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Iterative Exhaustive  Pattern  Generation for Logic  Testing 

Exhaustive pattern logic testing schemes provide all possible input patterns with respect to  an output in the set of test patterns. This 
paper is concerned with the problem  that arises when this  is to  be done  simultaneously with respect to a number of outputs, using 
a single test set. More specijically, in this paper we describe an iterative procedure for generating a test set consisting of n- 
dimensional vectors which exhaustively covers all k-subspaces simultaneously, i.e., the projections of n-dimensional vectors in the 
test set onto any input subset of a specified size k contain all possible patterns of k-tuples. For any given k, we first  find an 
appropriate N (N > k) and generate an ejicient N-dimensional test set for exhaustive coverage of all k-subspaces. We next develop 
a constructive procedure to expand the corresponding test matrix flormed by taking test vectors as  its rows) such that a test set  of 
N2-dimensional vectors exhaustively covering the  same k-subspaces is obtained. This procedure may be repeated to cover arbitrarily 
large n (n = N2i after i iterations), while keeping the  same  k.  It is shown that the  size of the test set obtained this way grows in size 
which becomes proportional to (log n) raised to  the power of [log (q + I)], where q is a function of k only,  and  is  approximated 
(bounded closely below) by  k2/4  in binary cases. This approach applies to nonbinary cases as well except that the value of q in  an 
r-ary case is  approximated by a number  lying between k2/4 and k2/2. 

Introduction 
In  the  conventional  approach  to logic circuit testing, a set of 
test vectors to  be applied at  the circuit inputs is derived from 
an analysis made  on  the circuit under test while considering  a 
predetermined set of  faults to be detected, typically the set of 
single stuck-at-0 or stuck-at-1 faults at  the gate level [ 11. Such 
a  test-generation  procedure  requires  a  substantial amount of 
computer  time  due  to  the necessary analysis and simulation 
to be camed  out. 

As the  number of circuits  packed onto a VLSI chip grows 
larger, the tasks  involved in  the  conventional  approaches of 
logic test generation and fault simulation become increasingly 
difficult. The  standard  assumption of the single stuck-at-fault 
model also becom'es more  inadequate [ 2 ] .  A  partial  solution 
to this  problem is to exercise exhaustive pattern testing, with 
respect to each output, while relying on certain  partitioning 
techniques  to limit the size of each input subset associated 
with an  output [3]. 

With  the exhaustive pattern testing approach,  the set of  all 
inputs feeding an  output is generally provided with all possible 
input  patterns  from  the test set.  Therefore, any single hard 

fault or  combination  of  hard faults which results in a perma- 
nent alteration of the  truth table  associated with the  output 
function is tested. 

Exhaustive pattern testing  of logic circuits  has several at- 
tractive features. In addition  to  the fact that test patterns  can 
be generated quite easily, the process and its fault coverage 
are  no longer dependent directly on  the fault  model  assumed 
or  on  the specific circuit under test. An immediate problem, 
however, is how to provide  exhaustive input  patterns simul- 
taneously with respect to  many  outputs associated with the 
same circuit. There is a  need to develop  a basic theoretical 
understanding with regard to how a single test set can be 
generated  for this purpose and how efficient such test sets can 
be. 

The problem  of  generating  a single set of test vectors to 
provide simultaneously all possible input  patterns  to each of 
a  collection  of input subsets  has  been investigated in  the past 
[4,5]. Recently,  two general methods based, respectively, on 
constant weight and  on linear  codes  have been developed  for 
this  problem [6-81. While these methods give test sets  which, 
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due  to  the simplicity  of the  mathematical  structure used, can 
be implemented  quite easily, the efficiency of such test sets is 
not always high. Thus,  in  an  attempt to apply these  results in 
practice, one  may well find that these  exhaustive  test-pattern- 
generation techniques lead to test sets of excessive size even 
for  moderately sized circuits. This seems to imply that ex- 
haustive pattern testing  would be impractical unless sufficient 
logic circuit partitioning is exercised in the design stage. On 
the  other  hand,  one  may consider using the exhaustive pattern 
testing approach together with other testing methods such as 
pseudo-random pattern testing. In any case, new techniques 
for  generating more efficient test sets for exhaustive pattern 
testing  would be very desirable. 

