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Fault-Tolerant  Memory  Simulator 

Memory  systems  in modern computers employ  a variety of methods to achieve fault tolerance, such as single- or double-error 
correction, page deallocation, or the use of spare chips or cells. Such  methods ensure that the  failure rate of the  system  is 
considerably less than  the sum of the  failure rates of the components. However, these  methods also complicate the task of evaluating 
system reliability. The  memory reliability function is too intractable to handle analytically, and we must turn to  Monte Carlo 
methods. This paper describes the Fault-Tolerant Memory Simulator (FTMS), an interactive APL program which uses Monte 
Carlo  simulation to evaluate the reliability of fault-tolerant memory systems. 

1. Introduction 

The problem 
The designer  of a  computer memory system can choose from 
a wide  variety  of techniques for  achieving fault-tolerance. 
Error-correcting codes have been standard in large memories 
for  years [l],  and page deallocation is commonly used to 
tolerate uncorrectable errors until a repair can be made. The 
discovery  of a new physical mechanism for  soft errors in 
dynamic memories [2]  led to new error-correction techniques 
to handle the new error types [3]. More recently, fault-align- 
ment exclusion [4] and dynamic spare switching  [5]  have  been 
proposed as  ways to quickly repair a memory without bringing 
the system down for component replacement. 

These methods offer  significant opportunities to improve 
the reliability  of memory systems. In order to choose among 
these alternatives, however, the designer must be able to 
evaluate the impact of each technique, or combination of 
techniques, on reliability. This is not an easy task. In a system 
without fault-tolerance, each component failure causes a sys- 
tem failure; therefore, the system-failure rate is simply the 
sum of the component failure rates. In a fault-tolerant mem- 
ory, on the other hand,  the effect of any single component 
failure will,  in general, depend on which other components 
have already failed. Therefore, the system failure rate, which 
in a memory is the uncorrectable error (UE) rate, is a very 
complicated function of the component failure rates, failure 
modes, system  design,  etc. 

Background 
The calculation of R(t), the probability that  no UE occurs 
before time t ,  for a memory with  single-error correction is 
difficult but not impossible. A number of similar equations 
have  previously  been  given for R(t) [6-111. The main differ- 
ence among these is the particular failure modes which are 
assumed for the array chip (Le.,  single  cell,  row or column of 
cells,  whole chip). If the memory is  replaced  with a “good-as- 
new” memory each time  a UE occurs, then the sequence of 
UE times forms a renewal  process [ 121; and UE(t), the ex- 
pected number of UEs in the first t hours of  system  life, is the 
unique solution of the renewal equation, 

UE(t)  = 1‘ [ I  + UE(t - s)]f(s)ds, 

wheref(t) = -dR(t)/dt is the probability density function of 
the time-to-first-UE. For a small memory contained on a 
single array card this would  be a reasonable assumption; the 
only replacement possible  is the entire memory. If soft errors 
as well as hard failures are considered, it  is  still  possible to 
derive an exact analytic expression  for the UE rate [ 131, as 
long as the entire memory is  replaced after each hard UE. 

For larger memories which  are contained on multiple array 
cards, the required calculations are far more difficult; the state 
of the memory after repair is in general very different from 
the state of a brand-new memory. It may contain cards of 
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different  ages (and therefore different failure rates) and may 
also contain some correctable hard failures  which  were  left in 
at the  time of repair. The future of such a system is by no 
means independent of its past, and renewal theory does not 
apply. The situation becomes  even more complex when we 
consider double-error correction, page deallocation, address 
permutation, spare switching, etc. 

It is clear therefore that, except for one-card memories, 
analytic calculation of memory reliability  is impractical, if not 
impossible: Some form of Monte Carlo simulation program 
is required [ 14- 161. Memory designers  need a flexible program 
which can evaluate all current memory design options and 
which can be quickly adapted to changing circumstances such 
as new failure modes [2] or new techniques of fault-tolerance 
[3-51. 

FTMS 
This paper describes the Fault-Tolerant Memory Simulator 
(FTMS), an interactive APL program written to fill that need. 
FTMS is  designed to evaluate several  reliability parameters 
for memories which employ single- or double-error correction, 
page deallocation, address permutation, and spare switching; 
and which are subject to hard failures and soft errors. 

Method of simulation 
FTMS estimates memory reliability parameters by simulating 
the life  history  of many systems, counting UEs (and other 
parameters) on each simulated system, and averaging the 
results. For each individual system this involves simulating 
random failure times for  each component, checking to see 
whether UEs occur, and simulating the appropriate mainte- 
nance action (eg., card replacement). 

