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Fault Alignment Exclusion for Memory Using Address
Permutation

A significant improvement in memory fault tolerance, beyond what is already provided by the use of an appropriate error-correcting
code (ECC), can be achieved by electronic chip swapping, without any compromise of data integrity as large numbers of faults are
allowed to accumulate. Since most large and medium-sized semiconductor memories are organized so that each bit position of the
system word (ECC codeword) is fed from a different chip, and quite often from a different array card, or at least from distinct
partitions of an array card, the various bit positions have separate address circuitry on the array cards. This fact is important, and
can be exploited to provide effective address permutation capability, which allows the realignment of faults which would otherwise
have caused an uncorrectable multiple error in an ECC codeword. When faults occur in a codeword to produce an uncorrectable
error (UE), the addressing within one of the error bit position array cards can be altered using simple EX-OR circuitry and storage
latches. The content of the latches is computed using a fault map of the memory together with an algorithm. These techniques are
referred to as Fault Alignment Exclusion (FAE) using address permutation. Practical considerations as to the complexity of the
Jault map, the number of storage latches per bit position, and the overall effectiveness of the permutation to disperse the expected

numbers of errors are presented in this paper.

1. Background on ECC and memory maintenance
Since the earliest application of error-correcting codes (ECC)
to computer memories, people have worked on ways to avoid
making a card replacement when an uncorrectable error oc-
curs, especially the uncorrectable error which comes about
when two independent errors happen 10 line up in the same
memory word. An idealized memory structure consisting of
two BSMs (basic storage modules) with 72 cards each is shown
in Figure 1, compatible with the (72,64) odd weight SEC-
DED code. It was well known and actually practiced as a field
service strategy that a double error within one of the BSMs
due to errors on two different cards lining up could be avoided
by swapping one of the error cards with a good card from the
other BSM, with the result that there are now two single errors,
one in each of the two BSMs. This simple and straightforward
procedure could be applied without any change to the memory
design, working fairly well even as errors accumulate.

What about a memory that consists of only a single BSM?
Now, such a simple card swapping does not work. In 1970,
Beausoleil proposed a hard-wired address skewing method to

allow card swapping within a BSM for avoiding uncorrectable
errors (UEs) [1]. To see how this scheme works, assume a bit-
per-card organization and that each array card contains 32
array chips, one of which is selected on each card by decoding
five of the system address bits. These five address bits are sent
in parallel to each of the array cards, from a common source
called the Storage Address Register (SAR). If address 00000 is
sent to each card, then chip 00000 on each array card gets
selected. Suppose, now, that at the address input to each array
card, certain of the address bits are permanently inverted. In
particular, let each array card receive inverted SAR address
bits as indicated in Table 1.

With such an arrangement, a skewed pattern of selected
chips occurs, as shown in Figure 2. For example, for SAR
address 00000, card O selects chip 00000, card 1 selects chip
00001, card 2 selects chip 00010, etc. Similar permutations
occur for all other SAR bit patterns. Now, suppose chip 00000
on card 0 and chip 00001 on card 1 are bad, causing a UE.
All that needs to be done to avoid this UE is to swap cards 0
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Figure 1 Bit per card memory organization with two BSMs.

and 2, for example. Now the bad chips will never be selected
with the same SAR address. The physical implementation of
this scheme involves hard-wired inverters in the memory
board card address pins, or selective polarity reversing in two-
phase logic.

2. Electronic permutation using writable exclusive-
or circuits

In 1973, Bossen, Hsiao, and Mikhail proposed a method of
fault realignment for the purpose of avoiding UEs using
exclusive-or (EX-OR) circuits and storage elements in con-
junction with address lines, as shown in Figure 3 [2). For a
card organized as in the previous discussion, each of the five
address lines feeds an EX-OR circuit whose other input is the
content of a storage element, or latch. Depending on the
binary value stored in each latch, each address bit is either
inverted or not before it goes to the address decoder. The
latches are writable. The effect in this case is to provide 2°
possible permutations of the chip addresses on each card of
the memory. The set of latches on each card is called a control
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Table 1 Address bit inversion patterns.

