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A General-Purpose Memory Reliability Simulator

With rapid advances in computer memory capacity and performance, coupled with corresponding increases in the expense of field
service calls, memory reliability and optimal maintenance strategies have become more and more important in terms of customer
satisfaction and field service cost. At the same time, significant improvements in error correction and recovery over recent years
have made the prediction of uncorrectable error and field service frequency much more difficult. This paper describes a Monte
Carlo simulator which can predict uncorrectable error rates and field-replaceable-unit replacement rates for a wide range of memory
architectures and under a variety of maintenance strategies. The model provides valuable information for performing sensitivity
studies of intrinsic failure rates for memory components, for performing tradeoff studies of alternative storage module and card

organizations, for evaluating system functions, and for establishing optimum maintenance strategies.

Introduction

The use of analytical techniques for determining the reliability
of semiconductor memories with error correction capability
is generally impractical if one wishes to consider a wide range
of memory architectures and failure modes and to take into
account the effects of a variety of maintenance strategies. The
main reason for this is that simplifying assumptions must
usually be made and these can often result in misleading
conclusions. An alternative approach to the problem is to
employ simulation techniques. This introduces the additional
challenges of designing a simulator capable of modeling to-
day’s large computer memory capacities (16+ megabytes) in
a reasonable memory space and of simulating a sufficient
number of systems (system life is usually in the range of
60 000 to 100 000 hours) to achieve statistical credibility in a
moderate amount of CPU time.

Simulation is readily adaptable to mimicking computer
memory throughout its life in actual field use. Component
failures and their locations can be generated by Monte Carlo
techniques. With appropriate bookkeeping, the repair of field-
replaceable units (FRUs) can then be initiated by such triggers
as time (periodic maintenance), the number of faulty bits in
the memory (preventive maintenance), or the detection of an
uncorrectable error (UE). Reliability measures such as UE
rates, FRU replacement rates, and mean time between fails
(MTBF) can then be statistically determined.

This paper describes the Burlington Memory Reliability
Simulator (BMRS), a general-purpose Monte Carlo memory
reliability simulator which has been used extensively at IBM
to model many of the memories used in various IBM com-
puters as well as many proposed memory architectures. Mem-
ory reliability models that existed prior to BMRS contained
numerous restrictions (e.g., rigid architecture, fixed failure
modes, constant failure rates, and limited, if any, maintenance
strategies) [ 1-9]. The BMRS program has resolved these defi-
ciencies by adopting a Monte Carlo approach in conjunction
with some unique methods for generating component times-
to-fail, UE detection, and bookkeeping during the simulation
in order to contain CPU time and memory space require-
ments. Although the required space and run times are a
function of many variables, a BMRS run modeling 5000 16-
megabyte systems with a 100 000-hour system life typically
runs in less than one megabyte and five CPU minutes (IBM
3081). The accuracy of the results of BMRS obviously follows
the laws of large numbers, so that accurate UE rates depend
on the occurrence of “enough™ UEs, and accurate FRU re-
placement rates depend on the occurrence of “enough” FRU
replacements, and so on. Determination of how many samples
are needed to produce “enough” of the desired parameter
cannot be made until after the simulation has been run,
unfortunately. However, past experience with BMRS has
shown that, with today’s memory architectures and failure
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rates, 5000 samples is almost always more than sufficient to
produce stable and consistent results without consuming a
great deal of CPU time.

The next section of the paper describes the capabilities of
the simulator in terms of memory organizations, failure
modes, failure rates, and maintenance strategies. The model-
ing of n-bit error-correcting code (ECC), initial defects, and
alpha-particle failures is also discussed in this section. The
section following that discusses the methods and techniques
used in the simulation. This involves some of the bookkeeping
and data-management techniques, the Monte Carlo methods,
and the action sequence of the simulation. The final section
provides a summary of the major features of the simulator
and its applications. Definitions and details of the various
maintenance triggers and actions provided for by the program
are included in an appendix.

