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Thomas D. Howell

Analysis of Correctable Errors in the IBM 3380 Disk File

A method of analyzing the correctable errors in disk files is presented. It allows one to infer the most probable error in the encoded-
data stream given only the unencoded readback and error-correction information. This method is applied to the errors observed in
seven months of operation of four IBM 3380 head-disk assemblies. It is shown that nearly all the observed errors can be explained
as single-bit errors at the input to the channel decoder. About 90 percent of the errors were related to imperfections in the disk
surfaces. The remaining 10 percent were mostly due (o heads which were unusually susceptible to random noise-induced errors.

Introduction

Disk files such as the IBM 3380 use error-correcting codes to
achieve very high data reliability. The error-correcting code
for a disk file must be chosen long before any experience is
available which would give insight into the kinds of errors
which must be corrected by the code. The code must be
chosen on the basis of experience with earlier files, test results
with development-level components, and extrapolation. This
paper attempts to look back at the errors corrected by the
code in the finished product, and to see how well the code
matches the actual error statistics and what lessons can be
learned and applied to the next generation.

Disk files also use channel codes to control intersymbol
interference and to make the data self-clocking. Errors are first
introduced into the channel encoded form of the data, but are
not visible to the user until after decoding. The channel
decoding process masks the nature of the errors.

In this paper, a method is presented for analyzing the
correctable error data available to the disk user in order to
determine the encoded form of each error. This method is
new, and it allows detailed study of the actual correctable
errors seen in disks while they are in use. This method is then
applied to the correctable error data gathered automatically
by several 3380s over an extended period of time. The results
of this analysis lead to some interesting conclusions about the
nature of the errors, their causes, the channel code, and the
error-correcting code.

The first section describes the method for analyzing the
correctable errors. Next the experiment is described. The
results of the analysis are given, followed by conclusions.

Analysis of errors

The novel feature of this paper is the analysis of the errors in
terms of the encoded readback data produced by the data
detector. These encoded bits pass through a channel decoder
before the error-correcting-code decoder. Error propagation
in the channel decoder converts simple errors such as missing
bits and shifted bits into slightly more complicated errors. In
the case of the IBM 3380, the channel code is a (2,7) run-
length limited code [1, 2], and its channel decoder propagates
each error in the encoded bit string into at most four errors
in the decoded string. A k-bit burst of errors propagates to at
most k + 3 bits. We shall see that k is almost always 1 or 2.
Only the decoded data strings before and after error correction
are available to the user. Details of the encoder and decoder
can be found in the Appendix. The analysis method is pre-
sented here for the specific case of the (2,7) code. The method
can be adapted to any of the codes commonly used in mag-
netic recording.

We shall make the assumption that the most likely errors
are the ones which involve the fewest “mistakes” by the
detector. The detector detects a [-bit by a peak in the readback
signal and a 0-bit by the absence of a peak. Detector mistakes
include shifted bits, missing bits, and extra bits. In this context
the word “bit” is an abbreviation for I-bit. Shifted bits are
caused by readback peaks being shifted in time. They are
characterized by bits 0 1 O being read back as 1 00 or 00 1.
Missing bits and extra bits are caused by missing peaks and
extra peaks in the readback signal. They are characterized by
bits 0 1 0 being read back as 0 0 0 (missing bit), and 0 0 0
being read back as 0 1 0 (extra bit). Since the error rate of the
3380 is very low, error patterns with one mistake would be
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very much more likely than patterns with more mistakes if
mistakes were independent events. The assumption made for
this analysis is that the most likely explanation of a given
readback error is the one with the fewest detector mistakes. In
particular, errors which can be explained by single mistakes
probably were caused by single mistakes.

The analysis is best explained by means of examples. Con-
sider the case in which the data written were (in hexadecimal)
20904824, and the received data before error correction were
7C904824. We can simply encode each segment using the
(2,7) code: The written data encode to

2412490492412490,
and the received data encode to
2212490492412490.

