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Fault  Alignment  Exclusion  for  Memory  Using  Address 
Permutation 

A significant  improvement in memory fault tolerance,  beyond  what is already  provided  by the use of an  appropriate  error-correcting 
code (ECC), can  be  achieved  by  electronic  chip  swapping,  without any compromise of  data  integrity  as  large  numbers of faults are 
allowed to accumulate. Since most large  and medium-sized semiconductor  memories  are  organized so that each  bit position of the 
system word (ECC codeword) is fed from a dzrerent  chip,  and  quite  often from a dzfferent  array  card,  or at  least from distinct 
partitions of an  array  card, the various  bit  positions  have  separate  address  circuitry on the array  cards. This fact is important,  and 
can  be exploited to provide effective address  permutation  capability,  which  allows the realignment  of faults which  would  otherwise 
have  caused an  uncorrectable  multiple  error in an  ECC  codeword. When faults occur in a codeword to produce  an  uncorrectable 
error (UE), the addressing  within  one of the error bit position array  cards  can  be  altered  using  simple EX-OR circuitry  and  storage 
latches. The content of the latches is computed  using a fault  map of the memory together  with  an  algorithm. These techniques  are 
referred to as  Fault  Alignment  Exclusion (FAE) using  address permutation. Practical  considerations  as to the complexity of the 
fault map, the number of storage  latches  per  bit position, and the overall  effectiveness of the permutation to disperse the expected 
numbers of  errors are  presented in this paper. 

1. Background on ECC and  memory  maintenance 
Since the earliest application of error-correcting codes  (ECC) 
to computer memories, people  have  worked on ways to avoid 
making a card replacement when an uncorrectable error oc- 
curs, especially the uncorrectable error which comes about 
when  two independent errors happen to line up  in the same 
memory word. An idealized memory structure consisting of 
two  BSMs (basic  storage modules) with  72 cards each is shown 
in Figure 1, compatible with the (72,64) odd  weight  SEC- 
DED code. It was  well known and actually practiced  as a field 
service  strategy that a double error within one of the BSMs 
due to errors on two  different cards lining up could be avoided 
by swapping one of the error cards with a good  card  from the 
other BSM,  with the result that there are now two single errors, 
one in  each  of the two  BSMs. This simple and straightforward 
procedure could be applied without any change to the memory 
design,  working  fairly well even as errors accumulate. 

What about a memory that consists of only a single  BSM? 
Now, such a simple card  swapping  does not work.  In  1970, 
Beausoleil  proposed a hard-wired  address  skewing method to 

allow card swapping  within a BSM for  avoiding uncorrectable 
errors (UEs) [ 11. To see  how this scheme  works, assume a bit- 
per-card organization and that each array card contains 32 
array chips, one of which is  selected on each  card by decoding 
five  of the system  address  bits.  These  five address bits are sent 
in  parallel to each of the array cards, from a common source 
called the Storage  Address  Register  (SAR). If address OOOOO is 
sent to each card, then chip OOOOO on each array card gets 
selected.  Suppose,  now, that at the address input to each array 
card, certain of the address bits are permanently inverted. In 
particular, let  each array card receive inverted SAR address 
bits as indicated in Table 1. 

With such an arrangement, a skewed pattern of selected 
chips occurs, as shown in Figure 2. For example, for SAR 
address 00000, card 0 selects chip OOOOO, card 1 selects chip 
0000 1, card 2 selects chip OOO 10, etc. Similar permutations 
occur for  all other SAR bit patterns. Now,  suppose chip 00000 
on card 0 and chip 00001 on card 1 are bad, causing a UE. 
All that needs to be done to avoid this UE is to swap cards 0 
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Figure 1 Bit  per card memory organization with two BSMs. 

