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A numerical method  that makes use of the complete incompressible flow equations with a  free surface is discussed and used to 
study an  impulsively driven laminar jet. Flow behavior dependence upon fluid properties (characterized by a  Reynolds  number over 
Weber  number  nondimensionalization)  is compared for drop integrity purposes. Several variations of square wave pressure history 
applied at a nozzle inlet are discussed in relation to drop velocities produced and structure of ejected drops. Timewise development 
offlow both interior and exterior to  the  nozzle is illustrated through computed contour sequences. 

Introduction 
Numerical treatment of the fluid dynamics of ink  jets is a very 
ambitious undertaking.  A  complete  description  of the flow 
requires the use of the full Navier-Stokes equations with all 
associated surface stress conditions. Nonlinearity  is  present in 
any finite deformation of  a liquid-gas interface and hence  a 
linear analysis can provide only a bare  hint of the  outcome of 
a capillary instability.  Closed-form  solution  is out of the 
question with our present knowledge of the  mathematics, 
leaving us with choices that involve  considerable  work and 
are clearly insurmountable  without  the benefit of fast com- 
putation.  The strategies one  may  employ  computationally  are 
perhaps  many  and varied but  one  can reasonably assume  that 
none is free of extensive and laborious programming  and free 
of potential failure. The need to  treat large deformations  and 
break-up into  droplets eliminates less general candidate  meth- 
ods. One of the  attributes of  a successful method is that  the 
required system of equations accurately describes the flow, 
controlling the  motion of the free surface,  even to a  pinch of 
the calculation region, followed by smooth  continuation of 
solution with separated regions. This  must  take place without 
incumng stiffness problems, numerical instability, or poten- 
tially large and scattered truncation errors. Because of the 
geometric changes, these numerical  concerns  are particularly 
stringent. A suitable method  must  not be limited severely by 
these factors within the range  of flow parameters  to be consid- 
ered. 

The basic idea  employed  here  has  its  origin in  some of the 
earliest large-scale calculations camed  out  at Los Alamos 

Scientific Laboratory  when  such  calculations first became 
feasible [ 11. An Eulerian (fixed) grid system is used to define 
a discrete form of calculation  within the flow region, with the 
liquid-gas interface  defined by a  Lagrangian net of points  that 
move with the fluid. This has  certain limitations for  three- 
dimensional flow but for  a large class of problems,  most 
importantly axisymmetric  problems, the net is a  string of 
particles that  can  be handled easily in  the Lagrangian sense. 
A surface-fitted coordinate system method would perhaps 
provide  a more general treatment with a more direct  capacity 
for extension to three-dimensional flow, but  the necessity to 
redefine the  coordinate system with all changes  in  geometric 
shape could well make such  a  scheme  intractable  when severe 
distortions  occur. 

There appears to  be little work in  the open  literature of 
comprehensive  numerical  studies  of  capillary flows. Proposed 
methods generally fall short of real usefulness in that a single 
result is given without follow-up calculations to  demonstrate 
program  utility. Fortunately, in the work given here, we have 
had  the  opportunity  to interact with others engaged in  active 
experiments  and  to be guided by the practical requirements 
at  hand. However, only  in recent weeks has  it  become possible 
to  obtain realistic pressure histories to drive the  jets [2]; hence, 
the results given here do  not reflect this new information. We 
have depended  upon estimates of peak pressures and certain 
constraints  inherent  in  the problem to specify the required 
pressures. The idealized histories used here surely differ in 
many respects from  actual cases because of acoustic reflections 
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within the driving chamber [3] and, for that  matter, particular 
attributes of the piezo  driver.  Potentially  interacting  studies 
could be camed  out in the  future  that could  evaluate entire 
systems, but  the  economics of such  an extensive study is not 
warranted  in terms of current needs. For  this reason,  it  is 
perhaps  appropriate  to limit the  study  to certain idealized 
cases, chosen to provide  guidelines relative to  the adjustable 
parameters of the problem. 

We consider first a given geometric  configuration with the 
same pressure  histories but with variation of the fluid p r o p  
erties (viscosity, density, and surface tension coefficient). Next, 
we consider fixed fluid properties with pressure history varia- 
tions such that higher velocities are achieved. In the latter 
case, there  are a number of  aspects  of the flow behavior that 
define its usefulness for drop-on-demand  ink  jet printing. 
These  principally include  the absence or presence  of  shadow 
drops  and  an  adequate  drop velocity. To simultaneously 
achieve  a sufficiently high velocity and  drop integrity is the 
realm  of experiment, since many variations  of  driving voltage 
and hence pressure can be tested rapidly. Computationally, 
this would be impossible because the window of desired 
behavior is probably too narrow to be isolated by this  approach 
alone  and may not be achievable  in the cylindrical nozzle case 
at all with simply structured pressure histories. 

In the calculations, we assume  that  the pressure histories 
vary in  time but are  uniform across the inlet  section  of the 
nozzle. Currently, there is no way to know if this is true. Since 
the inlet  section diameter is very small compared  to  the 
chamber  diameter, it is assumed that  the pressure can vary 
little across the face of the inlet. There is, however, no guar- 
antee  that  this is the case. A  calculation  of the  dynamics within 
the  chamber, while of  interest  in itself, could  probably not 
have sufficient resolution to modify the  assumption of  uni- 
formity of pressure at  the inlet.  Numerically, one  could, with 
the  methods described here, readily test other assumptions, 
but we have  found no reason to  do so. 

