
All points 
addressable 
raster  display 
memory 

by Richard  Matick 
Daniel T. Ling 
Satish  Gupta 
Frederick  Dill 

This  paper  discusses  display  designs  which 
store  the  image  point by point in random  access 
memory, so that  independent  update of every 
pixel is possible. A frequent  bottleneck in the 
design of high  performance  displays of this type 
is the  available  bandwidth  of  the  memory 
subsystem. In this paper,  we  focus  on this issue 
and  present  features of a  customized  dynamic 
RAM chip  which  can  readily  provide  the 
necessary  bandwidth  and  thus  greatly  simplify 
the  design  of  very  high  performance APA raster 
scan  displays.  The  customized RAM chip is 
quasi-two-ported.  After briefly introducing APA 
raster  displays, we discuss  display  memory 
system  design  and  the design of the  proposed 
custom  memory  chip. We describe  the  second 
port for  the  video  refresh,  which  makes  the 
primary port available for update  almost 
continuously. We also discuss modifications to 
the existing primary port to make it easily  usable 
for  the  parallel  update  required  for  high  update 
performance  as  well as for  other  applications. 

1. Introduction 
Raster displays create images  by repeatedly scanning a CRT 
from  left to right and top to bottom. The electron beam’s 
intensity is appropriately modified at discrete points (or 
pixels) on the screen, thus presenting the image information 
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as intensity samples at each  pixel.  This paper discusses 
display  designs  which store the image point by point in a 
random access memory, called a frame  buffer, so that 
independent update of  every  pixel  is  possible. Such  displays 
are capable of producing arbitrarily complex, flicker-free 
images.  We call such displays APA raster  scan  displays  (APA 
stands for All Points Addressable). 

A frequent bottleneck in the design  of  high performance 
displays of this type is the available bandwidth of the 
memory  subsystem.  In this paper, we focus on this issue and 
present features of a customized dynamic RAM chip which 
can  readily  provide the necessary bandwidth and thus greatly 
simplify the design of very  high performance APA raster 
scan  displays. The customized RAM chip is quasi-two- 
ported. After  briefly introducing APA raster  displays in 
Section 2 to more specifically  identify the problem, we 
discuss  display memory system  design in Section 3, and the 
design  of the proposed custom memory chip in Sections 4 
and 5. Section 4 describes a second port for the video 
refresh,  hence making the primary port available  for update 
almost all  of the time. Section 5 discusses  modifications to 
the existing primary port to make it  easily  usable  for the 
parallel update required for  high update performance. 
Section 6 provides some trade-off considerations between the 
primary and secondary port, whereas  Section 7 discusses 
other applications of the custom memory chip. 

2. APA raster  displays 
The development of  APA raster  displays  has  been  primarily 
limited by the cost  of random access  memory. The cost  of 
random access memory for a 5 12 X 5 12 bit-map display 
where  each  pixel  can  be  only off or on has dropped from 
$2500 in 1971 to $30 in 1983.  Early frame buffers  used  disks 
and drums for  storage due to the prohibitive cost of random 379 
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Table 1 Time taken to update a Screen of 10 OOO characters. time still  leaves much to be desired. To speed up the process, 

Update time Total time for 
per pixel 10 000 characters 

Total 
bandwidth 
(Mpixels/s) 

0.1 
1 

(PS) (SI 

10 8 
1 
1/16 

0.8 
0.05 16 

access memory (Terlet [I], Ophir et al.  [2]). When 
semiconductors became economical, some designs made use 
of  LSI shift  registers (McCracken et al. [3]), but since these 
memories were not very  fast, the displays tended to have  low 
resolution. The resolution of Terlet's  disk display was 320 x 
I92 pixels, and McCracken's  shift  register had a resolution of 
256 X 256  pixels. It was not until recently that random 
access memory has become cheap enough to be  used  for 
inexpensive raster displays. 

The image on a raster scan display must be repeatedly 
scanned, which requires continual memory access. This 
process is usually  referred to as video  refresh. To achieve a 
flicker-free  image, the refresh rate must be extremely fast. 
For example, a 1024 X 1024-pixel  display  refreshed  60 times 
per second displays a pixel  every 12 nanoseconds. As a 
result, the memory must typically  access  several  pixels in 
parallel  in order to maintain video  refresh  rate. If the display 
were implemented using 64-kilobit chips, 16 chips could be 
read  in  parallel  with a read  cycle time of  192  nanoseconds." 
However, the memory would  have to be accessed on every 
cycle during actual pixel  refresh time, leaving only the idle 
time during horizontal and vertical retrace for updating the 
memory. For this example, the idle time is a maximum of 4 
ms or 24 percent memory availability for updating. This is 
insufficient time for most applications if one pixel per cycle 
is updated. 

Since rapid picture update is desired, parallel  pixel update 
is also necessary. Update speed is crucial for interactive uses 
of the display  because  large amounts of information may 
have to be changed even  for conceptually simple operations. 
This problem is best illustrated by some examples. 

A 1024 X 1024-pixel  display can show approximately 
10 000 characters, occupying an area of approximately 
800 000 pixels on  the display. Table 1 shows the  time taken 
to generate a new screen  full of characters in the frame 
buffer assuming various update times for individual pixels. 
Frame buffer  systems in which the host computer has to 
update (write) separately every  pixel  of  every character might 
take 10 microseconds/pixel, in  which  case the total time of 8 
seconds required to generate a new image  is unacceptable. 
Even at an update speed of 1 microsecondlpixel, the total 

new characters can be copied into  the frame buffer  by 
writing  several  pixels in parallel. If  16 pixels can be written 
in parallel  every microsecond, then  an update speed of '116 
microsecond/pixel can be achieved, giving a satisfactory 
screen update time. However, this update time is  still too 
long to be done during the 4-ms retrace idle time, hence 
additional bandwidth improvements are still required. 

