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Thomas D. Howell 

Analysis of Correctable Errors  in the IBM 3380 Disk File 

A method of analyzing the  correctable  errors  in diskjiles is presented. It allows  one to infer the  most probable error in the  encoded- 
data stream given only the  unencoded  readback  and  error-correction  information.  This  method  is  applied to the  errors  observed in 
seven  months  of  operation of four IBM 3380 head-disk assemblies. It is shown  that  nearly  all  the  observed  errors  can  be  explained 
as single-bit  errors  at  the  input to the  channel decoder. About 90 percent of the  errors  were  related to imperfections in the disk 
surfaces.  The  remaining 10 percent  were mostly due to heads which  were  unusually susceptible to random  noise-induced  errors. 

Introduction 
Disk  files such as the IBM 3380 use error-correcting codes to 
achieve very  high data reliability. The error-correcting code 
for a disk  file must be chosen long before any experience is 
available which  would give insight into  the kinds of errors 
which must be corrected by the code. The code must be 
chosen on  the basis  of experience with earlier files, test results 
with development-level components, and extrapolation. This 
paper attempts to look back at the errors corrected by the 
code in the finished product, and  to see  how  well the code 
matches the actual error statistics and what  lessons can be 
learned and applied to the next generation. 

Disk  files also use channel codes to control intersymbol 
interference and  to make the data self-clocking. Errors are first 
introduced into  the channel encoded form  of the  data, but are 
not visible to the user until after decoding. The channel 
decoding process masks the nature of the errors. 

In this paper, a method is presented for analyzing the 
correctable error data available to the disk  user  in order to 
determine the encoded form of each error. This method is 
new, and it allows detailed study of the actual correctable 
errors seen in disks while they are in  use. This method is then 
applied to  the correctable error data gathered automatically 
by several 3380s over an extended period  of time. The results 
of this analysis lead to some interesting conclusions about  the 
nature of the errors, their causes, the channel code, and the 
error-correcting code. 

The first section describes the method for analyzing the 
correctable errors. Next the experiment is described. The 
results of the analysis are given,  followed by conclusions. 

Analysis of errors 
The novel feature of this paper is the analysis of the errors in 
terms of the encoded readback data produced by the data 
detector. These encoded bits pass through a channel decoder 
before the error-correcting-code decoder. Error propagation 
in the channel decoder converts simple errors such as missing 
bits and shifted bits into slightly more complicated errors. In 
the case  of the IBM 3380, the channel code is a (2,7) run- 
length limited code [ 1,2], and its channel decoder propagates 
each error in the encoded bit string into  at most four errors 
in the decoded string. A k-bit burst of errors propagates to at 
most k + 3 bits.  We shall see that k is almost always 1 or 2. 
Only the decoded data strings before and after error correction 
are available to the user. Details of the encoder and decoder 
can be found in the Appendix. The analysis method is  pre- 
sented here for the specific  case  of the (2,7) code. The method 
can be adapted to any of the codes commonly used in mag- 
netic recording. 

We shall make the assumption that  the most likely errors 
are  the ones which involve the fewest “mistakes” by the 
detector. The detector detects a I-bit by a peak in the readback 
signal and a 0-bit by the absence of a peak. Detector mistakes 
include shifted  bits,  missing  bits, and extra bits. In this context 
the word “bit” is an abbreviation for I-bit. Shifted bits are 
caused by readback peaks  being  shifted in time. They are 
characterized by bits 0 1 0 being  read  back as 1 0 0 or 0 0 1. 
Missing bits and extra bits are caused by missing peaks and 
extra peaks in the readback signal. They are characterized by 
bits 0 1 0 being read back as 0 0 0 (missing bit), and 0 0 0 
being read back as 0 1 0 (extra bit). Since the error rate of the 
3380 is very  low, error patterns with one mistake would be 
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very much more likely than patterns with more mistakes if 
mistakes  were independent events. The assumption made for 
this analysis  is that the most  likely explanation of a given 
readback error is the one with the fewest detector mistakes.  In 
particular, errors which can be  explained by  single mistakes 
probably  were  caused  by  single  mistakes. 

The analysis  is  best  explained  by means of examples. Con- 
sider the case in which the data written  were  (in  hexadecimal) 
20904824, and the received data before error correction were 
7C904824. We can simply encode each  segment  using the 
(2,7) code: The written data encode to 

2412490492412490, 

and  the received data encode to 

2212490492412490. 