In regard to  the  boundary layer in  the nozzle, we assume 
on inflow that  the  boundary layer grows from the inlet. This 
implies that  the vorticity  is  zero  over the inlet  cross  section. 
If, on  the  other  hand, fluid is drawn backward into  the 
chamber, a “slow change” condition is assumed. Basically, 
this  requires that  no radial velocities exist at  the  chamber- 
nozzle juncture,  but  the  boundary layer can move  into  the 
chamber. 

We do  not  attempt  to deal with wetting contact angles in 
any rigorous manner.  There  are two conditions of interest 
here where ad  hoc  treatment  must  be justified. One is that 
wetting of the exterior  of the nozzle outlet is not permitted  in 
the  computation.  This would seem to be important  at early 
phases of drop ejection, but this is the very time  that driving 

pressures are highest, and  hence  it is reasonable to  assume 
that  the presence  of  a contact circle exterior to  the  outlet 
would  have  little  influence upon  the  drop dynamics.  While 
the  magnitude of the  contact pressure could  be large, it acts 
upon a very localized region compared  to  the driving pressures 
from the  chamber.  For a very weak  driving pulse, one would 
expect some effect on  drop behavior from a wetting exterior 
contact,  but  not  for  the high ejection velocities of  interest 
here. 

The second condition  that  must be dealt  with is that of a 
moving contact line that arises when fluid is drawn  into  the 
chamber by a  pressure differential with ambient external 
pressure. The problem here is not  one of  influencing drop 
integrity or  dynamics, since by this stage the incipient drop is 
well on its way forward and is  quickly  becoming isolated from 
any flow that is going on within the nozzle. The problem  is 
more  one of continuation of the numerics in  an empirical 
manner,  at least to  the  point of detachment. Here, we have 
considered  simply  requiring the  contact circle to  remain  at 
the outlet. This is the simplest ad  hoc  condition  one  can 
impose, but  unfortunately  in  some cases the suction may  be 
large, so that  only a thin unresolvable  layer  of fluid clings to 
the nozzle interior. For this  reason, we have found  it necessary 
to allow the  contact line to  move,  only  to  the extent that 
calculation can proceed. This works  in  a satisfactory manner 
up  to  detachment,  but  the final behavior  of the  remaining 
meniscus  becomes  somewhat artificial since a 90” contact 
angle emerges as a final state with  only  a  partially filled nozzle. 
In  the real case, wetting would return  the fluid to  the outlet. 
The complex  interplay  of forces that  one would  have to  take 
into  account  to give a complete  treatment of the meniscus is 
not justified here since our interest is primarily the behavior 
of the detached drop. 

There  are a number of other  unanticipated problems that 
arise  in  numerical computation.  For example, if the driving 
pressure is pushed too high, wavelets appear  on  the  jet surface 
that require  higher  resolution than  one wishes to impose  for 
a  reasonable  length  calculation. Also, the peak driving  pressure 
for  a given drop velocity is a strong  function of the nozzle 
length. It is  a function of the  volume of fluid in  the nozzle, 
which must be set into  motion,  and also the  added viscous 
drag of a  longer nozzle. To limit the  computational region 
and hence computation time,  a  short  nozzle  is preferred. 
Indeed, the “equivalent”  cylindrical length for nozzles used in 
practice is short.  This, however, leads to problems  when  a 
retraction  occurs that  opens backward into  the  chamber  or 
beyond the calculation range. Here again, an  ad  hoc  treatment 
is called for, or else a  section of the  chamber  must be included 
in the calculation domain. Unfortunately, the latter  brings in 
a number of new problems. A nozzle  length equal  to  the  jet 
diameter seems to be a  good compromise, allowing for  a 
reasonable  retraction  length and yet not requiring  unrealistic 
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pressures relative to DOD experiments. With  this choice, we 
avoid  retraction into  the  chamber region. 

aw au0 avw [:; a ( I  awr)] 
at az ar ar  r  ar . 
"+"+"=v - + -  --  

One  other consideration in regard to a discrete  calculation 
is that of separation of the flow when the  drop breaks away 
from  the  jet  column.  This  must  occur  at  one radial  mesh 
distance at  the least; otherwise there  are  not  enough  compu- 
tational  data  to  continue.  With 20 mesh points  for a nozzle 
radius, break-off occurs  numerically at five percent  of the  jet 
diameter. Numerical  experiments show that  this is satisfactory 
because the  remainder of the excursion to zero  radius  occurs 
very soon after this  point;  the high azimuthal  curvature of the 
surface causes  ever larger pressures and faster convergence. 
Clearly, if we were willing to invest more  time  in calculation, 
we could  look very closely at break-up, but again  it is not  an 
important issue for the accuracy  here  required. 

Governing  equations  and general  aspects of the 
numerical  method 
Unlike  the  numerical  methods developed in Ref. [ 11,  we here 
wished to  make use of a streamfunction.  The reason  for this 
is that flow through a nozzle can become very awkward 
without a streamline  defining the solid bounding surface. The 
programs were initially  tested with periodic boundary condi- 
tions [4], and a preliminary drop-on-demand  form of calcu- 
lation was given in Ref. [5]. The  numerical  method used here 
is as given in these references but will be reviewed. Of possible 
interest to  the reader are  some new developments  in  the 
numerical  programs  in connection with other applications 
[6,7].  The newer methods were not employed  here because 
there seemed to be no need to  do so. Deficiencies in  the older 
method were not of a fundamental  nature  but related to 
numerical  algorithms and  redundant  computation  that was 
inefficient. With  minor  updates  in  the algorithms, the older 
programs were revived for this work. 

