212

D. T. TANG AND C. L. CHEN

Iterative Exhaustive Pattern Generation for Logic Testing

Exhaustive pattern logic testing schemes provide all possible input patterns with respect to an output in the set of test patterns. This
paper is concerned with the problem that arises when this is to be done simultaneously with respect to a number of outputs, using
a single test set. More specifically, in this paper we describe an iterative procedure for generating a test set consisting of n-
dimensional vectors which exhaustively covers all k-subspaces simultaneously, i.e., the projections of n-dimensional vectors in the
test set onto any input subset of a specified size k contain all possible patterns of k-tuples. For any given k, we first find an
appropriate N (N > k) and generate an efficient N-dimensional test set for exhaustive coverage of all k-subspaces. We next develop
a constructive procedure to expand the corresponding test matrix (formed by taking test vectors as its rows) such that a test set of
N2-dimensional vectors exhaustively covering the same k-subspaces is obtained. This procedure may be repeated to cover arbitrarily
large n (n = N¥ after i iterations), while keeping the same k. It is shown that the size of the test set obtained this way grows in size
which becomes proportional to (log n) raised to the power of [log (q + 1)], where q is a function of k only, and is approximated
(bounded closely below) by k*/4 in binary cases. This approach applies to nonbinary cases as well except that the value of q in an

r-ary case is approximated by a number lying between k*/4 and k*/2.

Introduction

In the conventional approach to logic circuit testing, a set of
test vectors to be applied at the circuit inputs is derived from
an analysis made on the circuit under test while considering a
predetermined set of faults to be detected, typically the set of
single stuck-at-0 or stuck-at-1 faults at the gate level [1]. Such
a test-generation procedure requires a substantial amount of
computer time due to the necessary analysis and simulation
to be carried out.

As the number of circuits packed onto a VLSI chip grows
larger, the tasks involved in the conventional approaches of
logic test generation and fault simulation become increasingly
difficult. The standard assumption of the single stuck-at-fault
model also becomes more inadequate [2]. A partial solution
to this problem is to exercise exhaustive pattern testing, with
respect to each output, while relying on certain partitioning
techniques to limit the size of each input subset associated
with an output [3].

With the exhaustive pattern testing approach, the set of all
inputs feeding an output is generally provided with all possible
input patterns from the test set. Therefore, any single hard

fault or combination of hard faults which results in a perma-
nent alteration of the truth table associated with the output
function is tested.

Exhaustive pattern testing of logic circuits has several at-
tractive features. In addition to the fact that test patterns can
be generated quite easily, the process and its fault coverage
are no longer dependent directly on the fault model assumed
or on the specific circuit under test. An immediate problem,
however, is how to provide exhaustive input patterns simul-
taneously with respect to many outputs associated with the
same circuit. There is a need to develop a basic theoretical
understanding with regard to how a single test set can be
generated for this purpose and how efficient such test sets can
be.

The problem of generating a single set of test vectors to
provide simultaneously all possible input patterns to each of
a collection of input subsets has been investigated in the past
[4, 5]. Recently, two general methods based, respectively, on
constant weight and on linear codes have been developed for
this problem [6-8]. While these methods give test sets which,

©Copyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the
first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. e VOL. 28 ¢ NO. 2 « MARCH 1984

due to the simplicity of the mathematical structure used, can
be implemented quite easily, the efficiency of such test sets is
not always high. Thus, in an attempt to apply these results in
practice, one may well find that these exhaustive test-pattern-
generation techniques lead to test sets of excessive size even
for moderately sized circuits. This seems to imply that ex-
haustive pattern testing would be impractical unless sufficient
logic circuit partitioning is exercised in the design stage. On
the other hand, one may consider using the exhaustive pattern
testing approach together with other testing methods such as
pseudo-random pattern testing. In any case, new techniques
for generating more efficient test sets for exhaustive pattern
testing would be very desirable.

The objective of this paper is to develop a constructive
procedure for building more efficient test sets of higher di-
mensions from those of lower dimensions. It is shown that
test sets generated this way are generally much more efficient
(smaller) for large n (dimension of test vectors) compared to
test sets generated by previously known methods for the same
exhaustive coverage. The asymptotic growth behavior of such
test sets thus provides upper bounds to the efficiency of
optimal test sets for large » in such an exhaustive pattern
testing approach.