This is an example of a shifted bit; the second  1-bit  shifted 
one position to the right: 

written: - 0 0  100 1 0 0 0 0 0   1 0 0   1 0 -  

received ... 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 -. 
A second example shows that the situation is not always so 
simple.  Suppose the written data were 33A678AF19 and the 
received data were 33A620AF19. Encoding both, we  find a 
large  region  of  disagreement: 

written: ... 1 0 0 0 0 0 0 0   1 0 0 0   1 0 0 0 0 0 0   1 0 0 0  1 ... 

received ... 1 0 0 0 0 0 0   1 0 0 0   1 0 0 0 0 0   1 0 0   1 0 0  1 -. 
It is  extremely  unlikely  for the detector to be that badly in 
error. At least four mistakes are required to produce the 
hypothetical  received pattern shown:  two  left-shifted  bits, one 
extra bit, and  one right-shifted  bit. A much more likely 
explanation for the received  string, 33A620AF19, is that the 
detector made a simple error which produced a string of  bits 
not in the range of the (2,7) encoder. The following is the 
most  likely  such string as measured by the number of  mistakes: 

r ece ived : -~100000001001000000010001~- .  

This string decodes to 33A620AF19, which  is the received 
data string. It differs from the written data by a single  mistake, 
a left-shifted  bit. 

The general  problem  is illustrated in Figure 1. Let E( .) be 
the (2,7) encoder function on binary strings of length n bits. 
In our case, n = 8 X 47  467. Let D(.) be the (2,7) decoder 
function. The domain of E is S" = (0,l I n  and the range of E 
is a subset R of Sz" = (0,l 1'". The decoder D is the inverse.  of 
E as long as it operates on elements of R; D maps R one-to- 
one onto S". However, the domain of D is  all  of S2"; D does 
something with any string of bits it is  given. Thus D is a many- 
to-one mapping of Sz" onto S". For any y in S", there is a 
subset P( y )  of S2" of preimages of y under D, f l y )  = ( z  I D(z) 

- 
Figure 1 Domains and ranges of the (2,7) encoder and decoder. 

= yJ. Our problem  may  now  be stated as follows. Given the 
written data x E S" and the received data y E S", choose  from 
P(y) the preimage z which  was  most  likely to have  been 
produced  from E(x)  by errors in the write/read  process. 

The analysis procedure is to search  for elements of f l y )  
which  differ  from E(x) by a single  mistake. This can  be done 
by enumerating elements z of S2" which  differ  by  single 
mistakes  from E(x). For each  such z, D(z) must be computed 
and compared with y. The search  can be  simplified  by enu- 
merating only those z which  differ  from E(x)  in approximately 
the right  place. The decoding procedure given in the Appendix 
shows that only  seven  bits  of an encoded string z affect a given 
bit of D(z). If y = D(z) and yk f xk, then at least one of the 
seven  bits  of z affecting yk must  differ  from the corresponding 
bit  of E(x) .  It  is  necessary to enumerate only those patterns z 
differing  from E(x)  by a single  mistake  affecting at least one 
of these  seven  bits. 

For each string z enumerated by this procedure one must 
test  whether D(z) = y.  It is  possible to avoid  decoding the 
whole 47  467 bytes of z. Each y, is a function of seven zk. At 
most  two  of  these zk are different  from the corresponding bits 
of E(x). The equation [D(z)] ,  = yj must be checked  only for 
those  indices j for  which either y, # x, or the seven  bits  of z 
which determine y, include one or both of the bits  which  differ 
from the corresponding bits of E(x). The equation holds  for 
other values o f j  because D[E(x)]  = x. 

Some errors can  result  in  two or more ways from  single 
detector mistakes. One might  look  like either an extra bit or 
a right-shifted bit, for  example.  These errors are called  ambig- 
uous. A good  way to resolve  these  ambiguities  is to use a 
computer model of the readback  process  such  as the one 
described in [3] to determine the most  likely  of the alternative 
explanations for  each ambiguous error. The model requires 
detailed information on the shape of the readback  pulse. This 
is  normally obtained by laboratory measurements. Even a 
very  rough approximation of the pulse shape is  sufficient to 
resolve many ambiguities if measured  pulses are not available. 207 
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Figure 2 Configuration of 3380 head/disk assembly. 

Experiment 
The  data upon which this report is based  were gathered over 
a seven-month period during which up to four 3380 head- 
disk  assemblies  were operated 24 hours per day. The experi- 
ment was  designed to determine how each of several factors 
affects the numbers and types of correctable errors observed. 
The factors studied were data pattern, storage location, fre- 
quency of rereading, and frequency of  rewriting. 

