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Numerical Calculation of the Fluid Dynamics of Drop-on-Demand
Jets

A numerical method that makes use of the complete incompressible flow equations with a free surface is discussed and used to
study an impulsively driven laminar jet. Flow behavior dependence upon fluid properties (characterized by a Reynolds number over
Weber number nondimensionalization) is compared for drop integrity purposes. Several variations of square wave pressure history
applied at a nozzle inlet are discussed in relation to drop velocities produced and structure of ejected drops. Timewise development

of flow both interior and exterior to the nozzle is illustrated through computed contour sequences.

Introduction

Numerical treatment of the fluid dynamics of ink jets is a very
ambitious undertaking. A complete description of the flow
requires the use of the full Navier-Stokes equations with all
associated surface stress conditions. Nonlinearity is present in
any finite deformation of a liquid-gas interface and hence a
linear analysis can provide only a bare hint of the outcome of
a capillary instability. Closed-form solution is out of the
question with our present knowledge of the mathematics,
leaving us with choices that involve considerable work and
are clearly insurmountable without the benefit of fast com-
putation. The strategies one may employ computationally are
perhaps many and varied but one can reasonably assume that
none is free of extensive and laborious programming and free
of potential failure. The need to treat large deformations and
break-up into droplets eliminates less general candidate meth-
ods. One of the attributes of a successful method is that the
required system of equations accurately describes the flow,
controlling the motion of the free surface, even to a pinch of
the calculation region, followed by smooth continuation of
solution with separated regions. This must take place without
incurring stiffness problems, numerical instability, or poten-
tially large and scattered truncation errors. Because of the
geometric changes, these numerical concerns are particularly
stringent. A suitable method must not be limited severely by
these factors within the range of flow parameters to be consid-
ered.

The basic idea employed here has its origin in some of the
earliest large-scale calculations carried out at Los Alamos

Scientific Laboratory when such calculations first became
feasible [1]. An Eulerian (fixed) grid system is used to define
a discrete form of calculation within the flow region, with the
liquid-gas interface defined by a Lagrangian net of points that
move with the fluid. This has certain limitations for three-
dimensional flow but for a large class of problems, most
importantly axisymmetric problems, the net is a string of
particles that can be handled easily in the Lagrangian sense.
A surface-fitted coordinate system method would perhaps
provide a more general treatment with a more direct capacity
for extension to three-dimensional flow, but the necessity to
redefine the coordinate system with all changes in geometric
shape could well make such a scheme intractable when severe
distortions occur.

There appears to be little work in the open literature of
comprehensive numerical studies of capillary flows. Proposed
methods generally fall short of real usefulness in that a single
result is given without follow-up calculations to demonstrate
program utility. Fortunately, in the work given here, we have
had the opportunity to interact with others engaged in active
experiments and to be guided by the practical requirements
at hand. However, only in recent weeks has it become possible
to obtain realistic pressure histories to drive the jets [2]; hence,
the results given here do not reflect this new information. We
have depended upon estimates of peak pressures and certain
constraints inherent in the problem to specify the required
pressures. The idealized histories used here surely differ in
many respects from actual cases because of acoustic reflections
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within the driving chamber [3] and, for that matter, particular
attributes of the piezo driver. Potentially interacting studies
could be carried out in the future that could evaluate entire
systems, but the economics of such an extensive study is not
warranted in terms of current needs. For this reason, it is
perhaps appropriate to limit the study to certain idealized
cases, chosen to provide guidelines relative to the adjustable
parameters of the problem.

We consider first a given geometric configuration with the
same pressure histories but with variation of the fluid prop-
erties (viscosity, density, and surface tension coefficient). Next,
we consider fixed fluid properties with pressure history varia-
tions such that higher velocities are achieved. In the latter
case, there are a number of aspects of the flow behavior that
define its usefulness for drop-on-demand ink jet printing.
These principally include the absence or presence of shadow
drops and an adequate drop velocity. To simultaneously
achieve a sufficiently high velocity and drop integrity is the
realm of experiment, since many variations of driving voltage
and hence pressure can be tested rapidly. Computationally,
this would be impossible because the window of desired
behavior is probably too narrow to be isolated by this approach
alone and may not be achievable in the cylindrical nozzle case
at all with simply structured pressure histories.

In the calculations, we assume that the pressure histories
vary in time but are uniform across the inlet section of the
nozzle. Currently, there is no way to know if this is true. Since
the inlet section diameter is very small compared to the
chamber diameter, it is assumed that the pressure can vary
little across the face of the inlet. There is, however, no guar-
antee that this is the case. A calculation of the dynamics within
the chamber, while of interest in itself, could probably not
have sufficient resolution to modify the assumption of uni-
formity of pressure at the inlet. Numerically, one could, with
the methods described here, readily test other assumptions,
but we have found no reason to do so.

