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A General-Purpose  Memory  Reliability  Simulator 

With rapid advances in computer memory capacity and performance, coupled with corresponding increases in  the expense ofjield 
service calls, memory reliability and optimal maintenance strategies have become more and more important in  terms of customer 
satisfaction and field service cost. At the same  time, significant improvements in error  correction and recovery  over  recent years 
have made  the prediction of uncorrectable error and jield service frequency much more d@cult. This paper describes a Monte 
Carlo simulator which can predict uncorrectable  error  rates andfield-replaceable-unit replacement rates for a wide range of memory 
architectures and under a variety of maintenance strategies. The model provides valuable information for performing sensitivity 
studies of intrinsic failure rates for  memory components, for performing tradeof studies of alternative storage module and card 
organizations, for evaluating system  functions, and for establishing optimum maintenance strategies. 

Introduction 
The use of  analytical techniques  for  determining  the reliability 
of semiconductor  memories with error correction  capability 
is generally impractical if one wishes to consider  a wide range 
of memory architectures and failure modes  and  to  take  into 
account  the effects of  a variety of maintenance strategies. The 
main reason for  this is that simplifying assumptions  must 
usually be made  and these can often  result in misleading 
conclusions. An alternative approach to the problem is to 
employ  simulation techniques. This  introduces  the  additional 
challenges  of  designing a simulator  capable of modeling to- 
day’s large computer  memory capacities (16+ megabytes) in 
a reasonable memory space and of simulating a sufficient 
number of  systems (system life is usually in  the range  of 
60 OOO to 100 000 hours) to achieve  statistical credibility in a 
moderate  amount of CPU time. 

Simulation is readily adaptable  to mimicking computer 
memory  throughout its life in  actual field use. Component 
failures and  their locations can  be generated by Monte  Carlo 
techniques. With  appropriate bookkeeping, the repair offield- 
replaceable units (FRUs)  can  then be initiated by such triggers 
as  time (periodic maintenance),  the  number of  faulty  bits in 
the  memory (preventive maintenance),  or  the detection  of an 
uncorrectable error (UE). Reliability measures  such as  UE 
rates, FRU replacement  rates, and mean time between fails 
(MTBF)  can  then be statistically determined. 

This  paper describes the Burlington Memory Reliability 
Simulator (BMRS), a  general-purpose Monte  Carlo memory 
reliability simulator which has been used extensively at IBM 
to model many of the  memories used in  various IBM com- 
puters  as well as  many proposed memory architectures.  Mem- 
ory reliability models that existed prior to BMRS contained 
numerous restrictions (e.g., rigid architecture, fixed failure 
modes, constant failure rates, and limited, ifany,  maintenance 
strategies) [ 1-91. The  BMRS program has resolved these defi- 
ciencies by adopting a Monte  Carlo  approach  in  conjunction 
with some  unique  methods for  generating component times- 
to-fail, UE  detection,  and bookkeeping during  the simulation 
in order  to  contain  CPU  time  and  memory space  require- 
ments.  Although the required  space and  run  times  are a 
function of many variables, a BMRS  run modeling 5000 16- 
megabyte  systems with a 100 000-hour system life typically 
runs in less than  one megabyte and five CPU  minutes (IBM 
308 1). The accuracy  of the results of BMRS obviously follows 
the laws of large numbers, so that  accurate UE  rates depend 
on  the occurrence  of  “enough”  UEs, and  accurate  FRU re- 
placement  rates depend  on the  occurrence  of “enough”  FRU 
replacements, and so on.  Determination of  how many samples 
are needed to  produce  “enough” of the desired parameter 
cannot be made until  after the simulation  has  been run, 
unfortunately.  However, past experience with BMRS has 
shown that, with today’s memory architectures and failure 
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rates, 5000 samples is almost always more than sufficient to 
produce stable and consistent results without consuming a 
great deal of CPU time. 

