150

Richard E. Blahut

A Universal Reed-Solomon Decoder

Two architectures for universal Reed-Solomon decoders are given. These decoders, called time-domain decoders, work directly on
the raw data word as received without the usual syndrome calculation or power-sum-symmetric functions. Up to the limitations of
the working registers, the decoders can decode any Reed-Solomon codeword or BCH codeword in the presence of both errors and
erasures. Provision is also made for decoding extended codes and shortened codes.

Introduction

Reed-Solomon codes [1] and other Bose-Chaudhuri-
Hocquenghem (BCH) [2, 3] codes have come into widespread
use both in communication systems and in magnetic recording
systems. Every particular application has its own distinct
requirements usually satisfied by its own individual hardware
design. It may be more efficient, instead, to develop a single
universal decoder on a very-large-scale integrated-circuit chip.
By a universal decoder we mean a decoder that can be used
to decode any Reed-Solomon or BCH codeword up to the
limits of the storage registers associated with the chip. Within
these limits it should correct any number of errors and era-
sures, depending on the code, and for any code blocklength »
and symbol alphabet size g. We limit g to be a power of two.
A universal chip that could be “programmed” by a few discrete
inputs to decode any code within its limits could find extensive
applications in magnetic storage systems, in optical disc re-
cording systems, in spread-spectrum packet radio for mobile
communications, and in many other places.

This paper presents the architectures of two candidate uni-
versal decoders. The development of the paper is concerned
only with the algorithmic aspects of the decoders; those aspects
associated with logic circuit or chip design are not discussed.

The first universal decoder has a very simple structure and
takes n? clocks to decode one codeword, where n is the
blocklength of the code. The decoding time does not depend
on the number of errors or erasures in the received word. The
second universal decoder has a more complex structure but is
faster. It takes 2n clock intervals to decode one codeword,
where 27 + 1 is the minimum distance of the code. We refer

to these as the n? decoder and the 2tn decoder, respectively.
Other possibilities such as a 2¢(n — 2¢) decoder can be
developed along the same lines but are not studied in any
detail.

Both of the universal decoders decode primitive codes of
blocklength equal to ¢” — 1 for some integer m, codes whose
blocklength # is a divisor of g™ — 1, shortened codes, and
codes extended by a single symbol. The development of the
theory and the notation is consistent with that given in [4].
Both of the decoders are of the kind we call “time-domain”
decoders. By this we mean that the Berlekamp or Berlekamp-
Massey iterations operate on the raw input data as they are
received. There is no step that could be called a syndrome
computation or a computation of power-sum symmetric func-
tions. This is part of the reason why we feel that our algorithms
are good candidates for universal decoders. Of course, the
more conventional “frequency domain” algorithms can also
be used to build a universal decoder. However, there are then
more subsections of the algorithm that need to be reconfigured
for every rate, blocklength, or field size. Further, the time-
domain algorithms have a regular structure which is important
for VLSI circuits.

We begin the paper with a development of Reed-
Solomon codes using the suggestive language of the
Fourier transform. The Berlekamp-Massey algorithm and
the Berlekamp algorithm then are seen as algorithms for
spectral estimation, albeit in a Galois field. We obtain our
time domain algorithms by using standard properties of the
Fourier transform to recast those algorithms. Next, we outline

© Copyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the
first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

RICHARD E. BLAHUT

IBM J. RES. DEVELOP. e VOL. 28 ¢ NO. 2 ¢« MARCH 1984

the architecture of universal decoders based on the algorithms.
The paper ends with a summary and some typical perform-
ance calculations.

Reed-Solomon codes

We begin with a description of Reed-Solomon codes using the
suggestive terminology of digital signal processing. The for-
mulation of the decoders given later rests on well-known
properties of the discrete Fourier transform.

The discrete Fourier transform

n—1
Vi= Y W, j=0,.--,n—1,
i=0

is familiar in digital signal processing. Usually one deals with
a time-domain signal v and a frequency-domain transform V
that are vectors of complex numbers, and the Fourier trans-
form kernel is w = & =7 an nth root of unity in the
compilex field.

