
All points
addressable
raster display
memory

by Richard Matick
Daniel T. Ling
Satish Gupta
Frederick Dill

This paper discusses display designs which
store the image point by point in random access
memory, so that independent update of every
pixel is possible. A frequent bottleneck in the
design of high performance displays of this type
is the available bandwidth of the memory
subsystem. In this paper, we focus on this issue
and present features of a customized dynamic
RAM chip which can readily provide the
necessary bandwidth and thus greatly simplify
the design of very high performance APA raster
scan displays. The customized RAM chip is
quasi-two-ported. After briefly introducing APA
raster displays, we discuss display memory
system design and the design of the proposed
custom memory chip. We describe the second
port for the video refresh, which makes the
primary port available for update almost
continuously. We also discuss modifications to
the existing primary port to make it easily usable
for the parallel update required for high update
performance as well as for other applications.

1. Introduction
Raster displays create images by repeatedly scanning a CRT
from left to right and top to bottom. The electron beam’s
intensity is appropriately modified at discrete points (or
pixels) on the screen, thus presenting the image information

OCopyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

as intensity samples at each pixel. This paper discusses
display designs which store the image point by point in a
random access memory, called a frame buffer, so that
independent update of every pixel is possible. Such displays
are capable of producing arbitrarily complex, flicker-free
images. We call such displays APA raster scan displays (APA
stands for All Points Addressable).

A frequent bottleneck in the design of high performance
displays of this type is the available bandwidth of the
memory subsystem. In this paper, we focus on this issue and
present features of a customized dynamic RAM chip which
can readily provide the necessary bandwidth and thus greatly
simplify the design of very high performance APA raster
scan displays. The customized RAM chip is quasi-two-
ported. After briefly introducing APA raster displays in
Section 2 to more specifically identify the problem, we
discuss display memory system design in Section 3, and the
design of the proposed custom memory chip in Sections 4
and 5. Section 4 describes a second port for the video
refresh, hence making the primary port available for update
almost all of the time. Section 5 discusses modifications to
the existing primary port to make it easily usable for the
parallel update required for high update performance.
Section 6 provides some trade-off considerations between the
primary and secondary port, whereas Section 7 discusses
other applications of the custom memory chip.

2. APA raster displays
The development of APA raster displays has been primarily
limited by the cost of random access memory. The cost of
random access memory for a 5 12 X 5 12 bit-map display
where each pixel can be only off or on has dropped from
$2500 in 1971 to $30 in 1983. Early frame buffers used disks
and drums for storage due to the prohibitive cost of random 379

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 RICHARD MATICK ET AL.

Table 1 Time taken to update a Screen of 10 OOO characters. time still leaves much to be desired. To speed up the process,

Update time Total time for
per pixel 10 000 characters

Total
bandwidth
(Mpixels/s)

0.1
1

(PS) (SI

10 8
1
1/16

0.8
0.05 16

access memory (Terlet [I], Ophir et al. [2]). When
semiconductors became economical, some designs made use
of LSI shift registers (McCracken et al. [3]), but since these
memories were not very fast, the displays tended to have low
resolution. The resolution of Terlet's disk display was 320 x
I92 pixels, and McCracken's shift register had a resolution of
256 X 256 pixels. It was not until recently that random
access memory has become cheap enough to be used for
inexpensive raster displays.

The image on a raster scan display must be repeatedly
scanned, which requires continual memory access. This
process is usually referred to as video refresh. To achieve a
flicker-free image, the refresh rate must be extremely fast.
For example, a 1024 X 1024-pixel display refreshed 60 times
per second displays a pixel every 12 nanoseconds. As a
result, the memory must typically access several pixels in
parallel in order to maintain video refresh rate. If the display
were implemented using 64-kilobit chips, 16 chips could be
read in parallel with a read cycle time of 192 nanoseconds."
However, the memory would have to be accessed on every
cycle during actual pixel refresh time, leaving only the idle
time during horizontal and vertical retrace for updating the
memory. For this example, the idle time is a maximum of 4
ms or 24 percent memory availability for updating. This is
insufficient time for most applications if one pixel per cycle
is updated.

Since rapid picture update is desired, parallel pixel update
is also necessary. Update speed is crucial for interactive uses
of the display because large amounts of information may
have to be changed even for conceptually simple operations.
This problem is best illustrated by some examples.

A 1024 X 1024-pixel display can show approximately
10 000 characters, occupying an area of approximately
800 000 pixels on the display. Table 1 shows the time taken
to generate a new screen full of characters in the frame
buffer assuming various update times for individual pixels.
Frame buffer systems in which the host computer has to
update (write) separately every pixel of every character might
take 10 microseconds/pixel, in which case the total time of 8
seconds required to generate a new image is unacceptable.
Even at an update speed of 1 microsecondlpixel, the total

new characters can be copied into the frame buffer by
writing several pixels in parallel. If 16 pixels can be written
in parallel every microsecond, then an update speed of '116
microsecond/pixel can be achieved, giving a satisfactory
screen update time. However, this update time is still too
long to be done during the 4-ms retrace idle time, hence
additional bandwidth improvements are still required.

The operation of copying pixels from one part of the
image memory to another is a useful technique when
scrolling a window across the frame buffer. For the scrolling
of the entire 1024 X 1024-pixel display to appear smooth, it
should occur in less than one frame time (e.g., second).
This requires an update bandwidth of 60 megapixels/second,
which can be achieved if 64 pixels are copied every
microsecond.

Typical calligraphic displays can draw several thousand
lines during each refresh period. If we assume each vector to
be approximately 100 pixels long (about %o of the display),
then a frame buffer display should update at least 3
megapixels/second in order to emulate a vector display.
Table 1 shows that this cannot be done unless several pixels
are updated in parallel.

In addition to the memory bandwidth requirements
imposed by the display system, there are additional
constraints imposed by the memory chips themselves.
Dynamic memory cells require refreshing about every 2 ms,
which can lead to contention problems with the CRT display
refresh demands on the memory. Hence this must be taken
into account in the design. Since dynamic memory refresh is
a common problem for all bit-buffered displays using
dynamic chips, we do not include it except to mention that
under certain fortuitous circumstances, which do not often
occur, the accessing of memory to refresh the CRT screen
can also provide the dynamic cell refresh.