The next section of the paper describes the capabilities of 
the simulator in terms of memory organizations, failure 
modes, failure rates, and maintenance strategies. The model- 
ing of  n-bit error-correcting code (ECC), initial defects, and 
alpha-particle failures is  also  discussed in this section. The 
section following that discusses the methods and techniques 
used in the simulation. This involves some of the bookkeeping 
and data-management techniques, the Monte Carlo methods, 
and  the action sequence of the simulation. The final  section 
provides a summary of the major features of the simulator 
and its applications. Definitions and details of the various 
maintenance triggers and actions provided for by the program 
are included in an appendix. 

Model  capabilities 

Memory architecture 
In order to achieve general-purpose simulation capability, the 
computer memory architecture must be defined to the pro- 
gram in such a way that a wide  range  of memory organizations 
can be described. A modified  version  of the memory model 
described by Mikhail, Bartoldus, and Rutledge [l]  is the 
vehicle  used to achieve  generality. The memory is assumed to 
consist of four functional levels: the memory itself at the 
highest  level, then the card level  which  consists  of the FRUs 
(by definition), followed by the chip level [IO], and finally by 
the cell  level.  Each  level  is  defined as a rectangular set of the 
next  lower  level. For example, 

MEMORY = XI X YI CARD 

defines a memory consisting of XI rows  of cards (each row  of 
cards is one basic storage module, or BSM,  by definition) by 
Y ,  columns of cards (or FRUs). Each card column is assumed 
to map onto one  or more bit  fields. The card level  is  defined 
by 

CARD = F X X2 X Y2 CHIP, 

where F is the number of  bit  fields  each card maps onto and 
X2 and Y2 are the number of  rows and columns, respectively, 
of chips per bit  field per card. Hence, the total number of bits 
per ECC  word  in the memory is 

No. of bits/ECC word = Y I  X F, 

and the total number of chips in the memory is 

No. ofchips = XI X Y ,  X F X X2 X Y2. 

Finally, the chip level  is  defined by 

CHIP = X ,  X Y3 CELL. 

where X ,  and Y3 are the number of  rows and columns, 
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BSM 

BSM 

Y 

0 12345678.. 67 

MEMORY = 4 X 9  CARD  CARD = X  x X x I CHIP CHIP = I2X X I28 CELL 

Figure 1 Example of a  4-megabyte,  72-bit-per-ECC-word  memory 
comprised of four I-megabyte BSMs. Each BSM is  comprised of nine 
cards,  each of which contains 64 I6K-bit  chips. 

respectively,  of  cells per chip. Figure 1 illustrates a typical 
sample of a 72-bit-per-ECC-word memory and the relation- 
ships among the four levels. 

In order to accommodate memory architectures which are 
not quite as uniform as the one just described, multiple types 
of cards and/or chips can be defined by specifying multiple 
component names with their respective dimensions followed 
by a generic name for the level  with the total dimensions of 
the level.  If the memory architecture described in Fig.  1, for 
example, consists  of  two  different  types  of cards and  one of 
the card types consists of two  different  types of chips,  with the 
total number of cards and chips equal to that in the example, 
the definition of such a memory might  be  specified as follows: 

MEMORY = 4 X 5 CARDA, 4 X 4 CARDB, 4 X 9 CARD, 

CARDA = 8 X 6 X 1 CHIPA, 8 X 2 X 1 CHIPB, 
8 x 8 x 1 CHIP 

CARDB = 8 X 8 X 1 CHIPC; 

CHIPA = 128 X 128  CELLA; 

CHIPB = 128 X 128  CELLB; 

CHIPC = 128 x 128  CELLC;. 

Note that CARD and CHIP  do not require definition, because 
they have  been  defined as the generic names for their respec- 
tive  levels, and that their dimensions are  the total number of 
rows and columns on those levels. 

Defining memories in such a manner permits one to sim- 
ulate not only memories with more than one card organiza- 
tion, but also memories which contain chips from more than 
one manufacturer with correspondingly different intrinsic fail- 
ure rates. 

While the method of defining a memory organization as 
described  may not suffice  for  every computer memory ever 197 

M. R. LIBSON AND H. E. HARVEY IBM J.  RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984 



designed, certainly the vast majority of memory architectures 
can be described within such a framework, and  thus  the goal 
of  being  widely applicable in terms of memory organizations 
is satisfied. 