In regard to the boundary layer in the nozzle, we assume
on inflow that the boundary layer grows from the inlet. This
implies that the vorticity is zero over the inlet cross section.
If, on the other hand, fluid is drawn backward into the
chamber, a “slow change” condition is assumed. Basically,
this requires that no radial velocities exist at the chamber-
nozzle juncture, but the boundary layer can move into the
chamber.

We do not attempt to deal with wetting contact angles in
any rigorous manner. There are two conditions of interest
here where ad hoc treatment must be justified. One is that
wetting of the exterior of the nozzle outlet is not permitted in
the computation. This would seem to be important at early
phases of drop ejection, but this is the very time that driving
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pressures are highest, and hence it is reasonable to assume
that the presence of a contact circle exterior to the outlet
would have little influence upon the drop dynamics. While
the magnitude of the contact pressure could be large, it acts
upon a very localized region compared to the driving pressures
from the chamber. For a very weak driving pulse, one would
expect some effect on drop behavior from a wetting exterior
contact, but not for the high ejection velocities of interest
here.

The second condition that must be dealt with is that of a
moving contact line that arises when fluid is drawn into the
chamber by a pressure differential with ambient external
pressure. The problem here is not one of influencing drop
integrity or dynamics, since by this stage the incipient drop is
well on its way forward and is quickly becoming isolated from
any flow that is going on within the nozzle. The problem is
more one of continuation of the numerics in an empirical
manner, at least to the point of detachment. Here, we have
considered simply requiring the contact circle to remain at
the outlet. This is the simplest ad hoc condition one can
impose, but unfortunately in some cases the suction may be
large, so that only a thin unresolvable layer of fluid clings to
the nozzle interior. For this reason, we have found it necessary
to allow the contact line to move, only to the extent that
calculation can proceed. This works in a satisfactory manner
up to detachment, but the final behavior of the remaining
meniscus becomes somewhat artificial since a 90° contact
angle emerges as a final state with only a partially filled nozzle.
In the real case, wetting would return the fluid to the outlet.
The complex interplay of forces that one would have to take
into account to give a complete treatment of the meniscus is
not justified here since our interest is primarily the behavior
of the detached drop.

There are a number of other unanticipated problems that
arise in numerical computation. For example, if the driving
pressure is pushed too high, wavelets appear on the jet surface
that require higher resolution than one wishes to impose for
a reasonable length calculation. Also, the peak driving pressure
for a given drop velocity is a strong function of the nozzle
length. It is a function of the volume of fluid in the nozzle,
which must be set into motion, and also the added viscous
drag of a longer nozzle. To limit the computational region
and hence computation time, a short nozzle is preferred.
Indeed, the “equivalent” cylindrical length for nozzles used in
practice is short. This, however, leads to problems when a
retraction occurs that opens backward into the chamber or
beyond the calculation range. Here again, an ad hoc treatment
is called for, or else a section of the chamber must be included
in the calculation domain. Unfortunately, the latter brings in
a number of new problems. A nozzle length equal to the jet
diameter seems to be a good compromise, allowing for a
reasonable retraction length and yet not requiring unrealistic
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pressures relative to DOD experiments. With this choice, we
avoid retraction into the chamber region.

One other consideration in regard to a discrete calculation
is that of separation of the flow when the drop breaks away
from the jet column. This must occur at one radial mesh
distance at the least; otherwise there are not enough compu-
tational data to continue. With 20 mesh points for a nozzle
radius, break-off occurs numerically at five percent of the jet
diameter. Numerical experiments show that this is satisfactory
because the remainder of the excursion to zero radius occurs
very soon after this point; the high azimuthal curvature of the
surface causes ever larger pressures and faster convergence.
Clearly, if we were willing to invest more time in calculation,
we could look very closely at break-up, but again it is not an
important issue for the accuracy here required.

Governing equations and general aspects of the
numerical method

Unlike the numerical methods developed in Ref. [1], we here
wished to make use of a streamfunction. The reason for this
is that flow through a nozzle can become very awkward
without a streamline defining the solid bounding surface. The
programs were initially tested with periodic boundary condi-
tions [4], and a preliminary drop-on-demand form of calcu-
lation was given in Ref. [5]. The numerical method used here
is as given in these references but will be reviewed. Of possible
interest to the reader are some new developments in the
numerical programs in connection with other applications
[6, 7]. The newer methods were not employed here because
there seemed to be no need to do so. Deficiencies in the older
method were not of a fundamental nature but related to
numerical algorithms and redundant computation that was
inefficient. With minor updates in the algorithms, the older
programs were revived for this work.