2. Electronic  permutation  using  writable  exclusive- 
or  circuits 
In 1973, Bossen,  Hsiao, and Mikhail  proposed a method of 
fault realignment for the purpose of avoiding UEs  using 
exclusive-or (EX-OR) circuits and storage elements in con- 
junction with address lines, as shown in Figure 3 [2 ] .  For a 
card organized as in the previous discussion,  each of the five 
address lines feeds an EX-OR circuit whose other input is the 
content of a storage element, or latch. Depending on the 
binary  value  stored in each latch, each  address  bit  is either 
inverted or not before it goes to the address decoder. The 
latches are writable. The effect in this case  is to provide 25 
possible permutations of the chip addresses on each card of 
the memory. The set of latches on each  card  is  called a control 

1 ID 1 I 1 I 
ID - 1 

- - 
Figure 2 Skewed address pattern using  hard-wired inversion. 

Table 1 Address bit inversion patterns. 

SAR bits ABCDE as 
seen  by: 

Card 0 
Card 1 
Card 2 
Card 3 
Card 4 
Card 5 

(a is A 
inverse, etc.) 

ABCDE 
ABCDe 
ABCdE 
ABCde 
ABcDE 
ABcDe 

Card i Pattern of inversions 
corresponding to 2’ 
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Figure 4 Four-card memory showing  addressed chips. 

I 

64 62 

Figure 5 Control register with G(X) feedback connections. 

register (CR), and the set of control registers for the entire 
memory is  called the permutation vector. 

Figure 4 shows a memory using cards of this type. Indicated 
in Fig. 4 are the actual chips addressed in response to the 
system  address 00 1 1 1 when the various cards have  CR  values 
as indicated. 

An immediate problem to be  solved  is the following: Given 
a set of faults in the memory, some of  which  may  line up 
within a given  codeword,  how can a permutation vector be 
found which  will  leave the memory without any UEs? Since 
the total number of  possible combinations is  extremely  large, 
on the order of 3212 for a 72-card memory with five bits of 
permutation per card, a trial-and-error or exhaustive approach 
is unworkable. An algorithmic approach to be  described takes 
advantage of the algebraic property of the EX-OR function to 
solve for a permutation vector. The algorithm requires as its 
input the fault map, which  gives the fault status of  every chip 
on every array card. Later work to relax this assumption in a 
system implementation is described in Section 4. 

In overview, the algorithm begins  by considering a pair of 
cards with  faults. A control register  is determined for  each of 
these  two cards which avoids any fault alignments that would 
occur. These  two cards are now considered to be a single card, 
with a set of faults equal to the set union of their permuted 

faults, and a third card is now considered. A CR for this next 
card is determined which avoids all permuted faults on the 
first two cards. Then the permuted faults on this third card 
are joined to the permuted faults on the first  two cards by  set 
union. And so on, until all cards with faults have  been 
considered, at which time the permutation vector has been 
determined. 

To see  how the algorithm works, consider first the simplified 
case where  each fault is  assumed to be a chip kill, and there 
are 2’ = 32 chips on each  card. There are k cards with  faulty 
chips, CD1,  CDz, CD,, . . ., CDk. On card CDO, the faulty 
chips are denoted by 

FO = the SET(&& l;fa2; . . . ), 
where  each f0,i is the five-bit  binary  physical  address  of a bad 
chip on card CDo. Similarly, Fl,  F2, . . ., F k  are defined.  At 
each  stage  of the algorithm, FP is the total set of permuted 
faults.  Initially, FP is the null set. Let the five bits of permu- 
tation associated  with  card CD, be denoted by CR,, its control 
register. 

Algorithm toJind a permutation vector 

1. 
2. 
3. 
4. 
5 .  

6 .  

7. 

Set CRI = OOOOO. Set FP = null.  Set  index i = 1. 

l n d e x i = i +  I .  
Form FP = FPold U (Fi XOR CR,). 

Form B = FP XOR F,. 
Choose CR, to be any five-bit address pattern not contained 
in B. 
If B contains all 32 addresses, no choice is possible; termi- 
nate. 
If i = k, then P = CRI,  CR2, . . . , CRk. Finished;  otherwise 
go to step 2. 

Notes on the  algorithm 
In step 2 ,  the operation F, XOR CR, means to form the set of 
permuted faults on card CDi, by EX-ORing the control register 
to the address of each  faulty chip on CD,. In step 4, the 
operation is to form the set  consisting  of the EX-OR of each 
permuted fault to this point with  each of the fault addresses 
on the next  card  being operated on, CD,. The set B, used in 
step 5,  consists of all the values of CR, which  would not be 
acceptable,  since  they  would  result in fault alignments. There- 
fore, we can choose any element not in B as CR,. 