Failure modes and  rates 
The failure modes associated  with a computer memory play 
a critical role in determining the reliability  of that memory. 
Furthermore, the failure modes are a function of the technol- 
ogy, the manufacturing process, and the device  design  for the 
memory chip, and thus may vary  widely  [2].  It is important, 
therefore, to model as many failure modes as possible  for 
reliability studies. However, most memory reliability models 
restrict the permissible failure modes in order to simplify the 
mathematics involved. The restrictions range from equating 
every  fail  with an entire chip failing (under  the assumption 
that chip failures are  the  dominant mode [4], or  to get a worst- 
case estimate of reliability [3,6]),  to allowing  rows and col- 
umns of  cells and chips to fail as well as single  cells and chips 
[ 1,2,7]. In actuality, there is evidence that partial-chip failures 
rather than whole-chip failures are the  dominant failure mode 
for most chips and that failure modes can include double 
cells, double word and bit lines, and chip sections [2, 1 11. The 
ability to model chip-section failure modes increases in im- 
portance for memories composed of chips with modular ar- 
chitectures (independent islands). Furthermore, as chip den- 
sities  increase, it is believed that alpha particles may  affect 
several adjacent cells as opposed to single  cells. 

Any rectangular subset of any of the memory architecture 
levels can be defined as a failure mode to BMRS. The only 
restriction imposed is that the dimensions of the failure mode 
be  evenly  divisible into  the memory architecture in both the 
X and Y directions. Using the architecture described in the 
previous section, we can define failure modes as follows: 

Memory architecture Possible failure modes 

MEMORY = 4 X 9 CARD CELLCKTY = 1 X 1 CELL 
CARD = 8 X 8 x 1 CHIP ISLAND = 64 x 64 CELL 
CHIP = 128 x 128 CELL SUPPORT = 8 x 8 x 1 CHIP 

In recent years, a number of articles have been published 
concerning alpha-particle-induced errors and their impact on 
system  reliability [ 12-15]. The modeling of these errors is 
important not only in studying their impact, but in studying 
potential solutions as well.  BMRS  allows  for modeling of 
transient failures in general by assuming that any failure mode 
whose  first character is a ‘?“ is transient. Thus, the same 
freedom for hard failure mode definition is available for 
transient failure modes. A transient failure is assumed to 
disappear immediately after occumng unless a retention time 
is  specified, in which  case  it remains active until the specified 
time has  elapsed. During the  time that intermittent failures 
are active, they may  align  with other failures to cause “soft” 

198 UEs. 

The effect  of nonconstant component failure rates, and, in 
particular, the phenomenon known as “infant mortality,” on 
system  reliability can be dramatic [ 1 ,  16,  171. Therefore, it is 
important  that  the model being  used to evaluate system  reli- 
ability allows  for nonconstant component failure rates; most 
existing models do not do this [3-91. Piecewise-linear failure 
rates or shape and scale parameters for the Weibull distribu- 
tion hazard function [ 181 may be provided as input for any 
failure mode defined to BMRS. 

The process known as “vintage learning” (maturing and 
improvement of the fabrication process) may have an impor- 
tant positive impact on system  reliability and should be 
modeled in some cases [ 191. The vintage learning process  is 
simulated by allowing multiple sets  of failure rates for the 
same component. Each  set  is  associated  with apower-on-hours 
(POH) value and becomes effective only for those components 
which  reside on  FRUs replaced after the specified POH. Thus, 
for example, if a chip has one set  of failure rates associated 
with 0 POH and another set  of failure rates associated  with 
60 000 POH, the second set takes effect  only  for chips which 
are located on  FRUs  that have  been repaired after 60 000 
POH. 