The first obstacle in writing such a simulator is to account 
for the enormous number of  possible failures which can occur 
(e.g., 18 million different cell  failures  for a 2-megabyte system). 
This problem was originally  solved  for a precursor to FTMS 
when an algorithm was  derived  which generates random fail- 
ure times in order of occurrence [ 17, 181. The next  choice  is 
how to represent the state of the memory, and what infor- 
mation to keep. The representation scheme described  here  is 
compact while  preserving  all  needed information, and has 
proven to be readily adaptable to new designs and fault- 
tolerant techniques. One of the fundamental principles of 
Monte Carlo simulation is to replace estimates with  exact 
values  wherever  possible [ 191. This principle was  used to good 
advantage when soft-error capability was added to FTMS. 
FTMS estimates the soft-error rate without simulating any 
soft errors, which simultaneously reduces the cost of simula- 
tion and improves the accuracy of the estimate. 

The law  of large numbers guarantees that  the estimates 
from a Monte Carlo program  will  be  close to  the true values 
for sufficiently  large sample sizes; the user  wants to know how 

close and how  large. FTMS provides confidence limits on all 
of its estimates, but these are not available until after the 
program has  been run. Before running  the simulation the user 
has no way  of knowing how many samples will  be  needed to 
produce the accuracy he requires. Too few samples mean he 
must rerun the  job;  too many waste computer resources. 
Therefore FTMS incorporates a sequential stopping rule [20] 
which continues to sample until each parameter has  been 
estimated with the accuracy and confidence level  specified  by 
the user. 

In the following  section we describe the model  used by 
FTMS to represent memory systems.  Section 3 describes some 
of the internal structure of the FTMS programs and  the 
algorithms used to generate random failure times, estimate 
the soft UE rate, and decide on  an optimal stopping time. 
Finally, in Section 4, we show by example how FTMS can be 
used to evaluate the impact of various memory design and 
maintenance strategies on reliability. 

2. Memory  model 
The memory model consists of four parts: architecture, failure 
modes, maintenance strategy, and reliability parameters. The 
architecture defines the logical and physical configuration of 
the memory. The failure modes and rates define the types and 
frequencies of component failures which can cause the mem- 
ory to malfunction. The maintenance strategy  defines the 
actions which are taken to repair the memory when it has 
failed. Finally, reliability parameters are defined to quantify 
the effects  of architecture, failure rates, and maintenance 
strategy on  the frequency of  UEs, the amount of degradation, 
and  the cost of  service. 

Architecture 
The memory architecture consists of the logical structure of 
the memory and the logical-to-physical mapping of the bits in 
the memory. The logical structure includes the number and 
size  of data words and pages, the error-correcting capability 
of the ECC, and any built-in fault-tolerance features. The 
physical structure includes the number and arrangement of 
cells  per array chip, and chips per array card. 

The memory consists of F identical array cards, each  logi- 
cally subdivided into C bit-planes. Each bit-plane is an A X B 
matrix of array chips, and each chip is an X X Y matrix of 
cells. A data word consists of FC bits, one from the same 
address in each bit-plane. The memory has either single-error 
correction (SEC) or double-error correction (DEC) capability 
for  each data word. The number of errors which are correct- 
able is denoted NEC. Figure 1 shows the structure of a 2- 
megabyte memory containing 16K-bit chips on 18 array cards. 

Fault Alignment  Exclusion 
The use of Fault Alignment Exclusion (FAE) to remove UEs 
by address permutation is  discussed more fully  elsewhere in 185 
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Figure 1 A 2-megabyte  memory  using  16K-bit chips. 

Bit-plane 

-L 

"""""__ 
0 0 0 0 0 0 page4 

m ' j  oo l o o  0 
T"-""""- 

""""""+"""""" 

Array 
chip 

186 
Figure 2 Page locations for pages  1-128:  indicated  bit positions on 
each chip marked X on every  bit-plane. 

this issue [4]. We briefly describe how FAE is incorporated 
into  the FI"S model. 

A word  address  consists  of a chip address (row and  column 
within a bit-plane) and a cell address (row and  column within 
a chip). The cell and chip-column portions of the address are 
fixed physical locations, but  the chip-row address  is logically 
determined by the  contents of a control register. That is, the 
logical chip-row  address is some  permutation of the physical 
chip-row  address. This  permutation capability is included to 
allow us to misalign failures in  the  memory so that all resultant 
data words contain  only correctable  errors. 