Model capabilities

e Memory architecture

In order to achieve general-purpose simulation capability, the
computer memory architecture must be defined to the pro-
gram in such a way that a wide range of memory organizations
can be described. A modified version of the memory model
described by Mikhail, Bartoldus, and Rutledge [1] is the
vehicle used to achieve generality. The memory is assumed to
consist of four functional levels: the memory itself at the
highest level, then the card level which consists of the FRUs
(by definition), followed by the chip level [10], and finally by
the cell level. Each level is defined as a rectangular set of the
next lower level. For example,

MEMORY = X, x Y, CARD

defines a memory consisting of X, rows of cards (each row of
cards is one basic storage module, or BSM, by definition) by
Y, columns of cards (or FRUSs). Each card column is assumed
to map onto one or more bit fields. The card level is defined
by :

CARD = F X X, X Y, CHIP,

where F is the number of bit fields each card maps onto and
X, and Y, are the number of rows and columns, respectively,
of chips per bit field per card. Hence, the total number of bits
per ECC word in the memory is

No. of bits/]ECC word = Y, X F,

and the total number of chips in the memory is
No.of chips= X, X Y, X FX X, X Y.

Finally, the chip level is defined by

CHIP = X; x Y; CELL,

where X; and Y; are the number of rows and columns,
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Figure 1 Example of a 4-megabyte, 72-bit-per-ECC-word memory
comprised of four 1-megabyte BSMs. Each BSM is comprised of nine
cards, each of which contains 64 16K-bit chips.

respectively, of cells per chip. Figure 1 illustrates a typical
sample of a 72-bit-per-ECC-word memory and the relation-
ships among the four levels.

In order to accommodate memory architectures which are
not quite as uniform as the one just described, multiple types
of cards and/or chips can be defined by specifying multiple
component names with their respective dimensions followed
by a generic name for the level with the total dimensions of
the level. If the memory architecture described in Fig. 1, for
example, consists of two different types of cards and one of
the card types consists of two different types of chips, with the
total number of cards and chips equal to that in the example,
the definition of such a memory might be specified as follows:

MEMORY = 4 x 5 CARDA, 4 x 4 CARDB, 4 X 9 CARD;

CARDA = 8 X 6 X 1 CHIPA, 8 x 2 x 1 CHIPB,
8 X 8 x | CHIP;

CARDB = 8 x 8 x 1 CHIPC;
CHIPA = 128 x 128 CELLA;
CHIPB = 128 x 128 CELLB;
CHIPC = 128 x 128 CELLC:;.

Note that CARD and CHIP do not require definition, because
they have been defined as the generic names for their respec-
tive levels, and that their dimensions are the total number of
rows and columns on those levels.

Defining memories in such a manner permits one to sim-
ulate not only memories with more than one card organiza-
tion, but also memories which contain chips from more than
one manufacturer with correspondingly different intrinsic fail-
ure rates.

While the method of defining a memory organization as
described may not suffice for every computer memory ever
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designed, certainly the vast majority of memory architectures
can be described within such a framework, and thus the goal
of being widely applicable in terms of memory organizations
is satisfied.

o Failure modes and rates

The failure modes associated with a computer memory play
a critical role in determining the reliability of that memory.
Furthermore, the failure modes are a function of the technol-
ogy, the manufacturing process, and the device design for the
memory chip, and thus may vary widely [2]. It is important,
therefore, to model as many failure modes as possible for
reliability studies. However, most memory reliability models
restrict the permissible failure modes in order to simplify the
mathematics involved. The restrictions range from equating
every fail with an entire chip failing (under the assumption
that chip failures are the dominant mode [4], or to get a worst-
case estimate of reliability [3, 6]), to allowing rows and col-
umns of cells and chips to fail as well as single cells and chips
[1,2, 7]. In actuality, there is evidence that partial-chip failures
rather than whole-chip failures are the dominant failure mode
for most chips and that failure modes can include double
cells, double word and bit lines, and chip sections [2, 11]. The
ability to model chip-section failure modes increases in im-
portance for memories composed of chips with modular ar-
chitectures (independent islands). Furthermore, as chip den-
sities increase, it is believed that alpha particles may affect
several adjacent cells as opposed to single cells.