Since this type of choice is made at each  step, a possible 
variation on the algorithm would  be to remember which 
choice was made at each step, so that  in  the event of an 
unsuccessful termination, step 6 ,  the algorithm could be  re- 
peated  with a different choice rule. 

3. Latin  square  permutation  with  no  fault  map 
A considerable problem in practical system implementations 
of address permutations is how to efficiently obtain the diag- 
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nostic fault map required to execu ,te algorithms such as the - Address lines 
" 

one previody described. In order to avoid having to diagnose 
the memory, Hsiao and Bossen in 1974 [3,4] proposed a 
scheme for determining a permutation vector with  fairly pow- 
erful error dispersion capability using the theory of orthogonal 
Latin squares. In  this scheme, the control register on each 
memory card is connected as a linear feedback shift register, 
as in Figure 5. In operation, the initial state of each register is 
set to 00 . . . 0. When the first UE occurs, each card is set to 
a different initial state, corresponding to I ,  X, X2, . . . , Xk mod 
g 0 ,  the generator polynomial for the linear feedback  shift 
register.  Following  each occurrence of a UE, all the registers 
are simultaneously given a single shift pulse. It can be shown 
that the set  of 3 1 permutations which  result have the property 
of orthogonality. This means that if a double error (UE) exists 
in one of the permutations, it does not exist in another. This 
can be seen from the simple four-card memory with four chips 
per card of Figure 6, where the 2* - 1 = 3 orthogonal Latin 
square permuted address patterns are shown along with the 
original unpermuted address pattern. Chen proposed a varia- 
tion on this scheme that provides a larger  set  of  possible 
permutations [5]. 

4. System  implementations of FAE 
The major issues  in the system implementation of  FAE are 
the following: 

1. Relation of  FAE to ECC requirements. 
2. Sensitivity to array chip piece part failure modes and rates. 
3. Number of permutation bits required per card. 
4. Algorithm to get the permutation vector and complexity 

of the required fault map. 

In the following paragraphs we describe these issues, and 
then illustrate them with simulation results  in  Section 5. 

FAE and ECC requirements 
Consider first that  an SEC-DED (single-error-correcting and 
double-error-detecting) code is used. Then FAE  is invoked 
when a hard-hard alignment occurs, creating a double error 
in one or more codewords, even though this particular double 
error may  be correctable by a procedure such as the double 
complement, described in [6]. This is because such correction 
algorithms degrade performance if  used on every  access to the 
data; also the  data  are exposed to possible  miss correction if a 
third error should occur in the same codeword(s). 

When DEC-TED error correction is used, FAE must be 
invoked in the event of a triple error, but it  may be invoked 
earlier, when only double errors are present. Using FAE in 
this preventive manner can put off the occurrence of an 
uncorrectable triple error, especially  when the double error(s) 
are caused by the lining up of two chipkills. 

Card I 

S, input = ( I O )  

- t I  1 1  

I I ,  Card 3 

s =oo,S,=10,S,=O1,S,=11 

I l r  Card 4 

IA 
SI  mput = (01) SI Inpu t=( l l )  

Figure 6 Four-card memory with  Latin  square permutation. 

Array chip piece part fail modes 
A typical array chip can be thought of as a rectangular 
arrangement of  storage  cells. In one dimension part of the 
address bits are decoded to select a word-line, which  causes 
each  bit stored along the word-line to be present on a unique 
bit-line. Further decoding selects one of the bit-lines, or a 
group of the bit-lines for  off-chip  powering on  the data-out 
line(s). For example, a 16K X 1 array chip might have  128 
word-lines and 128  bit-lines. 

A word-line  fail  would create 128  bad bits along the word- 
line dimension, while a bit-line fail  would create 128 bad bits 
along the bit-line dimension. A cell  fail  would create a single 
bad bit, while a chip-kill would create 16K bad bits. Of course, 
all  of  these  would  cause  only a single  bit position of  possibly 
many (up to 16K) different  system codewords to be bad. It  is 
when such failures line up with other existing failures that 
multiple errors occur. 