The pertinent equations for calculation in the interior are
the Navier-Stokes equations for radial () velocity v and axial
(z) velocity u. These are
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where P is the pressure, p the density, and » the kinematic
viscosity. In this axisymmetrical form of the equations, the
vorticity is
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In Eq. (3), it was necessary to make use of the incompressibility
condition
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This system of equations is more than is needed for solution
of many initial-boundary value problems, but by considering
the whole system, we have greater flexibility in meeting re-
quirements of a complex time-varying boundary. Our prob-
lem here is to consider the time evolution of flow that begins
at rest in a cylindrical nozzle geometry. The initial boundaries
are the containing cylindrical surface, a disk-shaped surface
which is the interface with a large chamber of the same fluid
and another disk-shaped surface that is the interface with a
gas. The latter interface is allowed to move under certain
constraints dealing with the properties of such a surface.
Taking symmetry into account, we may use the center line of
the cylinder as a boundary. The best representation of the
flow in the interior is in terms of streamlines such that the
center line is a reference (zero) streamline and the cylindrical
surface takes on a streamfunction value appropriate to the
flow rate. The flow rate is in turn determined by the applied
pressure at the chamber-nozzle interface and also the inertial
and viscous properties of the fluid itself. To obtain the appro-
priate streamfunction value at the cylindrical wall, we inte-
grate the second of Egs. (1) over a control volume making use
of the second of Egs. (5). This may be the entire fluid volume
of interest or some subsection of the volume so long as we
know precisely the required quantities on the boundaries of
the domain we choose. Upon integration, we obtain
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Because of the conservative form of the momentum equation,
the volume integral becomes a surface integral. It states that
the time rate of change of streamfunction at the cylindrical
wall (r,) depends upon the pressure gradient and kinetic energy
gradient over the length (z,), summed over disk-shaped areas
at the left (L) and right (R) of our chosen control volume. In
addition it depends upon the viscous drag at the no-slip
cylindrical surface expressed as a sum of the vorticity present
at that surface. Thus, we have the means to begin calculation,
noting that Q will forever be zero at the axis, as is the vorticity.
At the inlet, the vorticity is also set to zero except at the
cylindrical surface, while the inflow velocity is taken to be
uniform. This uniform flow velocity follows from the gross
application of the second of Egs. (5) and then intervening Q
values follow from this velocity. The same applies at the outlet
at the initial instant.

Our control volume can initially be the entire volume of
fluid in the nozzle since a known ambient pressure condition
exists at the outlet. Unfortunately, things become more com-
plicated after the free surface begins to deform.

In Figure 1 we portray a late stage of solution to which we
aspire. We note that a meniscus can exist, along with a flow
region that is completely enclosed by a free surface and
separated from the fluid in the nozzle. Note in Fig. 1 that we
give a symbolic representation of the global system of variables
and their layout on a discrete grid as they are defined for
interior flow. Our control volume as employed in Eq. (9) refers
to this global system and hence must be chosen to lie inside
the meniscus at all stages of calculations. This is preferred to
using a deformed surface as a control volume boundary. We,
of course, will have access to all variables at all times through-
out the calculation and specifically at some constant z distance
in the nozzle for a boundary of our control domain.

We now know how to get the streamfunction values at the
solid cylindrical surface and at the inlet, but what about
streamfunction values on the free surface once it deforms
away from a global grid line? These surface values of Q are
required for solution of the elliptic Eq. (6). Here the procedure
is to obtain tentative u and v values by small forward steps in
time applied to the momentum equations. Then, integrating
along any convenient grid lines using Egs. (5), we may obtain
Q at grid extensions to the free surface. By this means, we
have our required boundary condition for Eq. (6) and can also
define a normal velocity at the surface.

We have found it convenient to introduce a finer net of
points at the surface by means of which information is ex-
changed with the interior. Thus, the Q values are spread
among local surface points by interpolation. To each of the
surface points, we may assign other variable values. Further,
allowing these points to be origins of local coordinate systems
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Figure 1 Nozzle geometry and a typical jet configuration with sym-
bolic representation of the computational grid.

oriented relative to an outward normal at the surface, we can
readily define surface boundary conditions. Knowing the an-
gular orientation («) of these local coordinate systems, with
the global system, permits transfer of information between
systems by rotational transformations. With reference to Fig.
1, then, we can now write the required surface conditions in
the (7, u) frames as indicated. The normal stress or pressure
jump condition at the surface relative to an ambient gas
pressure (P/p), is given by

P
I—J—<—> =5<C°S“—a—“>+2y<%+u,3—">, (10)
b \ply P n on

where ¢ is the surface tension coefficient. Now da/dr is the
familar surface curvature or variation of the angle of the
tangent to the surface as we move along the surface; cos «/r
is the curvature about the axis of symmetry. The terms on the
far right of Eq. (1) are viscous damping terms that produce
second-order effects in the flows considered here. We here
include only the first of these terms as is often the case in
works found in the literature.