Theorem 2 
Let T be any set of n-vectors in an r-ary space, which exhaus- 
tively covers all k-subspaces; then its minimum size JTJ,,, is 
bounded as follows: 

rk  5 ITImin I 
(n  - k)(r - 1) + 1 

Theorems 1 and 2 are best illustrated by some examples. 

Example 1: n = 20, k = 3, r = 2 
From  Theorem 1, s = ( n  - k)(r - 1)  + 1 = 18. If  we let w = 

1 mod 18, then w = I ,  19. Thus TI consists of all weight- 1 and 
weight- 19 vectors: 

The objective  of this  paper is to develop a constructive 
procedure for  building more efficient test sets  of higher di- 
mensions from those  of lower dimensions. It is shown that 
test  sets  generated this way are generally much  more efficient 
(smaller)  for large n (dimension  of test vectors) compared  to 
test sets  generated by previously known methods for the  same 
exhaustive coverage. The  asymptotic growth  behavior of such 
test sets thus provides upper  bounds  to  the efficiency of 
optimal test sets for large n in  such an exhaustive pattern 
testing approach. 

Basic concepts 
We now briefly summarize  some basic concepts  and results 
from our earlier paper [6]. 

Consider,  in  general, an r-valued logic circuit (r 2 2) with 
n inputs forming an r-ary n-space. An output of the logic 
circuit may be dependent  on a subset  of k inputs forming a k- 
subspace  (k-dimensional  projection)  of the n-space. Note  that 
an  input may  actually  represent a cluster of disjoint inputs 
not  connected  to  the  same  output [9 ] .  

Dejinition 
A test matrix is a matrix in which the rows are test vectors. 
The  column  dimension is the  dimension of the test vectors 
and  the row dimension is the size of the test set. 

Definition 
A set T of n-vectors in  an r-ary n-space, represented by row 
vectors  of a test matrix T, exhaustively covers a k-subspace if 
and  only if the projection of T onto  this k-subspace contains 
all rk distinct r-ary patterns. 

Definition 
The weight w of an r-ary n-vector v = ( v , ,  v2, . . . , v,) is the 
regular sum of all n components of v. That is, w = v ,  + v2 + 
' ' ' + V". 

Theorem 1 
Given n > k and r 2 2, then T, a set of vectors in  the r-ary n- 
space, exhaustively covers all k-subspaces if it  contains all r- 
ary n-vectors of weight(s) w such that w = c mod s, where s = 
(n-k) ( r -  1 ) +  1 , a n d O s c s s -  1. 

Here ITl[ = 20 + 20 = 40. 

Seventeen  alternative  solutions  may also be obtained by 
setting w to values other  than 1 modulo 18. The solution TI 
is the  one with the smallest size among 18 solutions  obtained 
via Theorem 1. 

Example 2: n = 4, k = 2, r = 3 
From  Theorem 1,  s = ( n  - k)(r - 1 )  + 1 = 5. If we let 
w = 1 mod 5, then w = 1,6. Thus, TI consists of all weight-1 
and weight-6 vectors: 

i -  0 0 0 1  
0 0  1 0  
0 1 0 0  
1 0 0 0  
0 2 2 2  
1 1 2 2  
1 2 1 2  
1 2 2 1  
2 0 2 2  
2 1 1 2  
2 1 2 1  
2 2 0 2  

TI = 

213 
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w to values other than I modulo 5 .  

E x a m p l e 3 : n - k = l , r z 2  
Here s = (n  - k)(r - 1 )  + 1 = r. There are r disjoint test  sets, 
each of  which corresponds to a single  parity r-ary code  with 
IT1 = r“/r = rk ITlmin. For n = 4, k = 3, r = s = 2, 
w = 1 mod 2, 

- 
0 0 0 1  
0 0  1 0  
0 1 0 0  
0 1 1 1  
1 0 0 0  
1 0 1 1  
1 1 0 1  

-1  1 1 0- 

0 0 0  
0 1 3  
0 2 2  
0 3 1  
1 0 3  
1 1 2  
1 2 1  
1 3 0  
2 0 2  
2 1 1  
2 2 0  
2 3 3  
3 0 1  
3 1 0  
3 2 3  
3 3 2  

It should be clear  from the preceding theorems and exam- 
ples that a test  set  generated  via Theorem 1 for the exhaustive 
coverage of  all k-subsets is optimal when k = 
n - 1. This can be  seen from Theorem 2: With n - k = 1 ,  Eq. 
(1) becomes 

rk I JTJ,,, 5 - = rk, 
r” 
r 

and the size  reaches the lower bound fi. When k is  close to n, 
the solution remains near-optimal. 