3. Display memory mapping
The display memory has two primary functions. First, it can
be updated to change the data contained in it and hence
produce new images. Second, it has to be accessed repeatedly
to display the image on an output device. As discussed
earlier, both the update and the output operations require
parallel access to achieve satisfactory performance. To
provide this parallelism, the display memory is organized
into words, with each word containing the data for more
than one pixel. The memory mapping determines how the
pixels in each word map onto the display (Sproull et al. [4],
Gupta [5]) . If N pixels are to be accessed in parallel, then the
display can be designed using N random access memory
chips, where each chip can read or write one pixel per
memory access. b

'If each pixel contains more than one bit, then g x N memory chips are requlred, where g

380 a Since the 64K-bit chips available today are typically not fast enough, page mode access, a IS the number of bits per pixel. If more than one hit could be accessed in parallel from each
lower refresh rate, or a smaller screen format has to be used. all ofwhich are undesmble. chlp, then fewer memory c h i p would be required.

RICHARD MATICK ET AL IBM 1. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

16-bit boundary = Memory word

Column address

I Memorv mauuine for a 1024 X 1024-pixel display with 1 X 16 mapping

Scan-line mapping
For the most conventional display memory mapping, all
pixels in each word are mapped along a scan line on the
display. This organization is motivated by the high data rate
required by the video refresh of CRTs. In a 1024 X 1024-
pixel, 60-Hertz, noninterlaced display, the screen is refreshed
at the rate of 12 nanoseconds/pixel. Assuming a memory
cycle time of 192 nanoseconds, each memory access has to
provide at least the next 16 pixels along the scan line for the
video refresh controller to maintain the data rate required. If
this display were implemented with 16 memory chips, then
the only time available to update it would be during the
horizontal and vertical retrace intervals.

Figure 1 shows the scan-line mapping for a 1024 X 1024-
pixel display using sixteen 64-kilobit random access memory
chips, each providing one bit per chip. All the pixels in each
1 X 16 box on the screen can be accessed by providing all
the memory chips with the address (row address, column

address) specified in parentheses in each box. Notice that the
mapping shown allows the access of 16-bit sequential words
along the scan line using sequential column addresses, hence
allowing the use of fast page mode read for video refresh.

introduces boundaries into the display corresponding to the
word boundaries in memory. Parallel updates can take place
only on the fixed 1 X 16 grid aligned to the column address
boundaries of the memory and hence of the screen. If it is
necessary to write 16 pixels into the display memory starting
at any bit position which is not aligned to the fixed 16-bit
word boundary, two separate writes to adjoining words of
memory are needed. For instance, if we wish to write 16
pixels starting at pixel a2 in Fig. 1, the first 15 bits, a2
through a16, would be written on chips 2 through 16,
respectively, on the first cycle with row-column address
(0, 0), whereas the 16th bit, a17, would be written on chip 1
on the second cycle with address (0, 1). The second cycle

A disadvantage of this kind of mapping is that it

IBM J . RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 RICHARD MATlCK ET AL.

Write 16 pixels to memory
starting at a(n)

. I

Data aligner
(ring-shifter)

I -

Chipno. l - - - - - - - b n - l fl

(row, A d d ~ s ~ ~ r , c + l ~ r , c ~ (0, 1)

column)
(0, 0)

\ 8 -
Write 16 bits to memory
using data bit and address
for each chip as shown

I Updating an arbitrarily located I X 16-bit memory word starting at
screen position a(r1) through a(11 + 15) showing data alignment and
memory chip addresses required.

only requires writing to a chip which was not accessed on
the first cycle and only needs the column address to be
incremented by one. The data alignment and addressing can
be seen more clearly in Figure 2, where for this example n =
2. To load a 20 X 16-pixel character would probably take 40
memory cycles, and 20 only in the rare case where the
character is aligned to the 16-bit-word boundary.

access to any horizontal span of 16 pixels starting at any
arbitrary pixel position. This is accomplished by
simultaneously addressing different memory chips with
separate addresses, as shown in Fig. 2. An arbitrary span of
16 pixels can cross only one word boundary, and two
addresses are sufficient to access the span. In addition, the
two addresses differ only by one.

Scan-line mapping can be modified to provide single cycle

Symmetric mapping
Scan-line mapping imposes an inherent asymmetry on
update operations to the memory chips-horizontal updates
are easier than the vertical ones. For example, a horizontal
line can be drawn very quickly, but only one pixel of a
vertical line can be drawn in one memory cycle. This can be
improved by changing the memory-to-screen scan-line
mapping of Fig. 1 to a new mapping wherein the 16 bits

382 written into memory represent a 4 X 4 square array on the

screen, as shown in Figure 3(a). The memory addresses (row
address, column address) are shown inside the arrays, in
parentheses. As in the case of the scan-line mapping, the
symmetric mapping also has the property that sequential
squares along the scan-line direction require sequential
column addresses, as shown. Whenever 16 bits are
appropriately written into memory, they will now appear on
the screen as a square array rather than a straight horizontal
line. By the use of appropriate masks, any vector, horizontal
or otherwise, or any pattern within the square array can be
written in one memory cycle. It was for these reasons that
the designers of the 8 X 8 display (Sproull et al. [4], Gupta
[5]) chose a symmetric 8 x 8 organization. In an 8 X 8-pixel
display, 64 pixels can be read or written in each memory
cycle; the 64 pixels read or written lie on an 8 X 8 square on
the screen. The line drawing operations are now symmetrical
with respect to the x and y axes of the screen.

Figure 3(b) shows how the scan lines now map to the
same sixteen 64K-bit memory chips of Fig. 1 for a 1024 X

1024-pixel display using 4 X 4 square array mapping. Since a
scan line is now contained within only 4 chips rather than
16, for video refresh the memory chips must be accessed
four times as fast as for scan-line mapping. A multiplexer or
selector of some sort is required to select sequential groups
of four chips for sequential scan lines. The addressing
scheme shown in Fig. 3 has the same boundary problem that
we discussed before. It does not allow access to an arbitrarily
positioned 4 X 4 square on the screen in one memory cycle.
By providing incremented row and column addresses to
different chips in the memory chip array, we can access an
arbitrarily positioned 4 x 4 square. For instance, Figure 4
shows the data alignment and row-column addresses needed
to write the nonaligned square array shown in Fig. 3(b)
starting on the screen at pixel a12 in Fig. 3(a). At most, an
increment of one is required in the row, the column, or
both.