Clearly, with « known for each surface net point, the effects
of curvature upon the pressure differential at the surface may
be calculated. It is convenient to take the ambient pressure as
zero and then these quantities give the pressure directly. A
tactic to use to compute the normal derivative of u, is to first
select a near-surface mesh point and find the surface net point
that is closest to that interior point. Using the appropriate «,
one then carries out a rotational transformation to obtain u,
in the interior. Knowing the surface u, obtained from Q (i.e.,
u, = —1/r 3Q/dr) one may then approximate the gradient.
Here, we assume that the closest approach of the surface to
the selected interior grid point approximates the surface nor-
mal through that grid point. A similar procedure is used to
obtain the tangential velocity at the surface from surface Q
values (u, = 1/r 3Q/dn) and those calculated at the interior
through the elliptic Eq. (6).

The vorticity values on the right of (6) are obtained by
forward marching Eq. (3) as is done with the momentum
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Table 1 Square wave pressure histories at nozzle inlet for results
given in Figures 2, 3, and 4.
=092 R/W =2 R/W=3 R/W =4
Time Plp Time Plp Time Plp
1 1 1 L
0.00-0.12 =300 0.00-0.10 -40.0 0.00-0.12  -30.0
0.12-0.68 +50.0 0.10-0.71  +40.0 0.12-0.69 +40.0
0.58-1.27 —40.0 0.71-1.21 —40.0 0.69-1.17 —40.0
1=1.95
JE| i 1 1
At the free surface and at the inlet, the pressure is itself given.
1=3.36
Surface particle motion comes about in calculation by
] i 1 I ! P10 | I L applying the Lagrangian expressions
0 2 4 6 8 10

Distance (nondimensional units)

Figure 2 Time sequence of jet development for R/W = 2 with
pressure histories as in Table 1 and plot data as in Table 2.

equations. The origin of most of the vorticity is “generation”
in the boundary layer along the cylindrical surface of the
nozzle. To a secondary extent, vorticity is also derived from
the free surface. It follows from the definition of vorticity and
the tangential stress condition that

oy da
=2\— +u—) 11
@ <87 “ 67> (1
This free surface vorticity is included in the calculations but
its function there is somewhat mysterious and still under
study.

Finally, it will be noted that the pressure is required in the
fluid in order to allow inclusion of pressure gradients in the
tentative forward march values of the velocities. This is a
painful part of the calculation since it is complicated and is in
the final analysis required only to get the streamfunction
boundary condition. The reward is that it is nice to know
what the internal pressures are. We not only have a difficult-
to-calculate right-hand side to the pressure Poisson’s Eq. (7),
but the normal derivative conditions at the no-slip surface of
the nozzle must be taken into account. That is,

p dw

o e (12)
at r = r, and at the axis r = 0,
()
p
=0. (13)

ar

é =u and ir = 14
dt a_ > (14)
where i and v follow from rotational transformations of u,
and u,.

We have given a somewhat cursory description of the
numerical procedure. The interested reader should consider
the references given, particularly Ref. [6], which gives finite
difference expressions and other numerical details.

For studying the results that follow, it should be noted that
we do the calculations in nondimensional form with the nozzle
radius r, as a reference unit length. A reference velocity

172
g
(2
and an associated reference time scale
3\ 1/2
r
o= (”—) (16)
(22

lead to a single parameter that contains all the fluid properties.
That is, with R the Reynolds number and W the Weber
number, we have

R 172
ar
W) (an

To make the differential equations dimensionless, it is only
necessary to replace » by W/R and ¢/p by unity. A final note
is that we often refer to P/p simply as the pressure in discussing
the results.

Discussion of results
Unlike in the laboratory, we here look at only a single drop -
formation. In real time, the elapsed period encompassed by
the numerical calculation may be on the order of 100 micro-
seconds. By contrast, indicating some measure of the com-
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Figure 3 Time sequence of jet development for R/W = 3 with
pressure histories as in Table 1 and plot data as in Table 3.

plexity of the fluid dynamics involved, the calculation time is
on the order of two hours. The simplicity of appearance of an
evolving laminar jet is deceptive, giving no indication of the
underlying mathematical theory associated with a description
of the dynamics. With the aid of computer graphics, we can
display both the external appearance of the drop formation
and simultaneously the invisible forces and velocities respon-
sible for what we observe. A further deception lies in that once
a numerical result is at hand, the reaction is “why of course”
it i1s what one would have expected. This is in fact the basic
intent of the study, to provide us with the confidence that we
really understand what is going on and, in addition, to fill in
gaps in our understanding that we perhaps did not realize
existed.