A head-disk  assembly has two actuators occupying an even 
and an odd address. Each actuator has 15 data heads and  one 
servo head, two heads on each of  eight recording surfaces. A 
recording surface has two concentric bands of 885 tracks each. 
Figure 2 shows the head configuration for a 3380  head-disk 

groups for one iteration each. The highest activity groups were 
at  the outside on units 1 and 3 and at the inside on units 5 
and 7. 

Processing a cylinder consisted of reading all 15 tracks, then 
rewriting  six  of the 15 tracks, then reading all 15 tracks again. 
The six heads which rewrote their data were  3, 4,  6, 8, 9,  and 
14, three on  the  inner band and three on the outer band. 

The  data always consisted of a single record of  47 467  bytes. 
This record had four approximately equal-length segments. 
The first segment was chosen to maximize peak-shift errors, 
the second to maximize missing-bit errors, the third maxi- 
mized transition density, and the fourth was a standard test 
pattern containing several kinds of  high-stress conditions. The 
patterns used are given in Table 1. 

Following each correctable error in a data field, the proc- 
essor  issues a SENSE command. The control unit responds 
by sending back information about  the error location and the 
correction information. These sense data were time stamped 
and saved  in  files  for  analysis. 

For the last three months of the experiment, unit 4 was 
used  for a special test. It  was not held stationary, but its read/ 
write activity was still minimal. Only three errors were  ob- 
served on  the even-numbered actuators, all on  unit 4. In the 
rest  of the discussion, we ignore the even-numbered units, and 
concentrate on units I ,  3, 5 ,  and 7. 

The  number of bytes processed  in one iteration on a group 
of 200 cylinders was 47  467 X 36 X 200 = 341  762 400. This 
took about nine minutes elapsed time. The entire cycle con- 
sisting  of 1 12 iterations took about 16 hours when  all the units 
were operating. 

assembly. Heads 0, 3,  4,  7,  8, 1 1, and 12 are on  the  outer 
band heads 1, 2, 5 ,  6, 9, 10, 13, and 14 are  on  the inner band. 
A cylinder is the set  of 15 tracks accessible at a given time 
without moving the  actuator. 

The 3380 error-correcting code corrects all error bursts 
which are contained within two consecutive 16-bit  blocks. 
This includes all bursts of  17 or kwer bits and some as long 
as 32  bits. It can correct one such burst per record. Records 

Each  head-disk  assembly  was  exercised in the same way. 
Up to four were running simultaneously. The unit  (actuator) 
on the even address was stationary on cylinder 400, and the 
actuator on  the odd address was exercised as follows. The 
cylinders were divided into four groups of 200  with the re- 
maining 85 cylinders not used. On units 1 and 3 the groups 

with uncorrectable errors are reread  several times with and 
without head offset. Only if this procedure fails is a permanent 
error reported. No permanent errors were reported during this 
experiment. Rereads were not logged during the experiment 
and are not reported to the program, so no information is 
available about  the number of errors recovered by rereads. 

were 0-199,200-399,400-599, and 600-799. On units 5 and 
7 the groups were  685-884,  485-684,  285-484, and 85-284. Results 
Cylinder 0 is at the largest radius, and cylinder 884 is at the All errors analyzed in this study were correctable errors. Each 
smallest radius within each band. One iteration on a group of event requiring use  of the error-correcting code was counted 
cylinders consisted of processing  each cylinder in the group, as one error, whether it involved one bit or several. 
followed  by processing cylinder 400 on the stationary actuator. 
The first group was  processed  for 100 iterations, then the In the seven months of operation 18 753 errors were cor- 

208 second group for I O  iterations, then the third and fourth rected by the error-correcting code. Of these, 99.8 percent 
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Table 1 The data pattern segments (in hexadecimal  code). 

Segment name One period: 
User data in hexadecimal, 
Run  lengths of Os in encoded data 

Repeated for 

Peak  shift 

Missing bit 

High  frequency 

Complex 

AF19E33A678, 
32362136274347363 

4 12090482, 
25222252222522225222 

492, 
22222222 

2492AAAAAAAAA925F03B91225DC88BBB, 
2222222223333333333333333333222222 
2345642422422242222424224242242425 

1 I 869 bytes 

1 1  871 bytes 

1 1 871 bytes 

I 1 856 bytes 

Table 2 Error types by head and unit. 
~~ 

0 I 2 3 4  5 6 7 8  9 10 1 1  12 I3 14 

1 1 2 2 0  3 0 1 3  4 3 0 1  3 2 

9 5 2 0 5 4  3 6 0 9  4 1 0 0  2 6 

0 0 0 0 0  1 1 0 0  0 0 0 0  0 1 

3 267 48 I 0 17 8 2 4  3 1 1  0 1 10 5 

2 6 5 I I 45 36 1 2 15 5 0 1  1203 19 

were explainable as single bits being changed or shifted at 
most one bit  position. This includes  99.1  percent of the 1836 
different types of error. 