The symmetric memory organization is also appropriate
for driving a multiple-beam CRT, in which several beams
simultaneously scan the CRT face. Such a CRT can provide
a larger number of pixels, as well as higher refresh rates and
brightness levels, but it requires data from several
consecutive scan lines simultaneously. Symmetrical 8 X 8
mapping allows eight beams to be scanned together on a
multiple-beam CRT.

4. Dual-ported memory
A dual-ported memory chip can effectively double the
available bandwidth to and from the memory system and
can be used to decouple the accesses required for picture
update from those for CRT video refresh. However, a full
dual-ported memory is very expensive, both in terms of
silicon area and pin count, and is also unnecessary for
display memory systems. We can use the nature of video
refresh and the characteristics of dynamic RAMS to provide

RICHARD MATICK ET AL. IBM I. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

written to memory in
16databitstobe

4 X 4 screen position shown

a simpler quasi-second port to the memory chip, which can section, the quasi-second port is much easier and cheaper to

more than double (e.g., triple or quadruple) the effective implement because only small changes to existing dynamic

bandwidth for many applications. As we show in this RAMS are needed. 383

IBM J . RES. DEVELOP. VOL. 28 NO. 4 JULY 1984
RICHARD MATICK ET AL

e - 1
shown. It is only during transfer of data between the sense
amplifiers and the row buffer that there is any need for

Data alignment and row-column address required for writing into synchronism between the two memories (~ i ~ ~ [6]).
memory the arbitrary square array of Fig. 3(b). If the row buffer is configured as a serial shift register, with

its output provided at an independent data output pin

Shift 1.
clock d

butput

(secondary port), then successive column addresses on the
row can be rapidly shifted out. As shown in Fig. 5, this
provides a serial quasi-second port which can be used for
video refresh in both the scan-line and the symmetric
memory mappings.

In the scan-line mapping of Section 2, the row buffer shift
registers of each memory chip contain every sixteenth pixel
along a scan line (and hence all the pixels required from this
memory chip for four scan lines). The serial outputs of the
16 shift registers (one from each memory chip) are serialized
by a 16-bit high speed shift register to form the output video
(Figure 6).

In the symmetric mapping of Section 2, if each chip of
Fig. 3(b) contains a row buffer of the type shown in Fig. 5,
then the loaded row buffers of 16 memory chips contain one
pixel for all 4 X 4 squares of four scan lines. One Scan line is
thus contained in a group of four chips, as shown. To
produce the video output, the four row buffer shift registers
containing the current scan line are serialized using a 4-bit
high speed shift register through some multiplexer or selector
logic, as indicated in Fig. 3(b). It is assumed that the serial

I Schematic of quasi-dual-ported memory chip showing a row buffer
implemented as a shift register and directly connected to the far end
of a folded hitisense line.

The video refresh port of the display memory is a serial
port, clocked and addressed in a regular and predictable
fashion. Also, in both the Scan-line and symmetric memory
organizations, successive words in the scan-line direction can
be accessed at successive column addresses in a given row, as
can be seen in Figs. 1 and 3.

Random access memory chips usually store the bits in a
384 large array of memory cells. A 64K-bit RAM will hence

output from the memory chips are tristate. Note that the 4 X

4 square mapping requires the row buffer to shift at four
times the speed required by the 1 X 16 scan-line mapping.

4-beam CRT, in which case all 16 memory chips will be
shifting their shift registers simultaneously using four 4-bit
serializers to create the four video streams.

Connecting the row buffer as a shift register is the least
flexible mode of operation, but it is adequate for many
applications, such as video refresh. The quasi-second port
can be made bidirectional by gating the row buffer in order
to write a particular row of the memory. The second port

The symmetric 4 X 4 mapping can also be used to drive a

e %me chips are implemented using several islands of fewer words or fewer bm per word.
They can however be conceptually thought of In the canonical 256 x 256 organization.

RICHARD MATICK ET AL. IBM J. RES. DEVELOP. VOL. 28 NO 4 JULY 1984

I Schematic of the use of the row-buffer secondary ports to provide
CRT video refresh for the case of scan-line mapping.

Memory chip with row buffer configured as a static, fully decoded I array.

could be connected in alternative configurations, e.g., an 8-
bit parallel output might be desired when the chip is used as
the character refresh buffer for a character-based display.

Another more general arrangement for handling the input/
output of the row buffer is to use a decode tree much like
that used to decode from the sense amplifiers for the primary
port. This allows a much more flexible addressing of the
information into and out of the register row. Again, this does
not have to be arranged with a bit decode organization
unless a one-bit-wide output is desired. The modified
memory is shown in Figure 7.

Memory
chips

5. Primary port
The quasi-second port increases the bandwidth of the a - :
memory chip to the level needed for highly interactive Schematic of a memory bank consisting of 32 chips at I bit/chip
displays. This section discusses a few changes to the primary
port which increase its capabilities as well as reduce the

and having a 16-bit 1/0 word, showing that only the left half of the

overall cost of the memory system.

memory chips need incremented addresses.

Address incrementer
Both the scan-line and the symmetric mappings presented in
Section 2 required a subset of the memory chips to receive
incremented addresses to provide bit-addressability of
multiple-pixel words (see Figs. 2 and 4). The easiest way to
implement this is to provide an on-chip address increment
which can increment either the row or the column addresses.
A separate pin would control whether the address is
incremented or not. External logic would now determine
which memory chips increment their addresses and which
do not. The increments can be determined from the bit
address within the word in both the scan-line and the
symmetric memory mappings (Gupta [5] , Matick et al. [7]).