The sequences of solutions given here are direct output of
the computer graphics. Selection of the times illustrated is
intended to give contrasting states of the flow, yet provide
some degree of continuity of successive times. In all cases,
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Distance (nondimensional units)

Figure 4 Time sequence of jet development for R/W = 4 with
pressure histories as in Table 1 and plot data as in Table 4.

streamlines and isobars are presented in the plots and an
associated table of plot increments is given in the text. Since
the velocity and pressure magnitudes vary considerably, plot
intervals will also vary considerably. It is therefore important
that the reader make full use of the tables when studying the
plots. Otherwise, some false impressions may arise.

Streamlines are the solid lines of the plots and isobars of
pressure are the dashed lines. Reverse flow into the chamber
is distinguished by tick marks on the solid streamlines, while
in the isobars the pressures below ambient are short dashes
relative to the longer dashes that define pressures above and
at ambient pressure. Unfortunately, the tick marks for nega-
tive valued streamlines do not show up well in the reductions
of the figures. Generally, here, they simply give a darker hue
to the line. A close examination of the tables of increments
and extremum values can be used to overcome this deficiency.
Further, the. reverse flow associated with negative valued
streamlines will be recognizable from discussions that follow.
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Table 2 Plot parameters for Figure 2.

Time Plot Qrin Qax Plot P P
interval Q interval P

0.92 1/8 —0.18 1.26 4 —40.00 3.12

1.95 1/32 —0.04 0.22 1/2 -2.58 3.18

3.36 1/128 -0.00 0.08 1/2 -0.83 5.90

The first group of flow sequences are intended to show
variations to be expected with change in fluid properties. In
terms of the scaling of the problem here adopted, these are
given in the order of R/W = 2, 3, 4 in Figures 2, 3, and 4.
The contrast in the flows with this selection of R/W values is
very dramatic and we were obliged to deviate slightly from
our original plan to have an identical set of pressure histories.
In Table 1, we tabulate the pressures and times associated
with the square wave histories applied at the nozzle inlet. In
the numerical program, the input parameters are the sequence
of pressure magnitudes but these are timed by certain char-
acteristics of the flow. Here, we have allowed a small initial
retraction, with below-ambient pressure at the inlet untila 0.1
unit retraction of surface from the outlet has been achieved.
At this point, the follow-up positive pressure is applied until
the flow volume from the nozzle is equivalent to a spherical
drop of unit radius. At this point, the pressure at the inlet is
again reversed and held at the negative value until the overall
applied impulse

'3
fm=a
o P

(18)

From this point onward, the jet is simply reacting to the
applied impulse through the action of inertia and through its
own viscosity and capillarity. The time required for the initial
small retraction is unaffected by differences in the R/ W param-
eter. This is because the retraction is small and only inertia of
the fluid in the nozzle is involved; viscosity does not have
sufficient time to act to any significant extent. Less time is
required, however, to eject a given volume as the R/ W param-
eter is increased. The reason for using 50 units of driving
pressure instead of 40 with R/W = 2 was that ejection was
considerably weakened by the higher viscosity. The time re-
quired to return the net impulse to zero, in all cases, is simply
proportional to that impulse that had to be applied to get the
desired volume of flow in the first place.

In Fig. 2, for R/W = 2, the initial time illustrated is one in
which final retraction is already underway. The isobars are
spaced at four units of pressure with ambient pressure (P/p =
0) occurring at the last isobar on the right that passes through
a contracted zone of the forming drop. The highest pressure
here (refer to Table 2) is not in the neck but at the front tip
of the drop that is somewhat pointed in shape at this early

time. The capillary forces have not yet caused rounding of a
distorted early shape (two units of pressure define a spherical
drop of unit radius, one unit for each principal curvature).
The flow lines are self-explanatory except that we may note
here that retracting flow begins in the boundary layer where
flow reversal occurs first, because of fluid inertia. The first
streamline inward from the nozzle wall represents flow to the
left, the next line inward radially is a dividing streamline, as
is the central streamline. This means that the flow inside the
nozzle is almost stagnant. One must, however, keep in mind
that in the axisymmetric case, the gradient in the streamlines
is not a direct measure of the velocity since we must also
divide by the radius. Thus, the spread in lines near the axis
only partially implies slower flow there. At this earliest time,
the flow speed along the axis, at the tip of the jet, is the
greatest.