Basic concepts
We now briefly summarize some basic concepts and results
from our earlier paper [6].

Consider, in general, an r-valued logic circuit (r = 2) with
n inputs forming an r-ary n-space. An output of the logic
circuit may be dependent on a subset of k inputs forming a k-
subspace (k-dimensional projection) of the n-space. Note that
an input may actually represent a cluster of disjoint inputs
not connected to the same output [9].

Definition

A test matrix is a matrix in which the rows are test vectors.
The column dimension is the dimension of the test vectors
and the row dimension is the size of the test set.

Definition

A set T of n-vectors in an r-ary n-space, represented by row
vectors of a test matrix T, exhaustively covers a k-subspace if
and only if the projection of T onto this k-subspace contains
all r* distinct r-ary patterns.

Definition
The weight w of an r-ary n-vector v = (v, v2, - -+, v,) 1$ the
regular sum of all » components of v. That is, w = v, + v, +
ce o+ U

o Theorem 1

Given n> k and r = 2, then T, a set of vectors in the r-ary n-
space, exhaustively covers all k-subspaces if it contains all r-
ary n-vectors of weight(s) w such that w = ¢ mod s, where s =
n—kr—1D+l,and0=c=<s— 1.

IBM J. RES. DEVELOP. ¢« VOL. 28 e NO. 2 ¢ MARCH 1984

o Theorem 2
Let T be any set of n-vectors in an r-ary space, which exhaus-
tively covers all k-subspaces; then its minimum size | T}{mio 18
bounded as follows:

o

GoRr-DT1 M

rk = ITlmin =

Theorems 1 and 2 are best illustrated by some examples.

Example ' n=20k=3,r=2

From Theorem 1, s=(n—k)(r— 1)+ 1 =18. Ifwelet w=
1 mod 18, then w = 1,19. Thus T, consists of all weight-1 and
weight-19 vectors:

10 . . .00
0 1 0
0 10
00 . 01
T|=
01 - 11
10 1
1 0 1
(11 - 10|

Here |T | = 20 + 20 = 40.

Seventeen alternative solutions may also be obtained by
setting w to values other than 1 modulo 18. The solution T;
is the one with the smallest size among 18 solutions obtained
via Theorem 1.

Example2: n=4,k=2,r=13

From Theorem 1, s = (n — k}r — 1) + 1 = 5. If we let
w =1 mod 5, then w = 1,6. Thus, T, consists of all weight-1
and weight-6 vectors:

[0 0 0 1]
0010
0100
1000
0222
1122
1212
B= 11221
2022
2112
2121
2202
2211
1222 0]

213

D. T. TANG AND C. L. CHEN

214

Here |T,| =4 + 10 = 14.

Four alternative solutions may also be obtained by setting
w to values other than [modulo 5.

Example 3: n “k=1r=2

Here s = (n — k)}(r — 1) + 1 = r. There are r disjoint test sets,
each of which corresponds to a single parity r-ary code with
IT| = r/r = r* |T|mm. For n = 4, k =3, r =35 = 2,
w=1mod 2,

OOOO'

T,

S - o -

— p—

—_0 = O e O - O

{

Forn=3,k=2,r=s5s=4,w=0mod 4,

(000’
013
022
031
103
112
121
130

To="15 02
211
220
2 33
301
310
323
33 2]

It should be clear from the preceding theorems and exam-
ples that a test set generated via Theorem 1 for the exhaustive
coverage of all k-subsets is optimal when k =
n — 1. This can be seen from Theorem 2: Withn — k=1, Eq.
(1) becomes

r’l
< | Tloin < P rk

and the size reaches the lower bound r*. When £ is close to #,
the solution remains near-optimal.

For a fixed k and large n, the size of the test sets obtained
from Theorem 1 is minimized when c¢ is chosen to be as close
to k/2 as possible [6]. Therefore, the test set size becomes
proportional to

D. T. TANG AND C. L. CHEN

(i) =

The test sets obtained from linear codes [7] are generally not
any more efficient in terms of their size. The iterative proce-
dure we describe next results in much more efficient test sets
whose sizes grow asymptotically within a constant multi-
plication factor of (log n) raised to the power of {log (¢ + 1)1,
where ¢ is approximated by a number lying between k%/4 and
k2.