The same definition of a Fourier transform also works in a
Galois field. In this case, the time-domain signal v and the
frequency-domain transform V are vectors of symbols from
the Galois field GF(g) and the Fourier transform kernel w is
an element of GF(qg), of order n. This formula looks exactly
the same as before, but the additions and multiplications it
expresses are in the Galois field GF(g). The inverse Fourier
transform and the convolution theorem hold because the
proofs of these properties are based on only the formal struc-
ture of a field. There is one important difference here, however;
in a Galois field an nth root of unity does not exist for every
n, so a Fourier transform does not exist for every #n. This is
why error-control codes are usually limited in the choice of
blocklength.

A Reed-Solomon code can be defined using the language
of the Fourier transform. Let ¢ be a vector of length n over
the field GF(g) with spectrum C in GF(gq). The t-error-
correcting Reed-Solomon code of blocklength n with symbols
in GF(q) is the set of all vectors ¢ whose spectrum satisfies C;

=0forj=1, ..., 2t. One way to find these codewords is to
encode in the frequency domain. This means setting C; = 0
forj=1, ..., 2t and setting the remaining # — 2{ components

of C equal to the n — 2¢ information symbols. An inverse
Fourier transform gives the codeword c. Thus, the number of
information symbols equals #» — 2¢ and there are two parity
symbols for every error to be corrected. This is not the only
way to encode the n — 2t information symbols into code-
words—others may yield a simpler implementation—but the
frequency-domain method is the most convenient to deal with
here. The decoder does not depend on how the codewords are
used to store information except for the final step of reading
the information out of the corrected codeword.

IBM J. RES. DEVELOP. o« VOL. 28 « NO. 2 « MARCH 1984

The proof that the preceding construction does indeed give
a code that corrects ¢ errors is the starting point for describing
our decoders. The codeword c is transmitted and the channel
makes errors described by the vector e which is nonzero in
not more than ¢ places. The received word v is written com-
ponentwise as

vi=C+e;, i=0,"',n—1.

The decoder must process the received word v so as to
remove the error word e; the information is then recovered
from c. The syndromes of this noisy codeword v are defined
by the following set of 27 equations:

n—1

Si= % wy, j=1,...,21
=0

Obviously, the syndromes are computed as 2¢ components of
a Fourier transform. The received noisy codeword has a
Fourier transform given by V;, = C; + E; for j = 0, ---,
n — 1, and the syndromes are the 2¢ components of this
spectrum from 1| to 2¢ But, by construction of a Reed-
Solomon code,

C=0, j=1,.---,2t
hence,

S=Vi=E;, j=1,---,2L

The block of syndromes gives us a window through which
we can look at 2¢ of the n components of the transform of the
error pattern. The decoder must find the entire transform of
the error pattern given a segment of length 2¢ of that transform
and the additional information that at most 1 components of
the time-domain error pattern are nonzero.

Suppose there are » < ¢ errors at locations with index i, for
k=1, ---, v. Define the polynomial

A(x) =1 (1 = xo™),
k=1

which is known as the error-locator polynomial. The vector A
of length #n whose components A; are coefficients of the poly-
nomial A(x) has an inverse transform

1 n—1 .
)\,‘ = i w_”.

n jg() 4
This can be obtained from A(x) by evaluating A(x) at
x = w . That s,

1)
A,’ = — Alw™).

p (™)
Therefore,

1 v
e | O

H g=1

151

RICHARD E. BLAHUT

152

which is zero if i = i, where the i, for k=1, - - -, » index the
error locations; and otherwise \; is nonzero. Hence
X = 0 if and only if ¢; # 0. That is, in the time domain,
Xie; = 0; therefore, the convolution in the frequency domain
is zero:

A*E=0.

But A; = 0 for j > ¢, and Ao = 1, so this can be written

I3
> AEw;=—E, k=0,--.,n—1.
=1

This convolution is a set of # equations in #» — ¢ unknowns
(¢ unknown components of A and #» — 2¢ unknown compo-
nents of E), and 2¢ known components of E given by the
syndromes. This computation can be described as the opera-
tion of a linear feedback shift register with tap weights given
by the coefficients of A(x). It is an autoregressive filter. Of the
n equations, the 7 equations

k=1+1¢...,21,

=

'
2 ASiy =S,
1

involve only the known syndromes and the ¢ unknown com-
ponents of A. These ¢ equations are always solvable for the ¢
unknown components of A.

After the shift register A is computed, the remaining com-
ponents of E can be obtained by recursive extension. That is,
they can be sequentially computed from A using the preceding
convolution equation written in the form

4
Ex=-Y MEwj, k=0,--.,n—1.
J=1

In this way all components of the vector E are computed.
Then

G=V,~E.

