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Fault-Tolerant Design Techniques for Semiconductor Memory
Applications

Advances in semiconductor memory technology towards higher-density and higher-performance memory chips have created new
reliability challenges for the memory system designer. An example would be the multiple-bit-per-chip organization with the chip
outputs used in the same word. This design structure would be prone to uncorrectable errors with conventionally implemented
single-error-correcting double-error-detecting codes. With these newer chips, memory system designers will have to give special
attention not only to the types of failures but to ways of minimizing the system impact of reliability defects. In this paper, a number
of design approaches are presented for minimizing the effects of chip failures through the use of organizational techniques and
through enhancements to conventional error checking and correction facilities. The fault-tolerant design technigues described are
compatible with most existing memory designs. An evaluative comparison of these techniques is included, and their application

and utility are discussed.

Introduction

Computer memory chips containing 65 536 (64K) bits are
now quite common, and chips of even greater bit densities are
becoming available. In addition, each new computer system
generation has seen a substantial increase in the number of
memory chips used with a corresponding significant increase
in memory capacity. However, larger-capacity memory sys-
tems utilizing higher-density memory chips are more suscep-
tible to failures. This paper describes several of the most
effective fault-tolerant design techniques useful in minimizing
the consequences of these failures upon using systems. The
primary objectives are to significantly reduce the sensitivity to
defects (by minimizing the probability of their accumulation
into failures, which can become uncorrectable errors), and to
provide mechanisms for keeping the memory system operat-
ing once the failures exceed the capabilities of conventional
single-error-correcting double-error-detecting (SEC-DED) er-
ror checking and correction (or error-correcting code—ECC)
facilities [1].

The defect types that can occur for random-access memo-
ries of the dynamic MOSFET one-device-cell type [2, 3] can
greatly influence the types of error control code selected as
well as the amount of memory affected by these failures. The
most common types of defect faults include the single-cell,
word-line, bit-line, and chip-fail categories. In addition to these
hard faults, this type of memory has been susceptible to soft

failures caused by alpha-particle radiation [4], with a failure
probability higher than the basic intrinsic chip failure rate. In
order to minimize the consequences of these hard and soft
error mechanisms, designers must take into account the inter-
action between the using system, the error checking and
correction facilities used, and the chip configuration and as-
sociated memory organization. The incorporation of ECC
logic for improving product reliability has been commonplace
since the introduction of the IBM System/370 computers.
Increased chip densities and multiple-bit-per-chip organiza-
tions have resulted in more complex designs, increasing the
challenge to the designer [5]. Special attention has been placed
on adapting serial coding techniques (e.g., Fire codes [6]) to
random-access memories to help improve error control ca-
pabilities [7, 8].

The particular system maintenance strategy used can play
an important role in fault tolerance because it can allow the
physical replacement of failures to be deferred and to accu-
mulate to a selected threshold. To minimize the system sen-
sitivity to uncorrectable errors (UEs) when soft error rates are
high, memory systems employ “scrubbing” [9, 10] of detected
errors by correcting and rewriting into the same location.
Scrubbing consists basically of the periodic reading and cor-
rection, if required, of the data stored at a// memory addresses.
(Additional details concerning the scrubbing operation are
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Figure 2 Bit scattering by simple redistribution or data steering: (a)
through the use of shift registers; (b) through the use of gated latches.

discussed subsequently in a later section.) Once a specified
error-rate threshold has been exceeded, the using system can
invoke reconfiguration and deallocation algorithms [9-12] to
remove memory space from program use. It should be noted,
however, that the deallocation of memory space can result in
reducing memory capabilities on line, with corresponding
potential for reducing overall system performance. The sim-
plest type of fault-tolerant memory system is that shown in
Figure 1, which incorporates a conventional ECC facility

F. J. AICHELMANN, JR.

between the memory arrays and the using-system interface.
Such a configuration enables the correction and detection of
simple errors (i.¢., such as a single defect) and the reporting
of status information (i.e., No Error, Single Error Correction—
SEC, and Multiple Error Detection—MED). The effectiveness
of the ECC facility will depend on the particular memory chip
structure chosen as well as on the corresponding organization
of how the data are assembled and sent to the using system.