Maintenance  strategies 
It has been  shown that storage  system  reliability  may  vary 
significantly  with the maintenance strategy employed and that 
maintenance strategies  play a critical role  in improving mem- 
ory  system  reliability [ 19,  201. However, most reliability 
models stop short of considering the effect  of maintenance on 
reliability. Those models that  do take this into account con- 
sider only maintenance strategies  which completely clean the 
memory at maintenance time, Le., one-card or renewal sys- 
tems which  replace the entire memory whenever a repair is 
made or those in  which  all components have constant failure 
rates and the strategy is to replace  every  failed component at 
repair time. The reason is that an analytical approach for 
reliability analysis of memory systems  with  ECC under a 
variety  of maintenance strategies  which do not completely 
clean or renew the memory is extremely difficult, if not 
impossible [ 15, 171. Both  strategies that completely clean the 
memory make the repaired system identical to the original 
system or good as new; but neither strategy,  with the exception 
of the one-card system  for small machines, is  very realistic or 
practical for memories with  ECC. The effects  of maintenance 
strategy on system  reliability can be rather surprising at times 
(e.g., periodic maintenance can, in certain cases, make system 
reliability  worse instead of better [ 1 11). Therefore, it is crucial 
to be able to model a wide  variety  of maintenance strategies 
in order to determine the optimal strategy  for any given 
memory and to estimate field  service  costs and field stocking 
plans. BMRS provides this capability with four types of main- 
tenance triggers,  viz., scheduled  maintenance (SM), threshold 
or deferred  maintenance (DM), hard  uncorrectable  error 
(HUE), and soft uncorrectable  error (SUE). (Definitions and 

M. R. LIBSON AND H. E. HARVEY IBM J.  RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984 



details  of the various maintenance triggers and  actions  are 
provided in  the Appendix.) Furthermore,  there is provision 
for conditional  maintenance to  be  taken  only if the primary 
maintenance  did  not alleviate the  condition  that triggered the 
maintenance originally. Each trigger can initiate any of a wide 
range  of maintenance actions. Table 1 presents an overview 
of the available combinations of maintenance  actions  and 
triggers. 

Additional capabilities 
In  the past, it has  been  argued that double  error  correction/ 
triple error  detection (DEC/TED) requires too  many check 
bits and complicated  decoding  circuitry and  that  it degrades 
memory  performance  too  much  to be economically or prac- 
tically feasible [ 15, 171. However, with the growing complexity 
of memory chips and their  increasing sensitivity to defects 
and  radiation, coupled with increases  in chip density and 
main  memory size, DEC/TED  may be an  option worthy of a 
second  look  for some systems as a potential  solution to  the 
corresponding reliability problems. The error-correction ca- 
pability of the system being  modeled is an  input  parameter 
for  BMRS, and  thus  the program can model systems with no 
error correction,  one-bit error correction, two-bit error correc- 
tion,  and, in  general, n-bit error correction. 

With  the  advent of error correction  coupled with the in- 
creases in density, sensitivity to  error,  and complexity  of  chips 
mentioned previously, the  economic practicality  of  shipping 
memory with existing faults (all correctable by ECC, of  course) 
is becoming  worthy  of study in terms of  cost savings, which 
can  then be passed along  to customers, due  to increased 
manufacturing yield, alleviated parts-supply problems and 
reduced rework load.  These savings must be weighed against 
the potential  problems  of higher UE rates and  FRU replace- 
ment rates. BMRS  provides for studies  involving  initial defects 
by allowing the user to specify any  number of defects for any 
defined failure mode  at  time 0, provided the defects do not 
cause an uncorrectable  error. 

Because alpha-particle  failure  rates can be one or two  orders 
of magnitude higher than basic intrinsic failure rates [ 13- 151, 
for some memories it may be impractical to  simulate alpha- 
particle fails along with the hard fails because of memory 
space and  CPU  time limitations. For these cases, an analytical 
calculation for the alpha-particle-induced  UE rate for  one-bit 
ECC machines  is  provided  in the model by the following 
equation: 

SUE(t) = LY. (W-  I ) . A ( t ) ,  %/kPOH, 

where a is the  alpha failure rate (%/kPOH/bit), W is the 
number of  bits  per  ECC word, and A ( t )  is the  number of hard 
failed bits  in the system at  time t [21]. The  equation simply 
states that  the alpha-particle-induced UE  rate is equal  to  the 
probability that  an  alpha fail occurs at  time t in  one of the 

Table 1 Table  depicting valid maintenance  actions  which may be 
specified with  maintenance  triggers. A maximum of four actions may 
be specified with  each  trigger. 

