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A Universal  Reed-Solomon  Decoder 

Two architecturesfor universal Reed-Solomon decoders are given. These decoders, called time-domain decoders, work directly on 
the raw data word as received without the usual syndrome calculation or power-sum-symmetric functions Up to  the limitations of 
the working registers, the decoders can decode any Reed-Solomon codeword or BCH codeword in the presence of both errors and 
erasures. Provision is also made  for decoding extended codes and shortened codes. 

Introduction 
Reed-Solomon  codes [ I ]  and  other Bose-Chaudhuri- 
Hocquenghem (BCH) [2 ,3]  codes  have come  into widespread 
use both  in communication systems and  in magnetic  recording 
systems. Every particular  application  has  its own distinct 
requirements usually satisfied by its  own  individual  hardware 
design. It may be more efficient, instead, to develop  a single 
universal decoder on a very-large-scale integrated-circuit  chip. 
By a  universal  decoder we mean a  decoder that  can be used 
to decode any Reed-Solomon or BCH codeword up  to  the 
limits  of the storage registers associated with the chip. Within 
these  limits  it  should  correct any  number of errors  and  era- 
sures, depending on  the code, and for any code  blocklength n 
and symbol alphabet size q. We limit q to be a  power of two. 
A universal chip  that  could be “programmed” by a few discrete 
inputs  to  decode  any code  within  its  limits could find extensive 
applications  in  magnetic storage systems, in optical disc re- 
cording systems, in  spread-spectrum  packet radio for  mobile 
communications,  and in many  other places. 

This  paper presents the architectures  of two  candidate uni- 
versal decoders. The  development of the  paper is concerned 
only with the algorithmic  aspects ofthe decoders;  those  aspects 
associated with logic circuit or  chip design are  not discussed. 

to these as  the n2 decoder  and  the 2tn decoder, respectively. 
Other possibilities such  as  a 2t (n  - 2 t )  decoder can be 
developed along  the  same lines but  are  not studied  in any 
detail. 

Both of the universal  decoders decode primitive  codes  of 
blocklength equal to q” - 1 for some integer m, codes whose 
blocklength n is a  divisor of q“ - 1, shortened codes, and 
codes extended by a single symbol. The  development of the 
theory and  the  notation is  consistent with that given in [4]. 
Both of the decoders are of the kind we call “time-domain” 
decoders. By this we mean  that  the Berlekamp or Berlekamp- 
Massey iterations operate  on  the raw input  data  as they are 
received. There is no step that could be called a syndrome 
computation  or a computation of power-sum symmetric func- 
tions. This is part  of the reason why  we  feel that  our algorithms 
are good candidates for  universal decoders. Of  course, the 
more  conventional “frequency domain” algorithms can also 
be used to build  a  universal  decoder.  However, there  are  then 
more subsections of the algorithm that need to be reconfigured 
for every rate,  blocklength, or field size. Further,  the time- 
domain algorithms  have  a  regular structure which is important 
for VLSI circuits. 

The first universal decoder has a very simple structure  and We begin the  paper with a development of  Reed- 
takes n2 clocks to  decode  one codeword,  where n is the Solomon codes using the suggestive language of the 
blocklength of the code. The decoding time  does  not  depend Fourier  transform. The Berlekamp-Massey algorithm and 
on  the  number of errors  or erasures in the received word. The the Berlekamp  algorithm then  are seen as algorithms for 
second  universal  decoder  has  a more complex structure  but is spectral estimation, albeit  in  a Galois field. We obtain  our 
faster. It takes 2tn clock intervals to decode one codeword, time  domain algorithms by using standard properties of the 
where 2t + 1 is the  minimum distance  of the code. We refer Fourier  transform to recast those  algorithms.  Next, we outline 

Copyright 1984 by International Business Machines Corporation. Copying  in  printed  form  for  private use is permitted  without payment of 
royalty  provided  that ( I )  each  reproduction  is done without alteration  and (2) the Journal reference and IBM copyright notice are included on the 

150 
first  page. The title and abstract,  but no other portions, of this paper  may  be copied or distributed  royalty  free without further permission by 
computer-based  and other information-service systems. Permission to republish any  other portion of this paper  must  be obtained from  the  Editor. 

RICHARD E. BLAHUT IBM 1. RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984 



the  architecture of  universal  decoders based on  the algorithms. 
The  paper  ends with a summary  and  some typical  perform- 
ance calculations. 