The address permutation capability is defined by the per- 
mutations which can be represented, the algorithm used to 
choose a permutation,  and  the  information available to  that 
algorithm. The logical chip-row  address consists of N = (log 
A)/(log 2)  bits used to select one of A chips  in a column.  The 
physical address is obtained by forming  the exclusive-or of R 
of  these N bits with the bits in a control register, and leaving 
the  remaining N - R bits  unchanged.  Each column of chips 
has  its own  control register and is independently  permutable. 
Thus  there  are a total  of 2R  permutations possible for  each 
column,  and 2(RFCB) possibilities for the entire memory. Var- 
ious algorithms  have  been  written to choose a set of permu- 
tations which misalign errors so that  no  data words contain 
uncorrectable  errors. The algorithm used is part of the  mem- 
ory  architecture, and  the  name of the algorithm is denoted 
ALGO (i.e.,  if the algorithm named ALGJC is to be used, 
ALGO = "ALGJC"). The  input  to  the algorithm is a fault- 
map which assigns each  chip  to a category which depends  on 
the worst hard failures on  the chip. A five-category map tells 
whether failures on a chip affect single cells only, rows only, 
columns only, rows and  columns, or the  entire chip. In a 
three-category map  the  middle  three categories are  combined. 
The  number of categories in  the  fault-map is denoted M .  

FTMS has several built-in FAE algorithms, and also accepts 
any user-designed algorithm. All the user has to  do is copy his 
algorithm into  the APL workspace containing FTMS and  then 
set ALGO equal to  the  name of his  algorithm. 

Page  deallocation 
The ABXY words in  the  memory  are subdivided into P pages, 
each containing (ABXY)/P data words. Each page consists of 
an A' X B' matrix  of  sub-chips from each  bit-plane, and each 
sub-chip is an X' X Y' matrix of cells on a chip. If a data 
word contains  an uncorrectable error,  the page containing  that 
word  may be deallocated. This allows the  memory  to recover 
quickly, but  at a somewhat  reduced  capacity,  from the effects 
of a failure. Figure 2 shows the bit  locations  of pages 1-128 
for the  memory  in Fig. 1, assuming a 2048-byte page. The 
page structure is identical to  the  memory  structure with F, C, 
A,  B,  X, Y replaced by F, C, A',  B', X ' ,  Y'. 
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Spare  switching 
Each array card contains S additional chips which  can be 
logically  switched in to replace one of the other CAB chips on 
the card. Any spare can replace any other chip, but no more 
than one spare can be  used in any spare domain. There are D 
spare domains on a card, each  consisting of AID consecutive 
rows  of chips in each  bit-plane. Figure 3 shows the spare 
domains from one card of the memory in Fig.  1, assuming 
two  spares and four spare domains. 

Failure modes and  rates 
The components which  make up the memory are subject to 
hard failures and soft errors. 

Hard failures 
A hard  failure  is a permanent inability of a component to 
reliably store data in  one or more cells.  An array chip which 
consists  of a rectangular array of cells  may fail in a number of 
different ways, including single  cell,  row or column of  cells, 
and entire chip failure [7, 10,21,22]. In addition, we consider 
failures in address  lines, data buses or registers, or decoding 
logic,  which  can  disable groups of chips. The failure is  de- 
scribed  logically in terms of the cells  which cannot be reliably 
written to or read from. In  these terms, there are nine different 
hard-failure modes: 

1. Single  cell. 
2. Row  of Y cells on a chip. 
3. Column of X cells on a chip. 
4. Entire chip (called a chipkill). 
5. Row  of B chips in a bit-plane. 
6. Column of A chips in a bit-plane. 
7. Entire bit-plane. 
8. Entire card. 
9.  Logic support (entire memory  disabled). 

Each  failure mode has a corresponding failure rate function 
which  is  defined as a step function. Figure 4 shows a typical 
failure rate curve for a 16K-bit array chip. The rates for the 
first four modes are expressed as a fixed percentage of the total 
chip failure rate, and the remaining rates are defined by 
separate curves similar to Fig. 4. Failures occur at random 
times in accordance with  these rates and  at random locations 
in the memory.  When  failures  affect more than NEC bits  in 
the same word, an uncorrectable error (UE) occurs immedi- 
ately. 

The hard-failure rates are specified in a matrix, denoted 
HARD, which contains in column one the end points of the 
time intervals and in columns two through ten the failure 
rates for the nine  failure  modes  over the corresponding time 
intervals. The failure rates are in units of percent  per 1000 
hours per component. 
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Figure 4 Failure  rate  curve for 16K-bit chip. 

Soft errors 
In  1978  May and Woods [2] discovered a new  physical mech- 
anism for soft errors in dynamic memories.  Alpha  particles 
produced by the radioactive  decay of minute quantities of 
uranium and thorium in the packaging materials can  cause 
bits to flip  in dynamic RAMS. These  bit  flips are soft failures 
in the sense that they  have no permanent effect on the RAM; 
the cell  which  suffers the failure  is  completely  recovered  when 187 
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Figure 5 Main menu selections in FTMS. 

a new bit is written into it and thereafter has no greater chance 
of  failure than any other cell.  We assume that a soft error 
affects a single  cell.  If a soft error occurs in a word  which 
already contains NEC errors, a soft  UE  (SUE)  occurs, and is 
immediately repaired by rewriting  with  good data. If a soft 
error occurs in a word  with fewer than NEC errors, it is 
immediately corrected by rewriting  with good data. The soft 
error rate is assumed to be a constant, denoted SOFT, and is 
expressed in units of percent per 1 OOO hours per chip. 