The address incrementer can be implemented using any of
several techniques. The easiest is to add combinatorial logic
just after the address input pins to increment the address.
Another possibility is to shift the decoded outputs of both
the row and column decoders when the increment signal is
asserted. The design trade-offs for these possibilities are
discussed in Section 6.

If the number of memory chips used to implement the
display memory is more than twice the width of the data
path, then each memory chip does not have to
independently increment its address. As shown in Figure 8, 385

IBM J . RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 RICHARD MATICK ET AL

386

if 32 memory chips are used to implement a 1 X 16 memory
mapping, then only the leftmost 16 memory chips have to
increment their addresses for the case shown. This kind of
bank incrementing can simplify system design when an on-
chip incrementer is not available.

The lack of an on-chip address incrementer forces the
choice between an off-chip incrementer and an address
multiplexer which selects between the incremented and the
unincremented address. This results in the use of a large
number of external parts if the number of memory chips is
not greater than twice the width of the data path. A solution
to this problem could be to time multiplex the two addresses
(the incremented and the unincremented one) and strobe
only the chips which require the particular address. This
solution leads to a slower system.

Pixel aligner
The ability to access a bit-addressable word introduces an
alignment problem. Figures 2 and 4 show that the bit
accessed from the leftmost chip is not necessarily the
leftmost pixel of the desired word. The word read has to be
aligned such that the processor can manipulate it in the
desired order. The alignment can be performed by circularly
shifting the word read from memory by the offset from the
alignment boundary.

The external aligner can be eliminated if each memory
chip can be augmented with several input and/or output
pins, only one of which is used in any given memory cycle.
The augmentation takes the following form: Replace the
single data input pin with 2” multiplexed data input pins,
replace the output pin with 2” demultiplexed data output
pins, and add the maximum of n or m control pins. The
control pins either select one of the 2” input pins on data
input or one of the 2” output pins on data output.

The purpose of the additional data pins is to permute the
data among the memory chips. The wiring shown in Figure
9 allows an arbitrary circular shift of the eight data bits. In
this case there are eight output pins, one input pin, and three
control pins. The operation of this circuit can be understood
in the following way: Assign to each memory chip input pin
one of the eight wires in the bus below the memory chips; in
this case assign the topmost wire to the leftmost chip, and so
on, as indicated by the connections of the input pins. Then,
by virtue of the wiring, the simultaneous selection of the
same output pin on all chips, via the control lines, causes the
data read from the memory to be placed on the bus, and
also on the input pins, in some permuted fashion, depending
on which output pin has been selected. In this case, for
example, simultaneously selecting output pin 0 on all chips
causes no permutation, selecting pin 1 causes an end-around
shift by one, and so on.

6. Implementation considerations and trade-offs
The foregoing discussion was intended to illustrate the
various types of mappings between frame buffer and screen,

and the types of additional functions which can be used to
advantage. Two additional memory chip hardware features
would greatly facilitate the various mappings while providing
high bandwidth for simultaneous screen refresh and frame
buffer updating-an on-chip secondary port supplied by a
row buffer, and an address incrementer. These features can
be implemented in numerous ways with various trade-offs
which are discussed here.

One of the main considerations in the design of a memory
chip with these special features is the cost, as reflected in the
additional silicon area needed. These features are added to
every memory chip of the frame buffer. Thus, for large
frame buffers which are a significant part of the overall cost,
a large percentage cost increase is not justified unless the
components displaced by the features are larger than the
increased memory cost. Such detailed cost comparisons are
highly system dependent and cannot be done for a general
case. As memory costs continue to decrease, these additional
features look quite attractive, even at a larger percentage
increase in chip cost, but cheap memory encourages systems
with larger frame buffers and/or more bits per pixel. Thus
the added cost tends to increase. Hence the objective is to
add the smallest possible amount of additional circuitry to
the memory chip, commensurate with being able to do the
screen refresh without high speed shifting of the row buffer
and with high availability of the primary port for frame
buffer updating. These two additional features are functions
which can be added to the periphery of a dynamic memory
array. The input to the row buffer is essentially the output of
the sense amplifiers, so that the internal parts of the array
and sense circuits need not be disturbed. Address
incrementing can, in principle, be done at the address
receivers, prior to decoding. Then, the incrementer could
also be on the periphery of the array and need not disturb
the internal circuits. Thus, both the cost and design time can
be limited by using a suitable, existing memory design and
modifying it to include these features.

Typical dynamic memory arrays contain a column of
sense amplifiers imbedded between two arrays of memory
cells. For sensing, a true and a complement signal are
required, with the complement provided by a “dummy cell”
connected to the opposite side of a cross-coupled sense latch.
If this dummy cell were physically on the opposite side of
the sense amplifier from the bit/sense line being interrogated,
then connection of the row buffer to the sense latch would
be very difficult. In fact, a separate line would have to be
placed over the array for each bit of the row buffer. This is
extremely undesirable for many reasons-cell density on the
array is compromised, the sense circuit may become
unbalanced. However, if a “folded bit sense/line is an
inherent part of the memory design, then the row buffer can
just be connected to the far end of the bit/sense line pair, as
shown in Fig. 5 . Thus, a folded bit sense/line, or equivalent,
is highly desirable in the basic array design to permit

RICHARD MATICK ET AL. IBM 1. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

-~ ~

I On-chiu circular shift obtained using eight output pins

connection of the row buffer on the periphery of the array
with no modification to the array itself. After the memory
array choice has been made, the next decision involves the
row buffer itself, its architecture and bit capacity.

e Row bufer architecture
If there were no cost constraints, the most useful row buffer
would be a single stage register of such a capacity that, for
any given memory plane configuration which maps to one
full screen, one load of all the row buffers on the chips of
that plane would contain at least one scan line for the largest
screen format of interest. For example, suppose the largest
screen of interest is 1K X 1K pixels, refreshed by a 1-
megabit frame buffer. If the frame buffer were made up of
64K-bit chips providing one bit (one row buffer) per chip,
then the 16 row buffers on the 16 chips should hold a total
of 1 K bits, which requires a minimum of 64 bits per row
buffer. If the row buffers were all, say, 32 bits each, then the
16 row buffers would only hold 5 12 bits, which is half of the
assumed scan line on the screen. In order to get
uninterrupted refresh of the screen, some special off-chip
buffering of the data out of the row buffers would be
required to hold the data while a (slow) reload of the row
buffer took place. This special buffering can be avoided, and
the application of the chip extended to allow uninterrupted
screen refresh for all possible screen formats by the use of a
two-stage (master/slave) row buffer organization in which the
master and slave have independent load-enable signals. The
master is loaded from the memory array, and the slave is
loaded from the master. The data are then serially shifted
out of the slave to the CRT register. After a slave has been
loaded and is being used to refresh the screen, the master can
be independently loaded with the next sequential data at any
convenient time. I f all the slave row buffers do not hold one
scan line, then, when the last bit of the slave is being shifted
out, the master can be loaded back to back into the slave so

that an Uninterrupted flow of bits appears out of the slave to
the CRT register. This avoids all critical timing problems as
well as the need for any additional buffering.