The operation of copying pixels from one part of the 
image memory to another is a useful technique when 
scrolling a window across the frame buffer. For the scrolling 
of the entire 1024 X 1024-pixel display to appear smooth, it 
should occur in less than  one frame time (e.g., second). 
This requires an update bandwidth of 60 megapixels/second, 
which can be achieved if 64 pixels are copied  every 
microsecond. 

Typical calligraphic displays can draw several thousand 
lines during each  refresh period. If  we assume each vector to 
be approximately 100 pixels long (about %o of the display), 
then a frame buffer display should update at least 3 
megapixels/second in order to emulate a vector display. 
Table 1 shows that this cannot be done unless  several  pixels 
are updated in parallel. 

In addition to the memory bandwidth requirements 
imposed by the display  system, there are additional 
constraints imposed by the memory chips themselves. 
Dynamic memory cells require refreshing about every 2 ms, 
which can lead to contention problems with the  CRT display 
refresh demands on the memory. Hence this must be taken 
into account in the design. Since dynamic memory refresh is 
a common problem for  all  bit-buffered  displays  using 
dynamic chips, we do not include it except to mention that 
under certain fortuitous circumstances, which do not often 
occur, the accessing  of memory to refresh the CRT screen 
can also provide the dynamic cell  refresh. 

3. Display memory mapping 
The display memory has two primary functions. First, it can 
be updated to change the  data contained in it and hence 
produce new  images. Second, it has to be accessed  repeatedly 
to display the image on  an  output device. As discussed 
earlier, both the update and the  output operations require 
parallel  access to achieve satisfactory performance. To 
provide this parallelism, the display memory is organized 
into words,  with  each  word containing the  data for more 
than one pixel. The memory mapping determines how the 
pixels  in  each  word map  onto  the display (Sproull et al. [4], 
Gupta [ 5 ] ) .  If N pixels are to be  accessed in parallel, then the 
display can be designed  using N random access memory 
chips,  where  each chip can read or write one pixel per 
memory access. b 

'If each pixel contains more than one bit, then g x N memory chips are requlred, where g 

380 a Since the 64K-bit chips available today are typically not fast enough, page mode access, a IS the number of bits per pixel. If more than one hit could be accessed in parallel from each 
lower refresh rate, or a smaller screen format has to be used. all ofwhich are undesmble. chlp, then fewer memory c h i p  would be required. 
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16-bit boundary = Memory word 

Column address 

I Memorv  mauuine for a 1024 X 1024-pixel display with 1 X 16 mapping 

Scan-line  mapping 
For the most conventional display memory mapping, all 
pixels in each  word are mapped along a scan line on the 
display. This organization is motivated by the high data rate 
required by the video refresh  of CRTs. In a 1024 X 1024- 
pixel, 60-Hertz, noninterlaced display, the screen is refreshed 
at the rate of  12 nanoseconds/pixel. Assuming a memory 
cycle time of  192 nanoseconds, each memory access has to 
provide at least the next 16 pixels along the scan line for the 
video  refresh controller to maintain the data rate required. If 
this display were implemented with 16 memory chips, then 
the only time available to update it would be during the 
horizontal and vertical retrace intervals. 

Figure 1 shows the scan-line mapping for a 1024 X 1024- 
pixel  display  using  sixteen 64-kilobit random access memory 
chips, each providing one bit per chip. All the pixels in each 
1 X 16 box on  the screen can be accessed by providing all 
the memory chips with the address (row address, column 

address) specified in parentheses in each  box. Notice that the 
mapping shown allows the access  of  16-bit sequential words 
along the scan line using sequential column addresses, hence 
allowing the use  of  fast  page mode read for video  refresh. 

introduces boundaries into  the display corresponding to the 
word boundaries in memory. Parallel updates can take place 
only on  the fixed 1 X 16 grid  aligned to the column address 
boundaries of the memory and hence of the screen. If it is 
necessary to write 16 pixels into  the display memory starting 
at any bit position which is not aligned to the fixed  16-bit 
word boundary, two separate writes to adjoining words  of 
memory are needed. For instance, if  we  wish to write 16 
pixels starting at pixel a2 in Fig. 1, the first 15 bits, a2 
through a16, would be written on chips 2 through 16, 
respectively, on the first  cycle  with row-column address 
(0, 0), whereas the 16th bit, a17, would  be written on chip 1 
on  the second cycle  with address (0, 1). The second cycle 

A disadvantage of this kind of mapping is that  it 
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Write  16 pixels to memory 
starting at a(n) 

. I 

Data aligner 
(ring-shifter) 

I -  

Chipno. l - - - - - - - b n - l  fl 

(row, A d d ~ s ~ ~ r , c + l ~ r , c ~  (0,  1) 

column) 
(0, 0 )  

\ 8 - 
Write  16 bits to memory 
using data bit  and  address 
for  each chip as  shown 

I Updating  an  arbitrarily  located I X 16-bit  memory  word  starting at 
screen  position a(r1) through a(11 + 15) showing  data  alignment  and 
memory  chip  addresses  required. 

only requires writing to a chip which  was not accessed on 
the first  cycle and only needs the column address to be 
incremented by one. The  data alignment and addressing can 
be  seen more clearly in Figure 2, where  for this example n = 
2. To load a 20 X 16-pixel character would probably take 40 
memory cycles, and 20 only in the rare case  where the 
character is  aligned to the 16-bit-word boundary. 

access to any horizontal span of  16 pixels starting at any 
arbitrary pixel position. This is accomplished by 
simultaneously addressing different memory chips with 
separate addresses, as shown in Fig.  2.  An arbitrary span of 
16 pixels can cross only one word boundary, and two 
addresses are sufficient to access the span. In addition, the 
two addresses differ only by one. 