Reed-Solomon codes 
We begin with a  description  of  Reed-Solomon  codes using the 
suggestive terminology  of digital signal processing. The for- 
mulation of the decoders given later rests on well-known 
properties  of the discrete Fourier transform. 

The discrete Fourier  transform 

n- I 

K =  W'JU, ,  j = O , . . . , n -  1, 
,=O 

is familiar in digital signal processing. Usually one deals with 
a  time-domain signal v and a frequencydomain  transform V 
that  are vectors of  complex numbers,  and  the  Fourier trans- 
form kernel is w = e-J=TZr/n, an  nth root  of  unity  in the 
complex field. 

The  same definition  of  a Fourier transform  also  works  in  a 
Galois field. In this case, the  time-domain signal v and  the 
frequency-domain  transform V are vectors of symbols  from 
the Galois field GF(q) and  the  Fourier transform kernel w is 
an  element of GF(q),  of order n. This  formula looks exactly 
the  same  as before, but  the  additions  and multiplications  it 
expresses are in the Galois field GF(q).  The inverse  Fourier 
transform and  the  convolution  theorem hold because the 
proofs  of  these  properties are based on  only  the  formal struc- 
ture of a field. There is one  important difference here, however; 
in  a  Galois field an  nth root of unity does  not exist for every 
n, so a Fourier  transform does not exist for every n. This is 
why error-control  codes are usually limited  in the choice of 
blocklength. 

A  Reed-Solomon  code can be defined using the language 
of the  Fourier transform. Let c be a vector of  length n over 
the field GF(q) with spectrum C in GF( 4 ) .  The t-error- 
correcting  Reed-Solomon  code  of  blocklength n with symbols 
in GF( q )  is the set of all vectors c whose spectrum satisfies C, 
= 0 for j = 1, . . . , 2t. One way to find these  codewords is to 
encode  in the frequency domain.  This  means setting C, = 0 
for; = I ,  . . . , 2 t  and setting the  remaining n - 2t components 
of C equal to  the n - 2t  information symbols. An inverse 
Fourier  transform gives the codeword c. Thus,  the  number of 
information symbols  equals n - 2t  and there are two panty 
symbols for every error  to be corrected. This is not  the only 
way to  encode  the n - 2t  information symbols into code- 
words-others may yield a  simpler  implementation-but the 
frequency-domain method is the  most convenient  to deal with 
here. The decoder does  not depend on how the codewords  are 
used to store information except for the final step  of reading 
the  information  out of the corrected  codeword. 

The proof that  the preceding construction  does  indeed give 
a  code that corrects terrors is the starting point  for describing 
our decoders. The codeword c is transmitted  and  the  channel 
makes  errors described by the vector e which is nonzero  in 
not  more  than t places. The received word v is  written com- 
ponentwise as 

v i = c i + e , ,  i = O ,  ..., n-1 .  

The decoder must process the received word v so as to 
remove the  error word e; the  information is then recovered 
from c. The syndromes  of this noisy codeword v are defined 
by the following set of 2t equations: 

S,= w%,, j =  1, ..., 2t. 

Obviously, the  syndromes  are  computed  as 2t components of 
a  Fourier  transform. The received noisy codeword has a 
Fourier  transform given by v/ = C, + E, for j = 0, . . ., 
n - 1, and  the  syndromes  are  the 2t components of this 
spectrum from 1 to 2t. But, by construction of  a Reed- 
Solomon code, 

C,=O, j =  1, ..., 2t; 

hence, 

S,=V,=E,, j = l , . . . , 2 t  . 

n- I 

,=O 

The block of syndromes gives us  a  window through which 
we can look at 2t of the n components of the  transform of the 
error  pattern.  The decoder must find the  entire transform  of 
the  error  pattern given a  segment  of  length 2t of that transform 
and  the  additional  information  that  at most t components of 
the  time-domain  error  pattern  are nonzero. 

Suppose there  are v 5 t errors  at locations  with  index ik for 
k = I ,  . . . , v. Define the polynomial 

A(x) = n ( 1 - xuix), 
k= I 

which is known  as the error-locutor polynomial. The vector A 
of length n whose components A, are coefficients of the poly- 
nomial A( x) has an inverse transform 

x,=- 2 4 
1 "-1 

n ,=o 
1 p .  

