the starting point by an even
byte boundary. The important property of the mapping is
that 16 horizontal or vertical bits can be written to memory
in one cycle because no two bits are mapped to the same
chip.

D. L. OSTAPKO IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Although 16 horizontal or 16 vertical bits can be mapped
from/to the memory in one read/write cycle, it is also
important to determine the computational and hardware
complexity of the mapping. The complexity is manifested in
the data manipulation and address calculation process and
in the hardware and signal lines for the memory chip and
the seializer.

Address calculation and data manipulation
The bit and word addresses that are to be broadcasted to the
memory chips h u s t be generated from the X , Y coordinates
of the starting point of the line. Since the horizontal and
vertical modes differ, each must be considered separately.

0 Horizontal mode
From Fig. 2, it is seen that the 6 low order bits of the bit
address are given by the integer part of X divided by 16 and
the 2 high order bits are given by Y modulo 4. Thus,

Bit address (7 , 6, 5 , 4, 3, 2, I , 0) = Y(1, 0), X(9, 8, 7, 6, 5 , 4).

The word address is given by the integer part of Y divided by
4. Thus,

Word address (7, 6, 5 , 4, 3, 2, I , 0) = Y(9, 8, 7, 6, 5 , 4, 3, 2).

Figure 2 shows that incrementing the coordinates of a
point by one unit in either the horizontal or vertical
direction moves the point to the next chip. Therefore, the
chip number that contains a location X , Y is given by (X +
Y) modulo 16. This quantity is used to define the amount of
right circular shift that must be applied to the data. Thus,
the properly aligned data and enable signals are given by

Data = ((X + Y) modulo 16) shift of input data

and

Enable = ((X + Y) modulo 16) shift of input mask.

Since every even byte is placed in a different bit position, the * -

number of chips that receive a chip increment is given by I (a) Display screen image, (b) nlemory representation.
(X + 16) modulo 16 or X modulo 16. This vector of (16 - X
modulo 16) number of Os followed by (X modulo 16)
number of Is must also be shifted by (X + Y) modulo 16 as
were the data and enable signals. Thus,

Bit increment = ((X + Y) modulo 16) shift of (1 6 - X between read and write, and between primary and secondary
ports, and any multiplexing signals that may be used are not
described.

modulo 16) number of Os concatenated
with (X modulo 16) number of Is.

Since all horizontal lines are in the same word,

Word increment = 16 number of Os.
Vertical model

The address of the first bit in the vertical line is the same as
In order to inform the memory chips that the reading or that calculated for the horizontal mode. However, this bit is
writing mode is horizontal, the mode signal is used and to be placed in chip number (X + Y) modulo 16. In the

Mode = 0.

Any other signals such as those necessary to distinguish the 2 high order bits of the bit address. Before the address 395

vertical mode, the on-chip hardware adds the chip number
to the 2 low order bits of the word address concatenated to

IBM J . RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 D. L. OSTAPKO

396

The expressions for the data and enable signals also remain
unchanged. Thus,

} z i d u d
address Data = ((X + Y) modulo 16) shift of input data

chip) and

Enable = ((X + Y) modulo 16) shift of input mask.

All vertical lines have the same bit address before
modification by the chip number. Thus, the bit increment
that is broadcasted is given by

Bit increment = 16 number of Os.

Vectors of bits in the vertical direction are placed in
successive words as a result of the modification by the chip
number. Thus, the number of chips that receive a word
increment of 4 is given by (Y + 16) modulo 16 or Y modulo
16. The vector of (16 - Y modulo 16) number of Os
followed by (Y modulo 16) number of 1 s must also be } address Edividual

chip) shifted by (X + Y) modulo 16. Thus,

Word increment = ((X + Y) modulo 16) shift of ((16 - Y)
modulo 16) number of Os concatenated
with (Y modulo 16) number of Is.

e -

Additional logic for memory chlp.
The mode signal that indicated that reading or writing is to
be in the horizontal mode is

Mode = 1.