For a fixed k and large n, the size  of the test  sets obtained 
from Theorem 1 is minimized when c is chosen to be as close 
to k/2 as  possible [6]. Therefore, the test  set  size  becomes 

214 proportional to 

The test  sets obtained from linear codes [7] are generally not 
any more efficient in terms of their size. The iterative proce- 
dure we describe  next  results in much more efficient  test  sets 
whose  sizes  grow  asymptotically within a constant multi- 
plication factor of (log n )  raised to the power  of  [log ( q  + l)], 
where q is approximated by a number lying  between k2/4 and 
k2/2.  

An iterative  procedure 
Let P(i) denote 1-by-N  cyclic permutation vectors as follows: 

P(1)=(1,2,3, ..., N -  l ,O) ,  

P(2) = (2,3,  . . ., N-  1,0, I), 

. . .  

P ~ N - l ) = ( N - l , O , l , . . . , N - 2 )  . 
We also denote a constant N-vector by C(i), C(i) = 
(i, i, . . ., i). 

We next consider “composite permutation matrices” which 
are constructed from the preceding permutation vectors and 
constant N-vectors.  Such a composite permutation matrix can 
be partitioned into regular  blocks of  size  1-by-N,  each of which 
is a permutation vector or a constant N-vector. 

Theorem 3 
Let N be a prime power,  i.e., N = mi, where m = prime and i 
z 1. Then the following (m + 1 )  by composite matrix of 
the form 

M =  

I C(O), C( l) ,  C(2), ’ ’ . , C(N-1) 

P(O),  P(O),  P(O), ‘ ’ ., P(0) 

P(O), P(l), P(2), .”, P(N- 1 )  

P(O), P(2), P(4), . . ., P[2(N- 111 
. . .  

. . .  

does not have any 2-by-2 submatrix with identical columns. 

Proof 
In the preceding matrix M, N 2  columns are naturally parti- 
tioned into N groups of N columns each. The theorem is 
clearly true for any 2-by-2 submatrix taken out of any single 
group, since at least one of its two  rows must come from some 
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P( i )  which  has distinct elements (integer components) and 
thus two columns cannot be the same. Now consider any two 
2-by-2 submatrix taken out of rows s and t ( t  > s), and column 
groups j and k (k > j ) .  If s is not the top row, the submatrix 
must be of the form 

[ j s + b  k s + c  ] m o d N .  

j t + b  k i + c  

Assume that the submatrix has  two identical columns. Then 
(k - j ) ( t  - s) mod N must be equal to zero. To see that this 
cannot be true, we note that (k - j )  5 N and ( t  - s) 
5 m (the latter being true since 2,s > 1). Thus, (k - j ) ( t  - s) 
cannot contain a factor of N, N = mi. This means that the 
elements in any 2-by-2 submatrix cannot be identical (mod 
N) in both rows, and hence the theorem. Q.E.D. 

We  now consider a test matrix T(N2) which  is constructed 
according to the composite permutation matrix M of Theo- 
rem 3. This new test matrix is “grown”  from the base matrix 
T(N) which  exhaustively  covers  all  k-subspaces.  If we denote 
the size  of the test set corresponding to the base matrix by B, 
B = I T(N) 1, then this new text matrix results in a test  set of 
size ( m  + 1)B, consisting of Pdimensional vectors. 