Any rectangular subset of any of the memory architecture
levels can be defined as a failure mode to BMRS. The only
restriction imposed is that the dimensions of the failure nrode
be evenly divisible into the memory architecture in both the
X and Y directions. Using the architecture described in the
previous section, we can define failure modes as follows:

Memory architecture Possible failure modes

MEMORY =4 x 9 CARD CELLCKTY =1 x | CELL
CARD=8Xx 8 x 1 CHIP  ISLAND = 64 x 64 CELL
CHIP = 128 x 128 CELL SUPPORT = 8 x 8§ x 1 CHIP

In recent years, a number of articles have been published
concerning alpha-particle-induced errors and their impact on
system reliability [12-15). The modeling of these errors is
important not only in studying their impact, but in studying
potential solutions as well. BMRS allows for modeling of
transient failures in general by assuming that any failure mode
whose first character is a “?” is transient. Thus, the same
freedom for hard failure mode definition is available for
transient failure modes. A transient failure is assumed to
disappear immediately after occurring unless a retention time
is specified, in which case it remains active until the specified
time has elapsed. During the time that intermittent failures
are active, they may align with other failures to cause “soft”
UEs.
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The effect of nonconstant component failure rates, and, in
particular, the phenomenon known as “infant mortality,” on
system reliability can be dramatic [1, 16, 17]. Therefore, it is
important that the model being used to evaluate system reli-
ability allows for nonconstant component failure rates; most
existing models do not do this [3-9]. Piecewise-linear failure
rates or shape and scale parameters for the Weibull distribu-
tion hazard function [18] may be provided as input for any
failure mode defined to BMRS.

The process known as “vintage learning” (maturing and
improvement of the fabrication process) may have an impor-
tant positive impact on system reliability and should be
modeled in some cases [19]. The vintage learning process is
simulated by allowing multiple sets of failure rates for the
same component. Each set is associated with a power-on-hours
(POH) value and becomes effective only for those components
which reside on FRUSs replaced after the specified POH. Thus,
for example, if a chip has one set of failure rates associated
with 0 POH and another set of failure rates associated with
60 000 POH, the second set takes effect only for chips which
are located on FRUs that have been repaired after 60 000
POH.

e Maintenance strategies

It has been shown that storage system reliability may vary
significantly with the maintenance strategy employed and that
maintenance strategies play a critical role in improving mem-
ory system reliability [19,20]. However, most reliability
models stop short of considering the effect of maintenance on
reliability. Those models that do take this into account con-
sider only maintenance strategies which completely clean the
memory at maintenance time, i.e., one-card or renewal sys-
tems which replace the entire memory whenever a repair is
made or those in which all components have constant failure
rates and the strategy is to replace every failed component at
repair time. The reason is that an analytical approach for
reliability analysis of memory systems with ECC under a
variety of maintenance strategies which do not completely
clean or renew the memory is extremely difficult, if not
impossible [15, 17]. Both strategies that completely clean the
memory make the repaired system identical to the original
system or good as new; but neither strategy, with the exception
of the one-card system for small machines, is very realistic or
practical for memories with ECC. The effects of maintenance
strategy on system reliability can be rather surprising at times
(e.g., periodic maintenance can, in certain cases, make system
reliability worse instead of better [11]). Therefore, it is crucial
to be able to model a wide variety of maintenance strategies
in order to determine the optimal strategy for any given
memory and to estimate field service costs and field stocking
plans. BMRS provides this capability with four types of main-
tenance triggers, viz., scheduled maintenance (SM), threshold
or deferred maintenance (DM), hard uncorrectable error
(HUE), and soft uncorrectable error (SUE). (Definitions and
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details of the various maintenance triggers and actions are
provided in the Appendix.) Furthermore, there is provision
for conditional maintenance to be taken only if the primary
maintenance did not alleviate the condition that triggered the
maintenance originally. Each trigger can initiate any of a wide
range of maintenance actions. Table 1 presents an overview
of the available combinations of maintenance actions and
triggers.

o Additional capabilities

In the past, it has been argued that double error correction/
triple error detection (DEC/TED) requires too many check
bits and complicated decoding circuitry and that it degrades
memory performance too much to be economically or prac-
tically feasible [15, 17). However, with the growing complexity
of memory chips and their increasing sensitivity to defects
and radiation, coupled with increases in chip density and
main memory size, DEC/TED may be an option worthy of a
second look for some systems as a potential solution to the
corresponding reliability problems. The error-correction ca-
pability of the system being modeled is an input parameter
for BMRS, and thus the program can model systems with no
error correction, one-bit error correction, two-bit error correc-
tion, and, in general, n-bit error correction.