The  pertinent  equations for  calculation in  the  interior  are 
the Navier-Stokes equations for  radial (r) velocity v and axial 
(z) velocity u. These are 

D 

P 

where P is the pressure, p the density, and u the kinematic 
viscosity. In this  axisymmetrical form of the  equations,  the 
vorticity is 

au 
aZ ar w = - - - ,  ( 2 )  

324 and hence 
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In Eq. (3), it was necessary to  make use of the incompressibility 
condition 

au  1 h r  """~o. 
az r  ar 

If  we define the  streamfunction by the set 

aQ and ur = - ,  aQ 
aZ ar 

vr = -- 

we are led through (4) to  the  streamfunction  equation 

a + r A ( ! G ) = - r w .  aZ2 ar  r  ar 

Also, Eqs. (1) inserted into (4) leads to 

where 

G = - + - - + - -  a Z U 2  2 auvr I a2v2r 

a Z 2  r  ar r  ar2 . 

This system of equations is more  than is needed for solution 
of many initial-boundary value problems, but by considering 
the whole system, we have  greater flexibility in meeting re- 
quirements of a complex  time-varying boundary.  Our prob- 
lem here is to consider the  time evolution of flow that begins 
at rest in a cylindrical  nozzle  geometry. The initial boundaries 
are  the  containing cylindrical surface, a disk-shaped surface 
which is the interface with a large chamber of the  same fluid 
and  another disk-shaped surface that is the interface with a 
gas. The latter  interface  is allowed to move under certain 
constraints dealing with the properties of such a surface. 
Taking  symmetry  into  account, we may use the  center  line of 
the cylinder as a boundary.  The best representation of the 
flow in the  interior is in  terms of  streamlines  such that  the 
center line is a reference (zero) streamline and  the cylindrical 
surface takes on a streamfunction value appropriate  to  the 
flow rate. The flow rate is in  turn  determined by the applied 
pressure at  the chamber-nozzle  interface and also the inertial 
and viscous properties of the fluid itself. To  obtain  the  appro- 
priate streamfunction value at  the cylindrical wall, we inte- 
grate the second  of Eqs. (1 )  over a control volume making use 
of the second  of Eqs. (5). This  may be the  entire fluid volume 
of interest or some subsection  of the  volume so long as we 
know precisely the required quantities  on  the  boundaries of 
the  domain we choose. Upon integration, we obtain 
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Because of the conservative form of the  momentum  equation, 
the  volume integral  becomes  a surface integral. It states that 
the  time  rate of change  of streamfunction  at  the cylindrical 
wall (ro) depends  upon  the pressure  gradient and kinetic energy 
gradient over  the length (zo), summed over  disk-shaped  areas 
at  the left (L) and right (R) of our chosen control volume. In 
addition it depends  upon  the viscous drag at  the no-slip 
cylindrical  surface expressed as a sum of the vorticity  present 
at  that surface. Thus, we have the  means  to begin calculation, 
noting  that Q will forever be zero at  the axis, as  is the vorticity. 
At  the inlet, the vorticity is also set to zero  except at  the 
cylindrical  surface, while the inflow velocity is taken to be 
uniform.  This  uniform flow velocity follows from  the gross 
application of the  second of Eqs. (5) and  then intervening Q 
values follow from this velocity. The  same applies at  the  outlet 
at  the initial instant. 

Our  control  volume  can initially be the  entire  volume of 
fluid in the nozzle  since a known ambient pressure condition 
exists at  the outlet. Unfortunately, things  become more  com- 
plicated after the free surface begins to deform. 

In Figure 1 we portray a late stage of solution to which we 
aspire. We  note  that a meniscus can exist, along with a flow 
region that is completely  enclosed by a free surface and 
separated from  the fluid in  the nozzle. Note in Fig. 1 that we 
give a symbolic  representation  of the global system of variables 
and  their layout on a  discrete  grid  as they  are defined  for 
interior flow. Our  control  volume  as employed in Eq. (9) refers 
to this global system and hence must be chosen to lie inside 
the meniscus at all stages of  calculations. This is preferred to 
using a  deformed  surface  as  a control volume boundary. We, 
of  course, will have access to all variables at all times through- 
out  the calculation and specifically at  some  constant z distance 
in the nozzle  for  a boundary of our  control  domain. 

We now know  how to get the  streamfunction values at  the 
solid cylindrical surface and  at  the inlet, but what about 
streamfunction values on  the free surface once it  deforms 
away from  a global grid line? These surface values  of Q are 
required for solution  of the elliptic Eq. (6). Here  the procedure 
is to  obtain  tentative u and v values by small  forward  steps  in 
time applied to  the  momentum equations. Then, integrating 
along any  convenient grid lines using Eqs. (9, we may  obtain 
Q at grid  extensions to  the free surface. By this means, we 
have our required boundary  condition  for Eq. (6) and  can also 
define a normal velocity at  the surface. 

