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Fault-Tolerant Memory Simulator

Memory systems in modern computers employ a variety of methods to achieve fault tolerance, such as single- or double-error
correction, page deallocation, or the use of spare chips or cells. Such methods ensure that the failure rate of the system is
considerably less than the sum of the failure rates of the components. However, these methods also complicate the task of evaluating
system reliability. The memory reliability function is too intractable to handle analytically, and we must turn to Monte Carlo
methods. This paper describes the Fault-Tolerant Memory Simulator (FTMS), an interactive APL program which uses Monte

Carlo simulation to evaluate the reliability of fault-tolerant memory systems.

1. Introduction

The problem

The designer of a computer memory system can choose from
a wide variety of techniques for achieving fault-tolerance.
Error-correcting codes have been standard in large memories
for years [1], and page deallocation is commonly used to
tolerate uncorrectable errors until a repair can be made. The
discovery of a new physical mechanism for soft errors in
dynamic memories [2] led to new error-correction techniques
to handle the new error types [3]. More recently, fault-align-
ment exclusion [4] and dynamic spare switching [5] have been
proposed as ways to quickly repair a memory without bringing
the system down for component replacement.

These methods offer significant opportunities to improve
the reliability of memory systems. In order to choose among
these alternatives, however, the designer must be able to
evaluate the impact of each technique, or combination of
techniques, on reliability. This is not an easy task. In a system
without fault-tolerance, each component failure causes a sys-
tem failure; therefore, the system-failure rate is simply the
sum of the component failure rates. In a fault-tolerant mem-
ory, on the other hand, the effect of any single component
failure will, in general, depend on which other components
have already failed. Therefore, the system failure rate, which
in a memory is the uncorrectable error (UE) rate, is a very
complicated function of the component failure rates, failure
modes, system design, etc.

Background

The calculation of R(t), the probability that no UE occurs
before time ¢, for a memory with single-error correction is
difficult but not impossible. A number of similar equations
have previously been given for R(¢) [6—11]. The main differ-
ence among these is the particular failure modes which are
assumed for the array chip (i.e., single cell, row or column of
cells, whole chip). If the memory is replaced with a “good-as-
new” memory each time a UE occurs, then the sequence of
UE times forms a renewal process [12]; and UE(¢), the ex-
pected number of UEs in the first 7 hours of system life, is the
unique solution of the renewal equation,

UE(t) = J(: [l + UE(t — )] f(s)ds,

where f(t) = —dR(t)/dt is the probability density function of
the time-to-first-UE. For a small memory contained on a
single array card this would be a reasonable assumption; the
only replacement possible is the entire memory. If soft errors
as well as hard failures are considered, it is still possible to
derive an exact analytic expression for the UE rate [13], as
long as the entire memory is replaced after each hard UE.

For larger memories which are contained on multiple array
cards, the required calculations are far more difficult; the state
of the memory after repair is in general very different from
the state of a brand-new memory. It may contain cards of
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different ages (and therefore different failure rates) and may
also contain some correctable hard failures which were left in
at the time of repair. The future of such a system is by no
means independent of its past, and renewal theory does not
apply. The situation becomes even more complex when we
consider double-error correction, page deallocation, address
permutation, spare switching, etc.

It is clear therefore that, except for one-card memories,
analytic calculation of memory reliability is impractical, if not
impossible: Some form of Monte Carlo simulation program
is required [14-16]. Memory designers need a flexible program
which can evaluate all current memory design options and
which can be quickly adapted to changing circumstances such
as new failure modes [2] or new techniques of fault-tolerance
[3-5].

FTMS

This paper describes the Fault-Tolerant Memory Simulator
(FTMS), an interactive APL program written to fill that need.
FTMS is designed to evaluate several reliability parameters
for memories which employ single- or double-error correction,
page deallocation, address permutation, and spare switching;
and which are subject to hard failures and soft errors.

Method of simulation

FTMS estimates memory reliability parameters by simulating
the life history of many systems, counting UEs (and other
parameters) on each simulated system, and averaging the
results. For each individual system this involves simulating
random failure times for each component, checking to see
whether UEs occur, and simulating the appropriate mainte-
nance action (e.g., card replacement).