Example 4 
Consider a basic matrix T(N) as follows: 

T( 3) = 

Since this matrix is generated according to Example 3,  it 
exhaustively  covers  all  2-subspaces. The composite permuta- 
tion matrix M(N2) as described in Theorem 3 is 

(0 0 0)  ( 1  1 1) (2 2 2) 

(0 1 2) (0 1 2) (0 1 2) 

(0 I 2) (1  2 0) (2 0 1 )  

(0 I 2) (2 0 1 )  (1  2 0) 

M(9)= [ 1 
It  is not difficult to check and see that there is no 2-by-2 
submatrix in M(9) with  identical columns. To “grow” the new 
test  matrix T(9) from T(3), we merely  replace  each entry in 
M(9), considered as a column index, with the corresponding 
column in the base matrix T(3): 

T(9) = 

0 0 0  0 0 0  0 0 0  
0 0 0  1 1 1  1 1 1  
1 1 1  0 0 0  1 1 1  
1 1 1  1 1 1  0 0 0  

0 0 0  0 0 0  0 0 0  
0 1 1  0 1 1  0 1 1  
1 0 1  1 0 1  1 0 1  
1 1 0  1 1 0  1 1 0  

0 0 0  0 0 0  0 0 0  
0 1 1  1 1 0  1 0 1  
1 0 1  0 1 1  1 1 0  
1 1 0  1 0 1  0 1 1  

0 0 0  0 0 0  0 0 0  
0 1 1  1 0 1  1 1 0  
1 0 1  1 1 0  0 1 1  
1 1 0  0 1 1  1 0 1 ,  

Let us denote by Tl(9) the row  subspace  consisting  of the 
first four rows  of T(9) corresponding to the first  row  of M(9). 
Consider the 2-subspace S(2) in T1(9) consisting of the first 
and the last columns. Since the corresponding column indices 
in M(9) are 0 and 2, S(2) is the same as the 2-subspace in T(3) 
consisting of the first and the last columns there. But the base 
matrix T(3) exhaustively  covers  all of its 2-subspaces; thus, no 
binary 2-tuple could be  missing from S(2). On the other hand, 
consider the 2-subspace S’(2) in T1(9) consisting of the first 
two columns. Since the corresponding column indices in M(9) 
are both 0, S’(2) is the same as the first column in T(3) 
duplicated. Clearly, any binary pattern specifying  different 
values in these  two columns, namely (0 I )  or (1  0), cannot 
appear in S’(2). 

In  general, the new test matrix T(N2) being  grown  from the 
base  matrix T(N) according to the composite matrix M is 
characterized in the following theorem. 

Theorem 4 
Consider an arbitrary k-subspace, S(k), in T( N2). An  r-ary  k- 
tuple, f (k) ,  is  missing  in S(k) if and only if the following  is 
true in each row  of M. 

Condition A Out of k columns specified  by S(k), there exist 
two at which the row  in M assumes identical values but r(k) 
assumes distinct values. 

To prove the “if” part, we observe that identical elements 
in M lead to identical elements in T(N2) within the row 
subspace corresponding to the row in M under consideration. 
Clearly, if Condition A holds, t(k) must  differ at least one 
position  from  each k-tuple in this part of T(N2). Since the 
same situation holds  for  all rows  of M, t(k) must be  missing 
from S(k)  in T(N2). 215 
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t ( k ) = ( O  1 0  0 I )  

Figure 1 The  complete  bipartite graph  corresponding to t(k). 

To prove the "only if" part, let  us  assume that Condition 
A does not hold for some row in M. Corresponding to this 
row  of  M, consider a k'-subspace S'(k') in this part of T(N2), 
obtained from S(k) by keeping one column position from 
each group with identical elements. Let t'(k') be the projection 
of t(k) onto S'(k'); then t'(k') cannot be  missing from S'(k') 
since k' 5 k, and the corresponding subspace in T(k) is 
exhaustively  covered.  Clearly,  if Condition A does not hold, 
by duplicating columns corresponding to identical indices, 
t(k) can be reconstructed in,S(k) from S'(k'). It follows that 
t(k) cannot be missing from T(N2). Q.E.D. 

We next  prove our main theorem for the binary case. 

Theorem 5 
In the binary case,  let k (k > 1) be  given.  If a base matrix 
T(N) exhaustively  covering  all of its k-subspaces is found with 
N=m'such tha tm=pr ime , i ?   l ,N?k ,andmr  Lk2/4J 
( 1 x J denotes the largest  integer not greater than x), then the 
new composite test matrix T(N2) constructed according to any 
combinations of k2/4 J + I rows  of M exhaustively  covers 
all of its k-subspaces. 