This is an example of a shifted bit; the second 1-bit shifted
one position to the right:

written: --0010010000010010 -
received: --0010001000010010 -

A second example shows that the situation is not always so
simple. Suppose the written data were 33A678AF19 and the
received data were 33A620AF19. Encoding both, we find a
large region of disagreement:

written: - 100000001000100000010001 -

received: - 100000010001000001001001 ---.

It is extremely unlikely for the detector to be that badly in
error. At least four mistakes are required to produce the
hypothetical received pattern shown: two left-shifted bits, one
extra bit, and one right-shifted bit. A much more likely
explanation for the received string, 33A620AF19, is that the
detector made a simple error which produced a string of bits
not in the range of the (2,7) encoder. The following is the
most likely such string as measured by the number of mistakes:

received: --100000001001000000010001 ---.

This string decodes to 33A620AF19, which is the received
data string,. It differs from the written data by a single mistake,
a left-shifted bit.

The general problem is illustrated in Figure 1. Let E(-) be
the (2,7) encoder function on binary strings of length # bits.
In our case, n = 8 X 47 467. Let D(-) be the (2,7) decoder
function. The domain of E is S” = {0,1}" and the range of E
is a subset R of $2" = {0,1}*". The decoder D is the inverse of
E as long as it operates on elements of R; D maps R one-to-
one onto S”. However, the domain of D is all of $?*; D does
something with any string of bits it is given. Thus D is a many-
to-one mapping of $** onto S”. For any y in S”, there is a
subset P(y) of S*" of preimages of y under D, P(y) = {z | D(z)
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Figure 1 Domains and ranges of the (2,7) encoder and decoder.

= y}. Our problem may now be stated as follows. Given the
written data x € §” and the received data y € $”, choose from
P(y) the preimage z which was most likely to have been
produced from E(x) by errors in the write/read process.

The analysis procedure is to search for elements of P(y)
which differ from E(x) by a single mistake. This can be done
by enumerating elements z of S? which differ by single
mistakes from E(x). For each such z, D(z) must be computed
and compared with y. The search can be simplified by enu-
merating only those z which differ from F(x) in approximately
the right place. The decoding procedure given in the Appendix
shows that only seven bits of an encoded string z affect a given
bit of D(z). If y = D(z) and y« # xx, then at least one of the
seven bits of z affecting y, must differ from the corresponding
bit of E(x). It is necessary to enumerate only those patterns z
differing from E(x) by a single mistake affecting at least one
of these seven bits.

For each string z enumerated by this procedure one must
test whether D(z) = y. It is possible to avoid decoding the
whole 47 467 bytes of z. Each y; is a function of seven z. At
most two of these z, are different from the corresponding bits
of E(x). The equation [D(z)]; = y; must be checked only for
those indices j for which either y; # x; or the seven bits of z
which determine y; include one or both of the bits which differ
from the corresponding bits of E(x). The equation holds for
other values of j because D[E(x)] = x.

Some errors can result in two or more ways from single
detector mistakes. One might look like either an extra bit or
a right-shifted bit, for example. These errors are called ambig-
uous. A good way to resolve these ambiguities is to use a
computer model of the readback process such as the one
described in [3] to determine the most likely of the alternative
explanations for each ambiguous error. The model requires
detailed information on the shape of the readback pulse. This
is normally obtained by laboratory measurements. Even a
very rough approximation of the pulse shape is sufficient to
resolve many ambiguities if measured pulses are not available.
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Figure 2 Configuration of 3380 head/disk assembly.

Experiment

The data upon which this report is based were gathered over
a seven-month period during which up to four 3380 head-
disk assemblies were operated 24 hours per day. The experi-
ment was designed to determine how each of several factors
affects the numbers and types of correctable errors observed.
The factors studied were data pattern, storage location, fre-
quency of rereading, and frequency of rewriting.