This model of soft errors neglects some realities  which 
should be considered  when  applying the model.  In the first 
place, some array chips,  especially  charge-coupled  devices, 
may be subject to multi-bit soft errors. Secondly, there are 
algorithms available to correct a combination of hard and soft 
errors even though the total number of errors exceeds NEC 
[ 1,3], so a SUE  may not really  be uncorrectable. Finally, if 
good data is not written frequently enough, soft errors may 
accumulate to line up with other soft errors. 

Maintenance strategy 
The maintenance strategy  is a set of rules  which  prescribe 
what action will be taken when  various events occur. 

Events 
There are three types of events which  can  be  used to trigger a 
maintenance action. If a UE  occurs, some action must be 
taken because a memory containing a UE  is considered to be 
nonfunctioning. If a hard failure occurs which  does not cause 
a UE, maintenance may be specified to reduce the risk  of 
future UEs.  Finally  scheduled maintenance may be performed 
at a fixed time independent of failures occumng in the mem- 
ory. 

Actions 
The actions which  can be taken are card replacement, page 
deallocation, address permutation, and spare  switching. The 
“card replacement” action causes  removal of the minimum 
number of cards to achieve one of the following: no UEs, at 
most x bad  bits  per card, or at most x bad bits in the memory. 

Page deallocation deallocates all  pages containing UEs but no 
more than x pages in total may  be deallocated.  Address 
permutation attempts to produce a configuration with at most 
x(NEC) bad  bits per word.  Spare  switching attempts to replace 
a chip-kill  with a spare chip. In  each  case x is a user-specified 
constant. 

A complete strategy  is a set of event-action  pairs  which  may 
be applied sequentially. For example, 

1. At 200 hours, replace any card with more than two  bad 

2. At a chip-kill,  switch in a spare. 
3. At a UE, deallocate up to 32 pages. 
4. At a UE, permute addresses to remove UEs. 
5. At a UE,  replace cards to remove  all  UEs. 

bits. 

Action 4 would  be taken only if action 3 were unsuccessful, 
and action 5 only if action 4 were  unsuccessful.  Action 5 is 
included as the last  resort in any maintenance strategy: it 
cannot fail to be  successful and UEs cannot be  left in the 
memory. 

Reliability parameters 
The reliability of a fault-tolerant memory can be  measured in 
terms of service  cost,  frequency of interruptions, and amount 
of degradation. Service  cost is measured in terms of card 
replacements (CRs) and repair actions (RAs). An RA is de- 
fined to be an unscheduled action which requires the interven- 
tion of a service  person.  Specifically, an RA is the replacement 
of one or more cards due to a hard failure  (scheduled main- 
tenance is not included). Frequency of interruption is  mea- 
sured by the rate of hard and soft UEs. Soft  UEs are measured 
separately  because  they  have a much smaller impact on the 
system (component replacement is not required), and because 
they  can in some cases be corrected [ 1 ,  31. Degradation  is 
measured by the average number of  pages deallocated and the 
average number of words containing one or (if  DEC is used) 
two  bad  bits. A large number of  bad  bits  may  cause  perform- 
ance degradation even if  all errors are correctable,  because of 
time taken to perform the corrections. The following  specific 
parameters are defined: 

UE(t)  = Expected number of UEs in (0,t). 
SUE(t) = Expected number of SUES in (0,t). 
CR( t )  = Expected number of cards replaced in (0,t). 
M( t )  = Expected number of RAs in (0,t). 
B,(t) = Expected  average number of words  with one bad  bit 

B2(t) = Expected  average number of words  with  two  bad  bits 

DP(t) = Expected  average number of pages deallocated during 

during (0,t). 

during (0,t). 

(o,t). 

The first four parameters are cumulative counts, while the 
last three are time averages  of states of the memory. 
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3. The FTMS program 
FTMS is an interactive menu-driven APL  program. The main 
menu has four selections: INPUT, SIMULATE, REPORT, 
and END (Figure 5). Each  selection  leads to a sub-menu. The 
INPUT menu allows the user to enter or change  model 
parameters. The SIMULATE menu sets the conditions of 
simulation and starts the simulation. The REPORT menu 
allows the user to print inputs  and  outputs in various formats. 
The  END menu can be  used to save a compacted set of 
information for future use and to exit from the program. 

INPUT 
The  input menu has six selections (Figure 6). Each  selection 
invokes a program for inputting model parameters. ARCHI- 
TECT, FAILRATES, and STRATEGY prompt the user to 
provide the parameters described  above.  TIMES  asks  for the 
total lifetime of systems to be simulated, and the intermediate 
time points for  which the user requires outputs. NAME  asks 
for a job name and other descriptive information to be printed 
on reports. All inputs are checked  for  validity as they are 
entered. CHECK does an overall  consistency  check on the 
data and either returns to the main menu or informs the user 
of inconsistencies. 