Scan-line mapping can be  modified to provide single  cycle 

Symmetric mapping 
Scan-line mapping imposes an inherent asymmetry on 
update operations to the memory chips-horizontal updates 
are easier than  the vertical  ones. For example, a horizontal 
line can be drawn very quickly, but only one pixel of a 
vertical line can be drawn in one memory cycle. This can be 
improved by changing the memory-to-screen scan-line 
mapping of Fig. 1 to a new mapping wherein the 16 bits 

382 written into memory represent a 4 X 4 square array on  the 

screen, as shown in Figure 3(a). The memory addresses (row 
address, column address) are shown inside the arrays, in 
parentheses. As in the case  of the scan-line mapping, the 
symmetric mapping also has the property that sequential 
squares along the scan-line direction require sequential 
column addresses, as shown. Whenever 16 bits are 
appropriately written into memory, they will  now appear on 
the screen as a square array rather than a straight horizontal 
line. By the use of appropriate masks, any vector, horizontal 
or otherwise, or any pattern within the square array can be 
written in one memory cycle.  It  was for these reasons that 
the designers of the 8 X 8 display (Sproull et al. [4], Gupta 
[ 5 ] )  chose a symmetric 8 x 8 organization. In an 8 X 8-pixel 
display, 64 pixels can be read or written in each memory 
cycle; the 64 pixels  read or written lie on  an 8 X 8 square on 
the screen. The line drawing operations are now symmetrical 
with  respect to the x and y axes of the screen. 

Figure 3(b) shows  how the scan lines now map to the 
same sixteen 64K-bit memory chips of  Fig. 1 for a 1024 X 

1024-pixel  display  using 4 X 4 square array mapping. Since a 
scan line is  now contained within only 4 chips rather than 
16, for video  refresh the memory chips must be  accessed 
four times as fast as for scan-line mapping. A multiplexer or 
selector of some sort is required to select sequential groups 
of four chips for sequential scan lines. The addressing 
scheme shown in Fig. 3 has the same boundary problem that 
we discussed  before. It does not allow  access to  an arbitrarily 
positioned 4 X 4 square on the screen in one memory cycle. 
By providing incremented row and column addresses to 
different chips in the memory chip array, we can access an 
arbitrarily positioned 4 x 4 square. For instance, Figure 4 
shows the  data alignment and row-column addresses needed 
to write the nonaligned square array shown in Fig. 3(b) 
starting on the screen at pixel a12 in Fig. 3(a). At most, an 
increment of one is required in the row, the  column, or 
both. 

The symmetric memory organization is also appropriate 
for driving a multiple-beam CRT, in which  several beams 
simultaneously scan the CRT face. Such a CRT can provide 
a larger number of  pixels, as well as higher refresh rates and 
brightness levels, but  it requires data from several 
consecutive scan  lines simultaneously. Symmetrical 8 X 8 
mapping allows  eight beams to be scanned together on a 
multiple-beam CRT. 

4. Dual-ported memory 
A dual-ported memory chip can effectively double the 
available bandwidth to and from the memory system and 
can be  used to decouple the accesses required for picture 
update from those for CRT video  refresh.  However, a full 
dual-ported memory is  very expensive, both in terms of 
silicon area and pin count, and is  also  unnecessary  for 
display memory systems.  We can use the nature of  video 
refresh and  the characteristics of dynamic RAMS to provide 
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written to memory  in 
16databitstobe 

4 X 4 screen  position shown 

a  simpler quasi-second port to the  memory chip, which can section, the quasi-second port is much easier and cheaper to 

more  than double (e.g., triple or quadruple)  the effective implement because only small  changes to existing dynamic 

bandwidth for many applications. As we show in this RAMS are needed. 383 

IBM J .  RES. DEVELOP.  VOL. 28 NO. 4 JULY 1984 
RICHARD MATICK ET AL 



e - 1  
shown. It is only during transfer of data between the sense 
amplifiers and the row  buffer that there is any need for 

Data  alignment  and  row-column  address  required  for  writing  into synchronism between the two memories ( ~ i ~ ~  [6]). 
memory  the  arbitrary  square  array of Fig. 3(b). If the row  buffer  is configured as a serial  shift  register,  with 

its output provided at  an independent data  output pin 

Shift 1. 
clock d 

butput 

(secondary port), then successive column addresses on  the 
row can be rapidly shifted out. As shown in Fig. 5, this 
provides a serial quasi-second port which can be used  for 
video refresh in both the scan-line and the symmetric 
memory mappings. 

In the scan-line mapping of Section 2, the row  buffer shift 
registers  of  each memory chip contain every sixteenth pixel 
along a scan line (and hence all the pixels required from this 
memory chip for four scan lines). The serial outputs of the 
16 shift  registers (one from each memory chip) are serialized 
by a 16-bit  high  speed shift register to form the  output video 
(Figure 6). 

In the symmetric mapping of  Section 2, if each chip of 
Fig. 3(b) contains a row  buffer  of the type  shown in Fig. 5, 
then the loaded row  buffers  of 16 memory chips contain one 
pixel for all 4 X 4 squares of four scan lines. One Scan line is 
thus contained in a group of four chips, as shown. To 
produce the video output, the four row  buffer  shift  registers 
containing the current scan line are serialized  using a 4-bit 
high speed  shift  register through some multiplexer or selector 
logic, as indicated in  Fig. 3(b). It is assumed that the serial 

I Schematic of quasi-dual-ported  memory  chip  showing  a  row  buffer 
implemented  as  a  shift  register  and  directly  connected to the far end 
of  a  folded  hitisense  line. 

The video  refresh port of the display memory is a serial 
port, clocked and addressed in a regular and predictable 
fashion. Also, in both the Scan-line and symmetric memory 
organizations, successive  words in the scan-line direction can 
be  accessed at successive column addresses in a given  row, as 
can be seen in Figs. 1 and 3. 

Random access memory chips usually store the bits in a 
384 large array of memory cells. A 64K-bit RAM will hence 

output from the memory chips are tristate. Note that the 4 X 

4 square mapping requires the row  buffer to shift at four 
times the speed required by the 1 X 16 scan-line mapping. 

4-beam CRT, in  which  case all 16 memory chips will  be 
shifting their shift  registers simultaneously using four 4-bit 
serializers to create the four video streams. 