SAR bits ABCDE as (ais A
seen by: inverse, etc.)
Card 0 ABCDE
Card 1 ABCDe
Card 2 ABCdE
Card 3 ABCde
Card 4 ABcDE
Card 5 ABcDe
Card | Pattern of inversions

corresponding to 2°
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Figure 5 Control register with G(X) feedback connections.

register (CR), and the set of control registers for the entire
memory is called the permutation vector.

Figure 4 shows a memory using cards of this type. Indicated
in Fig. 4 are the actual chips addressed in response to the
system address 00111 when the various cards have CR values
as indicated.

An immediate problem to be solved is the following: Given
a set of faults in the memory, some of which may line up
within a given codeword, how can a permutation vector be
found which will leave the memory without any UEs? Since
the total number of possible combinations is extremely large,
on the order of 327 for a 72-card memory with five bits of
permutation per card, a trial-and-error or exhaustive approach
is unworkable. An algorithmic approach to be described takes
advantage of the algebraic property of the EX-OR function to
solve for a permutation vector. The algorithm requires as its
input the fault map, which gives the fault status of every chip
on every array card. Later work to relax this assumption in a
system implementation is described in Section 4.

In overview, the algorithm begins by considering a pair of
cards with faults. A control register is determined for each of
these two cards which avoids any fault alignments that would
occur. These two cards are now considered to be a single card,
with a set of faults equal to the set union of their permuted

D. C. BOSSEN, C. L. CHEN, AND M. Y. HSIAO

faults, and a third card is now considered. A CR for this next
card is determined which avoids all permuted faults on the
first two cards. Then the permuted faults on this third card
are joined to the permuted faults on the first two cards by set
union. And so on, until all cards with faults have been
considered, at which time the permutation vector has been
determined.

To see how the algorithm works, consider first the simplified
case where each fault is assumed to be a chip kill, and there
are 2° = 32 chips on each card. There are k cards with faulty
chips, CD,, CD,, CD;, ---, CDy. On card CD,, the faulty
chips are denoted by

Fy = the SET(fo,1; f0,2; - - ),

where each f;,i is the five-bit binary physical address of a bad
chip on card CDy. Similarly, F,, F,, ---, F are defined. At
each stage of the algorithm, FP is the total set of permuted
faults. Initially, FP is the null set. Let the five bits of permu-
tation associated with card CD; be denoted by CR,, its control
register.

Algorithm to find a permutation vector

. Set CR, = 00000. Set FP = null. Set index i = 1.

. Form FP = FP,y, U (F; XOR CR).

. Indexi=1i+1.

. Form B= FP XOR F.

. Choose CR; to be any five-bit address pattern not contained
in B.

6. If B contains all 32 addresses, no choice is possible; termi-

nate.
7. If i = k, then P = CR,, CR,, - - -, CR,. Finished; otherwise
g0 to step 2.

[ Y

Notes on the algorithm

In step 2, the operation F; XOR CR; means to form the set of
permuted faults on card CD;, by EX-ORing the control register
to the address of each faulty chip on CD.. In step 4, the
operation is to form the set consisting of the EX-OR of each
permuted fault to this point with each of the fault addresses
on the next card being operated on, CD;. The set B, used in
step 3, consists of all the values of CR; which would not be
acceptable, since they would result in fault alignments. There-
fore, we can choose any element not in B as CR,.

Since this type of choice is made at each step, a possible
variation on the algorithm would be to remember which
choice was made at each step, so that in the event of an
unsuccessful termination, step 6, the algorithm could be re-
peated with a different choice rule.

3. Latin square permutation with no fault map
A considerable problem in practical system implementations
of address permutations is how to efficiently obtain the diag-
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nostic fault map required to execute algorithms such as the
one previously described. In order to avoid having to diagnose
the memory, Hsiao and Bossen in 1974 [3, 4] proposed a
scheme for determining a permutation vector with fairly pow-
erful error dispersion capability using the theory of orthogonal
Latin squares. In this scheme, the control register on each
memory card is connected as a linear feedback shift register,
as in Figure 5. In operation, the initial state of each register is
set to 00 - - - 0. When the first UE occurs, each card is set to
a different initial state, correspondingto 1, X, X2, - - ., X* mod
g(X), the generator polynomial for the linear feedback shift
register. Following each occurrence of a UE, all the registers
are simultaneously given a single shift pulse. It can be shown
that the set of 31 permutations which result have the property
of orthogonality. This means that if a double error (UE) exists
in one of the permutations, it does not exist in another. This
can be seen from the simple four-card memory with four chips
per card of Figure 6, where the 22 — | = 3 orthogonal Latin
square permuted address patterns are shown along with the
original unpermuted address pattern. Chen proposed a varia-
tion on this scheme that provides a larger set of possible
permutations [5].