SIMULATE 
The SIMULATE menu is  shown in Figure 7. The first three 
selections  allow the user to control the stopping rules for the 
simulation. These are discussed later in detail.  SEED  allows 
the user to control the random seed  used for starting the 
simulation. GO begins the actual simulation of memory sys- 
tems and returns control to SIMULATE  when the stopping 
criteria are satisfied. The results of each simulation run (each 
invocation of GO) are automatically combined with  all  pre- 
vious  results  since the last  model  change made using the 
INPUT menu. If this is not desired, the selection NEW  will 
wipe out all previous results. 

Stopping rules 
The objective of FTMS is to estimate the reliability parameters 
defined above with  reasonable  accuracy at reasonable  cost. 
The accuracy of the results  is quantified in terms of confidence 
limits on the proportional error in any estimate. Let X repre- 
sent any of the random variables  defined above for some 
specific time point [eg. UE( t) at t = 10 000 hours], and let 
X , ,  Xz, . . ., X,, be sample values of X obtained by simulating n 
memory systems. The mean and variance of X are denoted m 
and u2 respectively, and the sample mean and variance are 
given  by 

I i=n x =  x,, 
n i-1 

We  wish to find a confidence interval of prescribed propor- 

INPUT  MENU 

A 

MAIN  MENU 
~ 

Figure 6 INPUT menu selections in FTMS. 

SIMULATE  MENU 
A 

1 

Figure 7 SIMULATE menu selections in FTMS. 

tional accuracy p and prescribed  coverage  probability c for the 
unknown mean m. The variance u2 is clearly  finite and there- 
fore,  from the central limit theorem (e.g. [23], p. 213), 

limit P [  1 4 1  X - m  E ]  = c, 
ma, m& 

where 
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Figure 8 Flow of simulation program. 

Moreover, it can be  shown ([23], p. 357) that 

. . s  u llmlt = = - - X m ’  

and therefore 

If the required accuracy  is too tight, the program  may run 
for an excessive time. The TIME selection on the SIMULATE 
menu can be  used to put upper bounds on the CPU time and 
elapsed time of any run of GO. Finally, the COUNT selection 
in SIMULATE  allows the user to set a maximum and mini- 
mum number of systems to simulate. 

If some simulations have  already  been run for a given 
model, it is  possible to estimate the relationship of time and 
accuracy to sample size. In this case FTMS will provide the 
user  with an estimate of the running time, proportional ac- 
curacy, and number of simulations for the stopping rules he 
has  chosen. 

Simulation runs 
The flow  of simulation is  shown in Figure 8. A memory is 
“built” at random, and then the life  history  of that memory is 
simulated by computing the effects  of  each failure and the 
results of each maintenance action. At the end of  system  life, 
the results of the current system are added to the cumulative 
results  from  previous  systems simulated. Then the stopping 
rules are checked and the program either begins another 
system simulation or returns control to the main menu. 

Thus, for n sufficiently  large, the proportional error in X (as 
an estimator of m )  is  less than p = zS/x& with probability 
C. 

Conversely, in order to achieve proportional accuracy p ,  
one should choose a sample size equal to the smallest n which 
is greater than or equal to (uz/mp)2. 

Before running the simulation, however, the user  does not 
generally  know u/m and cannot solve for n. Therefore FTMS 
contains a sequential stopping rule  which continues to simu- 
late until each parameter has been estimated with the propor- 
tional accuracy and confidence  level  specified by the user. The 
rule is simply to stop sampling as soon as n is  greater than or 
equal to ( S ~ / x p ) ~ .  This stopping rule has been studied by 
Nidas [20], who  proved that it is asymptotically consistent, 
1.e., 

and asymptotically  efficient  in the sense that the expected 
sample size approaches the fixed sample size  which  would  be 

190 used  if vlm were  known in advance. 

Build memory The physical state of the memory at any time 
is determined by the type and location of the hard failures on 
each card. This information is stored in a matrix called FAIL 
which contains one row corresponding to each hard failure. 
Each  row  is  of the form (m,  t , f ;  c, a, b, x, y )  where m = failure 
mode, t = failure time, and cf; c, a, b, x, y )  defines the location 
of the failure. The convention is that f is the location of the 
card containing the failure if the failure is confined to one 
card, or f = 0 if the failure spans all  cards. The remaining 
parameters are defined  similarly. For example (4, 2500, 9, 3, 
6,  1, 0, 0) represents a chipkill at 2500 hours on the chip in 
row  six and column one of the third bit-plane on the ninth 
card in the memory. Failures on spare  chips are stored in a 
separate matrix of the same form  called SPARE. 