Connecting the row  buffer as a shift  register  is the least 
flexible mode of operation, but it is adequate for many 
applications, such as  video  refresh. The quasi-second port 
can be made bidirectional by gating the row  buffer in order 
to write a particular row  of the memory. The second port 

The symmetric 4 X 4 mapping can also be  used to drive a 

e %me chips are implemented using several islands of fewer words or fewer bm per word. 
They can however be conceptually thought of In the canonical 256 x 256 organization. 
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I Schematic of the  use of the  row-buffer  secondary  ports  to  provide 
CRT video  refresh  for  the  case of scan-line  mapping. 

Memory  chip  with  row  buffer  configured  as a static,  fully  decoded I array. 

could be connected in alternative configurations, e.g., an 8- 
bit  parallel output might be desired  when the chip is  used as 
the character refresh  buffer  for a character-based  display. 

Another more  general arrangement for handling the input/ 
output of the row  buffer  is to use a decode tree much like 
that used to decode from the sense  amplifiers  for the primary 
port. This allows a much more flexible  addressing  of the 
information into  and out of the register  row.  Again, this does 
not have to be arranged with a bit decode organization 
unless a one-bit-wide output is  desired.  The  modified 
memory is  shown in Figure 7. 

Memory 
chips 

5. Primary port 
The quasi-second port increases the bandwidth of the a - :  
memory chip to the level needed  for  highly interactive Schematic of a  memory  bank  consisting of 32 chips at I bit/chip 
displays. This section  discusses a few changes to the primary 
port which  increase its capabilities as well as reduce the 

and  having  a 16-bit 1/0 word,  showing  that  only  the  left  half of the 

overall  cost of the memory system. 

memory  chips  need  incremented  addresses. 

Address incrementer 
Both the scan-line and the symmetric mappings presented in 
Section 2 required a subset of the memory chips to receive 
incremented addresses to provide  bit-addressability of 
multiple-pixel  words  (see Figs. 2 and 4). The easiest  way to 
implement this is to provide an on-chip address increment 
which  can increment either the row or the column addresses. 
A separate pin  would control whether the address  is 
incremented or not. External  logic  would  now determine 
which  memory chips increment their addresses and which 
do not. The increments can  be determined from the bit 
address within the word in both the scan-line and the 
symmetric memory mappings (Gupta [ 5 ] ,  Matick et al. [7]). 

The address incrementer can be implemented using any of 
several techniques. The easiest  is to add combinatorial logic 
just after the address input pins to increment the address. 
Another possibility  is to shift the decoded outputs of both 
the row and column decoders  when the increment signal  is 
asserted. The design  trade-offs for these  possibilities are 
discussed in Section 6. 

If the number of memory chips used to implement the 
display memory is more than twice the width of the data 
path, then each memory chip does not have to 
independently increment its address. As shown in Figure 8, 385 
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if 32 memory chips are used to implement a 1 X 16 memory 
mapping, then only the leftmost 16 memory chips have to 
increment their addresses for the case shown. This kind of 
bank incrementing can simplify  system  design  when an on- 
chip incrementer is not available. 

The lack  of an on-chip address incrementer forces the 
choice between an off-chip incrementer and an address 
multiplexer which  selects  between the incremented and the 
unincremented address. This results in the use  of a large 
number of external parts if the number of memory chips is 
not greater than twice the width of the data path. A solution 
to this problem could be to time multiplex the two  addresses 
(the incremented and the unincremented one) and strobe 
only the chips which require the particular address. This 
solution leads to a slower  system. 

Pixel aligner 
The ability to access a bit-addressable word introduces an 
alignment problem. Figures 2 and 4 show that the bit 
accessed from the leftmost chip is not necessarily the 
leftmost pixel of the desired word. The word  read has to be 
aligned such that the processor can manipulate it in the 
desired order. The alignment can be performed by circularly 
shifting the word  read from memory by the offset from the 
alignment boundary. 

The external aligner can be eliminated if each memory 
chip can be augmented with  several input  and/or  output 
pins, only one of which is used in any given memory cycle. 
The augmentation takes the following form: Replace the 
single data input pin with 2” multiplexed data input pins, 
replace the  output pin with 2” demultiplexed data  output 
pins, and add the maximum of n or m control pins. The 
control pins either select one of the 2” input pins on  data 
input  or  one of the 2” output pins on  data  output. 

The purpose of the additional data pins is to permute the 
data  among  the memory chips. The wiring  shown in Figure 
9 allows an arbitrary circular shift of the eight data bits. In 
this case there are eight output pins, one input pin, and three 
control pins. The operation of this circuit can be understood 
in the following way:  Assign to each memory chip input pin 
one of the eight  wires  in the bus below the memory chips; in 
this case  assign the topmost wire to the leftmost chip, and so 
on, as indicated by the connections of the input pins. Then, 
by virtue of the wiring, the simultaneous selection of the 
same output pin on all chips, via the control lines, causes the 
data read from the memory to be placed on the bus, and 
also on  the  input pins, in some permuted fashion, depending 
on which output pin has  been  selected. In this case,  for 
example, simultaneously selecting output pin 0 on all chips 
causes no permutation, selecting pin 1 causes an end-around 
shift by one, and so on. 

6. Implementation  considerations  and  trade-offs 
The foregoing  discussion  was intended to illustrate the 
various types  of mappings between frame buffer and screen, 

and  the types  of additional functions which can be  used to 
advantage. Two additional memory chip hardware features 
would  greatly facilitate the various mappings while providing 
high bandwidth for simultaneous screen  refresh and frame 
buffer  updating-an on-chip secondary port supplied by a 
row buffer, and  an address incrementer. These features can 
be implemented in numerous ways with various trade-offs 
which are discussed here. 