The first obstacle in writing such a simulator is to account
for the enormous number of possible failures which can occur
(e.g., 18 million different cell failures for a 2-megabyte system).
This problem was originally solved for a precursor to FTMS
when an algorithm was derived which generates random fail-
ure times in order of occurrence [17, 18]). The next choice is
how to represent the state of the memory, and what infor-
mation to keep. The representation scheme described here is
compact while preserving all needed information, and has
proven to be readily adaptable to new designs and fault-
tolerant techniques. One of the fundamental principles of
Monte Carlo simulation is to replace estimates with exact
values wherever possible [19]. This principle was used to good
advantage when soft-error capability was added to FTMS.
FTMS estimates the soft-error rate without simulating any
soft errors, which simultaneously reduces the cost of simula-
tion and improves the accuracy of the estimate.

The law of large numbers guarantees that the estimates
from a Monte Carlo program will be close to the true values
for sufficiently large sample sizes; the user wants to know how
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close and how large. FTMS provides confidence limits on all
of its estimates, but these are not available until after the
program has been run. Before running the simulation the user
has no way of knowing how many samples will be needed to
produce the accuracy he requires. Too few samples mean he
must rerun the job; too many waste computer resources.
Therefore FTMS incorporates a sequential stopping rule [20]
which continues to sample until each parameter has been
estimated with the accuracy and confidence level specified by
the user.

In the following section we describe the model used by
FTMS to represent memory systems. Section 3 describes some
of the internal structure of the FTMS programs and the
algorithms used to generate random failure times, estimate
the soft UE rate, and decide on an optimal stopping time.
Finally, in Section 4, we show by example how FTMS can be
used to evaluate the impact of various memory design and
maintenance strategies on reliability.

2. Memory model

The memory model consists of four parts: architecture, failure
modes, maintenance strategy, and reliability parameters. The
architecture defines the logical and physical configuration of
the memory. The failure modes and rates define the types and
frequencies of component failures which can cause the mem-
ory to malfunction. The maintenance strategy defines the
actions which are taken to repair the memory when it has
failed. Finally, reliability parameters are defined to quantify
the effects of architecture, failure rates, and maintenance
strategy on the frequency of UEs, the amount of degradation,
and the cost of service.

e Architecture

The memory architecture consists of the logical structure of
the memory and the logical-to-physical mapping of the bits in
the memory. The logical structure includes the number and
size of data words and pages, the error-correcting capability
of the ECC, and any built-in fault-tolerance features. The
physical structure includes the number and arrangement of
cells per array chip, and chips per array card.

The memory consists of F identical array cards, each logi-
cally subdivided into C bit-planes. Each bit-plane is an 4 X B
matrix of array chips, and each chip is an X X ¥ matrix of
cells. A data word consists of FC bits, one from the same
address in each bit-plane. The memory has either single-error
correction (SEC) or double-error correction (DEC) capability
for each data word. The number of errors which are correct-
able is denoted NEC. Figure 1 shows the structure of a 2-
megabyte memory containing 16K-bit chips on 18 array cards.

Fault Alignment Exclusion
The use of Fault Alignment Exclusion (FAE) to remove UEs
by address permutation is discussed more fully elsewhere in
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each chip marked X on every bit-plane.
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this issue [4]. We briefly describe how FAE is incorporated
into the FTMS model.

A word address consists of a chip address (row and column
within a bit-plane) and a cell address (row and column within
a chip). The cell and chip-column portions of the address are
fixed physical locations, but the chip-row address is logically
determined by the contents of a control register. That is, the
logical chip-row address is some permutation of the physical
chip-row address. This permutation capability is included to
allow us to misalign failures in the memory so that all resultant
data words contain only correctable errors.

The address permutation capability is defined by the per-
mutations which can be represented, the algorithm used to
choose a permutation, and the information available to that
algorithm. The logical chip-row address consists of N = (log
A)/(log 2) bits used to select one of A4 chips in a column. The
physical address is obtained by forming the exclusive-or of R
of these N bits with the bits in a control register, and leaving
the remaining N — R bits unchanged. Each column of chips
has its own control register and is independently permutable.
Thus there are a total of 2% permutations possible for each
column, and 2®F¢B) possibilities for the entire memory. Var-
ious algorithms have been written to choose a set of permu-
tations which misalign errors so that no data words contain
uncorrectable errors. The algorithm used is part of the mem-
ory architecture, and the name of the algorithm is denoted
ALGO (i.e., if the algorithm named ALGJC is to be used,
ALGO = “ALGJC”). The input to the algorithm is a fault-
map which assigns each chip to a category which depends on
the worst hard failures on the chip. A five-category map tells
whether failures on a chip affect single cells only, rows only,
columns only, rows and columns, or the entire chip. In a
three-category map the middle three categories are combined.
The number of categories in the fault-map is denoted M.