This  can be obtained  from A ( x )  by evaluating A(x)  at 
B = w". That is. 

x, = - A(W"). 
1 
n 

Therefore. 

x, = - n ( 1  - i J - Iw ' t ) ,  

1 '  
n k = l  151 
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which is zero if i = ik where the ik for k = I ,  . . . , v index the the  determinant of this system of equations will equal  zero 
error locations; and otherwise Xi is  nonzero. Hence and  there will be more  than  one  solution  for A. Normally one 
Xi = 0 if and only if e, # 0. That is, in  the  time  domain, solves for that A corresponding to a  polynomial A(x) of 
hiei = 0; therefore, the  convolution in the frequency domain smallest degree. 
is zero: I 
A * E = O .  

This  convolution is  a set of n equations  in n - t unknowns 
( t  unknown  components of A and n - 2t unknown  compo- 
nents of E), and 2t known  components of E given by the 
syndromes. This  computation  can be described as  the opera- 
tion of a linear feedback shift register with tap weights given 
by the coefficients of A(x) .  It is an autoregressive filter. Of  the 
n equations,  the t equations 

The problem  of  solving  for A is the problem  of  inverting  a 
system of  Toeplitz  equations. There  are  many ways of dealing 
with a  Toeplitz system of  equations. This instance  has an 
extra property  in that  the vector on  the right side of the 
equation is related to  elements of the Toeplitz matrix  in a 
special way. The most popular algorithm for solving this 
system of equations for  error-control  decoders is the Berle- 
kamp-Massey  algorithm [ 5 , 6 ]  stated  as follows. 

Let SI, . . ., S21 be given. Let the following set of recursive 
equations be used to  compute A(21)(x): 

A, =i 2 Aj."l)S,-l, 
n- I 

j=O 

involve  only the known syndromes  and  the t unknown  com- A(r)( x) -A,x A("')(.x) 
ponents of A. These t equations  are always solvable  for the t [ B ( r ) ( x J  = [Ai16, - 6,)x] [ B ( r - ~ ) ( x ) ]  ' 
unknown  components of A. 

for r = 1, . . . , 2t. The initial conditions  are A'')(x) 
= 1, B(O)(x) = 1, = 0, and 6, = 1 if both A, # 0 and 
2L,] I r - 1, and otherwise 6,  = 0. Then A("'(x) is the 

After the shift register A is computed,  the  remaining  com- 
ponents of E can  be  obtained by recursive extension. That is, 
they can be sequentially computed  from A using the preceding smallest-degree polynomial with the properties that Aff) = I 
convolution  equation written  in the  form and 

In this way all components of the vector E are  computed. 
Then The Berlekamp-Massey algorithm  has 2t iterations and each 

iteration  can have on  the  order of t operations, so the  com- 

transforms  to  support it and these can have on  the  order of n2 
operations. After A is computed,  the recursive extension 

CJ= V, -EJ .  plexity is on  the  order of t2.  There  are also several Fourier 

An inverse Fourier  transform recovers the initial  codeword 
with all errors corrected. The  information symbols may  then 

The  computation of E, the  spectrum of the  error  pattern e 
that has least weight, is a  problem  of  spectral estimation, albeit computes the unknown components Of E. This requires 
one in  a  Galois field instead of, as  in  the  more  conventional TI - 2t more iterations. 
problem,  in the real or complex field. 

An alternative computation  can be used to avoid the 
Spectral estimation n - 2t iterations  of the recursive extension, but  at  the expense 
The system of equations of increasing the complexity  of the first 2t iterations by in- 

I creasing the  number of iterates. The algorithm,  now  known 
.i1Sk-/ = - S k ,  k = 1 -+ t ,  . . ., 2t,  as the Berlekamp  algorithm [ 5 ] ,  is expanded  to  compute  three 

J= I 
(or  sometimes two)  polynomials A(x) ,  A'(x), and r(x). The 

must be solved for  a vector A. If there  are exactly t errors,  error-locator  polynomial A(x) is as before, '\'(x) is its  formal 
then it is well known  that  there is exactly one solution to  this derivative, and I'(x), known as the error-evaluator  polyno- 

152 system of linear  equations. If there  are less than t errors, then mial, is defined by 
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r(x) = A(x)S(x), (mod 2'). 
The reason for computing these quantities is the  formula 
known as  the Forney  algorithm [7], which is given by 

whenever X, = 0. This expression can be used to  compute  the 
error  magnitudes directly  without the need for the n - 2 t  extra 
iterations  needed by the Berlekamp-Massey algorithm. 