Maintenance Maintenance trigger 
action 

SM DM HUE SUE Conditional 

Clean 
worst 
Threshold 
Spare 
spares 
Swap 
Deallocation 
Conditional 

Y Y Y Y 
Y Y Y Y 
Y Y Y Y 
N N Y Y 
Y Y Y Y 
N N Y Y 
N N Y N 
N N Y Y 

W - 1 good bits of a computer word  of  length W which 
already  has one failed bit in it. A ( t )  is known  from  the 
simulation of the  hard fails. The  equation  assumes  that no 
maintenance  action results from soft UEs, that  each  alpha fail 
affects only  one bit, and  that  only hard-soft UEs need be 
considered, i.e., the retention time for alpha fails is zero. 

Model methodology 
The  BMRS program  has  been designed to  minimize  both 
CPU  time  and region size. The  memory  architecture is  defined 
once for any new memory  and is stored in a permanent  data 
base. BMRS also  dynamically  builds the  simulator source 
code by including only  the source  code  required to  model  the 
maintenance strategies and ECC level specified by the user, 
thus  eliminating a great  deal  of decision making  during  the 
simulation. 

The  simulator consists of five basic steps (Figure 2), viz., 
generation of component fail timts  and locations;  perform- 
ance of pending SM and/or  DM  maintenance;  determination 
of the  impact of component failures on  the  memory; perform- 
ance of any required UE  maintenance strategy; and  the re- 
cording  of  each  event  observed throughout  the life of the 
memory.  The  three  main ingredients  of the  simulator which 
minimize  CPU  time  and  memory space are  the  techniques of 
generating times-to-fail, the detection  of  UEs, and  the book- 
keeping methods employed to track the  status of the  memory 
at  any given time. 

Component failure generation 
Rather  than generate a time-to-fail for  each component pres- 
ent in the system, which could easily number in the millions 
just for cells, and  then sort and select only  those failures which 
occur prior to  the  end of the system life, a less well-known 
but far more efficient and  convenient  method for component 
failure  generation is used. A technique for  generating the first 
r-order  statistics ( X ,  < . . . < X,) of a sample of size n from a 
population with the  distribution  function F(x) = P [ X  5 X]  is 199 
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Figure 2 BMRS simulation flow. 

Card I Card 2 

Figure 3 Example  of the mapping of an eight-bit  word  from  eight 
cells  in the same relative location on eight  different chips in the same 
relative location on two cards to form an eight-bit  ECC  word. 

Rou 2 I 1 B 
( a )  ib) i C )  

Figure 4 Sample System Status tables: (a) at start of simulation; (b) 
after processing  of  first three component failures from Table 3; and 
(c) after performing maintenance resulting  from UE occumng while 
processing fourth failure from Table 4. 

described and proven in [22]. BMRS  uses this method to 
calculate ordered times-to-fail for  each component type  for  all 
failures occumng within the system  life. A sufficient number 

200 of ordered times-to-fail  is computed by the equation 
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T. = ~ - 1  1 - n Un-j+l [ F I  ' '1 i=I: .,I 7 

where 
Ti is an ordered time-to-fail, 
F(t) = P(TS t )  is the cumulative distribution function of time 

to fail over the interval 0 s t < m for a given component 
type, 

r is the desired number of ordered times-to-fail to be generated 
(should be large enough to ensure that T, is greater than 
system  life), 

U, is a member of a sequence ( U t , .  . ., U,) of independent 
uniformly distributed random variables on  the interval 

F"(u) is the inverse function of F defined by F" ( u )  = 

and 
n is the total number of components available. 

The physical location of each component failure is determined 
randomly, such that no two failures of the same type will  be 
at the same location. The lists  of  fail times and locations of 
each component type are merged to form a single  fail  list, as 
illustrated in Table 2. 