FTMS has several built-in FAE algorithms, and also accepts
any user-designed algorithm. All the user has to do is copy his
algorithm into the APL workspace containing FTMS and then
set ALGO equal to the name of his algorithm.

Page deallocation

The ABXY words in the memory are subdivided into P pages,
each containing (4B8XY)/P data words. Each page consists of
an A’ X B’ matrix of sub-chips from each bit-plane, and each
sub-chip is an X’ X Y’ matrix of cells on a chip. If a data
word contains an uncorrectable error, the page containing that
word may be deallocated. This allows the memory to recover
quickly, but at a somewhat reduced capacity, from the effects
of a failure. Figure 2 shows the bit locations of pages 1-128
for the memory in Fig. 1, assuming a 2048-byte page. The
page structure is identical to the memory structure with F, C,
A, B, X, Yreplacedby F,C, 4, B", X', Y".
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Spare switching

Each array card contains S additional chips which can be
logically switched in to replace one of the other CAB chips on
the card. Any spare can replace any other chip, but no more
than one spare can be used in any spare domain. There are D
spare domains on a card, each consisting of 4/D consecutive
rows of chips in each bit-plane. Figure 3 shows the spare
domains from one card of the memory in Fig. 1, assuming
two spares and four spare domains.

o Failure modes and rates
The components which make up the memory are subject to
hard failures and soft errors.

Hard failures

A hard failure is a permanent inability of a component to
reliably store data in one or more cells. An array chip which
consists of a rectangular array of cells may fail in a number of
different ways, including single cell, row or column of cells,
and entire chip failure {7, 10, 21, 22]. In addition, we consider
failures in address lines, data buses or registers, or decoding
logic, which can disable groups of chips. The failure is de-
scribed logically in terms of the cells which cannot be reliably
written to or read from. In these terms, there are nine different
hard-failure modes:

. Single cell.

. Row of Y cells on a chip.

. Column of X cells on a chip.

. Entire chip (called a chip-kill).

. Row of B chips in a bit-plane.

. Column of 4 chips in a bit-plane.

. Entire bit-plane.

. Entire card.

. Logic support (entire memory disabled).

O 00 =1 N WU b W N =

Each failure mode has a corresponding failure rate function
which is defined as a step function. Figure 4 shows a typical
fatlure rate curve for a 16K-bit array chip. The rates for the
first four modes are expressed as a fixed percentage of the total
chip failure rate, and the remaining rates are defined by
separate curves similar to Fig. 4. Failures occur at random
times in accordance with these rates and at random locations
in the memory. When failures affect more than NEC bits in
the same word, an uncorrectable error (UE) occurs immedi-
ately.

The hard-failure rates are specified in a matrix, denoted
HARD, which contains in column one the end points of the
time intervals and in columns two through ten the failure
rates for the nine failure modes over the corresponding time
intervals. The failure rates are in units of percent per 1000
hours per component.
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Figure 4 Failure rate curve for 16K-bit chip.

Soft errors

In 1978 May and Woods [2] discovered a new physical mech-
anism for soft errors in dynamic memories. Alpha particles
produced by the radioactive decay of minute quantities of
uranium and thorium in the packaging materials can cause
bits to flip in dynamic RAMs. These bit flips are soft failures
in the sense that they have no permanent effect on the RAM;
the cell which suffers the failure is completely recovered when
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Figure 5 Main menu selections in FTMS.

a new bit is written into it and thereafter has no greater chance
of failure than any other cell. We assume that a soft error
affects a single cell. If a soft error occurs in a word which
already contains NEC érrors, a soft UE (SUE) occurs, and is
immediately repaired by rewriting with good data. If a soft
error occurs in a word with fewer than NEC errors, it is
immediately corrected by rewriting with good data. The soft
error rate is assumed to be a constant, denoted SOFT, and is
expressed in units of percent per 1000 hours per chip.