An iterative procedure
Let P(i) denote 1-by-N cyclic permutation vectors as follows:

P(1)=(1,2,3,.--,N—1,0),
P(2)=(253’ ’N— l’Oa l)’

PN-1)=(N-10,1,.--,N=2).

We also denote a comstant N-vector by C(i), C(i) =
(iy i’ MY l)

We next consider “composite permutation matrices” which
are constructed from the preceding permutation vectors and
constant N-vectors. Such a composite permutation matrix can
be partitioned into regular blocks of size 1-by-N, each of which
is a permutation vector or a constant N-vector.

o Theorem 3

Let N be a prime power, i.e., N = m‘, where m = prime and i
= 1. Then the following (m + 1) by N? composite matrix of
the form

M=
[Co),), c2, -, CWN-1) 7
P0), P(0), PO), -, PO
P0), P(1), PQ), -, PWN-1)
P0), P(2), P@), -, P2(N-1)] |modN
P(©0), P(m—1), P[2(m=1)}, ---, P[(N=1)m~1)]|

@

does not have any 2-by-2 submatrix with identical columns.

Proof

In the preceding matrix M, N? columns are naturally parti-
tioned into N groups of N columns each. The theorem is
clearly true for any 2-by-2 submatrix taken out of any single
group, since at least one of its two rows must come from some

IBM J. RES. DEVELOP. « VOL. 28 » NO. 2 « MARCH 1984

P(i) which has distinct elements (integer components) and
thus two columns cannot be the same. Now consider any two
2-by-2 submatrix taken out of rows s and ¢ (£ > 5), and column
groups j and k (k > j). If s is not the top row, the submatrix
must be of the form

js+b ks+c
mod N.
tit+b ki+c

Assume that the submatrix has two identical columns. Then
(k — j)t — s) mod N must be equal to zero. To see that this
cannot be true, we note that (k — j) = N and (t —)
< m (the latter being true since ¢,s > 1). Thus, (k — j)}(z —)
cannot contain a factor of N, N = m‘. This means that the
elements in any 2-by-2 submatrix cannot be identical (mod
N) in both rows, and hence the theorem. Q.E.D.

We now consider a test matrix T(NV?) which is constructed
according to the composite permutation matrix M of Theo-
rem 3. This new test matrix is “grown” from the base matrix
T(N) which exhaustively covers all k-subspaces. If we denote
the size of the test set corresponding to the base matrix by B,
B = | T(N)|, then this new text matrix results in a test set of
size (m + 1)B, consisting of N>-dimensional vectors.

Example 4
Consider a basic matrix T(N) as follows:

000
0 11

T(3)= .)
10 1

<

Since this matrix is generated according to Example 3, it
exhaustively covers all 2-subspaces. The composite permuta-
tion matrix M(V?) as described in Theorem 3 is

0o00 11 222

012 012 (012
M(9) =) (4)
012 (120 201

012y 201 (120

It is not difficult to check and see that there is no 2-by-2
submatrix in M(9) with identical columns. To “grow” the new
test matrix T(9) from T(3), we merely replace each entry in
M(9), considered as a column index, with the corresponding
column in the base matrix T(3):

IBM J. RES. DEVELOP. VOL. 28 » NO. 2 ®« MARCH 1984

1
1

000 000 000
000 111 111
111 000 111
111 111 000
000 000 000
011 011 011
101 101 101
110 110 110
T(O) = :)
000 000 000
011 110 101
101 011 110
110 101 011
000 000 000
011 101 110
101 110 011
110 011 101]

Let us denote by T((9) the row subspace consisting of the
first four rows of T(9) corresponding to the first row of M(9).
Consider the 2-subspace S(2) in T,(9) consisting of the first
and the last columns. Since the corresponding column indices
in M(9) are 0 and 2, S(2) is the same as the 2-subspace in T(3)
consisting of the first and the last columns there. But the base
matrix T(3) exhaustively covers all of its 2-subspaces; thus, no
binary 2-tuple could be missing from S(2). On the other hand,
consider the 2-subspace S’(2) in T,(9) consisting of the first
two columns. Since the corresponding column indices in M(9)
are both 0, S’(2) is the same as the first column in T(3)
duplicated. Clearly, any binary pattern specifying different
values in these two columns, namely (0 1) or (1 0), cannot
appear in S’(2).