4. System implementations of FAE
The major issues in the system implementation of FAE are
the following:

. Relation of FAE to ECC requirements.

. Sensitivity to array chip piece part failure modes and rates.

. Number of permutation bits required per card.

. Algorithm to get the permutation vector and complexity
of the required fault map.

£ W N =

In the following paragraphs we describe these issues, and
then illustrate them with simulation results in Section 5.

o FAE and ECC requirements

Consider first that an SEC-DED (single-error-correcting and
double-error-detecting) code is used. Then FAE is invoked
when a hard-hard alignment occurs, creating a double error
in one or more codewords, even though this particular double
error may be correctable by a procedure such as the double
complement, described in [6]. This is because such correction
algorithms degrade performance if used on every access to the
data; also the data are exposed to possible miss correction if a
third error should occur in the same codeword(s).

When DEC-TED error correction is used, FAE must be
invoked in the event of a triple error, but it may be invoked
earlier, when only double errors are present. Using FAE in
this preventive manner can put off the occurrence of an
uncorrectable triple error, especially when the double error(s)
are caused by the lining up of two chip-kills.
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Figure 6 Four-card memory with Latin square permutation.

& Array chip piece part fail modes

A typical array chip can be thought of as a rectangular
arrangement of storage cells. In one dimension part of the
address bits are decoded to select a word-line, which causes
each bit stored along the word-line to be present on a unique
bit-line. Further decoding selects one of the bit-lines, or a
group of the bit-lines for off-chip powering on the data-out
line(s). For example, a 16K X 1 array chip might have 128
word-lines and 128 bit-lines.

A word-line fail would create 128 bad bits along the word-
line dimension, while a bit-line fail would create 128 bad bits
along the bit-line dimension. A cell fail would create a single
bad bit, while a chip-kill would create 16K bad bits. Of course,
all of these would cause only a single bit position of possibly
many (up to 16K) different system codewords to be bad. It is
when such failures line up with other existing failures that
multiple errors occur.

For any given array technology, there is a projected distri-
bution of these piece part failure modes. Investigations of ECC
performance in the presence of accumulated faults have shown
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Figure 7 Cumulative average card replacement rates in percent per
kPOH per system (five-category map).

that the overall UE rate is most sensitive to the chip-kill
portion of distribution. A similar observation holds for FAE.
The higher the chip-kill rate, the greater permutation capabil-
ity is required to control the UE rate.

& Required number of permutation bits

If there are 32 chips per bit column on an array card, five
permutation bits give the maximum permutation capability
using EX-OR permutation of the chip select address lines. It
may be the case, however, that this capability is not required,
due to the projected failure rates. If only four of the address
lines have EX-OR permutation, 16 permutations are possible,
and the swapping which occurs among chips 0 to 15 is
mirrored in the swapping among chips 16 to 31. At the
extreme, if only one of the address bits has an EX-OR, only
two permutations are possible, and the effect is that the entire
group of chips 0 to 15 is swapped with the group 16 to 31.
That is, 0 and 16 are swapped, 1 and 17 are swapped, etc.

o Algorithm to get the permutation vector

The general strategy of FAE is to test the memory to determine
the location and nature of faults. This information is then
processed by the algorithm to determine the permutation
vector. In a large system environment, the execution of such
an algorithm takes place in the maintenance processor or
processor controller.

It has been found that testing an entire memory, or BSM,
in such an environment may be a time-consuming disruption
to the computer user, especially if detailed information about
the exact location and nature of every fault is required. There-
fore, modifications to the algorithms which determine the
permutation vector so that they operate on a partial fault map
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seem like a good compromise. One example of the partial
fault map is to place each chip in one of five fault classes:
single-bit fails, bit-line fail, word-line fail, bit-line fail or word-
line fail, and chip-kill. Another example of the partial fault
map is to place each chip in one of three fault classes: single-
bit fails, line fail, and chip-kill. These two types of partial fault
maps are referred to as five-category and three-category fault
maps in Section 5.