Both A'(x) and r(x) can be computed  from A(x) after the 
first 2 t  iterations are complete, but  this procedure does  not 
readily lend itself to  the  time-domain  equations  that we want. 
Instead, it is more  convenient  to  include  one or both of them 
as iterates. To  include A'(x) and r(x) as iterates, we must 
also introduce  the  temporary iterates B'(x)  and A(x). The 
iterations then become 

A x) 

B '('I( x) 

- A,x 0 0 

where A,,  L, , and 6, are  as previously defined, and  the initial 
conditions  are 

A(')( x) = B(O)( x) = rC0)( x) = I ,  

A(O)(x) = A'(O)(x) = B'(O)(x) = 0. 

Time-domain  decoding 
By recognizing the problem of dedoding  Reed-Solomon  codes 
as a computation in the  Fourier transform domain, we have 
opened  other possibilities for the processing. The Berlekamp- 
Massey algorithm processes the  transform of the received 
word. The  BerlekampMassey algorithm is preceded by a 
Fourier transform and is followed by a Fourier  transform in 
some form. However, instead  of  pushing the received word 
into  the frequency domain, it is possible to push the Berle- 
kamp-Massey  algorithm into  the  time  domain [8]. This makes 
the  Fourier  transforms simply  vanish. On  the  other  hand,  the 
frequency-domain vectors of  length t are replaced by time- 
domain vectors  of  length n; algorithms that in the frequency 
domain have  complexity t 2  or nt become  algorithms  in the 
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time  domain  that have  complexity nt or n2. The  time-domain 
decoder is structurally  simple and is useful in applications 
where structural simplicity is important  and  the  number of 
iterations is not. 

Let X and b denote respectively the inverse Fourier trans- 
forms  of the vectors A and B. To push the Berlekamp-Massey 
equations  into  the  time  domain, simply replace the frequency- 
domain variables Aj and B, with the  time-domain variables X i  
and b,,  replace the delay operator x with w", and replace 
product  terms with convolution terms.  Replacement  of the 
delay operator with w - ~  is justified by the translation  property 
of Fourier transforms;  replacement of a product with a con- 
volution is justified by the  convolution theorem. Then,  as is 
proved in [8], the  time-domain algorithm is as follows. 

Let v be  the received noisy Reed-Solomon  codeword and 
let the following set of recursive equations be used to  compute 
Xi2') for i = 0, . . ., n - I :  

n- I 

for i = 0, . . ., n - 1 and for r = 1, . . ., 2 t .  The initial 
conditions  are X$') = 1 for all i, bj0) = 1 for all i, I,,, = 0, and 
6, = 1 if both A, # 0 and 2L,, 5 r - 1, and otherwise 6, = 0. 
Then X$'') = 0 if and  only if e, # 0. 

For nonbinary codes we must also compute  the  error mag- 
nitudes  in the frequency domain. These are  computed by the 
following recursion: 

E k = - Z  -A,Ek-,, k = 2 t +  1 , . . . , n -  I .  

It is not possible to  just write the  Fourier transform  of  this 
equation;  some restructuring is necessary. The following 
equivalent set of recursive equations for r = 2 t  + 1, . . . , n is 
suitably  restructured: 

I =  I 

= u!,r- l )  - A , ~ - N ,  

Starting with #') = u,, and X, = for i = 0, . . ., 
n - 1, the last iteration results in 

uj")=e,, j = o  . . .  n-1. , ,  

The reason this works is that E, = V,  for j = I ,  . . . , 2t ,  and 
the new equations,  though  written in the  time  domain,  are 
actually  sequentially  changing V,  to E, for j = 2 t  + 1, . . . , n. 153 
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Figure 1 Tirne-dornain decoder algorithm. 

The time-domain decoder has no Fourier transforms (no 
syndrome computation nor Chien search); it  has only one 
major computational block  which  is  easily  designed into dig- 
ital  logic.  It does, however,  always  deal  with  vectors of length 
n rather than with vectors of  length t used  by the frequency- 
domain decoder. Hence, there are hardware/speed tradeoffs. 