In general, the new test matrix T(N?) being grown from the
base matrix T(N) according to the composite matrix M is
characterized in the following theorem.

o Theorem 4

Consider an arbitrary k-subspace, S(k), in T(N?). An r-ary k-
tuple, #(k), is missing in S(k) if and only if the following is
true in each row of M.

Condition A Out of k columns specified by S(k), there exist
two at which the row in M assumes identical values but #(k)
assumes distinct values.

To prove the “if” part, we observe that identical elements
in M lead to identical elements in T(N?) within the row
subspace corresponding to the row in M under consideration.
Clearly, if Condition A holds, #(k) must differ at least one
position from each k-tuple in this part of T(N?). Since the
same situation holds for all rows of M, #k) must be missing
from S(k) in T(N?).

215

\D. T. TANG AND C. L. CHEN

216

tk)y=(01001

Figure 1 The complete bipartite graph corresponding to #(k).

To prove the “only if” part, let us assume that Condition
A does not hold for some row in M. Corresponding to this
row of M, consider a k’-subspace S’(k’) in this part of T(N?),
obtained from S(k) by keeping one column position from
each group with identical elements. Let ¢/ (k) be the projection
of (k) onto S’(k’); then ¢’(k’) cannot be missing from S’(k’)
since k' = k, and the corresponding subspace in T(k) is
exhaustively covered. Clearly, if Condition A does not hold,
by duplicating columns corresponding to identical indices,
(k) can be reconstructed in"S(k) from S’(k’). It follows that
(k) cannot be missing from T(N?). QE.D.

We next prove our main theorem for the binary case.

o Theorem 5

In the binary case, let k (k > 1) be given. If a base matrix
T(N) exhaustively covering all of its k-subspaces is found with
N=m'such that m = prime, i = |, N= k,and m = | k%/4 |
(| x] denotes the largest integer not greater than x), then the
new composite test matrix T(N?) constructed according to any
combinations of | k%*/4 | + 1 rows of M exhaustively covers
all of its k-subspaces.

Proof

Suppose that a binary k-tuple, #k), is missing from a certain
k-subspace, S(k), in T(N?). The columns in S(k) are thus
partitioned into two groups according to the values they
intercept in #(k). We may construct a complete bipartite graph
[10] of k vertices, where these k vertices correspond to the
columns in S(k) and are colored 0 or 1 according to their
corresponding values in #(k). This is shown in Figure 1. Now
if (k) is missing from S(k), then from Theorem 4, each row
of M contains some 0-1 column pair with identical elements.
Each such pair, represented by an edge in this graph, is
contained in at most one column group of identical projected
values from a certain row in M, because otherwise this would
result in a 2-by-2 submatrix of M with identical columns,
violating Theorem 3. This means that the number of rows in
M must be no more than the number of edges in the complete
bipartite graph. But the maximum number of edges in any
bipartite graph of k vertices can be shown to be | k*/4 | and
yet M has at least | k*/4 | + | rows from our construction

D. T. TANG AND C. L. CHEN

conditions of M, which is a contradiction. It follows that no
k-tuple can be missing from any k-subspace in T(N?). Q.E.D.

It can be seen from the preceding theorem that, as long as
the base matrix T(N) satisfies the conditions required, it is
immaterial how T(¥) is actually obtained. Furthermore, if
the size of the base matrix is B, i.e., B = |T(N)]|, then the
size of the new test matrix is | T(N?) | = B(qg + 1), where
g = [k*/4] in the binary case. If we were to iterate this
procedure j times, we would obtain a test matrix T(n) such
that

n= (N (6)
and | T(n)| = B(g + 1)’ NG

Observing that (2/) = (log n)/(log N) where log x is of base 2,
we have

|T(n)| = B(g + 1)
= B[zlos(qﬂ)]j
— B(zj)los(qﬂ)

log(g+1)
- B (log n> ®)
log N,

Therefore, the size of the test set obtained by applying
Theorem S iteratively is proportional to log # raised to the
power of log (¢ + 1), where ¢ is a function of k only [roughly
2(log k)] and is independent of the base test matrix T(N). The
coefficient, B/log N'*®7*!) may be minimized by the selection
of T(N).

A straightforward way to select a reasonable set of matrix
parameters is as follows: For any given coverage range k, let
N = m = k, and m = the smallest prime = ¢. In general, N
and m may be selected in various ways as long as the condi-
tions stated in Theorem § are satisfied. This is shown in the
following examples.