We have found it convenient  to  introduce a  finer  net of 
points at  the surface by means of which information is ex- 
changed with the interior. Thus,  the Q values are spread 
among local surface points by interpolation.  To each of the 
surface points, we may assign other variable values. Further, 
allowing these points  to  be origins  of local coordinate systems 

-Discrete (r, z )  
grid 

I 

Nozzle 

Figure 1 Nozzle geometry and a typical jet configuration with  sym- 
bolic representation of the computational grid. 

oriented relative to  an  outward  normal  at  the surface, we can 
readily define surface boundary conditions.  Knowing the  an- 
gular orientation ( C Y )  of  these local coordinate systems, with 
the global system,  permits  transfer  of information between 
systems by rotational  transformations. With reference to Fig. 
1,  then, we can now write the required  surface conditions in 
the (7, 7) frames as indicated. The  normal stress or pressure 
jump  condition  at  the surface relative to  an  ambient gas 
pressure ( P / P ) ~  is given by 

where u is the surface  tension coefficient. Now do(/& is the 
familar surface curvature or variation  of the angle of the 
tangent  to  the surface  as we move along the surface; cos a / r  
is the  curvature  about  the axis  of  symmetry. The  terms  on  the 
far right of Eq. (1) are viscous damping  terms  that produce 
second-order effects in  the flows considered  here. We here 
include  only  the first of  these terms as is often the case in 
works found in the literature. 

Clearly, with CY known for each surface net  point,  the effects 
of curvature  upon  the pressure differential at  the surface may 
be calculated. It is convenient  to  take  the  ambient pressure as 
zero and  then these quantities give the pressure directly. A 
tactic to use to  compute  the  normal derivative  of u, is to first 
select a near-surface mesh point  and find the surface net point 
that is closest to  that interior  point. Using the  appropriate CY,  
one  then carries out a rotational  transformation  to  obtain u, 
in  the interior.  Knowing the surface u, obtained  from Q (i.e., 
u, = - I / r  one may then  approximate  the gradient. 
Here, we assume  that  the closest approach of the surface to 
the selected interior grid point  approximates  the surface nor- 
mal through  that grid point. A similar  procedure is used to 
obtain  the tangential velocity at  the surface from surface Q 
values ( u ,  = l / r  aQ/av) and those  calculated at  the interior 
through the elliptic Eq. (6). 

The vorticity values on  the right of (6) are obtained by 
forward marching Eq. (3) as is done with the  momentum 325 
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Figure 2 Time  sequence  of jet development  for RIW = 2 with 
pressure  histones  as in Table 1 and  plot  data as in Table 2. 

equations. The origin of most of the vorticity  is  “generation” 
in  the  boundary layer along  the cylindrical  surface  of the 
nozzle. To a secondary extent, vorticity is also derived from 
the free surface. It follows from  the definition  of  vorticity and 
the tangential stress condition  that 

w = 2 ( $ + $ ) .  

This free surface vorticity is  included in  the calculations but 
its function  there is somewhat mysterious and still under 
study. 

Finally, it will be  noted  that  the pressure is required in  the 
fluid in  order  to allow inclusion of pressure  gradients in  the 
tentative  forward march values  of the velocities. This is a 
painful part of the calculation  since  it is complicated and is in 
the final analysis required  only to get the  streamfunction 
boundary  condition.  The reward is that it  is nice to know 
what the  internal pressures are. We not only  have a difficult- 
to-calculate  right-hand  side to the pressure Poisson’s Eq. (7), 
but  the  normal derivative conditions  at  the no-slip surface of 
the nozzle must be taken  into  account.  That is, 

at r = ro and  at  the axis Y = 0, 

Table 1 Square  wave  pressure histones at nozzle  inlet  for  results 
given  in  Figures 2, 3, and 4. 

R / W =  2 R / W =  3 RIW= 4 

Time PIP Time PIP Time PIP 

0.00-0.12 -30.0 0.00-0.10 -40.0 0.00-0.12 -30.0 
0.12-0.68 +50.0 0.10-0.71 +40.0 0.12-0.69 +40.0 
0.58-1.27 -40.0 0.71-1.21 -40.0 0.69-1.17 -40.0 

At the free surface and  at  the inlet, the pressure  is itself given. 

Surface  particle motion  comes  about  in calculation by 
applying the Lagrangian  expressions 

dr dr 
- 
dt 

= u and = u, 

where u and u follow from  rotational  transformations of u, 
and u,. 

We have given a somewhat cursory  description of the 
numerical procedure. The interested  reader should consider 
the references given, particularly Ref. [6 ] ,  which gives finite 
difference expressions and  other  numerical details. 

For studying the results that follow, it should be  noted  that 
we do  the calculations in  nondimensional  form with the nozzle 
radius ro as a reference unit length. A reference velocity 

I /2 

uo = (;) 
and  an associated reference time scale 

112 

to = (6) 
lead to a single parameter  that  contains all the fluid properties. 
That is, with R the Reynolds number  and W the Weber 
number, we have 

To  make  the differential equations dimensionless,  it is only 
necessary to replace v by WIR and alp by unity. A final note 
is that we often refer to P/p simply as  the pressure in discussing 
the results. 

Discussion of results 
Unlike in the laboratory, we here  look at only a single drop 
formation. In real time,  the elapsed period  encompassed by 
the  numerical calculation  may be  on  the  order of 100 micro- 
seconds. By contrast, indicating some measure  of the  com- 
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Figure 3 Time sequence of jet  development  for R/W = 3 with 
pressure histones as  in  Table 1 and  plot data as  in  Table 3. 