To get a faster time-domain decoder, we can start with the 
Berlekamp algorithm. Transformed into the time domain, 
these equations become the following: 

154 

for j = 0, . . . , n - 1, and for r = 1, . . . , 22. The initial 
conditions are A$O) = b$') = 75') = 1 for  all i; A:(') = 
b{(O) = u$O) = 0 for  all i; I& = 0; and 6, = I if both A, # 0 and 
2L,-1 5 r - 1, and otherwise 6, = 0. 

Architecture of the  decoders 
Now  we are ready  for the central section of the paper, the 
architecture of the universal decoders. A flow diagram for the 
basic n2 time-domain decoder, which  was  developed in the 
previous section, is shown in Figure 1. Notice that  the initial- 
ization is trivial, starting with a syndrome vector equal to the 
raw data vector just as it  is  received. At the end of n iterations, 
this syndrome vector has been changed into  the error vector. 
The decoder decodes both errors and erasures, and can be 
used for Reed-Solomon codes,  BCH codes, and singly  ex- 
tended versions  of these codes.  Discussion of the algorithmic 
theory associated  with  these enhancements is  deferred to the 
next section, although the enhancements themselves are in- 
cluded in the figures  of this section. 

Most  of the clutter in Fig. 1 is concerned with  logical  tests 
and  the setting of  switches, and is quite trivial in a hardware 
implementation of a decoder. The index r counts out the n 
iterations, and  the flow diagram is best understood by  follow- 
ing the r index. During the first p iterations, with p equal to 
the number of erased  symbols, the basic  Berlekamp-Massey 
iteration is tricked into initializing itself  for p erasures as  is 
described in the next section. This is done with the same 
computations as would  be done if there were no erasures, 
except that different variables are switched into  the  input of 
the computations. There is  virtually no increase in complexity 
to fill erasures. 

Next the Berlekamp-Massey algorithm proceeds through 
2t - p iterations to compute the time-domain error-locator 
vector. The next-to-last of these iterations is  special  when 
decoding singly extended codes. A special  test determines 
whether an extra syndrome is needed, and if so, sets the switch 
position denoted by c to a one. Then iteration 2t  can be 
completed. Otherwise only 2t - 1 iterations are needed by the 
Berlekamp-Massey algorithm. The last n - 2t (or n - 2t + 1) 
iterations update s, to compute the error vector. 

The flow can be  simplified a little more than is  shown  in 
Fig. 1. After the block that updates r, one inserts s, +- w's,. 
Then  the equation for A, loses the term in W ,  as does the 
equation for s, on  the right.  Because w has order n, and there 
are n iterations, the final s, is multiplied by a"', which equals 
one. Hence, the final result is not affected. 
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Figure 2 Architecture of a universal Reed-Solomon decoder. 

The  architecture  of a universal decoder is  shown in Figure 
2. The largest symbol field is GF(2"), which  consists  of m-bit 
symbols. In particular, we can  take m equal  to 8 so the code 
symbols are  up  to 8-bit bytes. Then  there  are 24 bits  moving 
through  the decoder in parallel and recirculating  back to  the 
shift registers. The  contents of the shift registers are shifted 
into  the decoder n times  and  the shift registers are of length 
n, so the decoding time is n2 clock intervals. 

The  computations within the decoder are  just those  shown 
in Fig. 1. There  are five hard-wired m-bit by m-bit multipli- 
cations  running  concurrently,  an u" generator, and  an inverse 
computation.  The multiplier structure  and  the inversion 
change  with the field size. Multipliers are special 8-bit by 8- 
bit  multipliers  without  carry and with the high-order output 
bits folded back by the rules  of Galois field multiplication. 
There  are also some  adders which are bit-by-bit exclusive-or 
circuits. The  accumulation of the  sum defining A, proceeds as 
the variables X,, b,, and si are shifted into  the decoder arith- 
metic  section.  Meanwhile, at  the  same  time, X, and bi are 
updated and  returned  to  the shift registers to be ready for the 
next  iteration. After A, is computed, it is inverted, perhaps by 
a  table look-up or by discrete logic. In  this way, the discrepancy 
for one value of the index r is  being computed concurrently 
with the  update of X, and b,. 