From the above equations, it is seen that the address
calculations and data manipulations are relatively simple. It
should be possible to implement them in either hardware or
software.

can be broadcasted to all chips, (X + Y) modulo 16 must be
subtracted from the appropriate portion of the address. The
2 high order bits of the bit address must be decreased by On-chip address trans,ation
((X + Y) modulo 16) modulo 4 or (X + Y) modulo 4. Thus,

Bit address (7, 6) = Y modulo 4 - (X + r) modulo 4 chip number and selectively perform a 4-bit addition
The additional on-chip hardware must accept or store a 4-bit

= -X modulo 4. depending on the mode signal. Figure 3 shows the structure

The 6 low order bits of the bit address remain unchanged; of this added logic.

thus,
word address and the 2 high order bits of the bit address. Let

Bit address = (-Xmodulo 4), X(9, 8, 7, 6, 5 , 4). BH be the 2 high order bits of the bit address and WL be the

The 2 low order bits of the word address are modified by 2 low order bits of the word address. The function

subtracting the integer part of (X + Y) modulo 16 divided by
performed is an addition of the 4-bit chip number to the

4. Thus,
four bits formed by concatenating WL and BH. The 4-bit
result of the addition, ignoring carry out, defines the new

Word address (1, 0) = (integer of Y/4) modulo 4 WL and BH in the same order as in the input. The four bits
- integer of ((X + Y) modulo 16)/4 that define the chip position or number can be either on-

- (integer of (X + Y)/4) modulo 4 appropriate signals.

The translation affects only the 2 low order bits of the

= (integer of Y/4) modulo 4 chip storage or signal pins that are connected to the

= (integer of -X/4) modulo 4. It should be noted that the portion of the word and bit

The 6 high order bits of the word address remain unchanged; incrementers is disjoint from the portion that is modified by
addresses that may be altered by their respective

thus, the 4-bit adder. Therefore, the incrementers can be removed
Word address = Y(9, 8, 7, 6, 5 , 4), (integer of -X/4) modulo or implemented off-chip without affecting the logic necessary
4. to allow both horizontal and vertical reading/writing.