This model of soft errors neglects some realities which
should be considered when applying the model. In the first
place, some array chips, especially charge-coupled devices,
may be subject to multi-bit soft errors. Secondly, there are
algorithms available to correct a combination of hard and soft
errors even though the total number of errors exceeds NEC
[1, 3], so a SUE may not really be uncorrectable. Finally, if
good data is not written frequently enough, soft errors may
accumulate to line up with other soft errors.

e Maintenance strategy
The maintenance strategy is a set of rules which prescribe
what action will be taken when various events occur.

Events

There are three types of events which can be used to trigger a
maintenance action. If a UE occurs, some action must be
taken because a memory containing a UE is considered to be
nonfunctioning. If a hard failure occurs which does not cause
a UE, maintenance may be specified to reduce the risk of
future UEs. Finally scheduled maintenance may be performed
at a fixed time independent of failures occurring in the mem-
ory.

Actions

The actions which can be taken are card replacement, page
deallocation, address permutation, and spare switching. The
“card replacement” action causes removal of the minimum
number of cards to achieve one of the following: no UEs, at
most x bad bits per card, or at most x bad bits in the memory.

C. L. CHEN AND R. A. RUTLEDGE

Page deallocation deallocates all pages containing UEs but no
more than x pages in total may be deallocated. Address
permutation attempts to produce a configuration with at most
x(NEC) bad bits per word. Spare switching attempts to replace
a chip-kill with a spare chip. In each case x is a user-specified
constant.

A complete strategy is a set of event-action pairs which may
be applied sequentially. For example,

1. At 200 hours, replace any card with more than two bad
bits.

. At a chip-kill, switch in a spare.

At a UE, deallocate up to 32 pages.

At a UE, permute addresses to remove UEs.

. At a UE, replace cards to remove all UEs.

wnoh W

Action 4 would be taken only if action 3 were unsuccessful,
and action 5 only if action 4 were unsuccessful. Action 5 is
included as the last resort in any maintenance strategy: it
cannot fail to be successful and UEs cannot be left in the
memory.

o Reliability parameters

The reliability of a fault-tolerant memory can be measured in
terms of service cost, frequency of interruptions, and amount
of degradation. Service cost is measured in terms of card
replacements (CRs) and repair actions (RAs). An RA is de-
fined to be an unscheduled action which requires the interven-
tion of a service person. Specifically, an RA is the replacement
of one or more cards due to a hard failure (scheduled main-
tenance is not included). Frequency of interruption is mea-
sured by the rate of hard and soft UEs. Soft UEs are measured
separately because they have a much smaller impact on the
system (component replacement is not required), and because
they can in some cases be corrected [1, 3]. Degradation is
measured by the average number of pages deallocated and the
average number of words containing one or (if DEC is used)
two bad bits. A large number of bad bits may cause perform-
ance degradation even if all errors are correctable, because of
time taken to perform the corrections. The following specific
parameters are defined:

UE(t) = Expected number of UEs in (0,¢).

SUE(t) = Expected number of SUEs in (0,).

CR(t) = Expected number of cards replaced in (0,¢).

RA(t) = Expected number of RAs in (0,¢).

B\(t) = Expected average number of words with one bad bit
during (0,).

By() = Expected average number of words with two bad bits
during (0,7).

DP(t) = Expected average number of pages deallocated during
0,1).

The first four parameters are cumuliative counts, while the
last three are time averages of states of the memory.

IBM J. RES. DEVELOP.  VOL. 28 ¢ NO. 2 « MARCH 1984




3. The FTMS program

FTMS is an interactive menu-driven APL program. The main
menu has four selections: INPUT, SIMULATE, REPORT,
and END (Figure 5). Each selection leads to a sub-menu. The
INPUT menu allows the user to enter or change model
parameters. The SIMULATE menu sets the conditions of
simulation and starts the simulation. The REPORT menu
allows the user to print inputs and outputs in various formats.
The END menu can be used to save a compacted set of
information for future use and to exit from the program.

e INPUT

The input menu has six selections (Figure 6). Each selection
invokes a program for inputting model parameters. ARCHI-
TECT, FAILRATES, and STRATEGY prompt the user to
provide the parameters described above. TIMES asks for the
total lifetime of systems to be simulated, and the intermediate
time points for which the user requires outputs. NAME asks
for a job name and other descriptive information to be printed
on reports. All inputs are checked for validity as they are
entered. CHECK does an overall consistency check on the
data and either returns to the main menu or informs the user
of inconsistencies.

o SIMULATE

The SIMULATE menu is shown in Figure 7. The first three
selections allow the user to control the stopping rules for the
simulation. These are discussed later in detail. SEED allows
the user to control the random seed used for starting the
simulation. GO begins the actual simulation of memory sys-
tems and returns control to SIMULATE when the stopping
criteria are satisfied. The results of each simulation run (each
invocation of GO) are automatically combined with all pre-
vious results since the last model change made using the
INPUT menu. If this is not desired, the selection NEW will
wipe out all previous results.