Proof 
Suppose that a binary k-tuple, t(k),  is  missing from a certain 
k-subspace, S(k), in T(N2). The columns in S(k) are thus 
partitioned into two groups according to the values  they 
intercept in t(k).  We may construct a complete bipartite graph 
[IO] of k vertices,  where  these k vertices correspond to the 
columns in S(k) and are colored 0 or 1 according to their 
corresponding values in t(k). This is  shown in Figure 1. Now 
if t(k) is  missing from S(k), then from Theorem 4, each  row 
of M contains some 0- 1 column pair with identical elements. 
Each  such pair, represented by an edge in this graph, is 
contained in at most one column group of identical projected 
values  from a certain row in M, because  otherwise this would 
result in a 2-by-2 submatrix of M with identical columns, 
violating Theorem 3. This means that the number of  rows in 
M must be no more than the number of  edges in the complete 
bipartite graph. But the maximum number of  edges in any 
bipartite graph of k vertices can be shown to be k2/4 J and 

216 yet M has at least 1 k2/4 J + I rows from our construction 

It can be  seen from the preceding theorem that, as long as 
the base matrix T(N) satisfies the conditions required, it  is 
immaterial how T(N) is actually obtained. Furthermore, if 
the size of the base matrix is B, i.e., B = I T(N) 1, then the 
size  of the new test matrix is I T(N2) I = B(q + l), where 
q = 1 k2/4 J in the binary case. If we were to iterate this 
procedure j times, we  would obtain a test matrix T(n) such 
that 

n = (N") (6 )  

and IT(n)l = B(q + I)'. (7 )  

Observing that (2') = (log n)/(log N) where log x is of  base  2, 
we have 

IT(n) 1 = B(q + 1)' 

= B[21"8'4+1)]/ 

= B( 2j)los(q+ I )  

Therefore, the size  of the test  set obtained by applying 
Theorem 5 iteratively  is proportional to log n raised to the 
power of  log ( q  + l), where q is a function of k only  Iroughly 
2(log k)] and is independent of the base  test matrix T(N). The 
coefficient,  B/log Nlog(*I) may  be minimized by the selection 
of T(N). 

A straightforward way to select a reasonable  set of matrix 
parameters is  as  follows: For any  given  coverage  range  k,  let 
N = m 2 k, and m = the smallest prime 2 q. In  general, N 
and m may  be  selected in various ways  as  long as the condi- 
tions stated in Theorem 5 are satisfied. This is shown in the 
following  examples. 

Example 5 
Consider k = 2 for the binary case,  for  which q = 1. We  may 
select N = m = 3 and generate the base matrix T(N) as in Eq. 
(3) of Example 4: 

We  may take the first  two  rows  of M(N2), shown in Eq. (4), 
according to Theorem 3: 

0 0) ( 1  1 1) (2 2 2) 

1 2) (0 1 2) (0 1 2) 
M(9) = 
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To obtain  the new test matrix T(9), we merely replace each 
entry in M(9), which is a column index, with the correspond- 
ing column in T(3): 

- - 
0 0 0  0 0 0  0 0 0  

0 0 0  1 1 1   1 1 1  

1 1  1 0 0 0  1 I 1  

1 1 1  1 1 1  0 0 0  

0 0 0  0 0 0  0 0 0  

0 1 1  0 1 1  0 1 1  

1 0 1  1 0 1  1 0 1  

1 1 0  1 1 0  1 1 0  

This completes the first iteration. For  the second  iteration, we 
would take T(9) as  our base matrix and  construct  M(81)  and 
T(81) in  the  same fashion as before. When this procedure is 
repeated j times, we have 

n = 32’ 

and 

I T(n) 1 = 4”, 

or 

Note  that  the all-zeros vector in T(9) is repeated. When 
such  repeated all-zeros vectors are removed  from T(9) as well 
as from test matrices T(n) of  succeeding  iterations, we have 

IT(n) I = I + 3(2’), 

or 

lT(n) I = 1 + 3(log n)/(log 3 )  = 1 + 1.893(log n), 

Example 6 
Consider k = 3 for the binary case, for which q = 2. We may 
select N = 22 = 4 with m = 2, and generate the base matrix 
T(N) according to Example 3: 

T(4) = 

0 0 0 0  

0 0 1  1 

0 1 0 1  

0 1 1 0  

1 0 0 1  

1 0 1 0  

1 1 0 0  

1 1 1 1  

The composite permutation  matrix  M( 16) is as follows: 

I (0 1 2 3) (1 2 3 0)  (2 3 0 1) ( 3  0 1 2 )  1 (0 0 0 0)  ( 1  1 1 1) (2 2 2 2) ( 3  3  3 3 )  

M(16) = (0 1 2 3 )  (0 1 2 3 )  (0 1 2 3 )  (0 1 2 3 )  . 