I I I I  I I I  I I I I I  
0 2 4 6 8 10 

Distance (nondirnenslonal units) 

Figure 4 Time sequence of jet  development for R/W = 4 with 
pressure histones as in Table 1 and  plot  data  as  in  Table 4. 

plexity of the fluid dynamics involved, the calculation time is 
on  the  order of two  hours. The simplicity of appearance of an 
evolving laminar  jet is deceptive, giving no indication of the 
underlying mathematical theory  associated with a  description 
of the dynamics. With  the aid  of computer graphics, we can 
display both  the external appearance of the  drop  formation 
and simultaneously the invisible forces and velocities respon- 
sible for what we observe. A further deception lies in  that  once 
a numerical result is at  hand,  the .reaction is “why of course” 
it is what one would  have  expected. This is in fact the basic 
intent of the study, to provide us with the confidence that we 
really understand what is going on  and,  in  addition,  to fill in 
gaps in our  understanding  that we perhaps  did  not realize 
existed. 

The sequences of solutions given here are direct output of 
the  computer graphics. Selection of the  times illustrated is 
intended  to give contrasting  states  of the flow, yet provide 
some degree of continuity of successive times. In all cases, 
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streamlines and isobars are presented in  the plots and  an 
associated table  of  plot increments is given in  the text.  Since 
the velocity and pressure magnitudes vary considerably,  plot 
intervals will also vary considerably. It is  therefore important 
that  the reader make full use  of the tables  when  studying the 
plots. Otherwise, some false impressions may arise. 

Streamlines are  the solid lines  of the plots and isobars of 
pressure are  the dashed lines. Reverse flow into  the  chamber 
is distinguished by tick marks  on  the solid streamlines, while 
in  the isobars the pressures below ambient  are  short dashes 
relative to  the longer  dashes that define pressures above and 
at  ambient pressure. Unfortunately,  the tick marks for nega- 
tive valued streamlines do  not show up well in  the reductions 
of the figures. Generally, here, they  simply give a darker  hue 
to  the line. A close examination of the tables  of increments 
and  extremum values can be used to overcome this deficiency. 
Further,  the. reverse flow associated with negative valued 
streamlines will be recognizable from discussions that follow. 327 
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Table 2 Plot parameters for Figure 2. 

Time Plot Qmin Q- Plot 
interval Q interval P 

'mi" Pmox 

0.92 118 -0. I8 1.26 4 -40.00 3.12 
1.95  1/32 -0.04 0.22 1 /2 -2.58 3.18 
3.36  11128 -0.00 0.08 1 /2 -0.83 5.90 

The first group of flow sequences are  intended  to show 
variations to  be expected with change in fluid properties. In 
terms of the scaling of the  problem  here  adopted, these are 
given in  the  order of R/W = 2, 3, 4 in Figures 2, 3, and 4. 
The  contrast  in  the flows with this selection of R/ W values is 
very dramatic  and we were obliged to deviate slightly from 
our original plan to have an identical set of  pressure histories. 
In Table 1, we tabulate  the pressures and  times associated 
with the  square wave histories  applied at  the nozzle  inlet. In 
the  numerical  program,  the  input  parameters  are  the sequence 
of pressure magnitudes  but these are  timed by certain  char- 
acteristics  of the flow. Here, we have allowed a  small  initial 
retraction, with below-ambient  pressure at  the inlet until a 0.1 
unit retraction  of surface from  the  outlet has  been achieved. 
At this point,  the follow-up positive pressure  is  applied until 
the flow volume  from  the nozzle  is  equivalent to a  spherical 
drop of unit radius. At this  point,  the pressure at  the inlet  is 
again reversed and held at  the negative value until  the overall 
applied impulse 

dt = 0. 
Jo P 

From  this  point  onward,  the  jet is simply  reacting to  the 
applied  impulse through  the action  of inertia  and  through its 
own viscosity and capillarity. The  time required  for the initial 
small  retraction is unaffected by differences in  the R/ Wparam- 
eter. This is because the retraction  is  small and  only  inertia of 
the fluid in  the nozzle is involved; viscosity does  not have 
sufficient time  to  act  to  any significant extent. Less time is 
required, however, to eject a given volume  as  the R/ Wparam- 
eter is increased. The reason  for using 50 units of  driving 
pressure  instead  of 40 with R / W  = 2 was that ejection was 
considerably  weakened by the higher viscosity. The  time re- 
quired  to  return  the net impulse  to zero, in all cases, is simply 
proportional  to  that  impulse  that  had  to  be applied to get the 
desired volume of flow in  the first place. 

In Fig. 2, for R/ W = 2, the initial time illustrated is one  in 
which final retraction is already  underway. The isobars are 
spaced at  four  units of  pressure  with ambient pressure (P /p  = 

0) occurring at  the last isobar on  the right that passes through 
a contracted  zone of the forming drop.  The highest pressure 
here (refer to Table 2) is not  in  the neck but  at  the  front  tip 
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time.  The capillary forces have not yet caused rounding of  a 
distorted early shape (two units of  pressure define a  spherical 
drop of unit radius, one  unit for  each  principal  curvature). 
The flow lines are self-explanatory except that we may  note 
here that retracting flow begins in  the  boundary layer where 
flow reversal occurs first, because of fluid inertia. The first 
streamline  inward  from the nozzle wall represents flow to  the 
left, the next  line  inward radially is  a  dividing  streamline,  as 
is the  central streamline. This  means  that  the flow inside the 
nozzle is almost stagnant. One  must, however, keep in  mind 
that  in  the axisymmetric case, the gradient  in the streamlines 
is not a direct  measure  of the velocity since we must also 
divide by the radius. Thus,  the spread  in  lines  near the axis 
only partially  implies slower flow there. At this  earliest time, 
the flow speed along the axis, at  the  tip of the  jet, is the 
greatest. 