The matrix FAIL could  be  generated  sequentially by  select- 
ing a random time-to-next-failure after dealing  with  each 
simulated event.  It  is more convenient, however, to choose all 
random failure times, up to the specified end of  system  life, 
TMAX hours, at the beginning. Therefore, at time zero FAIL 
contains all  failures  which  will occur before TMAX (card re- 
placement is discussed later), and the actual state of the system 
at time t is that part of FAIL with times less than or equal  to t .  

The straightforward way to generate FAIL would  be to 
simulate a random failure time for  each component in the 
system, and then select  only  those times less than TMAX. The 
problem  with this approach is the astronomical number of 
components which  would  have to be simulated. For the 
example shown in Fig. 1 it would be necessary to select 18 
million random failure times for  cell  failures alone. 
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Fortunately there is another way. lTMS uses a simple 
algorithm to generate random failure times in order of occur- 
rence up to TMAx. For a given failure mode with cumulative 
distribution function of time to failure, F(t )  = Prob[ T 5 t ] ,  
we require the first  r-order  statistics TI 5 T2 d ... 5 T,, from 
a sample of  size n from F(t) ,  where n is the number of 
components which are subject to that failure mode, and r is 
the largest  integer for which T, 5 T M X .  If Vdenotes a random 
variable uniformly distributed on (O,l), it is  well known that 
F”( V )  is distributed like T, and F( 7‘) is distributed like V. 
Therefore, if  we can find uniform order statistics { K),  we can 
find the required { Ti1 from Ti = F - l (  V,). Furthermore, if  we 
can find order statistics from any other distribution X ,  with 
distribution function G ( x ) ,  we can obtain the { Vi) with the 
required distribution by setting V,  = G(Xi) .  If G ( x )  is  chosen 
to be the exponential distribution with mean a,   G(x;a)  = I - 
exp (-x/a), the {Xi) are easy to get. It can  be  shown  (e.g., 
[ 121, p. 18) that the successive  differences Di = Xi - Xi-l are 
independently distributed with distributions G[x;a/(  n + 1 - 
i ) ] ,  respectively.  Now the problem  is  reduced to finding r 
independent samples from r different exponential distribu- 
tions. This is done by setting Di = -In ( Ui)/(n + 1 - i), where 
{ Ui I are r independent uniform random variables. Substituting 
back through these equations, all of this reduces to 

FTMS uses this expression and the built-in APL random 
number generator to sequentially generate all  failure times up 
to TMAX. 

Time of next  event The time of the next  event is the time of 
the next  scheduled maintenance or the time of the next hard 
failure,  whichever comes first.  If the event is a hard failure,  it 
is  necessary to determine whether a UE  has occurred. Some 
failure modes cause a UE independently of other failures, e.g. 
an entire card  failure if a card contributes more than NEC 
bits  per data word. For other failure  modes, a UE occurs if 
any bit  affected  by the new failure  lines up with a different  bit 
in the same word  which  was affected by a previous  failure. 
The convention for  representing  failure locations is quite 
convenient for determining whether  two  failures  line up to 
cause a double-bit error in any data word. If  we define the 
logic function 

L ( u , v ) = ( u = v )  u ( u = O )  u ( u = O ) ,  

it is  easy to see that two  failures  represented by (1 e, a, b, x, 
y )  and (f’, c’, a’, b’, x’, y’)  line up to cause a double-bit error 
in at least one word  if and only if the logical  expression 

is true. When  all double-bit errors have  been located, it  is  even 

simpler to find the triple-bit  errors: Three failures line up to 
cause a triple-bit error if and only if  each pair of two causes a 
double-bit error. 

Next action Maintenance actions are.  effected  by making the 
appropriate changes in FAIL and SPARE. Card replacement 
is done by removing from FAIL and SPARE the rows corre- 
sponding to the cards to be  removed, and adding new rows 
for the failures in the new cards.  Address permutation is 
accomplished by simply applying a permutation to the  num- 
bers located in column 5 (the chiprow location) in FAIL. 
Spare switching  involves  switching the appropriate rows be- 
tween FAIL and SPARE. Pages are deallocated  by  recording 
the page addresses in a separate matrix called DEAL. If the 
total number of  pages  exceeds the specified threshold, deallo- 
cation fails and another action must be taken to remove the 
UE.  When a new UE  occurs, it is compared to the pages in 
DEAL to verify that it  is not in a word  already deallocated. 

Record keeping Two  types  of  records are kept for each 
simulated lifetime. The matrix EVENTS contains one record 
for  each event-action pair (e.g. UE-card replacement), includ- 
ing the type of  event and action, the time of occurrence, and 
other pertinent information such as the number of cards 
replaced, the number of  pages deallocated, etc. The matrix 
STATES contains one record for each  change  of  state, includ- 
ing the time of change and the new state. The state is  defined 
to be the number of words containing one or (if NEC = 2 )  
two  bad  bits, and the number of pages deallocated. An event 
may  cause  several actions at the same time, but the memory 
state does not change  between  events. Therefore EVENTS is 
updated after each action, while STATES is updated only 
once for  each  event  (Fig. 8). 