With the advent of error correction coupled with the in-
creases in density, sensitivity to error, and complexity of chips
mentioned previously, the economic practicality of shipping
memory with existing faults (all correctable by ECC, of course)
is becoming worthy of study in terms of cost savings, which
can then be passed along to customers, due to increased
manufacturing yield, alleviated parts-supply problems and
reduced rework load. These savings must be weighed against
the potential problems of higher UE rates and FRU replace-
ment rates. BMRS provides for studies involving initial defects
by allowing the user to specify any number of defects for any
defined failure mode at time 0, provided the defects do not
cause an uncorrectable error.

Because alpha-particle failure rates can be one or two orders
of magnitude higher than basic intrinsic failure rates [13-15],
for some memories it may be impractical to simulate alpha-
particle fails along with the hard fails because of memory
space and CPU time limitations. For these cases, an analytical
calculation for the alpha-particle-induced UE rate for one-bit
ECC machines is provided in the model by the following
equation:

SUE(t) = a-(W — 1)- A1), %/kPOH,

where « is the alpha failure rate (%/kPOH/bit), W is the
number of bits per ECC word, and A(¢) is the number of hard
failed bits in the system at time ¢ [21]. The equation simply
states that the alpha-particle-induced UE rate is equal to the
probability that an alpha fail occurs at time ¢ in one of the
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Table 1 Table depicting valid maintenance actions which may be
specified with maintenance triggers. A maximum of four actions may
be specified with each trigger.

Maintenance Maintenance trigger
action
SM DM HUE SUE  Conditional
Clean Y Y Y Y Y
Worst Y Y Y Y Y
Threshold Y Y Y Y Y
Spare N N Y Y Y
Spares Y Y Y Y Y
Swap N N Y Y N
Deallocation N N Y N N
Conditional N N Y Y -

W — 1 good bits of a computer word of length W which
already has one failed bit in it. A(¢) is known from the
simulation of the hard fails. The equation assumes that no
maintenance action results from soft UEs, that each alpha fail
affects only one bit, and that only hard-soft UEs need be
considered, i.e., the retention time for alpha fails is zero.

Model methodology

The BMRS program has been designed to minimize both
CPU time and region size. The memory architecture is defined
once for any new memory and is stored in a permanent data
base. BMRS also dynamically builds the simulator source
code by including only the source code required to model the
maintenance strategies and ECC level specified by the user,
thus eliminating a great deal of decision making during the
simulation.

The simulator consists of five basic steps (Figure 2), viz.,
generation of component fail timés and locations; perform-
ance of pending SM and/or DM maintenance; determination
of the impact of component failures on the memory; perform-
ance of any required UE maintenance strategy; and the re-
cording of each event observed throughout the life of the
memory. The three main ingredients of the simulator which
minimize CPU time and memory space are the techniques of
generating times-to-fail, the detection of UEs, and the book-
keeping methods employed to track the status of the memory
at any given time.

o Component failure generation

Rather than generate a time-to-fail for each component pres-
ent in the system, which could easily number in the millions
just for cells, and then sort and select only those failures which
occur prior to the end of the system life, a less well-known
but far more efficient and convenient method for component
failure generation is used. A technique for generating the first
r-order statistics (X; < - - - < X,) of a sample of size n from a
population with the distribution function F(x) = P[X < x] is
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1
Generate fail
times and locations

T

Perform pending SM
or DM maintenance
and update fail list

I

Determine effect
fail has on memory

No Yes

Perform UE maintenance
and update fail list

|
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L Produce history file

Done with
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Figure 2 BMRS simulation flow.
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Figure 3 Example of the mapping of an eight-bit word from eight
cells in the same relative location on eight different chips in the same
relative location on two cards to form an eight-bit ECC word.