Example 5

Consider k = 2 for the binary case, for which ¢ = 1. We may
select N = m = 3 and generate the base matrix T(V) as in Eq.
(3) of Example 4:

000
11
T3) =
01
] 10

We may take the first two rows of M(N?), shown in Eq. (4),
according to Theorem 3:

[(000) (L (222)]
M(9) =

012 ©12 (012)]

iBM J. RES. DEVELOP. » VOL. 28 « NO. 2 @« MARCH 1984

To obtain the new test matrix T(9), we merely replace each
entry in M(9), which is a column index, with the correspond-
ing column in T(3):

[000 000 0007
000 111 111
111000 111

111 111000
T =

000 000 000
011011011
101 101 101
110 110 110

This completes the first iteration. For the second iteration, we
would take T(9) as our base matrix and construct M(81) and
T(81) in the same fashion as before. When this procedure is
repeated j times, we have

n=73
and
I T(n)| = 42,
or
4log n
ITeD| = 305

Note that the all-zeros vector in T(9) is repeated. When
such repeated all-zeros vectors are removed from T(9) as well
as from test matrices T(n) of succeeding iterations, we have

T} =1 + 3(2%,
or
IT(n)| = 1 + 3(log n)/(log 3) = 1 + 1.893(log n).

Example 6

Consider k = 3 for the binary case, for which ¢ = 2. We may
select N = 22 = 4 with m = 2, and generate the base matrix
T(N) according to Example 3:

0000
0011
0101
0110
T(4) =
100 1
1010
1100
L1111

IBM J. RES. DEVELOP. » VOL. 28 « NO. 2 « MARCH 1984

The composite permutation matrix M(16) is as follows:

©0©000) (1111) (2222 3333
M(16)=|(0123) 0123) (0123 (012 3);.
0123 1230 2301) 3012

To obtain T(16), we replace each entry in M(16) with the
corresponding column it represents in T(4). T(16) is 24 by 16.
For the second iteration, we treat T(16) as the base matrix
and construct M(256) and subsequently T(256) in a similar
fashion. After j iterations, we have

n=4a
and
IT(n)| = 8(3’),
or
| T(n)| = (8/3)(log n)*®.
Here the all-zeros and all-ones vectors are repeated in the

test matrices T(n). When such repeated vectors are removed,
we have

|T(r)| =2 + 6(3%),
or
|'T(n)| =2 + 2(log n)°%* = 2 + 2(log n)*%.

This result is better than that obtained in Ref. [4], in which
the test set size for kK = 3 grows asymptotically proportional
to (log n)*.

Example 7

Consider k = 4 for the binary case with ¢ = 4. We may select
N = m = 5 and generate the base matrix T(5) according to
Theorem 1: Fors=N -k + 1=2 let w= 0 mod 2. This
gives a T(5) which is 16 by 5, consisting of even-weight 5-
tuples:

0 00 00
0001 1
001 01

T(5) =

1 11 01

1 1110

The required composite permutation matrix M(25) may be
obtained by taking any ¢ + 1 = 5 rows from Eq. (2):

217

D. T. TANG AND C. L. CHEN

218

(01234) (01234) (01234) (01234) (01234)
(01234) (12340) (23401) (34012) (40123)
M(25) = [(01234) (23401) (40123) (12340) (34012)].
(01234) (34012) (12340) (40123) (23401)
(01234) (40123) (34012) (23401) (12340)

Substituting for entries of M(25) the corresponding columns
in T(5), we obtain T(25), which is 80 by 25. Again, the repeated
all-zeros vectors can be eliminated to reduce T(25) to 76 by
25. After j iterations, we have

n=5
and
IT(n)| =1 + 15(5),

or

|'T(n) |

15
+ flog 5y (8

1 + 2.12 (log ny*3%

This is better than the result in Ref, [4], in which the test set
size for k = 4 grows asymptotically proportional to (log).

Example 8

Consider k& = 5 for the binary case, for which ¢ = 6. We may
select N = m = 7 and generate the base matrix T(7) according
to Theorem l: Fors=N—-k+1=3letw=1mod3,orw
= 1,4. T(7) thus generated contains 7 vectors of weight one
and 35 vectors of weight four, giving B =42, Theg+ 1 =7
rows of the composite permutation matrix M(49) may be
obtained from Eq. (2). Substituting for entries of M(49) the
corresponding columns in T(7), we obtain T(49), which is 294
by 49. After this procedure is iterated j times, we have

n="7

and
| T(n)| = 42(7%),
or

42(log n)¥’

|T(n)| = (log 7)log7

= 2.31 (log m*%.