An inverse Fourier transform recovers the initial codeword
with all errors corrected. The information symbols may then
be read out in accordance with the method of encoding.

The computation of E, the spectrum of the error pattern e
that has least weight, is a problem of spectral estimation, albeit
one in a Galois field instead of, as in the more conventional
problem, in the real or complex field.

Spectral estimation
The system of equations

!

Z AjSk‘j = _Sk 5

J=1

k=141 ...,2t

must be solved for a vector A. If there are exactly ¢ errors,
then it is well known that there is exactly one solution to this
system of linear equations. If there are less than ¢ errors, then

RICHARD E. BLAHUT

the determinant of this system of equations will equal zero
and there will be more than one solution for A. Normally one
solves for that A corresponding to a polynomial A(x) of
smallest degree.

The problem of solving for A is the problem of inverting a
system of Toeplitz equations. There are many ways of dealing
with a Toeplitz system of equations. This instance has an
extra property in that the vector on the right side of the
equation is related to elements of the Toeplitz matrix in a
special way. The most popular algorithm for solving this
system of equations for error-control decoders is the Berle-
kamp-Massey algorithm {5, 6] stated as follows.

Let S), ---, S5, be given. Let the following set of recursive
equations be used to compute A®(x):

n~1
A=Y AYIS,

J=0

Lr = 6,(7'— Lr—l) + (1 - 5r)lzr—l)

A(x) 1 —Ax AT I(x)
B"(x) A7, (1 —8)x B (x)
for r = 1, ..., 2¢. The initial conditions are A9(x)

=1, B9x) =1, Ly = 0, and 4, = 1 if both A, # 0 and
2L,, < r —~ 1, and otherwise 4, = 0. Then A®Y(x) is the
smallest-degree polynomial with the properties that A§" = |
and

n—1
Sk + E A}ZI)S}(_] = O,

Jj=1

k=Ly+1,.--,2L

The Berlekamp-Massey algorithm has 2¢ iterations and each
iteration can have on the order of ¢ operations, so the com-
plexity is on the order of 2. There are also several Fourier
transforms to support it and these can have on the order of »?
operations. After A is computed, the recursive extension

Ek == 2 AfEk—j s

J=1

k=2t+1,---,n,

computes the unknown components of E. This requires
n — 2t more iterations.

An alternative computation can be used to avoid the
n — 2¢ iterations of the recursive extension, but at the expense
of increasing the complexity of the first 2¢ iterations by in-
creasing the number of iterates. The algorithm, now known
as the Berlekamp algorithm [5], is expanded to compute three
(or sometimes two) polynomials A(x), A’(x), and T(x). The
error-locator polynomial A(x) is as before, A’(x) is its formal
derivative, and T'(x), known as the error-evaluator polyno-
mial, is defined by

IBM J. RES. DEVELOP. & VOL. 28 » NO. 2 « MARCH 1984

T'(x) = A(x)S(x), (mod x%).

The reason for computing these quantities is the formula
known as the Forney algorithm [7], which is given by
_ T'(w™)

A(w™)

=

whenever A, = 0. This expression can be used to compute the
error magnitudes directly without the need for the n — 2¢ extra
iterations needed by the Berlekamp-Massey algorithm.

Both A’(x) and I'(x) can be computed from A(x) after the
first 2¢ iterations are complete, but this procedure does not
readily lend itself to the time-domain equations that we want.
Instead, it is more convenient to include one or both of them
as iterates. To include A’(x) and T'(x) as iterates, we must
also introduce the temporary iterates B’(x) and A(x). The
iterations then become

AY(x)
BY(x)
A"(x)
B'(x)

1 —Ax 0 0 AI(x)

A7, (1—=8)x O 0 BU(x)

B 0 -4, 1 —Ax A(x)