To  obtain T( 16), we replace each  entry  in  M( 16) with the 
corresponding column  it represents in T(4). T( 16) is 24 by  16. 
For  the second  iteration, we treat T( 16) as  the base matrix 
and  construct  M(256)  and subsequently T(256) in a similar 
fashion. After j iterations, we have 

n = 42’ 

and 

I T(n) I = 8(3’), 

or 

I T(n) I = (8/3)(log n)’Og3. 

Here  the all-zeros and all-ones vectors are repeated in  the 
test matrices T(n). When such  repeated vectors are removed, 

LV’ 

I 

e 

= 2 + 6(3’), 

This result is better  than  that  obtained in Ref. [4], in which 
the test set size for k = 3 grows asymptotically proportional 
to (log n)Z. 

Example 7 
Consider k = 4 for the binary case with q = 4. We may select 
N = m = 5 and generate the base matrix T(5) according to 
Theorem 1: For s = N - k + 1 = 2, let w = 0 mod 2. This 
gives a T(5) which is 16  by 5, cbnsisting  of even-weight 5- 
tuples: 

T(5) = 

b o o 0 0  

0 0 0 1  1 

0 0 1 0 1  

. . . . .  

. . . . .  

. . . . .  

1 1 0 1 1  

1 1 1 0 1  

1 1 1 1 0 ,  

The required composite  permutation matrix M(25) may be 
obtained by taking  any q + 1 = 5 rows from Eq. (2): 

D. T. TANG P 
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(01234) (01234) (01234) (01234) 
(12340) (23401) (34012) (40123) 
(23401) (40123) (12340) (34012) . 
(34012) (12340) (40123) (23401) 
(40123) (34012) (23401) (12340) 1 

Substituting  for  entries of M(25)  the corresponding columns 
in T(5), we obtain T(25), which is 80 by 25. Again, the repeated 
all-zeros vectors can be eliminated  to reduce  T(25) to 76 by 
25. After j iterations, we have 

and 

IT(n)l = 1 + 15(5’), 

or 

= 1 + 2.12 (log n)2.32. 

This is better than  the result in Ref. [4], in which the test set 
size for  k = 4 grows asymptotically proportional  to (log n)3. 

Example 8 
Consider  k = 5  for the binary case, for which q = 6. We may 
select N = m = 7 and generate the base matrix  T(7)  according 
t o T h e o r e m 1 : F o r s = N - k + 1 = 3 , l e t w = 1 m o d 3 , o r w  
= 1,4. T(7) thus generated contains 7 vectors of weight one 
and  35 vectors of weight four, giving B = 42. The q + I = 7 
rows of the composite permutation matrix M(49) may be 
obtained  from Eq. (2). Substituting for entries  of M(49)  the 
corresponding columns in T(7), we obtain T(49), which is 294 
by 49. After this procedure is iterated j times, we have 

n = 7” 

Theorem 5 can be generalized to cover the  nonbinary cases, 
as  shown  in the following theorem. 

Theorem 6 
In a general r-ary case, let k (k > 1) be given. If a base matrix 
T(N) exhaustively covering all of its k-subspaces is found with 
N = m‘ such that m = prime, i 2 I ,  N 2 k, and m 2 q(r,k), 
where q(r,k) is the  maximum  number of edges possible in a 
graph of k vertices and  chromatic index  r [IO], then  the new 
composite test matrix T(N2) constructed  according to q(r,k) + 