Theorem 5 can be generalized to cover the nonbinary cases,
as shown in the following theorem.

& Theorem 6

In a general r-ary case, let k (k > 1) be given. If a base matrix
T(N) exhaustively covering all of its k-subspaces is found with
N = m’such that m = prime, i = 1, N = k, and m = ¢(r,k),
where ¢(r,k) is the maximum number of edges possible in a
graph of k vertices and chromatic index 7 [10], then the new
composite test matrix T(NV?) constructed according to g(r,k) +
1 rows of M exhaustively covers all of its k-subspaces.

D. T. TANG AND C. L. CHEN

Proof

The proof of this theorem is similar to that of Theorem 5.
Suppose that an r-ary k-tuple, #(k), is missing from a certain
k-subspace, S(k), in T(N?). We may construct a complete 7-
chromatic graph of k vertices, where these k vertices corre-
spond to the columns in S(k) and are colored 0, 1, 2, - .-,
(r — 1) according to their corresponding values in #(k). From
Theorem 4, each row in M contains some pair of vertices with
distinct colors but identical elements. From Theorem 3, each
pair is contained in at most one row of M. This means that
the number of rows in M must be no more than g(r,k), the
maximum number of edges possible in a graph of k vertices
and chromatic index r, which violates our construction con-
dition of M, namely m = q(r,k). It follows that no k-tuple can
be missing from any k-subspace in T(V?). Q.E.D.

The value of g(r,k) for k = 2 is clearly bounded as follows:
LKA = qrk) < ktk— 12 = | kY2 - L 9)

The exact value of g(r,k) is the number of edges in a complete
r-chromatic graph of k vertices with as nearly equal numbers
of vertices in r color classes as possible. It can be shown [10]
that

q(r.k) = [ktk — 1)/2] = (Lk/r] = DIk = (r/2) [k/r]]. (10)
For r < 8, a simpler form can be shown to hold:
girky= [(K¥r—1/2r] for 1 <r<8. an

Values of ¢(r,k) for r < 8 and k < 14 are listed in Table 1.

It is interesting to note that when the procedure described
in Theorem 6 is iterated j times in an r-ary case, the dimension
n and the test set size | T(n)| change exactly the same way as
shown in Eqs. (6) and (8) in the binary case. That is, asymp-
totically for large n, | T(n)| is still proportional to (log) raised
to the power of log (¢ + 1), as shown in Eq. (8), except that g
should be interpreted as g(r,k). The selection of matrix param-
eters in r-ary cases is essentially the same as that in the binary
case.

Conclusion

We have described in this paper a constructive procedure for
generating iteratively test sets of large dimension n which
exhaustively cover all k-subspaces simultaneously. The size of
test sets obtained by applying such a constructive procedure
iteratively becomes asymptotically proportional to log » raised
to the power of log (g + 1), where ¢ is a function of k only,
bounded closely below by k?/4. The same approach has been
shown to be also applicable to nonbinary cases (where base
r > 2) with similar results except that ¢ is a function of k and
the base r. We have shown that ¢(r,k) is the maximum number
of edges possible in a graph of k vertices and chromatic index
r, and it is bounded below by a number lying between k%/4
and k%/2.

IBM J. RES. DEVELOP. & VOL. 28 & NO. 2 « MARCH 1984

The results presented in this paper on the asymptotic be-
havior of the size of test sets generated for exhaustive coverage
show a significant improvement over previous methods [4,
6-8). The iterative procedure also enables one to build test
sets of higher dimensions from those of lower ones which may
be generated by other means and found to be optimal or near-
optimal.

Unless a sufficient degree of partitioning of logic circuits is
built into the design procedure, the best chance for the ex-
haustive testing technique as described in this paper may be
its use together with other testing approaches, such as the
pseudo-random pattern testing approach, in which case the
degree of exhaustive coverage k may be limited to a practical
value.