One of the main considerations in the design  of a memory 
chip with these special features is the cost, as reflected in the 
additional silicon area needed. These features are added to 
every memory chip of the frame buffer. Thus, for  large 
frame buffers which are a significant part of the overall cost, 
a large percentage cost increase is not justified unless the 
components displaced by the features are larger than  the 
increased memory cost. Such detailed cost comparisons are 
highly  system dependent and cannot be done for a general 
case. As memory costs continue to decrease,  these additional 
features look quite attractive, even at a larger percentage 
increase in chip cost, but  cheap memory encourages systems 
with  larger frame buffers and/or more bits per pixel. Thus 
the added cost tends to increase. Hence the objective is to 
add the smallest possible amount of additional circuitry to 
the memory chip, commensurate with  being able to do the 
screen  refresh without high speed shifting of the row  buffer 
and with  high availability of the primary port for frame 
buffer updating. These two additional features are functions 
which can be added to the periphery of a dynamic memory 
array. The input  to  the row  buffer is essentially the output of 
the sense  amplifiers, so that  the internal parts of the array 
and sense circuits need not be disturbed. Address 
incrementing can, in principle, be done at the address 
receivers, prior to decoding. Then, the incrementer could 
also be on the periphery of the array and need not disturb 
the internal circuits. Thus, both the cost and design time can 
be limited by using a suitable, existing memory design and 
modifying it  to include these features. 

Typical dynamic memory arrays contain a column of 
sense amplifiers imbedded between two arrays of memory 
cells. For sensing, a true and a complement signal are 
required, with the complement provided by a “dummy cell” 
connected to  the opposite side  of a cross-coupled  sense latch. 
If this dummy cell  were  physically on the opposite side  of 
the sense amplifier from the bit/sense line being interrogated, 
then connection of the row  buffer to the sense latch would 
be  very difficult. In fact, a separate line would  have to be 
placed over the array for  each  bit of the row  buffer. This is 
extremely undesirable for many reasons-cell density on  the 
array is compromised, the sense circuit may become 
unbalanced. However, if a “folded bit sense/line is an 
inherent part of the memory design, then the row  buffer can 
just be connected to the far end of the bit/sense line pair, as 
shown  in  Fig. 5 .  Thus, a folded  bit sense/line, or equivalent, 
is  highly desirable in the basic array design to permit 
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I On-chiu circular  shift  obtained using eight  output pins 

connection of the row  buffer on the periphery of the array 
with no modification to the array itself.  After the memory 
array choice has  been  made, the next  decision  involves the 
row buffer itself, its architecture and bit  capacity. 

e Row bufer architecture 
If there were no  cost constraints, the most  useful  row  buffer 
would  be a single  stage  register  of such a capacity that, for 
any given memory plane configuration which maps to one 
full  screen, one load of  all the row  buffers on the chips of 
that plane  would contain at least one scan line for the largest 
screen format of interest. For example, suppose the largest 
screen of interest is 1K X 1K pixels,  refreshed  by a 1- 
megabit frame buffer. If the frame buffer  were made up of 
64K-bit chips  providing one bit (one row  buffer)  per  chip, 
then the 16  row  buffers on the 16 chips should hold a total 
of 1 K bits,  which requires a minimum of 64 bits per row 
buffer. If the row  buffers  were  all, say, 32 bits each, then the 
16  row  buffers would  only  hold 5 12 bits,  which is  half  of the 
assumed  scan line on the screen.  In order to get 
uninterrupted refresh  of the screen, some special  off-chip 
buffering of the data out of the row  buffers  would  be 
required to hold the data while a (slow)  reload  of the row 
buffer  took  place. This special  buffering can be avoided, and 
the application of the chip extended to allow uninterrupted 
screen  refresh  for  all  possible  screen formats by the use of a 
two-stage (master/slave) row  buffer organization in which the 
master and slave  have independent load-enable signals. The 
master is loaded  from the memory array, and the slave is 
loaded from the master. The data are then serially  shifted 
out of the slave to the CRT register.  After a slave has been 
loaded and is being  used to refresh the screen, the master can 
be independently loaded  with the next sequential data at any 
convenient time. I f  all the slave  row  buffers do not hold one 
scan line, then, when  the  last  bit  of the slave  is  being  shifted 
out, the master can be loaded  back to back into the slave so 

that an Uninterrupted flow  of bits appears out of the slave to 
the CRT register. This avoids all critical timing problems as 
well as the need  for  any additional buffering. 

The conditions under which a master/slave organization is 
useful depend on scan line size, bit capacity of the memory 
chip, and numbers of row buffers  per chip providing separate 
data paths to the  CRT register, as follows:  Assume that 

L = number of scan lines on the screen, 
S, = bits  (pixels)  per  scan line, 
Fb = bits per frame buffer, 
B, = total number of bits/chip, 
NRB = number of  row  buffers  per chip providing separate 

B,, = total number of bits for  each  of the NRB row  buffers. 
data paths to the CRT register, and 

The minimum number of  bits  per row buffer, assuming one 
scan line per load of  row  buffers, is found as follows. For a 
frame buffer  of Fb bits, using chips of capacity B,, the total 
number of chips required, N,, is 

N = -- Fb chips 
B,frarne' 

But the frame buffer  size  is  set  by the number of lines L and 
bits per  scan line, S,, or 

Substituting Eq. (1 b) into (la) gives the required number of 
chips as 

N = -- LS, chips 
B,  fiume' 

With this number of chips, the total number of row  buffers 
available to hold the scan line is 

Total no. row buflers - 
- NcNRB ' ( 2 )  frame 387 
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The total number of bits  held in these  row  buffers  is BRB 
times Eq.  (21, and this must be equal to (or greater than)  one 
scan line; thus, 

Substituting Eq. (la) and solving for BRB gives the size  of 
each on-chip row  buffer  needed to hold the full scan line as 

BRB 5 - B, bits 
NRBL row buffer' 

As an example, if the frame buffer  is Fb = 1 M pixels, the 
scan line size is 1 K pixels, the chips are 64K bits each, and 
there is one row  buffer per chip, then Eq. (4) gives BRB = 64 
bits per row  buffer to hold one scan  line.  If the number of 
bits  per chip increased to, say, 5 12K,  all other parameters 
remaining the same, then B,, must  increase to 5 12 bits  per 
row  buffer to contain one scan  line. Note that this value 
increases  directly  with the chip capacity, all other factors 
remaining constant. This is the case  because, as the chip 
capacity increases, the number of chips required in the frame 
buffer  decreases  directly, and  the total number of  row  buffers 
therefore decreases,  also  directly. Hence the row  buffer 
capacity per chip must be increased directly. 