Some  errors were sensed in which no correction was re- 
quired. These happen when the  error location falls in  the bytes 
beyond the  end of the  data record but before the  end of the 
region protected by the error-correcting code. This region 
always ends  at a  multiple  of 32 bytes from index.  These  errors 
are referred to  as 0-bit errors. 

The  errors were highly clustered at certain sites on  the disk 
surface. This indicates the presence of “minor defects.” Only 
1836 different errors were observed. Errors are considered 
different if they differ in physical location or received pattern, 
Le., anything except time of  occurrence.  These different errors 
are called “error types.” Of the 1836 error types, 217 were 
repeated and 1619 occurred just once. One  error type was 
repeated 5744  times,  over 30 percent of the total  errors.  Over 
85 percent  of the  errors were of the most  frequent  two  percent 
of the  error types. In normal operation,  error sites at which 
several errors have  occurred would be marked  and subse- 
quently  not used to store data. Procedures  for doing so are 
outlined  in [4]. This was not  done for  this test. It would have 

required rewriting the affected tracks, some of which were in 
the  group designated  as  read-only for this test. The effect of 
these maintenance procedures can be approximated by count- 
ing  repeated errors only once in the analysis. For this  reason, 
most of the results given here include  counts of  both errors 
and  error types. 

Error types were distributed very unevenly  across heads; see 
Table 2. The heads on  the  inner bands, numbers 1, 2 ,  5 ,  6,  9, 
10, 13, and 14, have  far more  error types than  the heads on 
the  outer bands. The  inner tracks are shorter, resulting in a 
higher recording  density, so more  errors  are  to be expected. 

Two heads, unit 7  head  13 and unit 5 head I ,  account for 
1203 and 267 error types, respectively. These two heads are 
probably  marginal  performers, making  them  more susceptible 
to  errors caused by factors  such as difficult data  patterns  and 
electronic noise. None of the 1470 errors  on these  two  heads 
were missing bits. It is interesting that these weaker heads 
were much  more susceptible to peak-shift errors  than  other 
heads, but  not  more susceptible to missing-bit errors. 

The causes of the  errors  can be summarized as follows. 
About 90  percent  of the  errors  and 12 percent of the  error 2Q9 
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Figure 3 Errors by category for each pattern segment. 

types were repeated ones. Most ofthese were caused by defects. 
They would have been eliminated by normal  maintenance 
procedures  which were not used during  this test. Most  of the 
remaining I O  percent  of the  errors  and  88 percent  of the  error 
types were caused, at least partially, by two heads. 

The  errors were classified according to  the following criteria: 
time, frequency  of access, whether the  track was periodically 
rewritten, data  pattern,  track radius, and logical unit. Using 
the procedure previously described,  each error was assigned a 
category: right-shifted bit, left-shifted bit, missing bit, or other. 
The category “other”  contains  30 O-bit errors, three extra  bit 
errors, and  33  errors of 17 error types which involve more 
than  one bit  changing or shifting. These  multiple-mistake 
errors represent about 0.2 percent  of the total errors  and 0.9 
percent of the  error types. 

Right-shifted bits accounted for 78.9 percent  of the  errors 
and 40.6 percent  of the  error types. Left-shifted bits were 6.7 
percent of the  errors  and 53.9  percent  of the  error types. 
Missing bits were 14 percent  of the  errors  and 2.7 percent of 
the  error types. 

The  pattern segments designed to  enhance peak-shift and 
missing-bit errors  did so quite well. This shows that difficult 
data  patterns significantly increase the  error probability com- 
pared  with the average. The bars  in Figure 3 show, from  the 
bottom up, the  numbers of right-shift, left-shift, missing-bit, 
and  other  errors observed in each pattern segment.  Segment 
I is  above average in both right and left peak-shifts, while 
segment 2 is enriched  in missing bits. Very few errors hap- 
pened  in segment 3. The  complex test pattern, segment  4,  is 
intermediate  in all types of errors. 

Frequency  of  rereading and rewriting did  not have a large 
210 effect on  the  numbers of errors or error types. The only 

discernable trend was that  on  the  inner  band of  tracks the 
heads which rewrote  their data  had fewer errors and  error 
types than those which did  not rewrite. The  outer  band  had 
far fewer error types, and rewriting had  no significant effect 
on  the  numbers of errors or error types. 