218 1 rows of M exhaustively covers all of its k-subspaces. 
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Proof 
The proof  of this  theorem is similar to  that of Theorem 5. 
Suppose that  an r-ary k-tuple, t(k), is missing from a certain 
k-subspace, S(k),  in T(N2). We may  construct  a  complete r- 
chromatic graph  of  k vertices, where  these  k vertices corre- 
spond  to  the  columns in S(k)  and  are colored 0, I ,  2, . . ., 
( r  - 1) according to their  corresponding values in t(k). From 
Theorem 4, each row in M contains  some pair  of vertices with 
distinct  colors but identical  elements. From  Theorem 3, each 
pair is contained in at most one row of M.  This  means  that 
the  number of rows in  M must be no  more  than q(r,k), the 
maximum  number of edges possible in a  graph of k vertices 
and  chromatic index r, which violates our  construction con- 
dition of M, namely  m ? q(r,k). It follows that  no k-tuple  can 
be missing from any k-subspace in T(N2). Q.E.D. 

The value  of q(r,k) for  k 2 2  is clearly bounded as follows: 

1 k2/4 J 5 q(r,k) 5 k(k - 1)/2 5 1 k2/2 J - 1. (9) 

The exact value of q(r,k) is the  number of edges in a complete 
r-chromatic  graph of k vertices with as nearly equal  numbers 
of vertices in r  color classes as possible. It can be shown [IO] 
that 

q(r,k) = [k(k - 1)/2] - (Lk/rJ - l)[k - (r/2) LkIrJ I. ( I O )  

For r < 8, a  simpler form  can be shown to hold: 

q(r,k) = 1 (k2)(r - 1)/2r J for 1 < r < 8. (1 1) 

Values of q(r,k) for  r < 8 and k < 14 are listed in Table 1. 

It is  interesting to  note  that when the procedure described 
in  Theorem 6 is iterated j times  in  an r-ary case, the  dimension 
n and  the test set size I T(n) I change exactly the  same way as 
shown in Eqs. (6) and (8) in the binary case. That is, asymp- 
totically for large n, I T(n) I is still proportional  to (log n) raised 
to  the power of log ( q  + I) ,  as  shown in Eq. (8), except that q 
should be interpreted as q(r,k). The selection of  matrix param- 
eters  in r-ary cases is essentially the  same  as  that  in  the binary 
case. 

Conclusion 
We have described in  this  paper a  constructive procedure for 
generating iteratively test sets of large dimension n which 
exhaustively cover all k-subspaces simultaneously. The size of 
test sets obtained by applying  such  a  constructive  procedure 
iteratively becomes  asymptotically proportional  to log n raised 
to  the power of log (q  + I) ,  where q is a function of k  only, 
bounded closely below by k2/4.  The  same  approach  has been 
shown to be also applicable to  nonbinary cases (where base 
r > 2) with similar results except that q is a function of k and 
the base r. We have  shown that q(r,k) is the  maximum  number 
of edges possible in a  graph of k vertices and  chromatic index 
r, and  it is bounded below by a number lying between k2/4 
and  k2/2. 
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The results  presented  in  this  paper  on  the  asymptotic be- 
havior of the size of test sets generated for exhaustive  coverage 
show a significant  improvement  over  previous  methods [4, 
6-81. The  iterative  procedure  also  enables  one to build  test 
sets of higher  dimensions  from  those of lower ones which  may 
be generated by other means and  found  to  be  optimal or near- 
optimal. 

Unless a sufficient degree of partitioning of logic circuits  is 
built  into  the  design procedure, the  best  chance for the ex- 
haustive  testing  technique as described  in  this  paper  may be 
its  use  together  with  other  testing  approaches,  such as the 
pseudo-random  pattern  testing  approach,  in  which case the 
degree of exhaustive  coverage k may be limited to  a practical 
value. 
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Table 1 Values  of q(r,k) for 1 < r < 8 and k < 14. 

I 0 0 0 0 0 0 
2 1 1 I I I 1 
3 2 3  3 3 3 3 
4  4 5 6 6  6  6 
5 6 8 9 10 10 10 
6 9 12  13 14 15 15 
7 12 16 18 19 20 21 
8 16 21  24 25  26 27 
9 20 27 30 32  33 34 

10 25 33  37 40 41 42 
I 1  30 40 45 48 50 51 
12 36 48  54 57 60 61 
13 42 56  63 67 70 72 
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