At the second time of Fig. 2, the applied pressures have all 
been removed and  the inlet sits at  ambient pressure. Below- 
ambient pressures exist in  the nozzle because of the concave 
curvature  in  the  annular region about  the neck of the  jet. 
There is some forward flow in  the nozzle because of the 
pressure  gradient  associated with the concave annular region. 
The neck  of the  jet,  at its  narrowest point, has the highest 
pressure. This is just forward of the  dense collection of isobars. 
From there, the pressure drops, moving  forward,  with the two- 
unit isobar through  the  center of the inflating drop. Pressure 
again rises toward the  jet leading edge. Any  streamlines which 
connect  to  the  center  line of the  jet  are separation  streamlines, 
so one  may  assume  that flow, while too small to be indicated, 
is in a clockwise sense in the  contraction zone. 

The final time illustrated  for R/ W = 2 shows a condition 
in which the  imparted forward momentum is almost gone. 
The forward motion of the  jet is little changed  from the earlier 
time.  The flaring internal  motion shows that capillary forces 
have full command  and  are simply  reducing the overall surface 
to a minimum.  This involves inflating the bulbous region at 
the expense of the fluid in  the  contracted zone and reducing 
the meniscus to a  cylindrical  disk (physically at  the nozzle 
outlet). The pressure plot  interval is the  same  as  at  the earlier 
time  and a  similar interpretation applies  except that  the added 
contraction has  led to higher pressures. The concave curvature 
at  the flare holds down  the pressure so that  the last isobar  in 
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Table 3 Plot parameters  for  Figure 3. 

Time Plot Qmm Q- Plot 
interval Q interval P 

Pmin 

0.72 114 0.00 2.12  4  -42.63  2.00 

2.62  1/32 -0.0 1 0.29 1 -5.89  4.89 
3.15 

4.41  1/32 -0.05 0.24  4 0.00 40.26 

1 . 1 1  118 -0.87  1.12  4  -40.00 

5.33 1/32  -0.08  0.23  2  -0.09  21.55 

Table 4 Plot  parameters  for  Figure 4 

Time Plot Qm,” Q- Plot 
interval Q interval P 

pmr”  p- 

0.55 118 0.00 1.98  4 -0.5 1 40.0 
I .08 114 -0.75 1.37  4 -40.0 2.79 
2.17  1/16 -0.02 0.52 1 -3.78 4.73 
4.03  1/32 -0.03 0.41  4 0.00 40.5 
4.8 1 1/32 -0.07 0.42 1 0.00 10.0 

this region is two units, as is that  through  the  central region 
of the forming drop,  thus  accounting for the  extra isobars 
formed  in  the upstream  direction. The forming drop is becom- 
ing isobarometric.  A remnant of  forward motion exists at  the 
front  of the forming drop. At a  later time,  the leading edge 
may move  backward in a weak oscillation  in the  drop shape. 
The flow within the nozzle  is all forward in  the last illustration 
and if wetting were properly  taken into  account,  the  contact 
line  would  migrate to  the outlet. Again, the dense  collection 
of  isobars at  the  contraction is a  consequence  of passing from 
a  below-ambient  pressure  in the concave annular region to 
the highest pressure (on  the  order of six units) just forward  of 
the collection. 

In Fig. 3 (Rl  W = 3), the first time illustrated is for t = 0.72. 
The positive pressure pulse  has just been terminated (see Table 
1 )  and  the final negative phase  of  inlet  pressure is active. 
Surprisingly, the lowest pressure  in the field of values is less 
than  that applied at  the inlet (see Table 3). It occurs near  the 
inlet  nearly at  the cylindrical  surface  of the nozzle. It is a 
consequence of vorticity associated with our  requirement  that 
the  boundary layer begins at  the inlet. There is a slight squeeze 
in the flow related to  an incipient flow separation. Note  that 
even though  the inlet  pressure is negative, forward motion 
persists because of  inertia. The  ambient pressure  isobar is the 
most forward one so that positive pressures exist only in  a 
cap-shaped region at  the front  of the  jet. 

At the second time illustrated in Fig. 3, the flow in the 
nozzle is reversed and a reversed boundary layer is developing. 
With  a  decay  of the original boundary layer, the lowest pres- 
sure is now the  input pressure of -40.0 units. The  remaining 

details of this second time illustrated and  the following time 
are similar to those  of Fig. 2.  Small  surface  deformities at  the 
front of the  jet,  at  the  latter  time,  are responsible  for  pressure 
variations  manifested in localized isobars. 

At the  fourth  time illustrated  in Fig. 3, break-off has oc- 
curred. The meniscus  within the nozzle has bulged forward 
because of inertia  and is now  in  the process of returning  to a 
disk shape  through flow toward the  chamber. A very high 
pressure exists at  the  end of the tail  of the  forming  drop,  as is 
evident  in Table 3. Unfortunately,  this high pressure results 
in a large plot increment  and hence more detailed  isobars are 
not given in  the illustration.  Flaring  of the streamlines  within 
the  drop is, of  course, because the tail is rapidly  being assim- 
ilated by the  drop. But, unlike Rl W = 2 ,  the flaring is only  at 
the trailing part of the  drop  and directly forward motion 
persists at  the leading part of the drop. 