Again, if all other factors remain constant, the row  buffer 
size  is independent of scan line size  since more chips (and 
more row buffers)  must be added to each frame as the scan 
line length  increases. The additional row  buffers  exactly 
match the capacity required for the increased scan line 
length. 

A row  buffer  of 5 12 bits is rather excessive  since 
considerable area is required. One might consider building a 
master/slave type row  buffer  of  fewer  bits to circumvent the 
problem. The point at which this becomes feasibleis a 
function of the physical  size  of the master and slave.  Assume 
that the master consumes exactly the same amount of silicon 
area as the slave. Further assume that the chips are 5 12K 
bits, requiring a 5 12-bit  row  buffer to contain one scan  line. 
In such a case, it would be much more economical to build 
a master/slave type of row buffer,  each of 64 bits, rather than 
one row  buffer  of 5 12  bits. 

The 64-bit  master/slave configuration would require a 
reload  from the main array four times as often as a 5 12-bit 
row  buffer, but the impact on the primary port availability 
for updating with new information would be very small. 
Besides, the master could be loaded  when convenient (e.g., 
when there was no updating) and would not be limited to a 
fixed time slot. The only requirement is that it be loaded 
prior to the slave  being  totally  shifted out to the CRT 
register. 

for any size  screen format and any number of bits per chip. 
One could even consider building a master/slave of,  say,  32 
bits,  which  would  be  very economical and serve a wide  range 
of screen formats. The frequency at which the master would 

;88 have to be  reloaded from the main array would  increase  for 

The master/slave  would  provide unintempted refreshing 

the above case, but for many applications, especially  with 
smaller size  screens, this would  be  negligible. 

availability  of the primary port for updating (writing) new 
information into the frame buffer and the increased  shift rate 
to supply  refresh data. Obviously, if the row  buffer must be 
reloaded  every main memory cycle,  it  is of no value. 
However, for nearly  all  cases  of  practical interest, a master/ 
slave row  buffer  of  32  bits  would  give an average primary 
port availability in the range of 90 percent or more.  These 
values are taken from Table 2 for the typical  case  of  using 
chips of either 64K or 256K  bits  per chip with one row 
buffer. The average primary port availability,  (b) in Table 2, 
is taken as the total  percentage of time that the primary port 
is  free during the 16.7-ms  screen  refresh time, assuming a 
1M-bit frame buffer having a 200-ns  cycle time, and a l e  X 

1 K-pixel  screen.  This  is the number of interest. Also  given  is 
the minimum instantaneous primary port availability (a), 
which  is the percentage of time the primary port is  free 
during the time period of one horizontal scan line (assumed 
to be  12 ns per pixel times 1K  pixels) without including the 
retrace time. These availabilities  (a and b) are tabulated, as a 
function of  row  buffer  size,  for various memory chip 
capacities. For the assumed  screen  size and memory cycle 
time, a single  32-bit  row  buffer  would  begin to have a 
significant  effect on the average primary port availability at 
5 12K and 1M bits per chip. However, it is not likely that a 
single  1M-bit chip would  be  used  with a 1K X 1K-pixel 
screen at any row  buffer  size  since the shift rate of the row 
buffer  would  have to be  12  ns per  bit. This is unreasonable. 
A more desirable configuration for chip capacities above 
256K bits is to essentially make multiple islands of the 
256K-bit configuration with a 32-bit  master/slave  row  buffer. 
Thus a 5 12K-bit chip would  have  two  32-bit  row  buffers, 
each providing one bit to the CRT register, and a 1M-bit 
chip would  have four such  row  buffers. Under these 
circumstances, the maximum shift rate required of the row 
buffer  would be once every  48  ns. This is commensurate 
with the likely  speed of such circuits. Primary port 
availability is thus maintained in the range of 90 percent, 
while the additional circuitry needed  for the row  buffer  is 
quite reasonable. 

the silicon area consumed, it introduces additional 
complexity into the chip design. Dynamic memory chips 
typically  have  128,  256, or even more sense  amplifier/ 
latches. It is a very  simple matter to just latch  each of these 
into the row  buffer  whenever a row  is  accessed.  However, 
this tends to make the row  buffer rather large. If it were 
decided to use a smaller row  buffer, then some additional 
decoding and additional addressing  would  have to be done. 
For instance, suppose there were  two  islands on a given chip, 
each  having  256  sense  latches. If  we  wished to provide one 
row  buffer  of  32  bits, then each of the two groups of  256 

The major impact of a small row  buffer  is on the 

While a small row  buffer  capacity  is  desirable in terms of 
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Table 2 Primary  port  availability  vs  frame  buffer  and  row  buffer  parameters for an assumed 1K X 1 K-pixel  screen, 1 "bit frame buffer 
at 200 ns  cycle time. Screen  refresh  occurs  at 12 ns/pel, 60 Hz. 

Bb Nc NRB BRB No. row buffers Primary pori 
bitslchip NO. chips No. row bufers row buffer capacity accessed availability 

frame chip  chip per scan  line (%I 
(bits) 

a b 

64K 16 1 32 2  96.8  97.5 
I I I 64 1 98.4  98.8 
I I I 128 1 /2 99.2  99.4 

1 1 1 256 1 14 99.6 99.7 

256K 4 1 32 8  87.2  90.2 
I I I 64  4  93.6  95.1 
I I I 128 2  96.8  97.5 

1 1 1 256 I 98.4  98.8 

512K 2  2 32 8  87.2  90.2 
I I I 64  4 93.6 95.1 

128 2 96.8 97.5 

3 1 1 
256 1 98.4  98.8 

1024K 1 4 32 8  87.2  90.2 
I I I 64  4  93.6 95.1 
I I I 128 2  96.8  91.5 
1 1 & 256 I 98.4  98.8 

I I I 

(The following are  for one row  buffer  per chip.) 