The conditions under which a master/slave organization is
useful depend on scan line size, bit capacity of the memory
chip, and numbers of row buffers per chip providing separate
data paths to the CRT register, as follows: Assume that

L = number of scan lines on the screen,
S, = bits (pixels) per scan line,
Fb = bits per frame buffer,
B, = total number of bits/chip,
NRB = number of row buffers per chip providing separate

B,, = total number of bits for each of the NRB row buffers.
data paths to the CRT register, and

The minimum number of bits per row buffer, assuming one
scan line per load of row buffers, is found as follows. For a
frame buffer of Fb bits, using chips of capacity B,, the total
number of chips required, N,, is

N = -- Fb chips
B,frarne'

But the frame buffer size is set by the number of lines L and
bits per scan line, S,, or

Substituting Eq. (1 b) into (la) gives the required number of
chips as

N = -- LS, chips
B, fiume'

With this number of chips, the total number of row buffers
available to hold the scan line is

Total no. row buflers -
- NcNRB ' (2) frame 387

IBM J RES DEVELOP. VOL. 28 NO. 4 JULY 1984 RICHARD MATICK ET AL

The total number of bits held in these row buffers is BRB
times Eq. (21, and this must be equal to (or greater than) one
scan line; thus,

Substituting Eq. (la) and solving for BRB gives the size of
each on-chip row buffer needed to hold the full scan line as

BRB 5 - B, bits
NRBL row buffer'

As an example, if the frame buffer is Fb = 1 M pixels, the
scan line size is 1 K pixels, the chips are 64K bits each, and
there is one row buffer per chip, then Eq. (4) gives BRB = 64
bits per row buffer to hold one scan line. If the number of
bits per chip increased to, say, 5 12K, all other parameters
remaining the same, then B,, must increase to 5 12 bits per
row buffer to contain one scan line. Note that this value
increases directly with the chip capacity, all other factors
remaining constant. This is the case because, as the chip
capacity increases, the number of chips required in the frame
buffer decreases directly, and the total number of row buffers
therefore decreases, also directly. Hence the row buffer
capacity per chip must be increased directly.

Again, if all other factors remain constant, the row buffer
size is independent of scan line size since more chips (and
more row buffers) must be added to each frame as the scan
line length increases. The additional row buffers exactly
match the capacity required for the increased scan line
length.

A row buffer of 5 12 bits is rather excessive since
considerable area is required. One might consider building a
master/slave type row buffer of fewer bits to circumvent the
problem. The point at which this becomes feasibleis a
function of the physical size of the master and slave. Assume
that the master consumes exactly the same amount of silicon
area as the slave. Further assume that the chips are 5 12K
bits, requiring a 5 12-bit row buffer to contain one scan line.
In such a case, it would be much more economical to build
a master/slave type of row buffer, each of 64 bits, rather than
one row buffer of 5 12 bits.

The 64-bit master/slave configuration would require a
reload from the main array four times as often as a 5 12-bit
row buffer, but the impact on the primary port availability
for updating with new information would be very small.
Besides, the master could be loaded when convenient (e.g.,
when there was no updating) and would not be limited to a
fixed time slot. The only requirement is that it be loaded
prior to the slave being totally shifted out to the CRT
register.

for any size screen format and any number of bits per chip.
One could even consider building a master/slave of, say, 32
bits, which would be very economical and serve a wide range
of screen formats. The frequency at which the master would

;88 have to be reloaded from the main array would increase for

The master/slave would provide unintempted refreshing

the above case, but for many applications, especially with
smaller size screens, this would be negligible.

availability of the primary port for updating (writing) new
information into the frame buffer and the increased shift rate
to supply refresh data. Obviously, if the row buffer must be
reloaded every main memory cycle, it is of no value.
However, for nearly all cases of practical interest, a master/
slave row buffer of 32 bits would give an average primary
port availability in the range of 90 percent or more. These
values are taken from Table 2 for the typical case of using
chips of either 64K or 256K bits per chip with one row
buffer. The average primary port availability, (b) in Table 2,
is taken as the total percentage of time that the primary port
is free during the 16.7-ms screen refresh time, assuming a
1M-bit frame buffer having a 200-ns cycle time, and a l e X

1 K-pixel screen. This is the number of interest. Also given is
the minimum instantaneous primary port availability (a),
which is the percentage of time the primary port is free
during the time period of one horizontal scan line (assumed
to be 12 ns per pixel times 1K pixels) without including the
retrace time. These availabilities (a and b) are tabulated, as a
function of row buffer size, for various memory chip
capacities. For the assumed screen size and memory cycle
time, a single 32-bit row buffer would begin to have a
significant effect on the average primary port availability at
5 12K and 1M bits per chip. However, it is not likely that a
single 1M-bit chip would be used with a 1K X 1K-pixel
screen at any row buffer size since the shift rate of the row
buffer would have to be 12 ns per bit. This is unreasonable.
A more desirable configuration for chip capacities above
256K bits is to essentially make multiple islands of the
256K-bit configuration with a 32-bit master/slave row buffer.
Thus a 5 12K-bit chip would have two 32-bit row buffers,
each providing one bit to the CRT register, and a 1M-bit
chip would have four such row buffers. Under these
circumstances, the maximum shift rate required of the row
buffer would be once every 48 ns. This is commensurate
with the likely speed of such circuits. Primary port
availability is thus maintained in the range of 90 percent,
while the additional circuitry needed for the row buffer is
quite reasonable.