(0, I ) ,  

[t : F(t)  = u ] ,  0 < u < 1, 

UE detection 
Bits  in the ECC  word are mapped from cells located on chips 
from each bit field. The cells are located in the same relative 
position on each chip and the chips are located in the same 
relative position in each bit field. For example, consider a 
BSM consisting of two cards, each card consisting of four bit 
fields and each  bit  field consisting of two rows  of chips (Figure 
3). Eight  cells (one cell per bit) are selected  for mapping into 
the ECC word. The eight  cells are located in the same relative 
position on eight different chips, each chip in the same relative 
bit  field position on  the cards. If two cells  fail on different 
chips in the same row, an ECC  word  will  have a two-bit error 
only if the cells are located in the same relative position on 
the chips. It  is  easily  seen that if any row has two chip failures, 
there are many words (equal to the  number of cells per chip) 
having  two-bit errors. 

BMRS builds a system status  table (SST) [Figure 4(a)] 
which represents the bit  field organization of the memory 
architecture for  UE detection. A nonzero entry in any SST 
element indicates that there is at least one component failure 
in the row  of chips the element represents. More precisely, it 
indicates the index of the component failure in the fail  list. If 
the SST element representing the current failure already con- 
tains a nonzero entry, the possibility of an uncorrectable error 
exists  for a single-bit  ECC memory. Thus, the SST table is 
used to quickly determine the presence  of a UE by avoiding a 
search through the entire fail  list. A UE will occur only if the 
two components affect the same ECC memory word in differ- 
ent bits  (i.e., identical cell locations on different chips). 
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Table 2 Sample fail  list as generated prior to start of simulation and at 2500 POH (just prior to processing  fail  Index 3). 

Index Time Component  Physical  location Chain Status 

BSM Card Bit field Chip Cell 

Row Col Row Col 

1 400 BIT  LINE 1 1 4  2 1 - 28 0 
2 lo00 CHIP 1 1 2 1 1 - 0 

2500 +3 BIT  LINE 1 1 4  2 1 - 32 0 
4 6600 CELL 1 2  3 I 1 32 64 0 - 

- 
- - 

- 

Table 3 Sample fail  list after processing of Index 3 and  just prior to processing  of  Index 4. Note that Index 3 has been chained to Index 1 by the 
chain column. 

Index Time Component  Physical  location Chain Status 
- 

BSM Card Bit field Chip Cell 

Row Col Row Col 

1 400 BIT  LINE I 1 4 2 1 - 28  3 
2 lo00 CHIP I 1 2 1 1 0 
3 2500 BIT  LINE 1 I 4  2 1 - 32 0 - 

- 
- - - 

+4 6600 CELL 1 2  3 1 1 32 64 0 - 

I Table 4 Sample fail  list after processing of UE at 6600 POH (Index 4). Note change in status column for component failures which  have  been 
removed from the system  because of FRU replacement. 

I 

I 
~ 

Index Time Component  Physical  location Chain Status 

BSM Card Bitfield Chip Cell 

Row Col Row Col 

I 400 BIT  LINE 1 I 4 2 1  - 28 3 I 
2 lo00 CHIP 1 1 2 1 1 0 I 
3 2500 BIT  LINE 1 1 4 2 1  - 32 0 I 
4 6600 CELL I 2  3 1 I 32 64 0 

- - 
- 

Refemng  to Figure 4(b), consider a single-bit ECC  memory does  not  occur. Failures  represented by the  same SST entry 
with the fail list shown  in Table 2. The fail currently  being which do  not result in uncorrectable errors  are chained  to- 
processed is the BIT  LINE at Index 3. Because the BIT  LINE gether in  the fail list, as shown by Index 1 in Table 3. Only 
failure  occurred on a chip  in  the second row and  the SST the failure whose index is in  the SST table, and those  failures 
entry is nonzero, the possibility of a UE exists. However,  since which are  chained  to it, need be checked for UE detection, 
no  two cells align (they affect different cell columns), a UE since  these are  the only  failures which could possibly align 20 1 
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Figure 5 Uncorrectable  Error  rate  results  from  three  simulations 
with  different  hard  uncorrectable  error  maintenance  strategies  for 
each.  The  memory  simulated  was 16 megabytes  consisting of four  4- 
megabyte BSMs. Each BSM consisted of nine  cards  and  each  card 
contained  eight  rows  and  eight  columns of 64K-bit  chips  (total of 64 
chips per  card). 