A head-disk assembly has two actuators occupying an even
and an odd address. Each actuator has 15 data heads and one
servo head, two heads on each of eight recording surfaces. A
recording surface has two concentric bands of 885 tracks each.
Figure 2 shows the head configuration for a 3380 head-disk
assembly. Heads 0, 3, 4, 7, 8, 11, and 12 are on the outer
band; heads 1, 2, 5,6, 9, 10, 13, and 14 are on the inner band.
A cylinder is the set of 15 tracks accessible at a given time
without moving the actuator.

Each head-disk assembly was exercised in the same way.
Up to four were running simultaneously. The unit (actuator)
on the even address was stationary on cylinder 400, and the
actuator on the odd address was exercised as follows. The
cylinders were divided into four groups of 200 with the re-
maining 85 cylinders not used. On units | and 3 the groups
were 0-199, 200-399, 400-599, and 600-799. On units 5 and
7 the groups were 685-884, 485-684, 285-484, and 85-284.
Cylinder 0 is at the largest radius, and cylinder 884 is at the
smallest radius within each band. One iteration on a group of
cylinders consisted of processing each cylinder in the group,
followed by processing cylinder 400 on the stationary actuator.
The first group was processed for 100 iterations, then the
second group for 10 iterations, then the third and fourth
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groups for one iteration each. The highest activity groups were
at the outside on units | and 3 and at the inside on units 5
and 7.

Processing a cylinder consisted of reading all 15 tracks, then
rewriting six of the 15 tracks, then reading all 15 tracks again.
The six heads which rewrote their data were 3, 4, 6, 8, 9, and
14, three on the inner band and three on the outer band.

The data always consisted of a single record of 47 467 bytes.
This record had four approximately equal-length segments.
The first segment was chosen to maximize peak-shift errors,
the second to maximize missing-bit errors, the third maxi-
mized transition density, and the fourth was a standard test
pattern containing several kinds of high-stress conditions. The
patterns used are given in Table 1.

Following each correctable error in a data field, the proc-
essor issues a SENSE command. The control unit responds
by sending back information about the error location and the
correction information. These sense data were time stamped
and saved in files for analysis.

For the last three months of the experiment, unit 4 was
used for a special test. It was not held stationary, but its read/
write activity was still minimal. Only three errors were ob-
served on the even-numbered actuators, all on unit 4. In the
rest of the discussion, we ignore the even-numbered units, and
concentrate on units 1, 3, 5, and 7.

The number of bytes processed in one iteration on a group
of 200 cylinders was 47 467 x 36 X 200 = 341 762 400. This
took about nine minutes elapsed time. The entire cycle con-
sisting of 112 iterations took about 16 hours when all the units
were operating.

The 3380 error-correcting code corrects all error bursts
which are contained within two consecutive 16-bit blocks.
This includes all bursts of 17 or fewer bits and some as long
as 32 bits. It can correct one such burst per record. Records
with uncorrectable errors are reread several times with and
without head offset. Only if this procedure fails is a permanent
error reported. No permanent errors were reported during this
experiment. Rereads were not logged during the experiment
and are not reported to the program, so no information is
available about the number of errors recovered by rereads.

Results

All errors analyzed in this study were correctable errors. Each
event requiring use of the error-correcting code was counted
as one error, whether it involved one bit or several.

In the seven months of operation 18 753 errors were cor-
rected by the error-correcting code. Of these, 99.8 percent
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Table 1 The data pattern segments (in hexadecimal code).

Segment name One period: Repeated for
User data in hexadecimal,
Run lengths of Os in encoded data
Peak shift AF19E33A678, 11 869 bytes
32362736274347363
Missing bit 412090482, 11 871 bytes
25222252222522225222
High frequency 492, 11 871 bytes
22222222
Complex 2492AAAAAAAAA925F03B91225DC88BBB, 11 856 bytes
2222222223333333333333333333222222
2345642422422242222424224242242425
Table 2 Error types by head and unit.
Head
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Unit
1 1 1 2 2 0 3 0 1 3 4 3 0 1 3 2
3 9 5 20 5 4 3 6 0 9 4 1 0 0 2 6
4 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
5 3 267 48 | 0 17 8 2 4 3 11 0 1 10 5
7 2 6 5 1 1 45 36 1 2 15 5 0 1 1203 19

were explainable as single bits being changed or shifted at
most one bit position. This includes 99.1 percent of the 1836
different types of error.