Row 1 0 2 4
Row 2 0 1 0
(a) (b) (c)

Figure 4 Sample System Status tables: (a) at start of simulation; (b)
after processing of first three component failures from Table 3; and
(c) after performing maintenance resulting from UE occurring while
processing fourth failure from Table 4.

described and proven in [22]. BMRS uses this method to
calculate ordered times-to-fail for each component type for all
failures occurring within the system life. A sufficient number
of ordered times-to-fail is computed by the equation

M. R. LIBSON AND H. E. HARVEY

Jj=1

X 1
T,=F" [1 -1 U/'""*‘] :
i=1,---r

where

T; is an ordered time-to-fail,

F(t) = P(T =< t) is the cumulative distribution function of time
to fail over the interval 0 < ¢ < = for a given component
type,

ris the desired number of ordered times-to-fail to be generated
(should be large enough to ensure that 7, is greater than
system life),

U; is a member of a sequence (U, --, U,) of independent
uniformly distributed random variables on the interval
o, ),

F~!(u) is the inverse function of F defined by F™' (u) =
[t: F)=ul,0<u<]l,

and

n is the total number of components available.

The physical location of each component failure is determined
randomly, such that no two failures of the same type will be
at the same location. The lists of fail times and locations of
each component type are merged to form a single fail list, as
illustrated in Table 2.

o UE detection

Bits in the ECC word are mapped from cells located on chips
from each bit field. The cells are located in the same relative
position on each chip and the chips are located in the same
relative position in each bit field. For example, consider a
BSM consisting of two cards, each card consisting of four bit
fields and each bit field consisting of two rows of chips (Figure
3). Eight cells (one cell per bit) are selected for mapping into
the ECC word. The eight cells are located in the same relative
position on eight different chips, each chip in the same relative
bit field position on the cards. If two cells fail on different
chips in the same row, an ECC word will have a two-bit error
only if the cells are located in the same relative position on
the chips. It is easily seen that if any row has two chip failures,
there are many words (equal to the number of cells per chip)
having two-bit errors.

BMRS builds a system status table (SST) [Figure 4(a)]
which represents the bit field organization of the memory
architecture for UE detection. A nonzero entry in any SST
element indicates that there is at least one component failure
in the row of chips the element represents. More precisely, it
indicates the index of the component failure in the fail list. If
the SST element representing the current failure already con-
tains a nonzero entry, the possibility of an uncorrectable error
exists for a single-bit ECC memory. Thus, the SST table is
used to quickly determine the presence of a UE by avoiding a
search through the entire fail list. A UE will occur only if the
two components affect the same ECC memory word in differ-
ent bits (i.e., identical cell locations on different chips).
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Table 2 Sample fail list as generated prior to start of simulation and at 2500 POH (just prior to processing fail Index 3).

Index Time Component Physical location Chain Status
BSM Card  Bit field Chip Cell
Row Col Row Col
1 400 BIT LINE 1 1 4 2 1 — 28 0 —_
2 1000 CHIP 1 1 2 1 1 —_ _ 0 —
—3 2500 BIT LINE 1 1 4 2 1 —_ 32 0 —_
1 2 3 1 1 0 _—

4 6600

CELL

32 64

Table 3 Sample fail list after processing of Index 3 and just prior to processing of Index 4. Note that Index 3 has been chained to Index 1 by the

chain column.

Index Time Component Physical location Chain Status
BSM Card  Bit field Chip Cell
Row Col Row Col
1 400 BIT LINE 1 1 4 2 1 - 28 3 —
2 1000 CHIP 1 1 2 1 1 — — 0 —
3 2500 BIT LINE 1 i 4 2 1 — 32 0 —
4 1 2 3 1 1 0 —

CELL

32 64

Table 4 Sample fail list after processing of UE at 6600 POH (Index 4). Note change in status column for component failures which have been
removed from the system because of FRU replacement.