At the second time of Fig. 2, the applied pressures have all
been removed and the inlet sits at ambient pressure. Below-
ambient pressures exist in the nozzle because of the concave
curvature in the annular region about the neck of the jet.
There is some forward flow in the nozzle because of the
pressure gradient associated with the concave annular region.
The neck of the jet, at its narrowest point, has the highest
pressure. This is just forward of the dense collection of isobars.
From there, the pressure drops, moving forward, with the two-
unit isobar through the center of the inflating drop. Pressure
again rises toward the jet leading edge. Any streamlines which
connect to the center line of the jet are separation streamlines,
so one may assume that flow, while too small to be indicated,
is in a clockwise sense in the contraction zone.

The final time illustrated for R/W = 2 shows a condition
in which the imparted forward momentum is almost gone.
The forward motion of the jet is little changed from the earlier
time. The flaring internal motion shows that capillary forces
have full command and are simply reducing the overall surface
to a minimum. This involves inflating the bulbous region at
the expense of the fluid in the contracted zone and reducing
the meniscus to a cylindrical disk (physically at the nozzle
outlet). The pressure plot interval is the same as at the earlier
time and a similar interpretation applies except that the added
contraction has led to higher pressures. The concave curvature
at the flare holds down the pressure so that the last isobar in
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Table 3 Plot parameters for Figure 3.

Time Plot

Qmin

Plot P P

interval Q interval P ™ ™
0.72 1/4 0.00 2.12 4 —42.63 2.00
1.11 1/8 -0.87 1.12 4 —40.00 3.15
2.62 1/32 -0.01 0.29 1 -5.89 4.89
441 1/32 -0.05 0.24 4 0.00 40.26
5.33 1/32 —0.08 0.23 2 —0.09 21.55

Table 4 Plot parameters for Figure 4.

Time Plot Qi Qe Plot P,.. P,

interval Q interval P
0.55 1/8 0.00 1.98 4 -0.51 40.0
1.08 1/4 —0.75 1.37 4 -40.0 2.79
2.17 1/16 —0.02 0.52 1 -3.78 4.73
4.03 1/32 —0.03 0.41 4 0.00 40.5
4.81 1/32 -0.07 0.42 1 0.00 10.0

this region is two units, as is that through the central region
of the forming drop, thus accounting for the extra isobars
formed in the upstream direction. The forming drop is becom-
ing isobarometric. A remnant of forward motion exists at the
front of the forming drop. At a later time, the leading edge
may move backward in a weak oscillation in the drop shape.
The flow within the nozzle ts all forward in the last illustration
and if wetting were properly taken into account, the contact
line would migrate to the outlet. Again, the dense collection
of isobars at the contraction is a consequence of passing from
a below-ambient pressure in the concave annular region to
the highest pressure (on the order of six units) just forward of
the collection.

In Fig. 3 (R/W = 3), the first time illustrated is for t = 0.72.
The positive pressure pulse has just been terminated (see Table
1) and the final negative phase of inlet pressure is active.
Surprisingly, the lowest pressure in the field of values is less
than that applied at the inlet (see Table 3). It occurs near the
inlet nearly at the cylindrical surface of the nozzle. It is a
consequence of vorticity associated with our requirement that
the boundary layer begins at the inlet. There 1s a slight squeeze
in the flow related to an incipient flow separation. Note that
even though the inlet pressure is negative, forward motion
persists because of inertia. The ambient pressure isobar is the
most forward one so that positive pressures exist only in a
cap-shaped region at the front of the jet.

At the second time illustrated in Fig. 3, the flow in the
nozzle is reversed and a reversed boundary layer is developing.
With a decay of the original boundary layer, the lowest pres-
sure is now the input pressure of —40.0 units. The remaining
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details of this second time illustrated and the following time
are similar to those of Fig. 2. Small surface deformities at the
front of the jet, at the latter time, are responsible for pressure
variations manifested in localized isobars.

At the fourth time illustrated in Fig. 3, break-off has oc-
curred. The meniscus within the nozzle has bulged forward
because of inertia and is now in the process of returning to a
disk shape through flow toward the chamber. A very high
pressure exists at the end of the tail of the forming drop, as is
evident in Table 3. Unfortunately, this high pressure results
in a large plot increment and hence more detailed isobars are
not given in the illustration. Flaring of the streamlines within
the drop is, of course, because the tail is rapidly being assim-
ilated by the drop. But, unlike R/W = 2, the flaring is only at
the trailing part of the drop and directly forward motion
persists at the leading part of the drop.