Stopping rules

The objective of FTMS is to estimate the reliability parameters
defined above with reasonable accuracy at reasonable cost.
The accuracy of the results is quantified in terms of confidence
limits on the proportional error in any estimate. Let X repre-
sent any of the random variables defined above for some
specific time point [e.g. UE(¢) at ¢ = 10 000 hours], and let
X1, Xa, -++, X, be sample values of X obtained by simulating »
memory systems. The mean and variance of X are denoted m
and 2 respectively, and the sample mean and variance are
given by

=n

X= Xi!

=

¥

1 i=n _
2 2 Y
S n-— l,gl (/Yl X)

We wish to find a confidence interval of prescribed propor-
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tional accuracy p and prescribed coverage probability ¢ for the
unknown mean m. The variance v? is clearly finite and there-
fore, from the central limit theorem (e.g. [23], p. 213),

42
< =,

mn

n—w

limit P HX—_’—”
m

where
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Moreover, it can be shown ([23], p. 357) that

fimit S, = 2
n—m/? m’

and therefore

.. X-m FAY

limit P| |———| <= = =c
i[5 <77 -

Thus, for n sufficiently large, the proportional error in )7 (as
an estimator of m) is less than p = zS/X¥vn with probability
c.

Conversely, in order to achieve proportional accuracy p,
one should choose a sample size equal to the smallest » which
is greater than or equal to (vz/mp)>.

Before running the simulation, however, the user does not
generally know v/m and cannot solve for n. Therefore FTMS
contains a sequential stopping rule which continues to simu-
late until each parameter has been estimated with the propor-
tional accuracy and confidence level specified by the user. The
rule is simply to stop sampling as soon as # is greater than or
equal to (Sz/Xp)®. This stopping rule has been studied by
Nadas [20], who proved that it is asymptotically consistent,

ie.,
limitPHX— m| =< p] =,

p—0

and asymptotically efficient in the sense that the expected
sample size approaches the fixed sample size which would be
used if v/m were known in advance.
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If the required accuracy is too tight, the program may run
for an excessive time. The TIME selection on the SIMULATE
menu can be used to put upper bounds on the CPU time and
elapsed time of any run of GO. Finally, the COUNT selection
in SIMULATE allows the user to set a maximum and mini-
mum number of systems to simulate.

If some simulations have already been run for a given
model, it is possible to estimate the relationship of time and
accuracy to sample size. In this case FTMS will provide the
user with an estimate of the running time, proportional ac-
curacy, and number of simulations for the stopping rules he
has chosen.

Simulation runs

The flow of simulation is shown in Figure 8. A memory is
“built” at random, and then the life history of that memory is
simulated by computing the effects of each failure and the
results of each maintenance action. At the end of system life,
the results of the current system are added to the cumulative
results from previous systems simulated. Then the stopping
rules are checked and the program either begins another
system simulation or returns control to the main menu.

Build memory The physical state of the memory at any time
is determined by the type and location of the hard failures on
each card. This information is stored in a matrix called FAIL
which contains one row corresponding to each hard failure.
Each row is of the form (m, ¢, f, ¢, a, b, x, y) where m = failure
mode, ¢ = failure time, and (f, ¢, 4, b, x, y) defines the location
of the failure. The convention is that f'is the location of the
card containing the failure if the failure is confined to one
card, or /= 0 if the failure spans all cards. The remaining
parameters are defined similarly. For example (4, 2500, 9, 3,
6, 1, 0, 0) represents a chip-kill at 2500 hours on the chip in
row six and column one of the third bit-plane on the ninth
card in the memory. Failures on spare chips are stored in a
separate matrix of the same form called SPARE.

The matrix FAIL could be generated sequentially by select-
ing a random time-to-next-failure after dealing with each
simulated event. It is more convenient, however, to choose all
random failure times, up to the specified end of system life,
Twuax hours, at the beginning. Therefore, at time zero FAIL
contains all failures which will occur before Twax (card re-
placement is discussed later), and the actual state of the system
at time ¢ is that part of FAIL with times less than or equal to .