The last time illustrated in Fig. 3 is prior  to consolidation 
of the  drop. A remnant of the tail is still present but  it is 
catching up  to  the  main body  of the  drop,  as is  evident in  the 
density and  curvature of the streamlines.  A high pressure and 
high pressure  gradient still exist at  the  end of the tail. The 
pressure has diminished by about half that  at  the earlier time 
(see Table 3). Unlike  the case of RIW = 2 ,  the  drop will 
continue forward motion.  Our  intent is to  come back and 
review this and  other differences after  consideration  of the 
Rl W = 4 case. 

With reference to Table 4, the reader should now be able 
to follow the details of the flow behavior  illustrated  in Fig. 4. 
Corresponding to  the  “dumbbell” final illustration  in Fig. 3, a 
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“baby  rattle”  configuration emerges, for R/ W = 4, in which a 
small drop is linked to  the  main  drop by a  cylinder  of  liquid. 
There is some  contraction  just behind the  main  drop  and 
hence a rise in pressure  there.  Generally, the small drop 
catches up  to  the  main  drop before a complete pinch-off occurs 
here. This behavior is observed in experiments. 

Reviewing now the calculations  for R/ W = 2, 3,  4, we may 
conclude  that higher drop velocities are  obtained with larger 
R/  Wwhen  an equivalent  impulse  is  applied. To give a  measure 
to  the differences to be expected, we plot, in Figure 5, a history 
of the position  of the leading edge of the jets. For  the pressure 
histories given in  Table 1, we note  that  for  R/ W = 2, flow 
essentially stops; the fluid will collect into a  suspended drop 
(in the absence  of gravity here). The velocity histories, again 
measured at  the leading edge ofthe  jet,  are given in Figure 6. 
The noise in  the velocity histories is mostly truncation  error 
in  the  numerical calculation but  the larger variations  near 
maximum velocity are  perhaps associated  with local readjust- 
ment  at  the leading tip because  of  distortion from a locally 
spherical  shape. Break-off occurs in  the  R/ W = 3 case at t = 
4.15 and for R/ W = 4 at t = 3.95. Plots  of the decay of 
contraction radii will be shown in  some cases to be discussed 
in  the following. After break-off, there is a slight increase in 
the velocities of the leading edge. This is simply the forming 
drop settling down  to  some  mean velocity after detachment. 
The higher velocities of the  nonuniform  distribution  are, of 
course,  in the rapidly  moving  tail.  Since we used flow volume 

to  determine when the applied positive pressure was to be 
removed, the  actual impulse was somewhat larger for the 
smaller (more viscous) R/ W values while the final drop vol- 
ume was slightly less. Thus,  the differences for  truly equal 
impulse  would be even somewhat more  than illustrated.  This, 
however, is only one sample  impulse comparison. With  a 
larger impulse, one would  expect R/ W = 3 to begin to look 
like Fig.  4. Some results suggest, however, that  the  intercon- 
necting  cylinder of fluid between small and large drops be- 
comes  thinner, Le., contains less volume of liquid if R / W  is 
smaller. We continue  then by considering fixed fluid properties 
(R/ W = 3) with modified applied pressures. 

If  we simply  increase the  magnitude of the positive part of 
the pressure history, we find that we must modify the  volume 
flow cut-off to  maintain a  corresponding drop volume. Previ- 
ously, we had chosen the cut-off to  be a volume with one 
nozzle diameter.  In  the following, we have  reduced the cut-off 
volume  to a volume corresponding to a 3/4 diameter of the 
nozzle. Figure 7 shows  what happens  to  the pressure history 
with change  in the  volume flow cut-off. The pressure history 
of the Fig. 3 run is given along  with  histories  for the faster 
cut-off volume. 

Note how the (3/4) cases involve shorter  and  shorter  times 
for the 60-, 80-, and 100-unit peak pressures. The  entire period 
of the pressure cycle is shorter  than for the  unit  volume  cut- 
off of the Fig. 3 run; all terminate  at  the  same  time. As it turns 
out,  the  run with the 60-unit  peak  pressure differed little 
physically from  the result of Fig. 3. This is because the lower 
pressure  acted  for a longer  time. Figure 8 gives the radius of 
contraction of  these two runs. The longer  period, before 
contraction begins, with the  unit cut-off case reflects the 
pressure  history.  Finally, drop sizes differ somewhat  with  a 
larger drop for the  unit cut-off case. 

We continue by comparing statistics  for the 60-, 80-, and 
100-unit peak pressure runs  and will then include  a  late time 
sequence  for the  latter of these. Surprisingly, the  contraction 
radii curves were essentially identical. While successively 
larger final drops emerged with increased peak pressure, the 
associated longer negative pressures (to reduce the impulse to 
zero) succeeded in bringing about essentially equal break-off 
times.  Normalized volume flow curves are given in Figure 9. 
These are  the flow passing the  outlet of the nozzle (in  either 
direction).  They reflect the fact that  the nozzle does  not refill 
like it  would physically. Note  that  in Fig. 9, we also give a 
final normalized drop size. This size is based on  the assump- 
tion  that  any multiple droplets will ultimately re-merge at 
some late time.  That is, if drops  are multiple at  some stage in 
the calculation,  their  volumes are  summed.  In Figure 10, we 
show  distances of the leading edge of the  jets for the 60-, 80-, 
and 1 00-unit peak pressure  runs. Figure 11 gives the associated 
velocity histories. 
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Figure 6 Velocity of leading  edge for jets illustrated in Figs. 2, 3, 
and 4. 