the silicon area consumed, it introduces additional
complexity into the chip design. Dynamic memory chips
typically have 128, 256, or even more sense amplifier/
latches. It is a very simple matter to just latch each of these
into the row buffer whenever a row is accessed. However,
this tends to make the row buffer rather large. If it were
decided to use a smaller row buffer, then some additional
decoding and additional addressing would have to be done.
For instance, suppose there were two islands on a given chip,
each having 256 sense latches. If we wished to provide one
row buffer of 32 bits, then each of the two groups of 256

The major impact of a small row buffer is on the

While a small row buffer capacity is desirable in terms of

RICHARD MATICK ET AL. IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Table 2 Primary port availability vs frame buffer and row buffer parameters for an assumed 1K X 1 K-pixel screen, 1 "bit frame buffer
at 200 ns cycle time. Screen refresh occurs at 12 ns/pel, 60 Hz.

Bb Nc NRB BRB No. row buffers Primary pori
bitslchip NO. chips No. row bufers row buffer capacity accessed availability

frame chip chip per scan line (%I
(bits)

a b

64K 16 1 32 2 96.8 97.5
I I I 64 1 98.4 98.8
I I I 128 1 /2 99.2 99.4

1 1 1 256 1 14 99.6 99.7

256K 4 1 32 8 87.2 90.2
I I I 64 4 93.6 95.1
I I I 128 2 96.8 97.5

1 1 1 256 I 98.4 98.8

512K 2 2 32 8 87.2 90.2
I I I 64 4 93.6 95.1

128 2 96.8 97.5

3 1 1
256 1 98.4 98.8

1024K 1 4 32 8 87.2 90.2
I I I 64 4 93.6 95.1
I I I 128 2 96.8 91.5
1 1 & 256 I 98.4 98.8

I I I

(The following are for one row buffer per chip.)

512K 2 I 32 16 14.4 80.3
I I I 64 8 87.2 90.2

1 1 I

I I 64 16 74.4 80.3
I I 128 8

5 1 1

I I I 128 4 93.6 95.1
256 2 96.8 97.5

1024K 1 I 32 32 48.8 60.6

87.2 90.2
2 56 4 93.6 95. I

I
I

'Minrmum inmnfaneous primary port avmlabllity dunng one Scan line refresh excluding retrace time.
Primary port average availability over 16.1 ms screen refresh time.

sense lines would have to be decoded into eight groups of 32
bits. Furthermore, the 32 bits coming out of each island
must be multiplexed into the row buffer. While all of this
decoding circuitry could be placed on the periphery of the
chip without disturbing the original array design, it
nevertheless drives the design toward a larger row buffer.

components-the row buffer master, row buffer slave, and
any additional decoding circuitry necessary to fill the row
buffer. Once a decision has been made concerning the use of
a master/slave vs just a slave organization, the problem is
reduced to finding the minimum area required for the buffer
and additional decoding circuitry. This can only be
determined by actual design in a given technology, using a
given array as a starting point.

Thus the final design of the row buffer must include three

Address incrementer
The address incrementer is used only for reading or writing
through the primary port. In principle, address incrementing

is a simple function which can be performed on the
addresses as they come onto the chip. For a chip which uses
multiplexed row and column addresses, either one or both of
these can be incremented by the same adder circuit before
being latched. This minimizes the additional circuitry.
However, there are several problems. First, this adds time
delay directly into the critical path of the chip access.
Second, the timing chain of the original chip may, or may
not, have to be changed, depending on the type of
incrementer used and how the delay is factored into the
system. Typical dynamic chips require that the row address
be valid at the time the strobe pulse (E) becomes valid.
The (m) strobe acts as a chip select and starts a timing
chain sequence. The row addresses must typically be valid
for some minimum time, just long enough to be "received"
and latched into the row address buffer. If the address
incrementer were a dynamic circuit and logically appeared
prior to the latch, then its delay would have to be added to
the minimum address hold time. This requires a change in 389

IBM J . RES, DEVELOP. VOL. 28 NO. 4 JULY 1984 RICHARD MATICK ET AL.

I Bit address incrementing using bit steering on bitisense lines with
existing decoder.

the timing sequence on the chip to accommodate the
additional hold time. This could be avoided by using a static
incrementer together with an external requirement that the
row addresses be valid for at least a time equal to the
incrementer delay, before the (m) signal becomes valid.
This would eliminate changes to the timing circuits for row
addresses but require a static incrementer.

compared to the row buffer, the additional power for a static
circuit might be tolerable. This would require detailed design
in the given technology before being decided. For either a
static or a dynamic incrementer, an additional delay is
incurred for the total access time to the chip.

For column address incrementing, using the same
incrementer, the circuit delay must also be added to the
column address hold time. However, all or at least part of
this extra delay can usually be overlapped with the row
address decoding and sensing, for the following reason. After
the row address is latched, the column address input can be
started. Before the actual column address is needed to select
one of the bit-sense latches, the row address must go through
a long chain of driving row address lines, decoding (1 out of
128 or 256) word (row) lines, sensing the signal (a slow
process), and setting the sense latches. While this is
proceeding, the column address must be incremented,
latched, and driven to the column decoder. The decoder is
timed so as not to select a sense line until the sense latches
are set. The exact amount of the total column incrementing
that can be overlapped depends on the chip design and

Since the incrementer is a relatively small circuit

390 technology.