Conclusions 
A method for determining  the  nature of the correctable errors 
in files using the (2,7) code has been presented. The  method 
requires  only knowledge of the stored data in the unencoded 
form  available to  the  programmer. Analysis using this  method 
shows that almost all the  errors can be explained  as the results 
of very simple  one- and two-bit detector  errors  propagated 
into bursts of up  to five bits by the  channel decoder. The 
lengths of the  error bursts are  thus  determined mostly by the 
properties  of the  channel decoder. This emphasizes the im- 
portance of limiting the  error propagation to very small values 
as was done for the (2,7) code. 

The  main  contributing factors to these  one- and two-bit 
detector errors  are imperfections in  the disk coating, weaker 
than average heads, difficult data patterns, and electronic 
noise. A typical error occurs  when a difficult pattern is  written 
at a disk imperfection or read by a weak head. This enables 
electronic noise to push the detector  across the  error threshold. 
For weaker  heads and larger imperfections less noise is needed 
to cause  errors.  Therefore, weaker heads  have more different 
error sites than average, and larger imperfections  cause errors 
more frequently than average. 

The error-correcting  code used in the IBM 3380 is more 
than  adequate  to correct the  errors observed in the experiment. 
The  data presented  here suggest that a code  capable of cor- 
recting  only much  shorter bursts  would  have  performed just 
about as well. A code  capable of correcting  only five-bit bursts 
would have  corrected all but 33 of the 18 753 errors and all 
but 17 of the 1836 error types. That  means  about  one  more 
error per week would have  had to be recovered by rereads. 
This difference would not have been noticeable. 

When speaking of disk  imperfections, weak heads, and 
difficult data patterns, we should  keep  in mind  that these are 
relative terms.  Half the  members of any sample are below 
average, but  in this case the average is remarkably  good. 

Acknowledgments 
The special program to exercise the disks and  gather  the 
SENSE information was written by J. Wyllie. D. Woo helped 
to  manage  the  data  and  monitor  the experiment. R. Adler, B. 
Kitchens, and P. Siege1 provided helpful discussions about  the 
analysis method. 

Appendix 
The (2,7) code is described by Table 3. To  encode a string u, 
find the  entry in the IN column of the table which matches 
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the first two, three, or  four bits of u which have not yet been 
encoded. The table is constructed so that  no  more  than  one 
match  can be found,  and  one  match will be found if the 
unencoded part  of u is at least four bits long. The encoded 
version of  this  substring appears  in  the OUT column. Concat- 
enate  the encoded  substring to  the  output string e, which is 
initially empty.  Repeat  the process until all bits of u have  been 
encoded. If the final k-bit substring of u (k = 1, 2, or 3) does 
not  match  an  entry in the IN column, extend it with zeros 
until  a match is found.  The encoded version of the final 
substring is the first 2k  bits of the corresponding OUT-column 
string. The length of e is exactly twice the length  of u. An 
example is included with the  table  to illustrate the encoding 
procedure. 

Correctly  encoded  strings can be decoded by a similar 
procedure,  transposing the roles of the IN and OUT columns 
of the table.  Unfortunately, the table gives no  information on 
how the IBM 3380  decodes other strings  such as those resulting 
from  errors. 

The  complete  encoding  and decoding  algorithms used in 
the IBM 3380 are given in Table 4. The encoding  algorithm 
is equivalent to  the table-based procedure. The decoding 
algorithm  decodes all strings  of  length 2n. It agrees with the 
table-based procedure  where that procedure is defined. 
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Table 3 Code table for the (2,7) code. 

IN OUT 

10 0100 
11  lo00 

OOO o00100 
010 100100 
01 1 001o00 

0010 00100100 
0 0 1  1 oooO1OOO 

Encoding example 

Input: 
011001111o0o1010 

001o0o m 1 0 0 0  1000 OOO100 0100 0100 
output: 

””” 

Table 4 Encoding and decoding algorithms for the (2,7) code. 

21 1- 
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Encoder 

Output: (ek), 0 5 k c  2n 

Initialize: p-2 = 0, p-, = u,,, u,, = u,+, = 0 

F o r O s k < n  

The pk indicate boundaries of  codewords in the table: pk = 1 if and 
only if uk+2 is the last  bit  of a codeword. 

Decoder 

Input: lek), 0 5 k < 2n 

Initialize: e-4 = e-, = e-* = e-, = 0, e2, = e2”+, = 0 

F o r O s k < n  

uk = e2k-2 i- &k+3e2k + ezk+lAk-le2k-3 i- e2k+le2k-a 

Each  variable  with a subscript is a logical  variable. True corresponds 
to 1,  false to 0. Juxtaposition means AND, + means OR, and NOT is 
indicated by a bar above the variable name. 
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