0 (1=68) 478, (1-6)x B’ Y(x)

x) I —Ax
A% | 1ars (1-8)x| | Ax)

where A,, L, , and é, are as previously defined, and the initial
conditions are

I‘"“’(x)}

A9x)=BO(x)=TO(x)=1,
A9(x) = A"O(x) = B"O(x) =0,

Time-domain decoding

By recognizing the problem of decoding Reed-Solomon codes
as a computation in the Fourier transform domain, we have
opened other possibilities for the processing. The Berlekamp-
Massey algorithm processes the transform of the received
word. The Berlekamp-Massey algorithm is preceded by a
Fourier transform and is followed by a Fourier transform in
some form. However, instead of pushing the received word
into the frequency domain, it is possible to push the Berle-
kamp-Massey algorithm into the time domain [8]. This makes
the Fourier transforms simply vanish. On the other hand, the
frequency-domain vectors of length ¢ are replaced by time-
domain vectors of length #; algorithms that in the frequency
domain have complexity 2 or nt become algorithms in the

IBM J. RES. DEVELOP. e VOL. 28 ¢ NO. 2 « MARCH 1984

time domain that have complexity »f or #%. The time-domain
decoder is structurally simple and is useful in applications
where structural simplicity is important and the number of
iterations is not.

Let XA and b denote respectively the inverse Fourier trans-
forms of the vectors A and B. To push the Berlekamp-Massey
equations into the time domain, simply replace the frequency-
domain variables A; and B; with the time-domain variables A;
and b;, replace the delay operator x with w™, and replace
product terms with convolution terms. Replacement of the
delay operator with ™ is justified by the translation property
of Fourier transforms; replacement of a product with a con-
volution is justified by the convolution theorem. Then, as is
proved in [8], the time-domain algorithm is as follows.

Let v be the received noisy Reed-Solomon codeword and
let the following set of recursive equations be used to compute
M fori=0,-.-,n—1:

n=-1

A= "N,

i=0

L, = 6,("— L,_l) + (1 - 6,)Lr_| 5

A U =ae | [

b AS, (1=6)w™ | [by]
fori=0, .., n— 1and for r = 1, ..., 2¢. The initial
conditions are N = | for all /, 5® =1 for all i, L, = 0, and

é,= 1l if both A, # 0 and 2L, < r — 1, and otherwise §, = 0.
Then A#*? = 0 if and only if ¢; # 0.

For nonbinary codes we must also compute the error mag-
nitudes in the frequency domain. These are computed by the
following recursion:

I3
Ei=-% —AFE;,

J=1

k=2t+1,.-..,n—1.

It is not possible to just write the Fourier transform of this
equation; some restructuring is necessary. The following
equivalent set of recursive equations for r=2¢+ 1, ---, nis
suitably restructured:

n—1

& =3 Wi,
i=0

v =i — A0

Starting with v%? = v, and \, = X for i = 0, ---,
n — 1, the last iteration results in

vWW=¢, i=0,---,n-1.

The reason this works is that E; = V;for j = 1, ..., 2¢, and
the new equations, though written in the time domain, are
actually sequentially changing V;to E;forj=2¢+1, ---, n.

153

RICHARD E. BLAHUT

154

Enter

Initialize

=0, -, n—1
=0, -, n—1
=0

Erasures at
locations i .
r=1-'p

5=1 l
Ler—L—p =0 Halt

A 1 -7 A,
e Lats, a-s 0]

Figure 1 Time-domain decoder algorithm.

The time-domain decoder has no Fourier transforms (no
syndrome computation nor Chien search); it has only one
major computational block which is easily designed into dig-
ital logic. It does, however, always deal with vectors of length
n rather than with vectors of length ¢ used by the frequency-
domain decoder. Hence, there are hardware/speed tradeoffs.

To get a faster time-domain decoder, we can start with the
Berlekamp algorithm. Transformed into the time domain,
these equations become the following:

AP I —Aw™ 0 0 AT
b A7, (1—6)” 0 0 b
A T oo —A, | —Aw™ A
po 0 (1-4) Aﬂa(l—&w4J by

RICHARD E. BLAHUT

1 [0 —aw][

at” A8 (1 - 6w al™v
fori=0, ---, n — 1, and for r = 1, ---, 2¢. The initial
conditions are A\® = p® = 4® = | for all j;; \© =

b0 = g® =0 forall i; Lo =0; and 6, = 1 if both A, # 0 and
2L,_, = r— 1, and otherwise 6, = 0.