This paper describes techniques designed to improve the
effectiveness of conventional ECC by using data organiza-
tional schemes and by providing enhancements to existing
ECC facilities to achieve improved fault tolerance. These
techniques are compatible with most existing designs, do not
require any using system intervention, and are self-contained
within the memory system. The design techniques that we
shall consider include

« bit scattering,

& sparing,

& complement/recomplement,
& consecutive correction, and
« prestorage protection.

The first two are organizational schemes and the latter three
involve ECC facility enhancements. Techniques based on
more complex multi-bit-correcting ECC code are not ad-
dressed since they typically impose increased system perform-
ance overhead.

The following sections of this paper describe the organiza-
tional techniques and the ECC enhancements. Presented first
is the bit scattering technique, which includes data redistri-
bution and address selection. That is followed by a description
of how sparing can be used for arrays as well as for arrays and
support logic. Subsequent sections deal with ECC enhance-
ments based upon recovery by error erasure (complement/
recomplement), knowledge of previous defect locations (con-
secutive correction), and the biasing of data words to conceal
defects (prestorage protection). Additional sections deal with
application and utility and include a summary and conclusion.

Bit scattering

Bit scattering is a design technique that minimizes the effect
of chip defects by either distributing bits across different ECC
words or by concentrating the failures within the smallest
addressable section of memory. Bit scattering occurs in two
forms: data steering (i.e., redistribution or fault alignment
exclusion), and address selection.

Redistribution or data steering (also referred to as fault
alignment exclusion [13)) is a buffering scheme used for mul-
tiple-bit-per-chip organizations by distributing the chip out-
puts across multiple ECC words [14]. Figure 2 illustrates two
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embodiments of this buffering: shift registers and gated latches.
In both examples, a group of bits from a chip is buffered, with
no more than a single bit position allocated to any ECC word.
This results in minimizing the effects of multiple-bit chip-fail
types of failures.

Address selection is a technique which is used to minimize
the size of the failure (i.e., the number of pages affected) based
upon word-line and bit-line failures. The address-selection
technique is most effective for block-transfer-type memory
applications. An example is a memory paging application
which requires 32 iterative array selects from a 64K-bit mem-
ory array chip (see Figure 3). In this example, a page consists
of 32 x 4 = 128 bits on a chip. Assume that the selected array
is a 16K X 4-bit chip partitioned into two separate groups,
each with its own support circuits. Each group consists of four
identical sections, and each section is comprised of 64 word
lines and 128 bit lines. Therefore, depending upon the method
of data placement and subsequent retrieval for the 32 iterative
selects, by word line or by bit line, the amount of defect
contamination will be different. The reason for this is that
each defect is not equally dependent upon type (i.e., bit-line
or word-line) or the number of pages that reside in the defect
region. Figure 3 illustrates the results of contiguous selection
by word line, by bit line, and by intermixing between four
and eight groups of bit lines and word lines to demonstrate
the extent of memory space affected when the 32 iterative
selects are completed for each page. As shown, by proper
design choice it is possible to minimize the effects of defects
due to word-line or bit-line failures. The particular choice
depends upon application requirements.

Sparing

Sparing techniques are used to replace a defective component
from an operating memory without requiring manual inter-
vention [15]. The sparing concept can be used for arrays as
well as for arrays plus supports. Figure 4 depicts a selection
partition suitable for simple spares. As shown, there is a group
of memory arrays with a spare provided for appropriate acti-
vation. Any chip that fails in the memory array group can be
substituted for (i.e., electronically replaced) by the spare chip.
The substitution is accomplished by personalizing the selec-
tion logic via the data bus. When the high-order address bit
selects the defective chip, the personalized selection logic
performs the substitution.

The sparing concept can be extended to cover both arrays
and support circuits by an appropriate memory organization.
Figure 5 shows a memory organization consisting of a group
of 16 array cards or FRUs (field-replaceable units) each sup-
plying an ECC word across a selection interval. Each FRU
supplies an ECC word during a selection interval (i.e., a group
of 16 ECC words are clocked and generated sequentially, one
from each of the 16 array cards). For example, if Array Card
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paring.

3 (FRU 3) is defective, then when the defective card is to be
clocked it is suppressed and an alternative or spare is substi-
tuted. As shown, by the addition of an alternate or spare FRU,
sparing can be used to cover arrays as well as their support
circuitry.