6600

CELL

32 64

Index Time Component Physical location Chain Status
BSM Card  Bit field Chip Cell
Row  Col Row Col
1 400 BIT LINE 1 1 4 2 1 — 28 3 1
2 1000 CHIP 1 1 2 1 1 — —_ 0 1
3 2500 BIT LINE 1 1 4 2 1 — 32 0 1
4 1 2 3 1 1 0 —

Referring to Figure 4(b), consider a single-bit ECC memory
with the fail list shown in Table 2. The fail currently being
processed is the BIT LINE at Index 3. Because the BIT LINE
failure occurred on a chip in the second row and the SST
entry is nonzero, the possibility of a UE exists. However, since
no two cells align (they affect different cell columns), a UE
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does not occur. Failures represented by the same SST entry
which do not result in uncorrectable errors are chained to-
gether in the fail list, as shown by Index 1 in Table 3. Only
the failure whose index is in the SST table, and those failures
which are chained to it, need be checked for UE detection,
since these are the only failures which could possibly align
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Worst =replace worst card involved in UE

Threshold =replace all cards with one or more
defective chips
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Figure 5 Uncorrectable Error rate results from three simulations
with different hard uncorrectable error maintenance strategies for
each. The memory simulated was 16 megabytes consisting of four 4-
megabyte BSMs, Each BSM consisted of nine cards and each card
contained eight rows and eight columns of 64K-bit chips (total of 64
chips per card).
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Figure 6 Card replacement rates for the simulations described in
Fig. 5.
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with the current fail. Many searches of the entire fail list are
thus avoided, resulting in a very significant improvement in
CPU usage.

Now consider Index 4, Table 3. The CELL failure aligns
with the CHIP failure (Index 2), resulting in a UE. Assuming
a UE maintenance of WORST (remove the FRU with the
greatest number of defective cells), the card containing the
chip fail (Index 2) would be removed and the “Status” flag
would be set so that it no longer has any effect on the memory.
Notice that the status flags for Indices | and 3 have also been
set since these component failures reside on the same card as
the chip failure (Table 4). The SST is updated to reflect the
removed component failures [Figure 4(c)].

& Bookkeeping

Simulation commences with the first fail in the fail list. SM
or DM maintenance is performed, if required. Components
which reside on those FRUs s replaced at maintenance time are
flagged in the fail list as “removed from memory.” “Removed”
components no longer have any effect on the memory. Com-
ponents which reside on replaced FRUs but which have not
yet been processed (“detected”) are deleted from the fail list.
New failures are generated for components on the new FRUs.

Each event (e.g., UE, memory maintenance, etc.) is re-
corded in the fail list as it occurs during simulation. At the
completion of a memory simulation, the fail list contains all
events observed during the life of the memory. The fail list is
saved in a temporary data base (the history file) for later use
in report generation.

The entire process, from component failure generation to
storing the fail list in the history file, is repeated for the
requested sample size. BMRS retrieves the history file upon
completion of all simulations and calculates the requested
statistics. These can include reports on the number of failures
of each component type, the distribution of component align-
ments causing UE, the number and rate of UEs per system,
the number and rate of replaced FRUSs per system, the average
number of bad cells in the system at any time, and mean-
time-between-fails, as well as many other reports which can
be obtained at the user’s request. The burden of statistical
calculations is thus removed from the simulation process and
placed in the report-generation process.

Summary and applications

This paper has described a Monte Carlo simulation program
which predicts memory reliability in terms of uncorrectable
error rates, field-replaceable-unit repair rates, and mean-time-
between-fails. Variables affecting memory reliability (many of
which must be discounted or simplified by analytical models),
such as memory architecture, failure modes, nonconstant
failure rates, vintage learning, maintenance actions, alpha
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particles, etc., are all accounted for in the simulation. The
model is flexible enough to simulate most memory architec-
tures and failure modes as well as a wide range of maintenance
strategies. The simulator employs efficient bookkeeping and
data-management techniques so that it can model a large
number of high-capacity memories in a minimum amount of
memory space and CPU time. Work is currently in progress
to add additional error recovery and dispersal capability to
the program in the form of fault alignment exclusion [23] and
a general sparing mechanism.