30 

33 - Threshold=replace all  cards  with  one or 
Worst = replace  worst  card  involved  in UE 

more defective chips 
Clean = replace  all  cards  with  one or more 

30 - defective cells 

27 - 

24 - 
21 .- ::I I2 
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Figure 6 Card  replacement  rates  for  the  simulations  described  in 
202 Fig. 5 .  

with the  current fail. Many searches  of the  entire fail list are 
thus avoided,  resulting  in  a very significant improvement  in 
CPU usage. 

Now  consider  Index 4, Table 3. The  CELL failure  aligns 
with the  CHIP failure  (Index 2), resulting in a UE. Assuming 
a UE maintenance of WORST  (remove  the  FRU with the 
greatest number of defective cells), the card containing  the 
chip fail (Index 2) would be removed and  the “Status” flag 
would be set so that it no  longer has  any effect on  the memory. 
Notice that  the  status flags for  Indices 1 and 3 have  also  been 
set since  these component failures reside on  the  same card  as 
the  chip failure (Table 4). The SST is updated to reflect the 
removed component failures [Figure 4(c)]. 

Bookkeeping 
Simulation  commences with the first fail in the fail list. SM 
or DM  maintenance is performed, if required. Components 
which reside on those FRUs replaced at  maintenance  time  are 
flagged in the fail list as “removed from  memory.”  “Removed” 
components  no longer have any effect on  the memory. Com- 
ponents which reside on replaced FRUs  but which have not 
yet been processed (“detected”) are deleted  from the fail list. 
New failures are generated  for components  on  the new FRUs. 

Each  event (e.g., UE,  memory  maintenance, etc.) is re- 
corded in  the fail list as  it  occurs during simulation. At the 
completion of  a memory  simulation,  the fail list contains all 
events  observed during  the life of the  memory.  The fail list is 
saved in  a temporary  data base (the history file) for  later use 
in  report  generation. 

The  entire process, from  component failure generation to 
storing the fail list in  the history file, is  repeated  for the 
requested  sample size. BMRS retrieves the history file upon 
completion of all simulations  and calculates the requested 
statistics. These can  include reports on  the  number of  failures 
of each component type, the  distribution of component align- 
ments causing UE,  the  number  and rate  of  UEs  per system, 
the  number  and rate  of replaced FRUs per  system, the average 
number of bad cells in  the system at  any  time,  and  mean- 
time-between-fails, as well as  many  other reports  which can 
be obtained  at  the user’s request. The  burden of statistical 
calculations is thus removed from  the simulation process and 
placed in  the report-generation process. 

Summary and applications 
This  paper  has described a Monte  Carlo  simulation program 
which predicts memory reliability in terms of  uncorrectable 
error rates, field-replaceable-unit repair rates, and mean-time- 
between-fails. Variables affecting memory reliability (many of 
which must be discounted or simplified by analytical models), 
such  as memory architecture,  failure  modes, nonconstant 
failure rates, vintage learning, maintenance actions, alpha 
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particles, etc., are all accounted for in  the  simulation.  The 
model is flexible enough  to  simulate most memory architec- 
tures  and failure  modes as well as  a wide range of  maintenance 
strategies. The  simulator employs efficient bookkeeping and 
data-management  techniques so that it can  model a large 
number of high-capacity memories  in  a minimum  amount of 
memory space and  CPU  time. Work is currently  in progress 
to  add  additional  error recovery and dispersal capability to 
the program  in the form of fault alignment exclusion [23] and 
a general sparing  mechanism. 