The  remainder of the decoder  consists  of switches and 
minor logic that  control  the routing  of data.  The speed  of the 
decoder depends  on  the  number of logic levels between the 
input  and  output of the decoder logic. The worst path through 
the  decoder has  two  multiplications and a  bitwise-modulo- 
two addition. If there  are  three logic levels in a  multiplication, 
then in one iteration  a  word drops  through seven levels of 
logic. A clock interval is determined by the  time it  takes  a 
signal to pass through seven levels of logic. Clearly, one  can 
expect very high decoder speeds. 

A flow diagram  for the  more complex 2tn time-domain 
decoder  is  shown in Figure 3 and a  decoder is shown in Figure 
4. Now there  are seven words flowing through  the decoder in 
parallel. This requires  a 56-bit-wide data  path  to  handle Reed- 
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p "erasure" 
iterations a r t r + l  

Set bad 
message 

J r 
Exit 

Figure 3 Another time-domain decoder algorithm. 

Solomon codes on 8-bit bytes. The decoder terminates with 
the Forney  algorithm.  Many  of the  other features  of the 
decoder are  camed over  from the n2 decoder. 

One way to  compare  the  timing of Figs. 1 and 3 is with the 
grid shown  in Figure 5. Each cell in  the grid represents one 
clock time  and  there  are  up  to nz grid cells. The cells in each 
column represent the vector components,  and each column 
represents one iteration during which that vector is processed. 155 
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Figure 4 Architecture of another  universal  Reed-Solomon  decoder. 

I 21 n 

I Iteration  counter 

Figure 5 Timing  chart. 

The speed  of an algorithm is, in  part,  determined by the length 
of the vectors and  the  number  of iterations. The first algorithm 
has n iterations  and processes vectors  of  length n. The  com- 
putation  may be thought of as stepping through  the squares 
of the grid  column-by-column. There  are n2 computational 
steps, each of which is rather simple. The second  algorithm 
described has fewer steps because there  are  only 2 t  iterations. 
There  are 2tn  computational steps, but these are each about 
three  times  as difficult as before. 

One  can also use Fig. 5 to  contemplate  the  number 
of  clocks of  the  more  conventional frequency-domain 

156 Berlekamp-Massey algorithm. Then  one has something like 
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2t2 clocks because there  are 2t iterations involving vectors of 
length t .  That decoder, however, includes other processing 
steps  such as a Fourier  transform. 

Enhancements 
The universal  decoders  include  provision for decoding BCH 
codes,  extended codes, and shortened codes, and for filling 
erasures  as well as correcting  errors. This section  provides the 
theory  behind  these enhancements. 

To see that  the decoder can correct BCH codes, it is only 
necessary to realize that every BCH code is a subfield-subcode 
of a Reed-Solomon code. That is, the BCH code  is a subset of 
a Reed-Solomon  code.  Hence,  since the decoder can correct 
every codeword in a Reed-Solomon  code,  it can correct every 
codeword in a BCH code. 

The filling of erasures  makes use of a time-domain version 
of the procedure described in [9]. It is  shown there  that it 
suffices to initialize the Berlekamp-Massey algorithm with the 
erasure-locator  polynomial 

P 

Q ( x )  = n ( 1 - xu"), 
kl 

where ik is the location  of the  kth of p erasures. The initiali- 
zation A(x) = B ( x )  = Q(x) can be put  in  the  form of the  other 
iterations by using the index r in place of k, and  in each 
iteration  multiplying in  one factor ( I  - xu'.). This we put in 
the  form 

for r = I ,  . . . , p, and  now with the initialization A(x) = 
B ( x )  = I .  This is very nearly the  form of the Berlekamp- 
Massey iteration. All that is needed in a circuit is a few switches 
to replace the discrepancy A, with the erasure  location a i r ,  and 
to  update B(')(x) in  the  same  manner as A(r)(x) .  These com- 
putations  are readily transformed into  the  time  domain. 
Hence,  the cost of  including the ability to correct  erasures is 
virtually zero. 

Extended  Reed-Solomon  codes are described by Wolf [ IO]. 
The decoding of a singly extended  Reed-Solomon  code is 
described in [ 4 ] .  Singly extended  codes are  important because 
they allow one  to use codes  such as a (32 ,16)  or a (256,240) 
Reed-Solomon  code  in which the blocklength is a power of 
two.  Often, a power-of-two blocklength will  fit into  an appli- 
cation  more snugly than a blocklength that is not a power of 
two. 