For any given array technology, there is a projected distri- 
bution of these  piece part failure modes. Investigations of  ECC 
performance in the presence of accumulated faults have  shown 173 
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Figure 7 Cumulative average  card  replacement  rates in percent per 
kPOH per system (five-category map). 

that the overall  UE rate is  most  sensitive to the chipkill 
portion of distribution. A similar observation holds for FAE. 
The higher the chipkill rate, the greater permutation capabil- 
ity  is required to control the UE rate. 

Required  number ofpermutation bits 
If there are 32 chips per bit column on an array card, five 
permutation bits give the maximum permutation capability 
using  EX-OR permutation of the chip select address lines. It 
may be the case,  however, that this capability  is not required, 
due to the projected  failure  rates. If only four of the address 
lines have  EX-OR permutation, I6 permutations are possible, 
and the swapping  which occurs among chips 0 to 15 is 
mirrored in the swapping among chips 16 to 3 1. At the 
extreme, if only one of the address bits has an EX-OR,  only 
two permutations are possible, and the effect  is that the entire 
group of chips 0 to I5 is  swapped  with the group 16 to 3 1. 
That is, 0 and 16 are swapped, 1 and 17 are swapped,  etc. 

9 Algorithm to get  the permutation vector 
The general  strategy of  FAE  is to test the memory to determine 
the location and nature of faults. This information is then 
processed  by the algorithm to determine the permutation 
vector.  In a large  system eniironment, the execution of such 
an algorithm takes place in the maintenance processor or 
processor controller. 

It has been found that testing an entire memory, or BSM, 
in such an environment may  be a time-consuming disruption 
to the computer user,  especially if detailed information about 
the exact location and nature of  every fault is required. There- 
fore,  modifications to the algorithms which determine the 
permutation vector so that they operate on a partial fault map 
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seem  like a good compromise. One example of the partial 
fault map is to place  each chip in one of  five fault classes: 
single-bit  fails,  bit-line  fail,  word-line  fail,  bit-line  fail or word- 
line  fail, and chip-kill. Another example of the partial fault 
map is to place  each chip in one of three fault classes:  single- 
bit  fails, line fail, and chip-kill.  These  two  types of partial fault 
maps are referred to as five-category and three-category  fault 
maps in Section 5. 

In order to operate with a partial fault map, the algorithm 
is  modified to permit certain alignments; for  example, a chip 
with a single-bit  fail can be aligned  with a chip with a line fail. 
In the deterministic permutation algorithm just described, this 
amounts to arbitrarily assigning a random cell address to a 
chip with a single  cell fault and assigning a random bit line or 
a random word line address to a chip in the line-fail  category. 
Then the algorithm executes as if it  had a complete fault map. 

As the follow-up  test  discovers that certain alignments do 
not work, the overall algorithm has a feature called learning; 
this allows information about the exact  relative location of 
certain faults to be obtained as time goes on. 

Investigation has also  shown that the performance of the 
algorithm in finding a successful permutation vector can be 
improved by choosing the order in  which the algorithm deter- 
mines the individual CRs according to the total number of 
bad  bits  per column. That is, columns with  faults are weighted 
by total bad bits, and the worst columns are processed  first. 

A permutation algorithm for a system  which has a partial 
fault map may include the following  steps: 

1. Receive the failed chip addresses and fault categories from 

2. Create the approximate fault map. 
3. Weight the columns containing the fails. 
4. Find the permutation vector  using the algorithm of Section 

5. Test the memory for  UEs, and modify the decision  rule if 

the diagnostic  hardware. 

2. 

necessary. 

A limited partial fault map has been considered, where  only 
the column positions of chips that contain failures are pro- 
vided.  In [5], an algorithm is described to disperse faults for a 
system  provided  with this special  type of partial fault map. 