If the column incrementing time delay cannot be avoided
in the total chip access time, there is a completely separate
way to circumvent this, but at a cost. The column
incrementing can be done on the sense line side by a simple
bit steering circuit as follows. The logical meaning of
incrementing a column address is to just select the bit which
follows the one specified by the column address. For
instance, in Figure 10, if the given column address normally
would select, say, bit/sense line I (B/SI), then the
incremented address should select B/S2. If the bit decoders
are to be left unchanged, then the incrementing can be
achieved by adding two switch devices, T, and T, for each
bit/sense line, as shown. When no incrementing is to be
done, signal 7 is valid and all TN devices are on. This allows
the normal decoding sequence to take place. When
incrementing is to take place, signal I is on and i is off,
thereby turning on all devices T,. If the given column
address still selects the first position, decoder D , , then device
TI, will steer the signal from B/S2 into decoder Dl, as
desired. This bit steering avoids the need for an adder circuit,
uses the existing decoder circuits, and can be very fast. Note
that these steering devices can, and must, be turned on
before the decoding is completed. In fact, as soon as the I or

signal is valid on the appropriate pin, the steering devices
can be allowed to switch without concern for timing
sequences. Thus the incrementing delay can be completely
overlapped and hidden under the normal access delays.
Unfortunately, this method introduces two devices per B/S
line. Also, these devices must be physically inserted in
between the bit/sense lines and the decoders.

structure, this requires disturbing the original physical
design. This method of address incrementing is, therefore,
not very attractive if the intent is to just add features to an
existing array design. On the other hand, if the intent is to
design an optimal display memory chip, bit steering is worth
considering.

If address incrementing is required on the row address, a
similar type of steering can be used on the word (row) lines.
The output of a word line driver-decoder would be directed
into the usual line for no increment or to the logically
adjacent line if row incrementing were desired.

Since the decoders are typically imbedded within the array

7. Other applications of display memory chips
This section discusses nondisplay applications of the quasi-
dual-ported memory chip. These discussions also result in a
few minor modifications to its architecture, which make it a
much more generally applicable part.

Printers: fast clear
APA printer systems present memory problems identical to
those of APA display systems. Fast printer systems require
the quasi-dual-ported memory for exactly the same reasons
as do fast display systems. The memory organization

RICHARD MATICK ET AL. IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

arguments used for display memory system designs are
identically applicable to printer memory systems.

But printers have one property which requires a small
modification to the quasi-dual-ported memory chip.
Typically, a printer clears the frame buffer memory before it
prints the next page, whereas displays are repeatedly
refreshed. The clearing requirement implies that once the
data in a given row have been latched into the second port’s
row buffer, it should be cleared in the memory array.
Without such a feature, all the bits in that row would have to
be cleared one bit at a time, and the bandwidth advantage
provided by the second port would be lost.

clear input) to the memory chips such that when the signal
on that pin is asserted during a row address strobe, all the
bits in that row are set to the value asserted on the primary
port data input pin. Conventional memory chip designs
select a row specified by the row address during the row
address strobe; the selected output is amplified by the sense
amplifiers and written back into the selected row, hence
refreshing the contents of the whole row. In our proposal,
the data written back are either all ones or all zeros if the
clear input signal is asserted during the row address strobe.
Using conventional memory design, 64K memory cycles
would be required to clear/set all the bits. With the proposed
design, only 256 memory cycles (each with a unique row
address) would be required.

by clearing the row in the memory array immediately after
loading it into the row buffer.

We propose to add one extra input pin (which we call the

A printer memory system could make use of this fast clear

e Bit/byte addressable memory systems
The IBM System/370 architecture allows the CPU to
manipulate eight-byte words from main memory which are
not aligned to word boundaries in main memory (i.e., their
addresses do not have to be a multiple of eight). This feature
is typically implemented by making the CPU access two
words from main memory and then rotating and masking
them to extract the desired word. Using the address
incrementer and the multiple input/output pins, the
memory system can be made to provide words directly at
arbitrary byte boundaries.

Features similar to System/370 byte addressability are
found in numerous other computer architectures. With the
use of the enhanced memory system, they can be extended
to provide bit addressability. Data fields can be placed in
memory without worrying about bit or byte alignment, and
hence higher data density can be achieved.

DMA fromlto second port
Using such dual-ported memory chips, we can implement a
radically different computer system in which the traditional
system bus has an additional serial path which increases the
bandwidth of the bus and services high speed I/O devices

such as APA displays, printers, networks, and secondary
storage systems.

design: The system board contains the main processer, the
Direct Memory Access (DMA) controller, the address
relocate tables for virtual memory, and bus arbitration logic
to arbitrate the system bus between the main processor and
the DMA controllers. Connected to the system bus are
memory cards which contain the main system memory
(implemented using the quasi-dual-ported memory chips),
and the 1/0 controllers which control individual 1/0 devices.

memory chips and would provide both a randomly
addressable primary port and a serial secondary port which
reads and writes data serially. The secondary port is driven
by an external clock supplied by the device which is writing
into (or reading from) the serial port at its own individual
clock rate. These two ports, primary and secondary, can be
independently and simultaneously accessed. For instance, a
serial 1/0 device can be filling the row buffer via the
secondary port, using its own clock to serially shift the row
buffer at its individual rate, while the CPU is randomly
accessing instructions or data via the primary port, at the
primary port rate. The primary port would be fully available
during this period, and many accesses could be made to this
port before the serial row buffer was filled. When the buffer
was full, one primary cycle would be required to load (write)
the buffer into the memory array starting at the row address
supplied on the address bus. Hence, totally asynchronous,
simultaneous block transfers could be made with minuscule
effect on the primary port availability.

In order to load the row buffer into the memory array, the
primary port address bus must be used as well as some
additional control signal. We would use a separate signal for
this, which we call serial select. When the serial select signal
is on, the read or write memory cycle occurs to or from the
shift register (row buffer) from or to the addressed row. The
lower order eight bits of the address (i.e., the column
address) are not used in such a memory cycle because 256
bits are simultaneously loaded into each chip’s shift register.