Note that, in order for the spare to be deployed, provision
must be allowed for the shifting of data from the defective or
failing unit into the spare unit. In addition, space must be
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Figure 6 Complement/recomplement error-erasure technique ex-
amples. Allows erasure of hard-stuck errors and identification/correc-
tion of intermittent (soft) errors. (a) Example 1: hard-plus-soft error;
(b) Example 2: hard-plus-hard error. (Note: Z = hard error position;
a = soft error position; UE = uncorrectable error indication from
ECC logic, i.e., a MED signal; CE = correctable error; [J= correctable
error position.)

available to accommodate the additional logic and spare arrays
required and the system must be capable of tolerating a
performance overhead.
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Complement/recomplement
Complement/recomplement is a method of extending single-
error-correction capabilities to correct for double errors by a
read-invert-write-read-invert procedure [16]. This procedure
allows the erasure of hard-stuck errors and provides an iden-
tification/correction capability for intermittent (soft) errors.
Figure 6 demonstrates this technique for two examples: a
combination of hard and soft errors, and a combination of
hard and hard errors. These samples each start with an uncor-
rectable error (UE) and finish with either a correctable error
(CE) when soft defects align with hard defects, or no error
when only hard defects exist.

A rewriting of the data after this procedure provides for a
way of eliminating or “scrubbing” of soft errors [3, 10].

Consecutive correction

Consecutive correction is a design technique that increases the
correction capabilities beyond conventional SEC-DED codes
by modifying the structure of the ECC facility [17). The
principle of operation is based on the maintenance of a history
of hard correctable errors, so that, when they accumulate into
uncorrectable errors, the history information can be used to
erase the original error and to correct the subsequent error.
This operation is achieved by storing the syndromes of the
initial single error into an array for subsequent use. When an
uncorrectable error is detected in an ECC word, the prior
correctable syndrome is used to erase the initial error and then
the modified data are passed through the ECC facility for
subsequent correction of the new error in the ECC word.
Figure 7 illustrates the structure of a typical conventional ECC
facility for read operations. Syndrome bits (S;) resulting from
the comparison of the generated and received check bits are
used by the error classifier to determine error conditions, while
the error-bit locator decodes the syndrome to the defective
location. Figure 8 depicts the structure of a modified error-
correction facility, which has added a correctable-bit-locator
array, with its output coupled to the error-bit locator, and a
feedback path from the data bit modifier for erasure of the
original defect so that the new defect can be corrected. The
control of the consecutive correction is controlled by the error
classification, which uses the output (S;) of the correctable-
bit locator when uncorrectable errors are detected (i.e., when
there is an “even” output from the error classifier).

Prestorage protection

Prestorage protection is a design technique for extending the
correction capabilities of conventional ECC facilities by bias-
ing the data in an ECC word to conceal stuck bits. Making
the stuck bit appear as a hidden fault enables the ECC to
correct additional defects once they occur within the ECC
word. The operation is accomplished by providing true and
complement paths within the ECC facility based on the prop-
erty that odd-weighted codes produce the same check bits for
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in an ECC word so that defects can be hidden (i.e., bit stuck
at a value which is correct for the ECC word). As a result,
depending upon the ECC word format, the code assignment
(i.e., true or complement) can be selected to conceal hard
errors. The foliowing formats are available with an odd-
weighted ECC code (i.e., check bits assigned as odd-weighted

parity):

ECC word format Resultant characteristics
True D;, G
Complement D;, G

This technique checks all memory stores for errors with a
post-write procedure. If errors are found on a fetch of the
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* ECC facility

Figure 9 Modification of ECC facility for prestorage protection.

store, the data are stored in complemented form and left in
that format if no errors are found. Figure 10 illustrates this
simplified post-write procedure. Subsequent memory fetches
with this ECC facility require that the appropriate path, true
or complement, be selected. This is accomplished via the six
true and complement status bits that are tabulated in Table
1(a). The MED/MED case denotes multiple errors and re-
quires additional recovery via the complement/recomplement
procedure, while the SEC/SEC case is unresolved due to code-
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Figure 10 Post-write procedure for prestorage protection technique.

Table 1 Subsequent read recovery (following post-write procedure,
for prestorage protection technique).