The straightforward way to generate FAIL would be to
simulate a random failure time for each component in the
system, and then select only those times less than Tmax. The
problem with this approach is the astronomical number of
components which would have to be simulated. For the
example shown in Fig. 1 it would be necessary to select 18
million random failure times for cell failures alone.
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Fortunately there is another way. FTMS uses a simple
algorithm to generate random failure times in order of occur-
rence up to Tuax. For a given failure mode with cumulative
distribution function of time to failure, F(¢) = Prob[T = ¢],
we require the first r-order statistics 7, = 7, < --- < T,, from
a sample of size n from F(¢), where n is the number of
components which are subject to that failure mode, and r is
the largest integer for which 7, < Twax. If ¥ denotes a random
variable uniformly distributed on (0,1), it is well known that
F~\(V) is distributed like T, and F(T) is distributed like V.
Therefore, if we can find uniform order statistics { V;}, we can
find the required { T;} from T; = F~'(V;). Furthermore, if we
can find order statistics from any other distribution X, with
distribution function G(x), we can obtain the {V;} with the
required distribution by setting V; = G(X}). If G(x) is chosen
to be the exponential distribution with mean g, G(x;a)=1 —
exp (—x/a), the {X;} are easy to get. It can be shown (e.g.,
[12], p. 18) that the successive differences D; = X; — X,_, are
independently distributed with distributions G[x;a/(n + 1 —
7)], respectively. Now the problem is reduced to finding r
independent samples from r different exponential distribu-
tions. This is done by setting D; = —In (U;)/(n + 1 — i), where
{ U} are r independent uniform random variables. Substituting
back through these equations, all of this reduces to

=i
T’_=F—1|:1 _ H U}(l/n+l—j):|, i=1,2 -

=1

FTMS uses this expression and the built-in APL random
number generator to sequentially generate all failure times up
to TMAX-

Time of next event The time of the next event is the time of
the next scheduled maintenance or the time of the next hard
failure, whichever comes first. If the event is a hard failure, it
is necessary to determine whether a UE has occurred. Some
failure modes cause a UE independently of other failures, e.g.
an entire card failure if a card contributes more than NEC
bits per data word. For other failure modes, a UE occurs if
any bit affected by the new failure lines up with a different bit
in the same word which was affected by a previous failure.
The convention for representing failure locations is quite
convenient for determining whether two failures line up to
cause a double-bit error in any data word. If we define the
logic function

L(up)=(u=v) U (u=0) U (v=0),

it is easy to see that two failures represented by (f, ¢, a, b, x,
yyand (f’,c’,a’, b’, x’, y’) line up to cause a double-bit error
in at least one word if and only if the logical expression

L(x,x) N L(yy") N L(aa’) n L(bb") N ~[L({f,f")
N Lc,c’)]

is true. When all double-bit errors have been located, it is even
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simpler to find the triple-bit errors: Three failures line up to
cause a triple-bit error if and only if each pair of two causes a
double-bit error.

Next action Maintenance actions are effected by making the
appropriate changes in FAIL and SPARE. Card replacement
is done by removing from FAIL and SPARE the rows corre-
sponding to the cards to be removed, and adding new rows
for the failures in the new cards. Address permutation is
accomplished by simply applying a permutation to the num-
bers located in column 5 (the chip-row location) in FAIL.
Spare switching involves switching the appropriate rows be-
tween FAIL and SPARE. Pages are deallocated by recording
the page addresses in a separate matrix called DEAL. If the
total number of pages exceeds the specified threshold, deallo-
cation fails and another action must be taken to remove the
UE. When a new UE occurs, it is compared to the pages in
DEAL to verify that it is not in a word already deallocated.

Record keeping Two types of records are kept for each
simulated lifetime. The matrix EVENTS contains one record
for each event-action pair (e.g. UE-card replacement), includ-
ing the type of event and action, the time of occurrence, and
other pertinent information such as the number of cards
replaced, the number of pages deallocated, etc. The matrix
STATES contains one record for each change of state, includ-
ing the time of change and the new state. The state is defined
to be the number of words containing one or (if NEC = 2)
two bad bits, and the number of pages deallocated. An event
may cause several actions at the same time, but the memory
state does not change between events. Therefore EVENTS is
updated after each action, while STATES is updated only
once for each event (Fig. 8).