References

1. E. E. Muehldorf and A. D. Savkar, “LSI Logic Testing—An
Overview,” IEEE Trans. Computers C-30, 1-17 (January 1981).

2. V. K. Agarwal and A. S. F. Fung, “Multiple Fault Testing of
Large Circuits by Single Fault Test Sets,” /EEE Trans. Com-
puters C-30, 855-865 (November 1981).

3. E. J. McCluskey and S. Bozorgui-Nesbat, “Design for Autono-
mous Test,” IEEE Trans. Computers C-30, 866-875 (November
1981).

4. A. K. Chandra, L. T. Kou, and G. Markowsky, “On Sets of
Boolean n-Vectors with all k-Projections Surjective,” Research
Report RC-8936, IBM Thomas J. Watson Research Center, York-
town Heights, NY, July 1981.

5. Z. Barzilai, D. Coppersmith, and A. Rosenberg, “Exhaustive
Generation of Bit Patterns with Applications to VLSI Testing,”
IEEE Trans. Computers C-32, 190-194 (February 1983).

6. D. T. Tang and L. S. Woo, “Exhaustive Test Pattern Generation
with Constant Weight Vectors,” Research Report RC-9442 IBM
Thomas J. Watson Research Center, Yorktown Heights, NY,
June 1982. Also published in IEEE Trans. Computers C-32,
1145-1150 (December 1983).

7. D. T. Tangand C. L. Chen, “Logic Test Pattern Generation Using
Linear Codes,” Proceedings of the 13th International Conference
on Fault-Tolerant Computing, Milan, Italy, June 1983, pp. 222-
226.

8. E. J. McCluskey, “Built-In Verification Test,” Digest of Papers,
1982 International Test Conference, Cherry Hill, PA, November
16-18, 1982, pp. 183-190.

9. Z. Barzilai, J. Savir, G. Markowsky, and M. G. Smith, “VLSI
Self-Testing Based on Syndrome Techniques,” Digest of Papers,
1981 International Test Conference, Cherry Hill, PA, October
1981, pp. 102-109.

10. C. Berge, Graphs and Hypergraphs, North-Holland Publishing
Company, Amsterdam-London, 1973,

D. T. TANG AND C. L. CHEN

Table 1 Values of g(r,k) for | <r<8and k < 14,

k a2k) a3k q4k) g5k q6.k) g7k

I 0 0 0 0 0 0
2 1 1 1 1 1 1
3 2 3 3 3 3 3
4 4 5 6 6 6 6
5 6 8 9 10 10 10
6 9 12 13 14 15 15
7 12 16 18 19 20 21
8 16 21 24 25 26 27
9 20 27 30 32 33 34
10 25 33 37 40 4] 42
11 30 40 45 48 50 51
12 36 48 54 57 60 61
13 42 56 63 67 70 72

Received June 29, 1983; revised October 19, 1983

C. L. (Jim) Chen IBM Data Systems Division, P.O. Box 390,
Poughkeepsie, New York 12602. Dr. Chen is a senior engineer working
on error-correcting codes and fault-tolerant memory systems. Before
joining IBM in 1974, he held a postdoctoral position at the University
of Hawaii and was a faculty member of the University of Illinois. He
received his Ph.D. degree in electrical engineering from the University
of Hawaii. Dr. Chen is a member of the Institute of Electrical and
Electronics Engineers. He has received three IBM Invention Achieve-
ment Awards and one IBM Outstanding Innovation Award for his
work on error-correcting codes.

Donald T. Tang IBM Research Division, P.O. Box 218, York-
town Heights, New York 10598. Dr. Tang is currently manager of
VLSI projects on physical design algorithms in the Department of
Computer Science. He received his B.S. from the National Taiwan
University and his Ph.D. from the University of Illinois, both in
electrical engineering. He joined IBM at the Thomas J. Watson
Research Center in 1960 and has conducted research in various areas
including network flows, error control coding, magnetic recording,
network optimization, satellite switching, and VLSI testing and veri-
fication. He was on leave from the Research Center from 1965 to
1966 as a Visiting Associate Professor at the National Taiwan Univer-
sity and from 1978 to 1979 as a Program Manager at the IBM World
Trade Americas/Far East Corporation. Dr. Tang is a Fellow of the
Institute of Electrical and Electronics Engineers and a member of Eta
Kappa Nu, Sigma Xi, and the International Scientific Radio Union.

219

IBM J. RES. DEVELOP. « VOL. 28 ¢ NO. 2 ¢« MARCH 1984