D. L. OSTAPKO IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

. Raster scan .

~~~ ~ 

I Memory tu raster conversion 

Removing the function provided by either incrementer 
eliminates the bit addressability in that direction. Without 
bit addressability, each read/write must begin on an even 
byte boundary. Thus,  the choice of bit  addressability in both, 
one, or neither direction is possible  as well as the choice of 
an implementation that is on-chip, off-chip, or multiplexed. 
It is also possible to implement the addition function off- 
chip. The added function does not prevent the usual 
operation of the memory chip in that the adder is 
completely disabled in mode 0. 

Memory to  raster  scan  conversion 
In addition to algorithmically simple logic  for address 
generation and  data manipulation, and a small amount of 
additional on-chip hardware, it  is  also important that screen 
refresh be  easily performed. 

Figure 4 shows the scheme necessary for serializing the 
output bit stream. The scheme requires only one 
modification to  the typical raster generation scheme. In a 
typical application, each of the 16 memory chips would  load 
its 256-bit secondary port buffer using the same word 
address. From Fig. 2, it  is  seen that 4 scan lines are 
contained in the  data stored in the 16 buffers. 

The scan data are formed by taking 16 bits, 1 from each 
of the buffers in order, incrementing the bit location in all 
buffers, then taking another 16 bits until 4 scan lines have 
been generated. In the typical organization, the order in 
which the 16 bits are taken from the chips is constant and 

begins  with chip number 0. The modification that is 
introduced is that  the starting location within the chips is 
incremented by I modulo 16 after each scan line is 
completed. Since there are 4 scan lines stored per memory 
word, the scan  origin will be 0 for every memory word 
address that is a multiple of  4. 

Conclusions 
This paper has presented a mapping and hardware 
modifications that allow symmetric reading/writing of 
horizontal and vertical lines from/to  the refresh memory of 
an APA display. In addition to eliminating the asymmetric 
relation between reading/writing horizontal and vertical 
lines, the bandwidth to memory has effectively  been 
increased. The extra hardware is modest and can be 
implemented in a variety of  ways.  If the extra logic  is  placed 
on-chip, the chip can still operate as a conventional memory 
chip. 

In addition to being suitable for a 1024 by 1024-pixel 
display, small variations of the on-chip logic  allow the screen 
size to be doubled in either direction. Doubling the screen 
size in either direction doubles the number of chips to 32 
and the data path width to 32; doubling in both directions 
increases the  number of chips and the  data width to 64. The 
number of bits necessary to describe the chip number 
increases to 5 or 6. In addition, the on-chip adder increases 
to 5 or 6 bits. Doubling the X dimension of the screen 
increases to 3 the number of  low order bits of the word 397 

IBM J .  RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 D. L. OSTAPKO 



address that  are passed through  the adder. Doubling  the Y 
dimension of the screen  increases to 3 the  number of high 
order  bits of the  bit address that  are passed through  the 
adder. Doubling  in  both  directions increases both WL and 
BH to 3 bits. It should be possible to design efficient on-chip 
hardware that allows the flexibility necessary for these 
alternate configurations. Further modifications of the  same 
hardware  allow either  horizontal lines or rectangular  blocks 
to be written in  one  memory cycle [3]. 

Acknowledgments 
The  author would  like to acknowledge the  contributions  and 
encouragement of George  Almasi, Stuart Burroughs,  Daniel 
Ling, and Andrew  Stankosky in  the  development of these 
algorithms  and hardware. 

References 
1. Richard  Matick,  Daniel  T.  Ling,  Satish Gupta, and  Frederick 

Dill, "All Points Addressable  Raster  Display  Memory," IBM J. 
Res. Develop. 28, 379-393 ( 1  984, this  issue). 

2. D. L. Ostapko, "A Mapping  and  Memory  Hardware  for  Writing 
Horizontal  and  Vertical  Lines,"  Invention  Disclosure (Y0881- 
0529, serial 509697), August 198 1. 

3. S. H.  Burroughs and D. L. Ostapko, "A Mapping and Memory 
Hardware  for  Writing  Rectangles  and  Horizontal  Lines," 
Invention  Disclosure (Y0883-0085), February 1983. 

Received January 26, 1984 

Daniel L. Ostapko IBM Research Division, P.O. Box 218. 
Yorktown Heights, New York 10598. Dr.  Ostapko  joined IBM  in 
1968 in  East  Fishkill, New York,  where  he  worked  on  models  for 
wirability  analysis and  prediction.  In 197 1, he  transferred  to 
Poughkeepsie,  New  York,  where  he  worked  on  reliability, 
serviceability,  availability,  test  pattern  generation,  and  effective use 
of hardware  redundancy.  He  was  involved  in the  development  of 
design automation  algorithms  for PLAs,  including  minimization,  test 
pattern  generation,  mapping  algorithms  for  folding  PLAs,  and  a 
hardware  design  language.  In 1978, he  transferred  to  the Thomas J. 
Watson  Research  Center,  where  he  developed  algorithms  for 
subdividing  PLAs and investigated  memory chip hardware  for 
enhancing  the  performance of an all-points-addressable  display. He 
is  currently  involved  in  the  definition and  programming  of  a  highly 
parallel  processor.  Dr.  Ostapko  received a B.S. and  a B.S.E.E.  from 
Trinity College in Hartford,  Connecticut, in 1963 and 1964 and an 
MS. and  a Ph.D.  in  electrical  engineering  from  Northwestern 
University  in  Evanston,  Illinois,  in 1966 and 1968. 

398 

D. L. OSTAPKO IBM 1. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 