Some errors were sensed in which no correction was re-
quired. These happen when the error location falls in the bytes
beyond the end of the data record but before the end of the
region protected by the error-correcting code. This region
always ends at a multiple of 32 bytes from index. These errors
are referred to as 0-bit errors.

The errors were highly clustered at certain sites on the disk
surface. This indicates the presence of “minor defects.” Only
1836 different errors were observed. Errors are considered
different if they differ in physical location or recetved pattern,
i.e., anything except time of occurrence. These different errors
are called “error types.” Of the 1836 error types, 217 were
repeated and 1619 occurred just once. One error type was
repeated 5744 times, over 30 percent of the total errors. Over
85 percent of the errors were of the most frequent two percent
of the error types. In normal operation, error sites at which
several errors have occurred would be marked and subse-
quently not used to store data. Procedures for doing so are
outlined in [4]. This was not done for this test. It would have
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required rewriting the affected tracks, some of which were in
the group designated as read-only for this test. The effect of
these maintenance procedures can be approximated by count-
ing repeated errors only once in the analysis. For this reason,
most of the results given here include counts of both errors
and error types.

Error types were distributed very unevenly across heads; see
Table 2. The heads on the inner bands, numbers 1, 2, 5, 6, 9,
10, 13, and 14, have far more error types than the heads on
the outer bands. The inner tracks are shorter, resulting in a
higher recording density, so more errors are to be expected.

Two heads, unit 7 head 13 and unit 5 head 1, account for
1203 and 267 error types, respectively. These two heads are
probably marginal performers, making them more susceptible
to errors caused by factors such as difficult data patterns and
electronic noise. None of the 1470 errors on these two heads
were missing bits. It is interesting that these weaker heads
were much more susceptible to peak-shift errors than other
heads, but not more susceptible to missing-bit errors.

The causes of the errors can be summarized as follows.
About 90 percent of the errors and 12 percent of the error
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Figure 3 Errors by category for each pattern segment.

types were repeated ones. Most of these were caused by defects.
They would have been eliminated by normal maintenance
procedures which were not used during this test. Most of the
remaining 10 percent of the errors and 88 percent of the error
types were caused, at least partially, by two heads.

The errors were classified according to the following criteria:
time, frequency of access, whether the track was periodically
rewritten, data pattern, track radius, and logical unit. Using
the procedure previously described, each error was assigned a
category: right-shifted bit, left-shifted bit, missing bit, or other.
The category “other” contains 30 0-bit errors, three extra bit
errors, and 33 errors of 17 error types which involve more
than one bit changing or shifting. These multiple-mistake
errors represent about 0.2 percent of the total errors and 0.9
percent of the error types.

Right-shifted bits accounted for 78.9 percent of the errors
and 40.6 percent of the error types. Left-shifted bits were 6.7
percent of the errors and 53.9 percent of the error types.
Missing bits were 14 percent of the errors and 2.7 percent of
the error types.

The pattern segments designed to enhance peak-shift and
missing-bit errors did so quite well. This shows that difficult
data patterns significantly increase the error probability com-
pared with the average. The bars in Figure 3 show, from the
bottom up, the numbers of right-shift, left-shift, missing-bit,
and other errors observed in each pattern segment. Segment
1 is above average in both right and left peak-shifts, while
segment 2 is enriched in missing bits. Very few errors hap-
pened in segment 3. The complex test pattern, segment 4, is
intermediate in all types of errors.

Frequency of rereading and rewriting did not have a large
effect on the numbers of errors or error types. The only
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discernable trend was that on the inner band of tracks the
heads which rewrote their data had fewer errors and error
types than those which did not rewrite. The outer band had
far fewer error types, and rewriting had no significant effect
on the numbers of errors or error types.