The last time illustrated in Fig. 3 is prior to consolidation
of the drop. A remnant of the tail is still present but it is
catching up to the main body of the drop, as is evident in the
density and curvature of the streamlines. A high pressure and
high pressure gradient still exist at the end of the tail. The
pressure has diminished by about half that at the earlier time
(see Table 3). Unlike the case of R/W = 2, the drop will
continue forward motion. Our intent is to come back and
review this and other differences after consideration of the
R/W = 4 case.

With reference to Table 4, the reader should now be able
to follow the details of the flow behavior illustrated in Fig. 4.
Corresponding to the “dumbbell” final illustration in Fig. 3, a
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Figure 5 Motion of leading edge for jets illustrated in Figs. 2, 3, and
4,

“baby rattle” configuration emerges, for R/W = 4, in which a
small drop is linked to the main drop by a cylinder of liquid.
There is some contraction just behind the main drop and
hence a rise in pressure there. Generally, the small drop
catches up to the main drop before a complete pinch-off occurs
here. This behavior is observed in experiments.

Reviewing now the calculations for R/W = 2, 3, 4, we may
conclude that higher drop velocities are obtained with larger
R/Wwhen an equivalent impulse is applied. To give a measure
to the differences to be expected, we plot, in Figure 5, a history
of the position of the leading edge of the jets. For the pressure
histories given in Table 1, we note that for R/W = 2, flow
essentially stops; the fluid will collect into a suspended drop
(in the absence of gravity here). The velocity histories, again
measured at the leading edge of the jet, are given in Figure 6.
The noise in the velocity histories is mostly truncation error
in the numerical calculation but the larger variations near
maximum velocity are perhaps associated with local readjust-
ment at the leading tip because of distortion from a locally
spherical shape. Break-off occurs in the R/W = 3 case at t =
4.15 and for R/W = 4 at t = 3.95. Plots of the decay of
contraction radii will be shown in some cases to be discussed
in the following. After break-off, there is a slight increase in
the velocities of the leading edge. This is simply the forming
drop settling down to some mean velocity after detachment.
The higher velocities of the nonuniform distribution are, of
course, in the rapidly moving tail. Since we used flow volume

to determine when the applied positive pressure was to be
removed, the actual impulse was somewhat larger for the
smaller (more viscous) R/W values while the final drop vol-
ume was slightly less. Thus, the differences for truly equal
impulse would be even somewhat more than illustrated. This,
however, is only one sample impulse comparison. With a
larger impulse, one would expect R/W = 3 to begin to look
like Fig. 4. Some results suggest, however, that the intercon-
necting cylinder of fluid between small and large drops be-
comes thinner, i.e., contains less volume of liquid if R/W is
smaller. We continue then by considering fixed fluid properties
(R/W = 3) with modified applied pressures.

If we simply increase the magnitude of the positive part of
the pressure history, we find that we must modify the volume
flow cut-off to maintain a corresponding drop volume. Previ-
ously, we had chosen the cut-off to be a volume with one
nozzle diameter. In the following, we have reduced the cut-off
volume to a volume corresponding to a % diameter of the
nozzle. Figure 7 shows what happens to the pressure history
with change in the volume flow cut-off. The pressure history
of the Fig. 3 run is given along with histories for the faster
cut-off volume,

Note how the (%) cases involve shorter and shorter times
for the 60-, 80-, and 100-unit peak pressures. The entire period
of the pressure cycle is shorter than for the unit volume cut-
off of the Fig. 3 run; all terminate at the same time. As it turns
out, the run with the 60-unit peak pressure differed little
physically from the result of Fig. 3. This is because the lower
pressure acted for a longer time. Figure 8 gives the radius of
contraction of these two runs. The longer period, before
contraction begins, with the unit cut-off case reflects the
pressure history. Finally, drop sizes differ somewhat with a
larger drop for the unit cut-off case.

We continue by comparing statistics for the 60-, 80-, and
100-unit peak pressure runs and will then include a late time
sequence for the latter of these. Surprisingly, the contraction
radii curves were essentially identical. While successively
larger final drops emerged with increased peak pressure, the
associated longer negative pressures (to reduce the impulse to
zero) succeeded in bringing about essentially equal break-off
times. Normalized volume flow curves are given in Figure 9.
These are the flow passing the outlet of the nozzle (in either
direction). They reflect the fact that the nozzle does not refill
like it would physically. Note that in Fig. 9, we also give a
final normalized drop size. This size is based on the assump-
tion that any multiple droplets will ultimately re-merge at
some late time. That is, if drops are multiple at some stage in
the calculation, their volumes are summed. In Figure 10, we
show distances of the leading edge of the jets for the 60-, 80-,
and 100-unit peak pressure runs. Figure 11 gives the associated
velocity histories.
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Figure 6 Velocity of leading edge for jets illustrated in Figs. 2, 3,
and 4.