After  each  system  is simulated, the results are added to the 
cumulative results  from previous systems. The records u p  
dated consist of NS, the cumulative number of systems  sim- 
ulated, and four matrices: EV,  EV2, ST, and ST2. EV and 
EV2 contain one row for each time point for which output is 
required, and one column for  each event-count type of param- 
eter, i.e.  UEs, CRs, and RAs. The  (i,j)th elements of EV and 
EV2 contain 
NS 

X t j k  9 

NS 

x i k ,  
k= I k=l 

respectively,  where X i j k  equals the total count for the jth 
parameter, summed over the time interval from zero to the 
ith time point, for the kth system simulated. ST and ST2 
contain similar information for the state type parameters B I ,  
Bz, and DP. This is the minimum information required to 
compute the estimates and confidence intervals for  each  pa- 
rameter. 

REPORT 
In the REPORT menu the user  can  choose to print tables 
containing the estimated values of the defined parameters as 
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Figure 9 Average RA rates for 4-megabyte  memory with SEC. 

a function of  time-in-field. The values  can be calculated for 
each interval ( Ti,T,+,), or for the cumulative intervals (O,Ti). 
For cumulative intervals the proportional accuracy  confidence 
limits described above may  be printed. 

Soft errors The  outputs include estimates and confidence 
limits for SUE, the soft UE rate, even though soft errors are 
not simulated. An SUE will occur whenever a soft error occurs 
in a word  which contains NEC bad  bits. Thus the SUE rate 
at any time is  simply the soft error rate times the probability 
that a randomly chosen bit is a good  bit in a word containing 
NEC bad  bits. This is equal to 

SOFT X (number of chips in the memory) 
X (fraction of words containing NEC bad bits) 
X (fraction of good bits in words  with NEC 

bad  bits). 

The number of chips is FCAB, the total number of words  is 
ABXY, and the fraction of  bits good is (FC - NEC)/FC. 
Therefore we can estimate SUE( t )  as a constant [SOFT X 

(FC - NEC)/Xyl times the estimated value of Bi( f), where i 
= NEC. This approach gives a considerable savings in running 
time because soft error rates can be much higher than hard 
failure  rates. Marston [22] reports a four-to-one ratio of soft 
to hard failures  for a 16K dynamic RAM,  based on a soft- 
error rate of 0.1 percent per 1000 hours, and May and Woods 
[2]  reported orders of magnitude higher  soft-error  rates. 

More importantly, the accuracy of the estimate is actually 
better because we are computing the exact (conditional on the 
simulated hard-failure state) SUE rate at each point in time 
instead of estimating that rate by throwing soft errors at the 
memory. One of the basic  principles of Monte Carlo analysis 

192 is [ 191, "If, at any point of a Monte Carlo calculation, we can 
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replace an estimate by an exact  value, we shall  reduce the 
sampling error in the final  result."  Let X denote the estimate 
of SUE( t )  for some t based on the above approach, and denote 
the mean and variance of X by m and vz respectively. [ X  is 
unbiased and therefore m = SUE(t).] Let Y denote the esti- 
mate for SUE( t )  which  would  result  from  actually simulating 
soft errors. It is clear that the conditional distribution of Y 
given X is  Poisson  with mean X ,  and it follows that the mean 
and variance of Yare m and (v2 + m), respectively.  Both X 
and Yare unbiased estimates of SUE(t), but the variance of 
Y is greater by a factor of 1 + m/v2. 

END 
The END selection on the main menu allows the user to exit 
from  FTMS. At this point the APL  workspace contains the 
inputs as well  as the simulation results  for the model  most 
recently run. The user can save  these  results and return later 
to add more runs simply by invoking FTMS again.  In order 
to allow the user to save more than one model without wasting 
too much disk  space, END provides the option of expunging 
everything  from the workspace  except the model inputs  and 
simulation results. The user  can  save this reduced  workspace 
and later copy it into a full FTMS workspace to continue 
running the same model. 

4. Design tradeoffs 
FTMS  can  be  used to estimate, to any desired  degree of 
accuracy, the defined  reliability parameters for any memory 
system  which  fits the model  given in Section 2. This gives us 
the ability to predict the effect  of  design options on system 
reliability. The following example illustrates the use  of FTMS 
to compare the use of  page deallocation, chip sparing, and 
FAE as well as single- or double-error correction for a partic- 
ular  system. 
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Figure 11 Average RA rates for 4-megabyte memory with DEC. 