(a) Status conditions (from ECC, for control path selection)

True Complement Condition

No error MED No-error data in true form
MED No error No-error data in complement form
SEC MED Single-error data in true form
MED SEC Single-error data in complement form
MED MED Recovery via complement/recomple-

ment

SEC SEC Possible check-bit-error data in com-

plement form

(b) SEC/SEC determination:

Case Test Result
Case 1 Test with ones and No mismatch—soft-error data
zeros with bit in true form
comparison
Case 2 Same test Mismatch in data field—data in

complement form
Mismatch in check bits—hard-
error data in true form

Case 3 Same test

point limitations. The SEC/SEC determination can be re-
solved by a diagnostic test of ones and zeroes with bit com-
parison; this determination is described in Table 1(b). An
additional redundancy bit can be added to the scheme to
reduce the read recovery operations.
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Application and utility

The fault-tolerant design techniques just described satisfy a
broad range of applications. The purpose of these schemes is
to minimize the accumulation of errors from semiconductor
memory defects so that the probability of exceeding the ca-
pabilities of the error-correction facility is minimized. The
design techniques discussed all involve interaction between
the actual memory circuits, the organization of the computer
memory, the maintenance strategy, and the ECC facility. Two
of these techniques are based on the chip structure and the
memory organizational requirements of the using system,
while the remaining three deal with enhancement of the ECC
facility for specific situations.

Table 2 summarizes the failure-type coverage or effective-
ness of the organizational fault-tolerant techniques. As indi-
cated in the table, bit scattering and sparing are effective
techniques for the control of the effects of hard errors.

Table 3 summarizes the particular characteristics of the
enhanced-ECC-correction techniques, including a relative
comparison in performance and hardware. The complement/
recomplement procedure can be used not only as a recovery
scheme but also to identify stuck bits by comparison (exclu-
sive-or) of the read data with the corrected data. These loca-
tions can be used as the basis for forming a memory fault
map. The method of consecutive correction does not require
any multiple memory array cycles but rather uses multiple
passes through the modified ECC structure. By proper design
choice and implementation, this technique can provide a fast
correction (i.e., at logic speeds) of double errors. The prestor-
age protection technique is most suitable for regions of mem-
ory that are designated as read mostly; otherwise performance
can suffer. Those regions best suited are the areas of “core” or
nucleus of operating systems, and source tables used in address
translation applications. All of these techniques enhance the
minimization of errors and deallocation.

Summary and conclusion

The progress of semiconductor memory technology has ad-
vanced in the industry from LSI to VLSI and will continue in
the future. The accelerated progress in memory chip density
coupled with larger-capacity memory applications will result
in requirements for greater chip reliability and for greater
system tolerance to errors. Fault-tolerant design techniques
can be used to minimize the effects of failures in memory
systems. As described, there are those techniques that are
suitable for organization and address selection, and those that
can be used to enhance the ECC capabilities of a given code.
The appropriate application of these design techniques can
reduce the number of uncorrectable errors and minimize the
amount of replacement components necessary. These design
approaches can be used either individually or collectively, and
the suitability of each approach is dependent upon the specific

IBM J. RES. DEVELOP. @ VOL. 28 @ NO. 2 « MARCH 1984




application requirements. The using system can benefit not
only from fewer errors but also from better performance
whenever less memory will have to be deallocated.

References

1. C. L. Chen and M. Y. Hsiao, “Error-Correcting Codes for Semi-
conductor Memory Applications: A State-of-the-Art Review,”
IBM J. Res. Develop. 28, 124-134 (1984, this issue).

2. C. H. Stapper, A. N. McLaren, and M. Dreckmann, “Yield Model
for Productivity Optimization of VLSI Memory Chips with Re-
dundancy and Partially Good Product,” IBM J. Res. Develop.
24, 398-409 (1980).

3. Ronald H. Sartore and David W. Gulley, “Fire Code Detects and
Corrects Errors in Wide Word for Large RAMS,” Electronics 55,
No. 11, 154-157 (June 2, 1982).

4. D.C. Bossen and M. Y. Hsiao, “A System Solution to the Memory
Soft Error Problem,” IBM J. Res. Develop. 24, 390-397 (1980).

5. Harvey J. Hindin, “Error Detection and Correction Cleans Up
Wide-Word Memory Act,” Electronics 55, No. 11, 153 (June 2,
1982).