In order to operate with a partial fault map, the algorithm
is modified to permit certain alignments; for example, a chip
with a single-bit fail can be aligned with a chip with a line fail.
In the deterministic permutation algorithm just described, this
amounts to arbitrarily assigning a random cell address to a
chip with a single cell fault and assigning a random bit line or
a random word line address to a chip in the line-fail category.
Then the algorithm executes as if it had a complete fault map.

As the follow-up test discovers that certain alignments do
not work, the overall algorithm has a feature called learning;
this allows information about the exact relative location of
certain faults to be obtained as time goes on.

Investigation has also shown that the performance of the
algorithm in finding a successful permutation vector can be
improved by choosing the order in which the algorithm deter-
mines the individual CRs according to the total number of
bad bits per column. That is, columns with faults are weighted
by total bad bits, and the worst columns are processed first.

A permutation algorithm for a system which has a partial
fault map may include the following steps:

1. Receive the failed chip addresses and fault categories from
the diagnostic hardware.

2. Create the approximate fault map.

. Weight the columns containing the fails.

4. Find the permutation vector using the algorithm of Section
2.

5. Test the memory for UEs, and modify the decision rule if
necessary.

w

A limited partial fault map has been considered, where only
the column positions of chips that contain failures are pro-
vided. In [5], an algorithm is described to disperse faults for a
system provided with this special type of partial fault map.

5. Simulation results

For a given memory system, it is expected that the frequency
of repair and the number of cards replaced at the repair time
would be reduced with FAE. To compare FAE with different
types of fault maps and different numbers of permutation bits,
we have made a number of simulation runs using the simu-
lator described in [7].
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The sample memory system simulated is assumed to be the
same as that in [7]. The 4-megabyte system consists of 18
cards. Each card contains one 32 X 4 array of 16K-bit chips.
There are 128 bit-lines and 128 word-lines in a chip. A (72,64)
SEC-DED code is used to correct single errors and detect
double errors.

The average failure rates of the chips and the card support
logic are assumed to be 0.02 per kPOH (thousand power-on
hours). The piece part failure distribution of the chip is 35
percent for cells, 12 percent for word-lines, 18 percent for bit-
lines, and 35 percent for chip-kills. The failure rates at different
time intervals are assumed to be the same as in [7].

An initial service maintenance is scheduled at 200 POH for
the purpose of handling early life failures. At this scheduled
maintenance time, each memory card is checked so that it
contains no more than two bad cells. To fix a UE, the system
first attempts to deallocate memory pages [7]. If the number
of pages deallocated has reached the threshold of 32, the
system attempts to perform FAE by permuting chip addresses.
If the address permutation fails to fix the UE, the system
recommends replacing the card that is a contributor of the
UE and contains the largest number of bad bits.

We have simulated the system with FAE for two permuta-
tion bits and five permutation bits. The fault maps used in
the simulation are five-category and three-category partial
fault maps. The simulation results are shown in Figures 7 and
8 in terms of card replacement rates. As expected, the fre-
quency of card replacement can be reduced, by up to as much
as 10 times, by using FAE as compared to not using FAE.
Also, the card replacement rate can be reduced by increasing
the number of permutation bits or by increasing the amount
of information in the fault map.

Since more bad bits are left in the memory using FAE, we
must consider the impact of this on the UE rate. Figure 9
shows that the UE rate, or data loss frequency, is not increased
by using FAE as compared with the same system configuration
which does not use FAE. This result comes from the model
described in [7].

Conclusions

This paper has shown FAE to be a practical, powerful, and
easy-to-implement method for greatly improving the fault
tolerance of a computer memory which is already protected
by ECC. Practical algorithms for determining the permutation
vector have been presented. Simulation results, using common
large memory organizations and reasonable intrinsic failure
rate assumptions, have shown the increase in fault tolerance
to be easily a factor of 10 with respect to card removal rate,
with no degradation in the UE rate.
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