In Figure 12, the late time behavior of the 100-unit peak 
pressure case is given in contour  map form. Table 5 gives the 
associated  plot data for the selected times. A transition  of 
behavior exists for this range of peak pressures. For  the 60- 
unit case, a single drop developed directly from the tail as in 
Fig. 3. In  the  80-unit case, a satellite drop like that in Fig. 12 
emerges but  the  intermediate ripple is not present. The average 
satellite velocity was higher than  that of the  main  drop  in all 
cases where  they  occurred in  the present  study. Note  that  the 
leading edge velocity (Fig. 11) for  the 100-unit case increases 
at late  times. This is a  consequence of the  intermediate ripple 
merging with the leading  segment  near the  same  time  that  the 
trailing  segment  detaches. Thus,  the now-combined leading 
drop is set into oscillation,  as is evident  from the shape and 
streamlines  present. The satellite drop is also undergoing 
oscillations that  are less obvious at  the late times illustrated. 

It is perhaps  not strange that  the final drop velocities of the 
60-, 80-, and 100-unit  pressure cases are  almost  the  same since 
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Figure 7 Pressure hisfories of a series of calculations for R/ W = 3. 
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Figure 8 Comparison of contraction radii for two variations of 
pressure  history for R/ W =  3 calculations. Sharp break-off is artifically 
set  to occur at a contraction radius of one grid distance. 



Figure 9 Normalized  volume  flow  at  nozzle outlet showing  both 
retracted  and  forward  flow.  Normalized drop sizes  exceed  final  flow 
volume  because computed final  meniscus  does  not  terminate  at  outlet. 
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Figure 10 Motion  of  leading  edge  for jets with R/ W = 3 and given 
peak  pressures. 
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Figure 12 Late  time  sequence  of jet development  for R/ W = 3 and 
100-unit  peak  pressure.  Plot data are  given  in  Table 5 .  

332 
Figure 11 Velocity  of  leading  edge  for jets with R/ W = 3 and given 
peak  pressures. 

the  net impulse was based upon  equal flow volumes. This is 
in  spite of the fact that  the peak velocities are  quite different. 
Clearly, if the negative pulse were made equal or greater in 
magnitude  to  the positive pulse, a quicker break-off would 
occur,  permitting  higher velocities to  be achieved in  the final 
drop by benefiting more  from those  early  peak velocities. 

There is, of  course, more  to be discussed concerning the 
physics of the flows. The behavior  of variables other  than P 
and Q is a story in itself. Their behavior is by no  means 
superfluous or of little  interest  since fundamental aspects of 
dynamics  both  at  the  boundaries  and internally are tied up  in 
them,  as is the success of the calculation.  Vorticity,  for ex- 
ample, is not only  manifested in  the nozzle boundary layer 
but also emanates  from  the free surface, giving second order 
effects there. This is likewise true of normal stresses that have 
their origin in  deformations taking place at  the boundaries. 
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Table 5 Plot  parameters  for  Figure 12. 

Time Plot Q,, Q- Plot P m h  
interval Q 

pm, 
interval P 

3.97 1/32 -0.03  0.38  2  -0.73 
4.66 1/32 -0.05 0.34  4 

17.3 

5.47 
0.00 

1/32 
32.3 

-0.0 I 0.26 1 
6.09 1/64 0.00 

-0.05 IO. 1 

7.34 
-0.14 

1/64 
7.01 

8.70 1/32 
-0.15 6.84 

9.39 1/32 0.00 0.39 
-0.04  4.54 

112 -0.00 4.5 1 

0.22 112 
0.00 0.16 112 

-0.00 0.42 112 

To truly understand their  influence, one needs to perform 
calculations that, say, artificially leave these  variables out  to 
provide  a contrasting flow behavior. This is a unique capacity 
of numerical solution and will be an  important tool  for future 
growth  of our understanding. 

Conclusions 
It is believed that  the  numerical programs,  as  they now  stand, 
are  adequate  for treating laminar  jets  as required  for ink  jet 
printing. While added features could  improve  the scope  of the 
calculations,  this  should be postponed  for future consideration 
as  the need  dictates. The next  step planned is to use actual 
laboratory  pressure histones so that physical data  can be 
obtained, from the calculations, for  the  experimental hardware 
at  hand. If dependable results are  obtained,  further steps  of 
refinement  in the  numerical  treatment  can follow. The nu- 
merical method here  described  is not a  tool  for  finding an 
operating window. It is too slow a procedure for that purpose. 
It  can provide  insight and  understanding  that  can focus labo- 
ratory experiments  but  it  cannot  stand alone. This is  evident 
from  the idealized pressure  histories that  are employed here. 
Clearly, numerical  experiments  could be camed  out with 
pressures that would  fracture laboratory materials, without 
the results telling us  that this  is the case. While  even  such 
results would  have comparison value, we need  also to know 
if they are meaningful in practice. The results given here  are 
meant  to suggest properties  of the flow that  may be useful in 
development  and design problems  in the laboratory. We first 
demonstrated  the effect of fluid properties and  then  the effect 
of different pressure histories  driving the jets. For smaller 
R/  “ratios, one  must  employ stronger  driving pressures. This, 
however, may be offset in  that  improved  drop integrity appears 
likely here with the smaller ratio  and is so indicated  in the 
laboratory. 
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