6. P. Fire, “A Class of Multiple-Error Correcting Binary Codes for
Non-Independent Errors,” Sylvania Report RSL-E-2, Sylvania
Reconnaissance Systems Laboratory, Mountain View, CA, 1959.

7. Mike Evans, “Nelson Matrix Can Pin Down 2 Errors per Word,”
Electronics 55, No. 11, 158-162 (June 2, 1982).

8. Lionel White and Reddy Chitranjan, “Wide-Word 64K-Bit RAM
Expands System Performance,” Electron. Design 30, No. 6, 231-
238 (March 18, 1982).

9. Gary Ward, “Intelligent Memory Systems Can Operate Nonstop,”
Electron. Design 30, No. 6, 243-250 (March 18, 1982).

10. F. J. Aichelmann, Jr., B. E. Bachman, and D. J. Perlman, “High
Data Integrity Scheme for Memory Reliability,” IBM Tech. Dis-
closure Bull. 22, No. 11, 4933-4934 (1980).

11. F. J. Aichelmann, Jr., “Local Paging Memory Buffer for Mini-
mizing Concurrence of Hard and Soft Data Errors,” IBM Tech.
Disclosure Bull. 22, No. 11, 4931-4932 (1980).

12. John Reilly, Arthur Sutton, Robert Nasser, and Robert Griscom,
“Processor Controller for the IBM 3081,” IBM J. Res. Develop.
26, 22-29 (1982).

13. D. C. Bossen, C. L. Chen, and M. Y. Hsiao, “Fault Alignment
Exclusion for Memory Using Address Permutation,” IBM J. Res.
Develop. 28, 170-176 (1984, this issue).

14. F. J. Aichelmann, Jr., “Memory Application of Multiple Bit
Chips,” IBM Tech. Disclosure Bull. 24, No. 4, 2194-2196 (1981).

15. F. J. Aichelmann, Jr. and L. K. Lange, “Dynamic Allocation of
Redundant Memory Components,” IBM Tech. Disclosure Bull.
24, No. 9, 4776-4778 (1982).

16. B. E. Bachman and S. M. Dobrzyuski, “Multiple Error Correc-
tion,” IBM Tech. Disclosure Bull. 13, No. 8, 2190 (1971).

17. F. J. Aichelmann, Jr., “Consecutive Error Correction,” IBM Tech.
Disclosure Bull. 24, No. 11B, 6048-6049 (1982).

Received July 5, 1983; revised September 27, 1983

Frederick John Aichelmann, Jr. IBM General Technology Di-
vision, East Fishkill facility, Hopewell Junction, New York 12533. Mr.
Aichelmann is a senior engineer in the Advanced Memory Develop-
ment group at East Fishkill, working on advanced memory applica-
tions and fault-tolerant techniques. He joined IBM in memory devel-
opment at Kingston, New York, in 1964. Since that time, he has
participated in all aspects of memory development from ferrite prod-
ucts through semiconductor memories, including FET process, devel-
opment, circuit design, and memory system development. Prior to
joining IBM, Mr. Aichelmann was employed by RCA, working in
satellite communications, magnetic recording, and video recording.

IBM J. RES. DEVELOP. » VOL. 28 @ NO. 2 « MARCH 1984

Table 2 Comparison of organizational fault-tolerant design tech-
niques: Effectiveness as a function of failure (defect) type.

Deployment for effective failure-type cov-
erage

Technique

Word-  Bit- Chip  Support and
line line  failure array failure
Jailure  failure

Bit scattering

Data redistribution X — X —

Address selection X X — —
Sparing

Array X! X! X —

FRU — — X X

! Denotes second order, not primary, usage.

Table 3 Characteristics and comparison of enhanced-ECC-correc-
tion techniques.

General technique
characterization

Error-type
coverage

Technique

Hard  Soft 1 Application
deployment

2 Performance impact

3 Hardware

implication

Complement/recom- X X I—Error-recovery and
plement scrubbing of soft errors

2—Worst performance
hit

3—Least hardware im-
pact

1-—Multi-bit correction,
in lieu of spares, mini-
mize deallocation

2—Least performance
hit

3—Hardware inten-
sive—worst hardware
impact

I—Multi-bit correction,
hard-error scrubbing
where deallocation
(core and nucleus) is
not possible

2—Fast read, slow write

3—Increased hardware

Consecutive correction X X

Prestorage protection X X
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