An (n,k) singly extended  Reed-Solomon  code with 
n = 2" can be described as  an (n - I,k) Reed-Solomon  code 
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appended by an additional panty check denoted c+ and de- 
fined by 

c+ = CjWi2‘, 

“-2 

i = O  

provided C,, C2, . . ., C2f-1 have  been chosen as “parity 
frequencies.” With these panty frequencies the 2 t  - 1 spectral 
components of the received  word VI, V2, . . . , V21-1 give enough 
syndromes to correct t - 1 errors and detect t errors in the 
first n - I symbols of the received  word. If there are t errors 
detected, then  the appended symbol c+ is error-free. Hence, 
V2, - c+ gives one more valid syndrome and the t errors can 
be corrected. 

To enhance our decoder so that it can decode a singly 
extended Reed-Solomon code only requires a test  of the 
discrepancy for zero at iteration 2 t  - 1 followed by the trivial 
equation S2r = V2r - v+ in the frequency domain. It is trivial 
to include the equivalent of this equation in the time-domain 
decoder. 

The decoders also  work  for nonprimitive Reed-Solomon 
codes. These are codes whose blocklength is a divisor of 
q - 1. One merely uses an element of order n for W .  For 
example, 51 divides 255,  so one has a nonprimitive Reed- 
Solomon code of  blocklength 51 with  8-bit  symbols. This 
could be extended to blocklength 52.  

One also has the option of  using shortened Reed-Solomon 
codes, that is, codes terminated by  fixing some of the infor- 
mation places at zero. The n2 decoder must carry these  zero 
places through the calculation, so the decoding speed  is deter- 
mined by the blocklength  of the unshortened code. The 2nt 
decoder need not process the zero components. Its perform- 
ance is determined by the blocklength of the shortened code. 

Finally, we mention other variations that might be used. 
The method of Burton [ 1 I ]  could be incorporated to trade a 
division  for multiplications. If a circuit for dividing by the 
generator polynomial is  available to use without additional 
cost, then one might wish to divide out  the generator poly- 
nomial to change the input vector to length n - 2 t ,  thereby 
obtaining some speed advantage [but at the cost  of  using the 
divide by g(x) circuit]. One also can incorporate schemes that 
kick out after fewer than 2 t  iterations if there are fewer than t 
errors in the received  word. Simple logical  tests  suffice  for this 
test. 

Summary 
Typical performance parameters for a universal decoder are 
given  in Table 1. Of course, one might  also choose to enlarge 
these numbers to handle larger  codes; the parameters given 
were  chosen to cover most potential applications. 

Table 1 Typical  design parameters of the universal decoder. 

n 5 256 bytes 
q = 2,  4,  8,  16, 32,64, 128, 256 

BCH and Reed-Solomon codes 
Errors and erasures decoding 
Decode time (clocks): n? or 2tn 
Logic  delay: 7 gates/clock 

(1 -bit to 8-bit bytes) 

Table 2 Performance calculations: (a) for the n? decoder; (b) for the 
2tn decoder. 

(a) n2 decoder 
Symbol Block Decode time Bit rate 

field length per symbol* per decoder** 

2 ‘ 2  4096 
28 

4095 
256 

87.9 Kbps 
255 

28 52 
94 1.2 Kbps 

51 
28 18  17  14.1 Mbps 

4.7 Mbps 

(b) 2tn decoder 
Symbol Block 2t Decode time Bit  rate 
field length per symbol* per decoder** 

2‘2 4096 400 400 
28 

899.9 Kbps 
256 40 40 6.0 Mbps 

28 52 I O   I O  24.0 Mbps 
28 18 6 6 40.0 Mbps 

In clock times. 
* *At  a 30”Hz d o c k .  

The attraction of the universal decoders is their structural 
simplicity, which makes it  feasible to build the decoder on a 
single chip, and their versatility,  which enables a single chip 
to handle many applications. Of course, one can always im- 
prove performance for a single application by building a more 
complex decoder or  one  that is tailored to the application. 

Performance calculations for the n2 and 2tn  decoders are 
listed in Table 2. These calculations pertain to a decoder that 
corrects the worst-case error pattern in  every  received  word. 
We have not considered alternative configurations whose  de- 
coding time vanes with the  number of errors. 
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