Architecture of the decoders

Now we are ready for the central section of the paper, the
architecture of the universal decoders. A flow diagram for the
basic #* time-domain decoder, which was developed in the
previous section, is shown in Figure 1. Notice that the initial-
ization is trivial, starting with a syndrome vector equal to the
raw data vector just as it is received. At the end of » iterations,
this syndrome vector has been changed into the error vector.
The decoder decodes both errors and erasures, and can be
used for Reed-Solomon codes, BCH codes, and singly ex-
tended versions of these codes. Discussion of the algorithmic
theory associated with these enhancements is deferred to the
next section, although the enhancements themselves are in-
cluded in the figures of this section.

Most of the clutter in Fig. 1 is concerned with logical tests
and the setting of switches, and is quite trivial in a hardware
implementation of a decoder. The index r counts out the »
iterations, and the flow diagram is best understood by follow-
ing the r index. During the first p iterations, with p equal to
the number of erased symbols, the basic Berlekamp-Massey
iteration is tricked into initializing itself for p erasures as is
described in the next section. This is done with the same
computations as would be done if there were no erasures,
except that different variables are switched into the input of
the computations, There is virtually no increase in complexity
to fill erasures.

Next the Berlekamp-Massey algorithm proceeds through
2t — p iterations to compute the time-domain error-locator
vector. The next-to-last of these iterations is special when
decoding singly extended codes. A special test determines
whether an extra syndrome is needed, and if so, sets the switch
position denoted by ¢ to a one. Then iteration 2¢ can be
completed. Otherwise only 27 — 1 iterations are needed by the
Berlekamp-Massey algorithm. The last n — 2¢ (orn — 2t + 1)
iterations update s; to compute the error vector.

The flow can be simplified a little more than is shown in
Fig. 1. After the block that updates r, one inserts s; « w's;.
Then the equation for A, loses the term in w, as does the
equation for s; on the right. Because w has order », and there
are # iterations, the final s; is multiplied by »™, which equals
one. Hence, the final result is not affected.

IBM J. RES. DEVELOP. & VOL. 28 & NO. 2 4 MARCH 1934

~a— 1 Words —— -

m " m
—+>I v register |—> Decoder i
m m m
\ regist GF (27)

m m
m m bits wide £

L
va -
3m

. 2
Time ~ n

Figure 2 Architecture of a universal Reed-Solomon decoder.

The architecture of a universal decoder is shown in Figure
2. The largest symbol field is GF(2™), which consists of m-bit
symbols. In particular, we can take m equal to 8 so the code
symbols are up to 8-bit bytes. Then there are 24 bits moving
through the decoder in parallel and recirculating back to the
shift registers. The contents of the shift registers are shifted
into the decoder n times and the shift registers are of length
n, so the decoding time is 72 clock intervals.

The computations within the decoder are just those shown
in Fig. 1. There are five hard-wired m-bit by m-bit multipli-
cations running concurrently, an w™ generator, and an inverse
computation. The multiplier structure and the inversion
change with the field size. Multipliers are special 8-bit by 8-
bit multipliers without carry and with the high-order output
bits folded back by the rules of Galois field multiplication.
There are also some adders which are bit-by-bit exclusive-or
circuits. The accumulation of the sum defining A, proceeds as
the variables A\, b;, and s; are shifted into the decoder arith-
metic section. Meanwhile, at the same time, \; and b; are
updated and returned to the shift registers to be ready for the
next iteration. After A, is computed, it is inverted, perhaps by
a table look-up or by discrete logic. In this way, the discrepancy
for one value of the index r is being computed concurrently
with the update of A; and b..

The remainder of the decoder consists of switches and
minor logic that control the routing of data. The speed of the
decoder depends on the number of logic levels between the
input and output of the decoder logic. The worst path through
the decoder has two multiplications and a bitwise-modulo-
two addition. If there are three logic levels in a multiplication,
then in one iteration a word drops through seven levels of
logic. A clock interval is determined by the time it takes a
signal to pass through seven levels of logic. Clearly, one can
expect very high decoder speeds.

A flow diagram for the more complex 21 time-domain
decoder is shown in Figure 3 and a decoder is shown in Figure
4. Now there are seven words flowing through the decoder in
parallel. This requires a 56-bit-wide data path to handle Reed-

IBM J. RES. DEVELOP. » VOL. 28 » NO. 2 « MARCH 1984

Enter

Initialize
N =b=y,= i=0, -, n—1
)‘;=b;=" =0 i=0, -, n—1
$.=v, i=0, -, n—1
i i
L=r=0 e=0
p “‘erasure” A
iterations re r+l
b.=X\.
1 1
b=\,
= Ni
ai_‘Yl 0
—_ i"
4 =0 Yes
3 =0

8=1
L& r—L—p

v

AEr—Ao b,
i 13 r 1

=1 —i
bi(_Ar Sr)\[-i-(l—ﬁr)u) b'.