After each system is simulated, the results are added to the
cumulative results from previous systems. The records up-
dated consist of NS, the cumulative number of systems sim-
ulated, and four matrices: EV, EV,, ST, and ST,. EV and
EV, contain one row for each time point for which output is
required, and one column for each event-count type of param-
eter, i.e. UEs, CRs, and RAs. The (i,/)th elements of EV and
EV,contain
NS NS
Z /Yijk 3 E X lzjk ’
k=1 k=1
respectively, where X equals the total count for the jth
parameter, summed over the time interval from zero to the
ith time point, for the kth system simulated. ST and ST,
contain similar information for the state type parameters B,
B,, and DP. This is the minimum information required to
compute the estimates and confidence intervals for each pa-
rameter.

& REPORT
In the REPORT menu the user can choose to print tables
containing the estimated values of the defined parameters as
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Figure 9 Average RA rates for 4-megabyte memory with SEC.

a function of time-in-field. The values can be calculated for
each interval (T;,T:4.1), or for the cumulative intervals (0,T;).
For cumulative intervals the proportional accuracy confidence
limits described above may be printed.

Soft errors The outputs include estimates and confidence
limits for SUE, the soft UE rate, even though soft errors are
not simulated. An SUE will occur whenever a soft error occurs
in a word which contains NEC bad bits. Thus the SUE rate
at any time is simply the soft error rate times the probability
that a randomly chosen bit is a good bit in a word containing
NEC bad bits. This is equal to

SOFT x (number of chips in the memory)
X (fraction of words containing NEC bad bits)
X (fraction of good bits in words with NEC
bad bits).

The number of chips is FCAB, the total number of words is
ABXY, and the fraction of bits good is (FC — NEC)/FC.
Therefore we can estimate SUE(¢) as a constant [SOFT X
(FC - NEC)/XY] times the estimated value of B(t), where i
= NEC. This approach gives a considerable savings in running
time because soft error rates can be much higher than hard
failure rates. Marston [22] reports a four-to-one ratio of soft
to hard failures for a 16K dynamic RAM, based on a soft-
error rate of 0.1 percent per 1000 hours, and May and Woods
[2] reported orders of magnitude higher soft-error rates.

More importantly, the accuracy of the estimate is actually
better because we are computing the exact (conditional on the
simulated hard-failure state) SUE rate at each point in time
instead of estimating that rate by throwing soft errors at the
memory. One of the basic principles of Monte Carlo analysis
is [19], “If, at any point of a Monte Carlo calculation, we can
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Figure 10 Average CR rates for 4-megabyte memory with SEC.

replace an estimate by an exact value, we shall reduce the
sampling error in the final result.” Let X denote the estimate
of SUE(¢) for some ¢ based on the above approach, and denote
the mean and variance of X by m and v? respectively. [X is
unbiased and therefore m = SUE(t).] Let Y denote the esti-
mate for SUE(t) which would result from actually simulating
soft errors. It is clear that the conditional distribution of Y
given X i§ Poisson with mean X, and it follows that the mean
and variance of Y are m and (v* + m), respectively. Both X
and Y are unbiased estimates of SUE(¢), but the variance of
Y is greater by a factor of 1 + m/v”.

e END

The END selection on the main menu allows the user to exit
from FTMS. At this point the APL workspace contains the
inputs as well as the simulation results for the model most
recently run. The user can save these results and return later
to add more runs simply by invoking FTMS again. In order
to allow the user to save more than one model without wasting
too much disk space, END provides the option of expunging
everything from the workspace except the model inputs and
simulation results. The user can save this reduced workspace
and later copy it into a full FTMS workspace to continue
running the same model.

4. Design tradeoffs

FTMS can be used to estimate, to any desired degree of
accuracy, the defined reliability parameters for any memory
system which fits the model given in Section 2. This gives us
the ability to predict the effect of design options on system
reliability. The following example illustrates the use of FTMS
to compare the use of page deallocation, chip sparing, and
FAE as well as single- or double-error correction for a partic-
ular system.
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Figure 11 Average RA rates for 4-megabyte memory with DEC.