Both the processor and the DMA controllers would use
the randomly addressable port to address main memory.
Either of them could read or write the block accessible
through the serial port by asserting the serial select signal.
The 1/0 device controllers would request the DMA
controllers to read or write the serial block by asserting the
usual DMA request signals. So, in fact, the DMA controllers
perform the usual function, except that their intervention is
required once for each block transfer, rather than for each
word or byte transfer. In a simplified and cheaper system
design, the block transfer could be controlled by the
processor by using interrupt requests and acknowledges.

being able to match the speed of their transfers with the

We assume a computer system with the following general

All memory cards would use the quasi-dual-ported

All device controllers would benefit from the serial bus by
39 1

IBM J. RES. DEVELOP. VOL. 28 NO, 4 JULY 1984 RICHARD MATICK ET AL.

speed of the serial port. The clock control for such devices
should hence be distributed. All 1/0 devices could then
transfer data to and from anywhere in main memory,
obviating the need for a separate buffer. An example of 1/0
subsystem designs which relied on such buffers is the use of
frame buffers for display memory. With the use of the serial
port, the display image can be located anywhere in the
system memory and the CRT refreshed therefrom. Other
fast 1/0 devices like disk and network controllers also rely
on large buffers to allow for the speed mismatch between the
1/0 devices and the system buses.

8. Conclusions
This paper has presented an alternative architecture for
dynamic random access memory chips, an architecture
mainly motivated by displays but useful for other devices as
well as main system memories.

9. Acknowledgments
We would like to acknowledge the contributions of William
Bogholtz, Paul Chung, Dennis McBride, and Daniel Ostapko
in this work.

10. References
1. J. H. Terlet, “The CRT Display Subsystem of the IBM 1500

2.

3.

4.

5 .

6.

7.

Instructional System,” AFIkS Con& &oc. 31, Fall Joint
Computer Conference, 1967.
D. Ophir, S . Rankovitz, B. J. Shepherd, and R. J. Spinard,
“BRAD: The Brookhaven Raster Display,” Commun. ACM 11,
415 (1968).
T. E. McCracken, B. W. Sherman, and S . J. Dwyer 111, “An
Economical Tonal Display for Interactive Graphics and Image
Analysis Data,” Comput. Graph. 1,79-94 (1975).
R. F. Sproull, I. E. Sutherland, A. Thompson, S . Gupta, and C.
Minter, “The 8 X 8 Display,” ACM Trans. Graphics 2, 32-56
(January 1983).
S . Gupta, “Architectures and Algorithms for Parallel Updates of
Raster Scan Displays,” Technical Report, Computer Science
Department, Carnegie-Mellon University, Pittsburgh, 198 1.
D. T. Ling, “Mapping from Bits in Memory to Pels on Screen:
Design Considerations,” file memo available from author, 198 1.
R. E. Matick, D. T. Ling, D. J. McBride, and F. H. Dill, ‘‘General
Bit Manipulator: VLSI Memory and Logic Chips for Graphic/
Text Applications,” internal report available from author, May
1980.

Received September 30, 1983; revised March 19, 1984

392

Frederick H. Dill IBM General Technology Division, East Fishkill
Facility, Hopewelt Junction, New York 12533. Dr. Dill is manager of
the Information Architecture Department at East Fishkill. He received
a B.S. in physics and an MS. and a Ph.D. in electrical engineering
from Carnegie Institute of Technology, Pittsburgh, Pennsylvania, in
1954, 1956, and 1958, respectively. He joined the IBM Research
Division in 1958 and has worked on solid state devices and
technologies ranging from tunnel diodes and injection lasers to
photolithography and automated measurement techniques. In 1968
to 1969 he was a Mackay visiting lecturer at the University of
California in Berkeley and in 1974 he was a visiting lecturer at the
Massachusetts Institute of Technology, Cambridge. From 1976 to
1983, he was involved in research on information display devices and
VLSI design as the manager of the Display Technology Department.
In 1983 he left the Research Division to work on manufacturing of
semiconductor devices. Dr. Dill is a Fellow of the Institute of Electrical
and Electronics Engineers and a past president of the IEEE Electron
Devices Society.

Satish Gupta IBM Research Division, P.O. Box 218, Yorkcown
Heights, New York 10598. Dr. Gupta is the manager of the display
architecture group in the Computer Science Department at the
Thomas J. Watson Research Center. His research interests are
currently focused on computer displays and the study of both software
and hardware techniques to provide higher-performance graphics
displays. He received a B.Tech. degree from the Indian Institute of
Technology, Kanpur, in 1977, and the M.S. and Ph.D. degrees in
computer science from Carnegie-Mellon University, Pittsburgh,
Pennsylvania, in 1979 and 198 1, respectively. Dr. Gupta is a member
of the Association for Computing Machinery and its Special Interest
Group in Graphics.

Daniel T. Ling IBM Research Division, P.O. Box 218. Yorktown
Heights, New York 10598. Dr. Ling joined IBM at the Thomas J.
Watson Research Center in 1979. He is currently manager of
exploratory VLSI design and is involved in the design of a high
performance microprocessor. His interests are in the areas of
microprocessor and display design, as well as VLSI design tools and
methods. Dr. Ling received his B.S., MS., and Ph.D. in electrical
engineering from Stanford University. While at Stanford, Dr. Ling
was a Fannie and John Hertz Foundation Fellow. He is a member of
the American Physical Society, the Institute of Electrical and
Electronics Engineers, and Tau Beta Pi.

Richard E. Matick IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Matick received his B.S.,
MS., and Ph.D. in electrical engineering from Carnegie-Mellon
University, Pittsburgh, Pennsylvania, in 1955, 1956, and 1958,
respectively. He joined IBM in 1958 and worked in the areas of thin
magnetic films, memories, and ferroelectrics. As manager of the
magnetic film memory group from 1962 to 1964, he received an
IBM Outstanding Invention Award for the invention and
development of the thick film read-only memory. Dr. Matick spent
six months at IBM United Kingdom in Hursley developing a read-
only memory for the System/360 applications. He joined the
technical staff of the IBM Director of Research in 1965 and
remained until 1972, serving in various staff positions which
included responsibility for the Research Division plans and technical
assistance to the Director of Research. In 1972 he took a sabbatical
to teach at the University of Colorado and at IBM in Boulder,
Colorado. In the summer of 1973, he taught at Stanford University.
Dr. Matick is currently working in the areas of VLSI functional
memory chip and microprocessor design. He is the author of the
books Transmission Lines for Digital and Communication Networks
and Computer Storage Systems and Technology. He is a member of
Eta Kappa Nu and the Institute of Electrical and Electronics
Engineers.

RICHARD MATICK ET AL. IBM J . RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