5. Simulation  results 
For a given memory system, it is  expected that the frequency 
of repair and the number of cards replaced at the repair time 
would  be reduced  with FAE. To compare FAE  with  different 
types of fault maps and different numbers of permutation bits, 
we  have made a number of simulation runs using the simu- 
lator described in [7]. 
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The  sample  memory system simulated is  assumed to  be  the 
same  as  that  in [7]. The 4-megabyte system consists of 18 
cards.  Each  card contains  one  32 X 4 array of I6K-bit chips. 
There  are 128 bit-lines and 128 word-lines in a  chip.  A  (72,64) 
SEC-DED  code  is used to correct single errors  and detect 
double errors. 

The average failure rates of the  chips  and  the  card  support 
logic are assumed to be 0.02 per kPOH  (thousand power-on 
hours). The piece part failure distribution of the  chip is 35 
percent  for cells, 12 percent  for word-lines, 18 percent  for  bit- 
lines, and  35 percent for  chipkills.  The failure  rates at different 
time intervals are assumed to be the  same as in [7]. 

An initial service maintenance is scheduled at 200 POH for 
the purpose  of  handling  early life failures. At this scheduled 
maintenance time, each  memory card is checked so that it 
contains  no  more  than  two bad cells. To fix a UE,  the system 
first attempts  to deallocate memory pages [7 ] .  If the  number 
of pages deallocated has reached the threshold of 32, the 
system attempts  to perform FAE by permuting  chip addresses. 
If the address permutation fails to fix the UE, the system 
recommends replacing the card that is a contributor of the 
UE  and  contains  the largest number of  bad bits. 

We have  simulated the system with FAE  for  two permuta- 
tion bits and five permutation bits. The fault maps used in 
the  simulation  are five-category and three-category partial 
fault  maps. The  simulation results are shown in Figures 7 and 
8 in  terms of  card  replacement  rates. As expected, the fre- 
quency of card replacement  can be reduced, by up  to as much 
as 10 times, by using FAE as compared  to  not using FAE. 
Also, the card  replacement  rate can be reduced by increasing 
the  number of permutation bits or by increasing the  amount 
of information in the fault map. 

Since more bad  bits are left in the  memory using FAE, we 
must consider the  impact of this  on  the UE rate. Figure 9 
shows that  the  UE rate, or data loss frequency, is not increased 
by using FAE as  compared with the  same system configuration 
which does  not use FAE. This result comes  from  the model 
described in [7]. 

Conclusions 
This paper  has  shown FAE to be a  practical, powerful, and 
easy-to-implement method for greatly improving the fault 
tolerance of a computer  memory which is already  protected 
by ECC. Practical  algorithms for determining  the  permutation 
vector have been presented. Simulation results, using common 
large memory organizations and reasonable  intrinsic failure 
rate assumptions,  have  shown the increase in  fault  tolerance 
to be easily a  factor of 10 with respect to card  removal rate, 
with no degradation  in the UE  rate. 
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Figure 8 Cumulative average card  replacement rates in  percent per 
kPOH per system (two-bit  permutation). 
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Figure 9 Cumulative average uncorrectable  error rates in  percent 
per  kPOH  per system (five-category map, five-bit permutation). 

References 
I .  W. F. Beausoleil, “Memory  with  Reconfiguration to Avoid Un- 

correctable  Errors,” U.S. Patent  3,644,902,  February 1972. 
2. D. C. Bossen, M. Y. Hsiao, and W. F. Mikhail,  “Address  Recon- 

figuration for Large-Scale Integrated  Memory Field Enhance- 
ment,” IBM Tech.  Disclosure Bull. 16, No. 4, 1245 (September 
1973). 

3. D. C .  Bossen. C. F.  Haugh,  and M. Y. Hsiao,  “Dynamic Address 
Translation Using Orthogonal  Latin  Squares,” U.S. Patent 
3,812,336. May 1974. 

4. M. Y. Hsiao  and  D. C .  Bossen, “Orthogonal  Latin  Square Config- 
uration for LSI Memory Yield and Reliability Enhancement.” 
IEEE Trans. Computers C-24, No. 5, 512-516 (May 1975). 175 

D. C. BOSSEN. C L. CHEN.  AND M. Y HSlAO 



5. C. L. Chen, “Fault Dispersion in Computer Memories,” IBM 
Tech.  Disclosure Bull. 25, No. 1 IA, 5836-5838 (April 1983). 