The simulation results have a wide range of applications.
The program is used to provide RAS parameters (UE rates
and FRU replacement rates) for estimating field service costs,
field stocking requirements, and customer satisfaction. It is
used to generate reliability specifications and reliability objec-
tives for memory components and products. It has applica-
tions during the design cycle for evaluating and performing
tradeoff studies of proposed basic storage module (BSM) and
card architectures.

Optimization and tradeoff studies of various maintenance
strategies (Figures 5 and 6) to minimize field service costs can
be performed with BMRS, as well as reliability sensitivity
studies of component failure modes and rates (Figures 7 and
8).

Simulation results can be used as input for evaluating the
impact of soft errors and the effectiveness of system functions
such as ECC (Figures 9 and 10), sparing, fault alignment
exclusion, and page deallocation. Economic feasibility studies
for shipping memories with initial faults can also be per-
formed. In short, BMRS is a valuable and powerful modeling
tool for the wide range of organizations which must consider
memory reliability to perform their functions.

Appendix: Maintenance definitions

o Maintenance triggers

Scheduled Maintenance (SM)—performed at a user-specified
power-on-hours (POH).

Threshold or Deferred Maintenance (DM)—performed when
the system has reached or exceeded a user-specified num-
ber of bad bits (threshold) on any FRU or BSM. The
maintenance can be deferred to a specified POH delay
after the system has reached the threshold.

Hard Uncorrectable Error maintenance (HUE)—performed
when the number of errors in any ECC word exceeds the
ECC capability and all the errors are hard.

Soft Uncorrectable Error maintenance (SUE)—performed
when the number of errors in any ECC word exceeds the
ECC capability and at least one of the errors is intermit-
tent or transient,
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High failure rate = 2.0 X Medium failure rate
Low failure rate =0.5 X Medium failure rate
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Figure 7 Uncorrectable Error rate results from three simulations
with different array component failure rates for each. The memory
simulated is the memory described in Fig. 5 with a threshold hard
uncorrectable error maintenance strategy.
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Figure 8 Card replacement rates for the simulations described in
Fig. 7.
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Figure 9 Uncorrectable Error rate results from simulations with one-
bit ECC and two-bit ECC. The memory simulated is the memory
described in Fig. 5 with a threshold hard uncorrectable error mainte-
nance strategy.
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Figure 10 Card replacement rates for the simulations described in
Fig. 9.
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® Maintenance actions

Worst—Causes the FRU with the greatest number of bad cells
to be replaced.

Clean—All cards containing one or more bad cells are re-
placed.

Threshold—All cards containing a user-specified number or
more of bad cells are replaced.

Spare—One redundant chip for each row of chips specified in
the memory architecture is available to replace the chip
containing the larger fault that caused an uncorrectable
error. This action is valid only for the UE maintenance
triggers and for memories with one-bit ECC.

Spares—Similar to Spare except that all available spares are
used at system maintenance. Unlike Spare, Spares is a
valid SM and DM maintenance strategy as well as UE.

Swap—UE maintenance action causing one of the FRUs
involved in the UE to be exchanged with a FRU in the
corresponding position of another BSM to disperse the
faults.

Deallocation—Hard UE maintenance action for one-bit ECC
systems causing one of the two UE-causing faults (user-
specified) and a user-specified number of units to be
deallocated. With an appropriate specification for the
fault to be deallocated and for the number of units to be
deallocated, the deallocation action can be used to ap-
proximate page deallocation, fault alignment exclusion,
and redundancy.

Conditional—Conditional maintenance actions are taken
only when the previous action fails to correct the UE.
Any of the previously described actions except Swap and
Deallocation can be made conditional.

Up to four maintenance actions to be performed in se-
quence or conditionally can be specified with each mainte-
nance trigger.

Discrete sets of POH can be specified with each mainte-
nance action so that different maintenance strategies can be
employed during various stages of the product life.
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