512K 2 I 32  16 14.4  80.3 
I I I 64  8 87.2 90.2 

1 1 I 

I I 64 16 74.4  80.3 
I I 128 8 

5 1 1 

I I I 128 4  93.6 95.1 
256 2  96.8  97.5 

1024K 1 I 32 32 48.8 60.6 

87.2  90.2 
2 56 4  93.6  95. I 

I 
I 

'Minrmum inmnfaneous primary port avmlabllity dunng one Scan line refresh excluding retrace time. 
Primary port average  availability  over 16.1 ms screen refresh time. 

sense lines would have to be decoded into eight groups of 32 
bits. Furthermore, the 32 bits coming out of  each island 
must be multiplexed into  the row  buffer. While all of this 
decoding circuitry could be placed on the periphery of the 
chip without disturbing the original array design,  it 
nevertheless drives the design toward a larger  row buffer. 

components-the  row  buffer master, row buffer  slave, and 
any additional decoding circuitry necessary to fill the row 
buffer. Once a decision has  been made concerning the use of 
a master/slave vs just a slave organization, the problem is 
reduced to finding the  minimum area required for the buffer 
and additional decoding circuitry. This can only be 
determined by actual design in a given technology, using a 
given array as a starting point. 

Thus the final  design of the row  buffer must include three 

Address  incrementer 
The address incrementer is used  only  for reading or writing 
through the primary port. In principle, address incrementing 

is a simple function which can be performed on  the 
addresses  as they come onto  the chip. For a chip which uses 
multiplexed row and column addresses, either one or both of 
these can be incremented by the same adder circuit before 
being latched. This minimizes the additional circuitry. 
However, there are several problems. First, this adds time 
delay directly into the critical path of the  chip access. 
Second, the timing chain of the original chip may, or may 
not, have to be changed, depending on  the type of 
incrementer used and how the delay is factored into the 
system. Typical dynamic chips require that  the row address 
be valid at the  time  the strobe pulse (E) becomes valid. 
The (m) strobe acts as a chip select and starts a timing 
chain sequence. The row  addresses must typically be valid 
for some minimum time, just long enough to be "received" 
and latched into  the row address buffer.  If the address 
incrementer were a dynamic circuit and logically appeared 
prior to the latch, then its delay  would  have to be added to 
the minimum address hold time. This requires a change in 389 
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I Bit address  incrementing using bit steering on bitisense lines with 
existing  decoder. 

the timing sequence on the chip to accommodate the 
additional hold time. This could be avoided by  using a static 
incrementer together with an external requirement that the 
row  addresses be valid  for at least a time equal to the 
incrementer delay,  before the (m) signal  becomes  valid. 
This would eliminate changes to the timing circuits for  row 
addresses but require a static incrementer. 

compared to the row  buffer, the additional power  for a static 
circuit might  be  tolerable. This would require detailed  design 
in the given  technology  before  being  decided. For either a 
static or a dynamic incrementer, an additional delay is 
incurred for the total access time to the chip. 

For column address incrementing, using the same 
incrementer, the circuit delay must also  be added to the 
column address hold time. However, all or at least part of 
this extra delay can usually be overlapped  with the row 
address decoding and sensing, for the following  reason.  After 
the row address is latched, the column address input can be 
started. Before the actual column address is needed to select 
one of the bit-sense  latches, the row address must  go through 
a long chain of driving row address lines, decoding (1 out of 
128  or 256) word (row) lines,  sensing the signal (a slow 
process), and setting the sense  latches.  While this is 
proceeding, the column address must be incremented, 
latched, and driven to the column decoder. The decoder is 
timed so as not to select a sense line until the sense  latches 
are set. The exact amount of the total column incrementing 
that can  be  overlapped depends on the chip design and 

Since the incrementer is a relatively small circuit 

390 technology. 

If the column incrementing time delay cannot be avoided 
in the total chip access time, there is a completely separate 
way to circumvent this, but at a cost. The column 
incrementing can be done on the sense line side by a simple 
bit  steering circuit as follows. The logical meaning of 
incrementing a column address is to just select the bit  which 
follows the one specified  by the column address. For 
instance, in Figure 10, if the given column address normally 
would  select,  say,  bit/sense line I (B/SI), then the 
incremented address should select  B/S2.  If the bit  decoders 
are to be  left unchanged, then the incrementing can be 
achieved  by adding two  switch  devices, T, and T, for each 
bit/sense line, as shown.  When  no incrementing is to be 
done, signal 7 is  valid and all TN devices are on. This allows 
the normal decoding sequence to take place.  When 
incrementing is to take place,  signal I is on and i is off, 
thereby turning on all  devices T,. If the given column 
address still  selects the first position, decoder D , ,  then device 
TI, will steer the signal  from B/S2 into decoder Dl, as 
desired. This bit steering avoids the need  for an adder circuit, 
uses the existing decoder circuits, and can be very  fast. Note 
that these  steering  devices can, and must, be turned on 
before the decoding  is completed. In  fact, as soon as the I or 

signal  is  valid on the appropriate pin, the steering  devices 
can be  allowed to switch without concern for timing 
sequences. Thus the incrementing delay  can be completely 
overlapped and hidden under the normal access  delays. 
Unfortunately, this method introduces two  devices  per B/S 
line.  Also,  these  devices  must  be  physically  inserted in 
between the bit/sense lines and the decoders. 

structure, this requires disturbing the original  physical 
design. This method of address incrementing is, therefore, 
not very attractive if the  intent is to just add features to an 
existing array design. On the other hand, if the intent is to 
design an optimal display memory chip, bit steering is  worth 
considering. 

If address incrementing is  required on the row address, a 
similar type of steering can be  used on the word  (row)  lines. 
The output of a word line driver-decoder  would  be  directed 
into the usual line for no increment or to the logically 
adjacent line if  row incrementing were desired. 

Since the decoders are typically imbedded within the array 

7. Other  applications of display  memory  chips 
This section  discusses  nondisplay applications of the quasi- 
dual-ported memory chip. These discussions  also  result in a 
few minor modifications to its architecture, which make it a 
much more generally  applicable part. 