6. C. L. Chen and M. Y. Hsiao, “Error-Correcting Codes for Semi- 
conductor Memory Applications:  A  State-of-the-Art  Review,” 
IBM J. Res. Develop. 28, 124-1 34 ( 1984, this issue). 

7. C. L. Chen and R. A. Rutledge, “Fault-Tolerant Memory Simu- 
lator,” IBM J. Res. Develop. 28, 184-1  95 (1 984, this issue). 

Received  April 15, 1983; revised  October 12, I983 

Douglas C.  Bossen IBM Data Systems Division, P.O. Box 390, 
Poughkeepsie,  New York 12602. Dr. Bossen  is  a senior engineer in the 
Data Systems  Division in Poughkeepsie,  where  he joined IBM in 1968. 
He works  in the Laboratory Engineering  Analysis Department, where 
he has general  responsibility for advanced reliability techniques, in- 
cluding errorcorrecting codes, errordetection mechanisms, fault tol- 
erance, and fault-isolation techniques. He received the B.S.,  M.S., and 
Ph.D. degrees in electrical  engineering, aU from Northwestern Uni- 
versity, Evanston, Illinois.  Since joining IBM,  he has received the 
Fifth-Level Invention Achievement  Award and has received  a  Cor- 
porate Award for his  work  in error detection and fault isolation. Dr. 
Bossen  is  a member of Eta Kappa Nu, Sigma Xi, and Tau Beta  Pi 
and a senior member of the Institute of  Electrical and Electronics 
Engineers. In 1973, he  received honorable mention by Eta Kappa Nu 
as an Outstanding Young Electrical  Engineer. 

C. L. (Jim) Chen IBM Data Systems Division, P.O. Box 390, 
Poughkeepsie,  New  York 12602. Dr. Chen is  a senior engineer working 
on errorcorrecting codes and fault-tolerant memory systems.  Before 

joining IBM in 1974, he held  a postdoctoral position at the University 
of  Hawaii and was a  faculty member of the University of Illinois.  He 
received  his  Ph.D.  degree  in  electrical  engineering  from the University 
of Hawaii. Dr. Chen is a member of the Institute of Electrical and 
Electronics  Engineers. He has received three IBM Invention Achieve- 
ment Awards and  one IBM Outstanding Innovation Award  for  his 
work on error-correcting codes. 

M. Y. (Ben) Hsiao IBM Data Systems Division, P.O. Box 390, 
Poughkeepsie,  New York 12602. Dr. Hsiao is a senior technical staff 
member and manager of the Laboratory Engineering  Analysis  De- 
partment. His current professional interests include research and 
development in computer reliability, availability, serviceability, error- 
correcting codes, error detection, failure-isolation techniques, and 
system  engineering  analysis.  He joined IBM in Poughkeepsie in the 
Advanced  Reliability  Technology Department in 1960. From 1965 to 
1967, he was on educational leave to  the University of Florida, after 
which  he returned to IBM as advisory engineer in the Reliability and 
Diagnostic  Engineering Department. In 1969, he was promoted to 
senior engineer and manager of the Reliability  Technology Depart- 
ment. He assumed his present position in 1979. Dr. Hsiao  received 
his  B.S. in electrical engineering in 1956 from Taiwan University, 
Taipei, his M.S. in mathematics in 1960 from the University of  Illinois, 
and his  Ph.D.  in  electrical  engineering in 1967 from the University of 
Florida. He has seven  IBM Invention Achievement  Awards, two IBM 
Outstanding Innovation Awards, and a Corporate Award in the areas 
of errorcorrection codes, error detection, and failure-isolation  tech- 
niques. He has authored and co-authored two books published in 
1964 and 1968. Dr. Hsiao is  a  Fellow  of the Institute of  Electrical and 
Electronics  Engineers and a member of the Fault Tolerant Computing 
Committee and IFIPS Committee on Reliable Computing and Fault 
Tolerance. 

176 

D. C. BOSSEN. C. L. ( IHEN, AND M. Y. HSIAO IBM J. RES. I IEVELOP. VOL. 28 NO. 2 MARCH 1984 