In Figure 12, the late time behavior of the 100-unit peak
pressure case is given in contour map form. Table 5 gives the
associated plot data for the selected times. A transition of
behavior exists for this range of peak pressures. For the 60-
unit case, a single drop developed directly from the tail as in
Fig. 3. In the 80-unit case, a satellite drop like that in Fig. 12
emerges but the intermediate ripple is not present. The average
satellite velocity was higher than that of the main drop in all
cases where they occurred in the present study. Note that the
leading edge velocity (Fig. 11) for the 100-unit case increases
at late times. This is a consequence of the intermediate ripple
merging with the leading segment near the same time that the
trailing segment detaches. Thus, the now-combined leading
drop is set into oscillation, as is evident from the shape and
streamlines present. The satellite drop is also undergoing
oscillations that are less obvious at the late times illustrated.

It is perhaps not strange that the final drop velocities of the
60-, 80-, and 100-unit pressure cases are almost the same since
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Figure 7 Pressure histories of a series of calculations for R/W = 3.
Cut-off volume = 1.0 case is pressure history for jet of Fig. 3.
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Figure 8 Comparison of contraction radii for two variations of
pressure history for R/W = 3 calculations. Sharp break-off is artifically
set to occur at a contraction radius of one grid distance. 331
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Figure 9 Normalized volume flow at nozzle outlet showing both
retracted and forward flow. Normalized drop sizes exceed final flow
volume because computed final meniscus does not terminate at outlet.
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Figure 10 Motion of leading edge for jets with R/W = 3 and given
peak pressures.
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Figure 11 Velocity of leading edge for jets with R/W = 3 and given
peak pressures.

Distance (nondimensional units)

Figure 12 Late time sequence of jet development for R/W = 3 and
100-unit peak pressure. Plot data are given in Table 5.

the net impulse was based upon equal flow volumes. This is
in spite of the fact that the peak velocities are quite different.
Clearly, if the negative pulse were made equal or greater in
magnitude to the positive pulse, a quicker break-off would
occur, permitting higher velocities to be achieved in the final
drop by benefiting more from those early peak velocities.

There is, of course, more to be discussed concerning the
physics of the flows. The behavior of variables other than P
and Q is a story in itself. Their behavior is by no means
superfluous or of little interest since fundamental aspects of
dynamics both at the boundaries and internally are tied up in
them, as is the success of the calculation. Vorticity, for ex-
ample, is not only manifested in the nozzle boundary layer
but also emanates from the free surface, giving second order
effects there. This is likewise true of normal stresses that have
their origin in deformations taking place at the boundaries.
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Table 5 Plot parameters for Figure 12.

Time Plot O,in Qe Piot P P,
interval Q interval P
3.97 1/32 -0.03 0.38 2 -0.73 17.3
4.66 1/32 —-0.05 0.34 4 0.00 323
5.47 1/32 -0.01 0.26 1 -0.05 10.1
6.09 1/64 0.00 0.22 1/2 -0.14 7.01
7.34 1/64 0.00 0.16 1/2 -0.15 6.84
8.70 1/32 ~0.00 0.42 1/2 -0.04 4.54
9.39 1/32 0.00 0.39 1/2 -0.00 4.51

To truly understand their influence, one needs to perform
calculations that, say, artificially leave these variables out to
provide a contrasting flow behavior. This is a unique capacity
of numerical solution and will be an important tool for future
growth of our understanding.

Conclusions

It is believed that the numerical programs, as they now stand,
are adequate for treating laminar jets as required for ink jet
printing. While added features could improve the scope of the
calculations, this should be postponed for future consideration
as the need dictates. The next step planned is to use actual
laboratory pressure histories so that physical data can be
obtained, from the calculations, for the experimental hardware
at hand. If dependable results are obtained, further steps of
refinement in the numerical treatment can follow. The nu-
merical method here described is not a tool for finding an
operating window. It is too slow a procedure for that purpose.
It can provide insight and understanding that can focus labo-
ratory experiments but it cannot stand alone. This is evident
from the idealized pressure histories that are employed here.
Clearly, numerical experiments could be carried out with
pressures that would fracture laboratory materials, without
the results telling us that this is the case. While even such
results would have comparison value, we need also to know
if they are meaningful in practice. The results given here are
meant to suggest properties of the flow that may be useful in
development and design problems in the laboratory. We first
demonstrated the effect of fluid properties and then the effect
of different pressure histories driving the jets. For smaller
R/W ratios, one must employ stronger driving pressures. This,
however, may be offset in that improved drop integrity appears
likely here with the smaller ratio and is so indicated in the
laboratory.
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