Printers: fast clear 
APA printer systems  present memory problems identical to 
those of APA display  systems.  Fast printer systems require 
the quasi-dual-ported memory for  exactly the same reasons 
as do fast  display  systems. The memory organization 
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arguments used for  display memory system  designs are 
identically applicable to printer memory systems. 

But printers have one property which requires a small 
modification to the quasi-dual-ported memory chip. 
Typically, a printer clears the frame buffer memory before  it 
prints the next  page,  whereas  displays are repeatedly 
refreshed. The clearing requirement implies that once the 
data in a given  row  have  been latched into the second  port’s 
row  buffer, it should be cleared in the memory array. 
Without such a feature, all the bits in that row  would  have to 
be  cleared one bit at a time, and the bandwidth advantage 
provided by the second port would be lost. 

clear input) to the memory chips such that when the signal 
on that pin  is  asserted during a row address strobe, all the 
bits in that row are set to the value  asserted on the primary 
port data input pin. Conventional memory chip designs 
select a row  specified  by the row address during the row 
address strobe; the selected output is  amplified by the sense 
amplifiers and written back into the selected  row,  hence 
refreshing the contents of the whole  row.  In our proposal, 
the data written  back are either all ones or all  zeros if the 
clear input signal  is  asserted during the row address  strobe. 
Using conventional memory  design, 64K memory  cycles 
would  be required to clear/set  all the bits. With the proposed 
design,  only 256 memory cycles (each with a unique row 
address) would  be required. 

by clearing the row  in the memory array immediately after 
loading  it into the row  buffer. 

We propose to add one extra input pin  (which we call the 

A printer memory system could make use  of this fast  clear 

e Bit/byte addressable memory systems 
The IBM System/370 architecture allows the CPU to 
manipulate eight-byte  words from main memory which are 
not aligned to word boundaries in main memory (i.e., their 
addresses do not have to be a multiple of eight). This feature 
is typically implemented by making the CPU access  two 
words  from main memory and then rotating and masking 
them to extract the desired  word.  Using the address 
incrementer and the multiple input/output pins, the 
memory system  can be made to provide  words  directly at 
arbitrary byte boundaries. 

Features similar to System/370  byte  addressability are 
found in numerous other computer architectures. With the 
use  of the enhanced memory  system,  they can be extended 
to provide  bit  addressability. Data fields can be placed in 
memory without worrying about bit or byte alignment, and 
hence  higher data density can be achieved. 

DMA fromlto second  port 
Using  such dual-ported memory chips, we can implement a 
radically  different computer system in which the traditional 
system  bus has an additional serial path which  increases the 
bandwidth of the bus and services high speed I/O devices 

such as APA displays, printers, networks, and secondary 
storage  systems. 

design: The system board contains the main processer, the 
Direct Memory Access (DMA) controller, the address 
relocate tables for virtual memory, and bus arbitration logic 
to arbitrate the system bus between the main processor and 
the DMA controllers. Connected to the system bus are 
memory cards which contain the main system memory 
(implemented using the quasi-dual-ported memory chips), 
and the 1/0 controllers which control individual 1/0 devices. 

memory chips and would  provide both a randomly 
addressable primary port and a serial  secondary port which 
reads and writes data serially. The secondary port is driven 
by an external clock  supplied by the device  which  is  writing 
into (or reading from) the serial port at its own individual 
clock rate. These  two ports, primary and secondary, can be 
independently and simultaneously accessed. For instance, a 
serial 1/0 device can be  filling the row  buffer  via the 
secondary port, using its own  clock to serially shift the row 
buffer at its individual rate, while the CPU is randomly 
accessing instructions or data via the primary port, at the 
primary port rate. The primary port would  be fully  available 
during this period, and many accesses could be made to this 
port before the serial row  buffer  was  filled.  When the buffer 
was full, one primary cycle  would be required to load  (write) 
the buffer into the memory array starting at the row address 
supplied on the address bus. Hence, totally asynchronous, 
simultaneous block transfers could be made with  minuscule 
effect on the primary port availability. 

In order to load the row  buffer into the memory array, the 
primary port address bus must be  used  as  well as some 
additional control signal.  We would  use a separate signal  for 
this, which  we call serial  select. When the serial  select  signal 
is on, the read or write memory cycle occurs to or from the 
shift  register  (row  buffer) from or to the addressed row. The 
lower order eight  bits of the address (i.e., the column 
address) are not used in such a memory cycle  because 256 
bits are simultaneously loaded into each  chip’s  shift  register. 

Both the processor and the DMA controllers would  use 
the randomly addressable port to address main memory. 
Either of them could read or write the block  accessible 
through the serial port by asserting the serial  select  signal. 
The 1/0 device controllers would  request the DMA 
controllers to read or write the serial  block by asserting the 
usual  DMA  request  signals. So, in fact, the DMA controllers 
perform the usual function, except that their intervention is 
required once for each  block transfer, rather than for  each 
word or byte  transfer.  In a simplified and cheaper system 
design, the block transfer could be controlled by the 
processor by  using interrupt requests and acknowledges. 

being  able to match the speed  of their transfers with the 

We assume a computer system  with the following  general 

All memory cards would use the quasi-dual-ported 

All  device controllers would  benefit  from the serial bus by 
39 1 
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speed of the serial port. The clock control for such devices 
should hence be distributed. All 1/0 devices  could then 
transfer data to and from anywhere in main memory, 
obviating the need for a separate buffer.  An example of 1/0 
subsystem  designs  which  relied on such  buffers  is the use of 
frame buffers for display memory. With the use of the serial 
port,  the display  image can be located  anywhere in the 
system memory and the CRT refreshed therefrom. Other 
fast 1/0 devices  like  disk and network controllers also rely 
on large  buffers to allow for the speed mismatch between the 
1/0 devices and the system  buses. 

8. Conclusions 
This paper has presented an alternative architecture for 
dynamic random access memory chips, an architecture 
mainly motivated by displays but useful for other devices as 
well as main system  memories. 
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