We consider a sample memory system of 4 megabytes. The
system consists of a number of cards, each containing a 32 X
4 array of 16K-bit chips. There are 128 bit-lines and 128 word-
lines in a chip. The memory is organized as 1-bit-per-chip
with respect to the ECC. At the card level, 4-bits-per-card is
assumed. We consider both a (72,64) SEC-DED code and an
(80,64) DEC-TED code. Thus, the system consists of 18 cards
for the SEC-DED code, and 20 cards for the DEC-TED code.

The failure rate of the memory chip is assumed to follow
the step function shown in Fig. 4. The average failure rate
over 100 kPOH is 0.02 percent per kPOH. The piece part
failure distribution within the chip is 35 percent for cells, 12
percent for word-lines, 18 percent for bit-lines, and 35 percent
for chip-kills (same as [11, 21]). In addition, the support logic
of a card is assumed to fail at the same rate as that of a chip.

We assume that a service maintenance is scheduled at 200
power-on hours. The maintenance is to clean up the cards so
that each card contains no more than two cell fails at the
scheduled time. If a card has to be replaced in order to fix a
UE, the rule is to replace the card that participates in the UE
and has the largest number of defective cells.

A memory page is assumed to contain 2 kilobytes. Consider
the memory as a chip array of 32 rows. A page of data resides
in a single chip-row. It occupies 2 word-lines and 128 bit-lines
within a chip. If page deallocation is used to fix a UE, the
threshold of pages that can be deallocated is 32.

Two other features for the system considered are FAE and
chip spare. For FAE, 5 bits of address permutation is assumed.
The 5-category fault map is also assumed [4]. For chip spare,
it is assumed that each card has one spare chip. Whenever
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Figure 12 Average CR rates for 4-megabyte memory with DEC.

there is a chip-kill, the faulty chip is replaced by the spare chip
on the card that contains the faulty chip. Unless specifically
stated, the strategies described henceforth do not involve chip
spare.

For the system using a (72,64) SEC-DED code, we have
simulated the following strategies in fixing UEs:

PLAIN: Simply replace a card to fix a UE.

PAGE: To fix a UE, the memory page that contains the UE
is deallocated. If the number of pages deallocated exceeds
the threshold (32 pages), a card is replaced.

SPARE/PAGE: The spare chip is used to fix a chip-kill on the
card, and page deallocation is used to fix a UE.

PAGE/FAE: To fix a UE, the memory page that contains the
UE is deallocated. If the number of pages deallocated
exceeds the threshold, FAE is performed. If FAE fails to
fix the UE, a card is replaced.

The results of the simulations are shown in Figures 9 and
10 in terms of the rates of repair action and card replacement.
The results clearly indicate that page deallocation, FAE, and
chip spare can be used to reduce the frequency of repair as
well as the number of cards replaced.

For the system using an (80,64) DEC-TED code, we have
simulated the strategies of PLAIN, PAGE, and PAGE/FAE.
The rates of repair action and card replacement obtained from
the simulations are shown in Figures 11 and 12. Again, the
results show that page deallocation and FAE can be used to
increase reliability and decrease maintenance cost.

To show the effectiveness of double-error correction over
single-error correction, the repair action rates for the SEC-
DED code and the DEC-TED code with PLAIN strategy are
plotted in Figure 13. At 40 kPOH, there is a slightly greater
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Figure 13 Average RA rates for 4-megabyte memory with SEC and
DEC.

than 5 times improvement of double-error correction over
single-error correction in the rate of repair action. The im-
provement factor is even higher at the early life of the memory
system. Similar conclusion can also be made on the rate of
card replacement.

5. Conclusion

FTMS was written to provide memory designers with a flexible
tool with which to evaluate the various techniques for fault-
tolerance which can be built into computer memory systems.
A wide variety of design options, including options for system
architecture, failure modes and rates, and maintenance strat-
egy, can be evaluated simultaneously. The output of FTMS
gives the frequency of uncorrectable errors of both types (hard
and soft), and also the amount of degradation due to page
deallocation and the need to correct bad bits, and the service
cost parameters of repair actions and cards replaced. An
optimal sequential stopping rule is used to estimate all of these
parameters with prescribed accuracy and confidence level,
without any prior knowledge of the variance of the estimates.

This program has been successfully applied to evaluate
alternative design proposals over the past several years. During
that time it has evolved by adding to the list of options which
can be evaluated. As future options are proposed, FTMS will
be modified to give a quick and accurate prediction of the
impact of such proposals on memory reliability.
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