Conclusions

A method for determining the nature of the correctable errors
in files using the (2,7) code has been presented. The method
requires only knowledge of the stored data in the unencoded
form available to the programmer. Analysis using this method
shows that almost all the errors can be explained as the results
of very simple one- and two-bit detector errors propagated
into bursts of up to five bits by the channel decoder. The
lengths of the error bursts are thus determined mostly by the
properties of the channel decoder. This emphasizes the im-
portance of limiting the error propagation to very small values
as was done for the (2,7) code.

The main contributing factors to these one- and two-bit
detector errors are imperfections in the disk coating, weaker
than average heads, difficult data patterns, and electronic
noise. A typical error occurs when a difficult pattern is written
at a disk imperfection or read by a weak head. This enables
electronic noise to push the detector across the error threshold.
For weaker heads and larger imperfections less noise is needed
to cause errors. Therefore, weaker heads have more different
error sites than average, and larger imperfections cause errors
more frequently than average.

The error-correcting code used in the IBM 3380 is more
than adequate to correct the errors observed in the experiment.
The data presented here suggest that a code capable of cor-
recting only much shorter bursts would have performed just
about as well. A code capable of correcting only five-bit bursts
would have corrected all but 33 of the 18 753 errors and all
but 17 of the 1836 error types. That means about one more
error per week would have had to be recovered by rereads.
This difference would not have been noticeable.

When speaking of disk imperfections, weak heads, and
difficult data patterns, we should keep in mind that these are
relative terms. Half the members of any sample are below
average, but in this case the average is remarkably good.
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Appendix
The (2,7) code is described by Table 3. To encode a string u,
find the entry in the IN column of the table which matches
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the first two, three, or four bits of « which have not yet been
encoded. The table is constructed so that no more than one
match can be found, and one match will be found if the
unencoded part of u is at least four bits long. The encoded
version of this substring appears in the QUT column. Concat-
enate the encoded substring to the output string e, which is
initially empty. Repeat the process until all bits of  have been
encoded. If the final k-bit substring of u (k = 1, 2, or 3) does
not match an entry in the /N column, extend it with zeros
until a match is found. The encoded version of the final
substring is the first 2k bits of the corresponding OUT-column
string. The length of e is exactly twice the length of u. An
example is included with the table to illustrate the encoding
procedure.

Correctly encoded strings can be decoded by a similar
procedure, transposing the roles of the /N and OUT columns
of the table. Unfortunately, the table gives no information on
how the IBM 3380 decodes other strings such as those resulting
from errors.

The complete encoding and decoding algorithms used in
the IBM 3380 are given in Table 4. The encoding algorithm
i1s equivalent to the table-based procedure. The decoding
algorithm decodes all strings of length 2n. It agrees with the
table-based procedure where that procedure is defined.
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Table 3 Code table for the (2,7) code.

IN our
10 0100
11 1000

000 000100

010 100100

011 001000

0010 00100100

0011 00001000

Encoding example

Input:

Output:
001000 00001000 1000 000100 0100 0100

Table 4 Encoding and decoding algorithms for the (2,7) code.

Encoder
Input: {u}, 0= k<n
Output: {e,}, 0 = k< 2n
Initialize: p_, = 0, p_; = Uy, Up = Upsy =0
ForO0=<sk<n
€% = U1 Dr-2 + Uichier 182 Pi—2
€2e1 = Uis1Dr-1
D = Ulgst Pi—t + Wkhierr + Wilier1 w2 Pi—2 Pi—1

The p; indicate boundaries of codewords in the table: p;, = 1 if and
only if #, is the last bit of a codeword.

Decoder

Input: {e,}, 0 = k< 2n

Output: {4}, 0 <k <n

Initialize: ey =e3;=e; =e_.1 =0, € = €301 = 0
ForO<k<n

Uy = €2 + @o43€2k + C2r1€2—1€2%-3 T €2441€2k—4

Each variable with a subscript is a logical variable. True corresponds
to 1, false to 0. Juxtaposition means AND, + means OR, and NOT is
indicated by a bar above the variable name.
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