We consider a sample memory  system  of 4 megabytes. The 
system  consists  of a number of cards, each containing a 32 X 

4 array of 16K-bit  chips. There are 128  bit-lines and 128  word- 
lines in a chip. The memory  is  organized as 1-bit-per-chip 
with  respect to the ECC.  At the card level,  4-bits-per-card  is 
assumed. We consider both a (72,64) SEC-DED  code and an 
(80,64) DEC-TED  code. Thus, the system  consists  of  18 cards 
for the SEC-DED  code, and 20 cards for the DEC-TED  code. 

The failure rate of the memory chip is assumed to follow 
the step function shown in Fig.  4. The average  failure rate 
over 100 kPOH  is  0.02  percent  per kPOH. The piece part 
failure distribution within the chip is  35 percent for cells,  12 
percent for word-lines, 18 percent  for  bit-lines, and 35 percent 
for chipkills (same as [ 1 1,2 11). In addition, the support logic 
of a card is  assumed to fail at the same rate as that of a chip. 

We assume that a service maintenance is  scheduled at 200 
power-on  hours. The maintenance is to clean up the cards so 
that each  card contains no more than two  cell  fails at the 
scheduled time. If a card has to be  replaced in order to fix a 
UE, the rule is to replace the card that participates in the UE 
and has the largest number of defective  cells. 

A memory page  is assumed to contain 2 kilobytes.  Consider 
the memory as a chip array of 32 rows. A page  of data resides 
in a single chiprow. It  occupies 2 word-lines and 128 bit-lines 
within a chip. If  page deallocation is  used to fix a UE, the 
threshold of  pages that can be deallocated  is  32. 

Two other features for the system  considered are FAE and 
chip spare. For FAE, 5 bits of address permutation is  assumed. 
The 5-category fault map is  also  assumed  [4]. For chip spare, 
it is assumed that each  card  has one spare chip. Whenever 
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Figure 12 Average  CR  rates for 4-megabyte memory with DEC. 

there is a chip-kill, the faulty chip is  replaced by the spare chip 
on the card that contains the faulty chip. Unless  specifically 
stated, the strategies  described henceforth do not involve chip 
spare. 

For the system  using a (72,64) SEC-DED  code, we  have 
simulated the following  strategies in fixing  UEs: 
PLAIN:  Simply  replace a card to fix a UE. 
PAGE: To fix a UE, the memory page that contains the UE 

is deallocated. If the number of  pages  deallocated  exceeds 
the threshold (32 pages), a card is replaced. 

SPARE/PAGE: The spare chip is  used to fix a chipkill on the 
card, and page deallocation is  used to fix a UE. 

PAGE/FAE: To fix a UE, the memory page that contains the 
UE  is deallocated. If the number of  pages  deallocated 
exceeds the threshold, FAE is  performed. If  FAE fails to 
fix the UE, a card is  replaced. 

The results of the simulations are shown in Figures 9 and 
10 in terms of the rates of repair action and card replacement. 
The results  clearly indicate that page deallocation, FAE, and 
chip spare can be  used to reduce the frequency of repair as 
well as the number of cards replaced. 

For the system  using an (80,64) DEC-TED  code, we have 
simulated the strategies of PLAIN,  PAGE, and PAGE/FAE. 
The rates of repair action and card replacement obtained from 
the simulations are shown  in Figures 11 and 12. Again, the 
results  show that page deallocation and FAE can be used to 
increase  reliability and decrease maintenance cost. 

To show the effectiveness  of double-error correction over 
single-error correction, the repair action rates for the SEC- 
DED code and the DEC-TED  code  with  PLAIN  strategy are 
plotted in Figure 13. At  40 kPOH, there is a slightly  greater 193 
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than 5 times improvement of double-error correction over 
single-error correction in the rate of repair action. The im- 
provement factor is  even  higher at  the early  life  of the memory 
system. Similar conclusion can also  be made on the rate of 
card replacement. 

5. Conclusion 
FTMS was written to provide memory designers  with  a  flexible 
tool with  which to evaluate the various techniques for fault- 
tolerance which can be built into computer memory systems. 
A wide variety of  design options, including options for  system 
architecture, failure modes and rates, and maintenance strat- 
egy, can  be evaluated simultaneously. The  output of FTMS 
gives the frequency of uncorrectable errors of both types (hard 
and soft), and also the amount of degradation due to page 
deallocation and the need to correct bad  bits, and the service 
cost parameters of repair actions and cards replaced. An 
optimal sequential stopping rule is  used to estimate all  of  these 
parameters with  prescribed  accuracy and confidence  level, 
without any prior knowledge  of the variance of the estimates. 

This program has been  successfully applied to evaluate 
alternative design proposals over the past  several  years. During 
that time it has evolved  by adding to the list of options which 
can be evaluated. As future options are proposed, ITMS will 
be  modified to give a quick and accurate prediction of the 
impact of such proposals on memory reliability. 
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