The  simulation results have a wide range of applications. 
The program is used to provide RAS parameters  (UE rates 
and  FRU replacement  rates)  for  estimating field service costs, 
field stocking  requirements, and  customer satisfaction. It is 
used to generate reliability specifications and reliability objec- 
tives for memory  components  and products. It has  applica- 
tions  during  the design cycle for  evaluating and performing 
tradeoff  studies of proposed basic storage module (BSM) and 
card  architectures. 

Optimization  and tradeoff studies  of  various maintenance 
strategies (Figures 5 and 6) to  minimize field service costs can 
be performed with BMRS,  as well as reliability sensitivity 
studies  of component failure  modes and rates (Figures 7 and 
8). 

Simulation results can be used as  input for  evaluating the 
impact of soft errors  and  the effectiveness of system functions 
such  as  ECC (Figures 9 and lo), sparing,  fault  alignment 
exclusion, and page deallocation. Economic feasibility studies 
for  shipping  memories with initial  faults  can also be per- 
formed. In short, BMRS is  a valuable and powerful modeling 
tool for the wide range of organizations which must consider 
memory reliability to perform their functions. 

Appendix:  Maintenance  definitions 

Maintenance triggers 
Scheduled Maintenance (SM)-performed at  a user-specified 

power-on-hours (POH). 
Threshold or Deferred Maintenance (DM)-performed when 

the system has  reached or exceeded a user-specified num- 
ber of  bad  bits  (threshold) on  any  FRU or BSM. The 
maintenance  can be deferred to a specified POH delay 
after the system has  reached the threshold. 

Hard Uncorrectable Error  maintenance (HUE)-performed 
when the  number of errors  in any ECC word exceeds the 
ECC capability and all the errors  are hard. 

Soft Uncorrectable Error  maintenance (SUE)-performed 
when the  number of errors in any ECC word exceeds the 
ECC  capability and  at least one of the  errors is intermit- 
tent or transient. 
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Figure 7 Uncorrectable Error rate results  from three simulations 
with  different array component failure rates for each. The memory 
simulated is the memory described in Fig. 5 with a threshold hard 
uncorrectabie error maintenance strategy. 
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Figure 8 Card replacement rates for the simulations described  in 
Fig. 7. 203 
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Figure 9 Uncorrectable Error rate results  from simulations with one- 
bit ECC and two-bit  ECC. The memory simulated is the memory 
described in Fig. 5 with a threshold hard uncorrectable error mainte- 
nance strategy. 
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Figure 10 Card replacement rates  for the simulations described  in 
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Maintenance actions 
Worst-Causes the  FRU with the greatest number of  bad cells 

to be replaced. 
Clean-All cards  containing  one or more bad cells are re- 

placed. 
Threshold-All cards  containing a user-specified number or 

more of  bad cells are replaced. 
Spare-One redundant  chip for each row of chips specified in 

the  memory  architecture is available to replace the  chip 
containing  the larger fault that caused an uncorrectable 
error.  This action is valid only  for the  UE  maintenance 
triggers and for memories with one-bit ECC. 

Spares-Similar to Spare  except that all available  spares are 
used at system maintenance. Unlike Spare, Spares is a 
valid SM and  DM  maintenance strategy as well as  UE. 

Swap-UE maintenance action  causing one of the  FRUs 
involved  in the  UE  to be exchanged with a FRU  in  the 
corresponding  position of another BSM to disperse the 
faults. 

Deallocation-Hard UE  maintenance action  for  one-bit ECC 
systems  causing one of the  two UE-causing  faults (user- 
specified) and a user-specified number of units to be 
deallocated. With  an  appropriate specification for the 
fault to  be deallocated and for the  number of units  to be 
deallocated, the deallocation  action can be used to  ap- 
proximate page deallocation,  fault alignment exclusion, 
and redundancy. 

Conditional-Conditional maintenance actions are taken 
only when the previous  action fails to correct the  UE. 
Any of the previously described actions except  Swap and 
Deallocation can be made  conditional. 

Up  to  four  maintenance  actions  to be performed in se- 
quence or conditionally can be specified with each mainte- 
nance trigger. 

Discrete  sets  of POH can be specified with each mainte- 
nance  action so that different maintenance strategies can be 
employed during various stages of the  product life. 
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