NeEN-Ao b—Ab
i r 1 roi

e als v ~ip
b e AT B N+ (=8)0 b+ (1-8)b

i

Y, € yi—Arm_la

i

-1 —i
a, «- Ar Br'yl+(l—8r)w a,

i
I il
No 0 Yes
'

Figure 3 Another time-domain decoder algorithm.

Solomon codes on 8-bit bytes. The decoder terminates with
the Forney algorithm. Many of the other features of the
decoder are carried over from the n? decoder.

One way to compare the timing of Figs. 1 and 3 is with the
grid shown in Figure 5. Each cell in the grid represents one
clock time and there are up to 7> grid cells. The cells in each
column represent the vector components, and each column
represents one iteration during which that vector is processed.

155

RICHARD E. BLAHUT

156

Input - m Output
— s register £ F——
m
—] X\ register ,’m GF 2™
b register VA arithmetic
i . m
— N’ register +—»
m
—_— b’ register +
- m
— w register > m bits wide
m
— a register A
+—— words ~—
/
7
om

Figure 4 Architecture of another universal Reed-Solomon decoder.

Vector component

Iteration counter

Figure 5 Timing chart.

The speed of an algorithm is, in part, determined by the length
of the vectors and the number of iterations. The first algorithm
has # iterations and processes vectors of length n. The com-
putation may be thought of as stepping through the squares
of the grid column-by-column. There are #® computational
steps, each of which is rather simple. The second algorithm
described has fewer steps because there are only 2¢ iterations.
There are 2¢n computational steps, but these are each about
three times as difficult as before.

One can also use Fig. 5 to contemplate the number
of clocks of the more conventional frequency-domain
Berlekamp-Massey algorithm. Then one has something like

RICHARD E. BLAHUT

21 clocks because there are 27 iterations involving vectors of
length ¢. That decoder, however, includes other processing
steps such as a Fourier transform.

Enhancements

The universal decoders include provision for decoding BCH
codes, extended codes, and shortened codes, and for filling
erasures as well as correcting errors. This section provides the
theory behind these enhancements.

To see that the decoder can correct BCH codes, it is only
necessary to realize that every BCH code is a subfield-subcode
of a Reed-Solomon code. That is, the BCH code is a subset of
a Reed-Solomon code. Hence, since the decoder can correct
every codeword in a Reed-Solomon code, it can correct every
codeword in a BCH code.

The filling of erasures makes use of a time-domain version
of the procedure described in [9]. It is shown there that it
suffices to initialize the Berlekamp-Massey algorithm with the
erasure-locator polynomial

) = 1 (1 = xa),

k=1

where i, is the location of the kth of p erasures. The initiali-
zation A(x) = B(x) = Q(x) can be put in the form of the other
iterations by using the index r in place of k, and in each
iteration multiplying in one factor (I — xw"). This we put in
the form

A(x) I —ox [| AY(X)
B(x) 1 —w'x] [B"N(x)
for r =1, ..., p, and now with the initialization A(x) =

B(x) = 1. This is very nearly the form of the Berlekamp-
Massey iteration. All that is needed in a circuit is a few switches
to replace the discrepancy A, with the erasure location w*, and
to update B"’(x) in the same manner as A“Yx). These com-
putations are readily transformed into the time domain.
Hence, the cost of including the ability to correct erasures is
virtually zero.

Extended Reed-Solomon codes are described by Wolf [10].
The decoding of a singly extended Reed-Solomon code is
described in [4]. Singly extended codes are important because
they allow one to use codes such as a (32,16) or a (256,240)
Reed-Solomon code in which the blocklength is a power of
two. Often, a power-of-two blocklength will fit into an appli-
cation more snugly than a blocklength that is not a power of
two.

An (nk) singly extended Reed-Solomon code with
n = 2™ can be described as an (n — 1,k) Reed-Solomon code

IBM J. RES. DEVELOP. e VOL. 28 NO. 2 « MARCH 1984

appended by an additional parity check denoted ¢, and de-
fined by

n—2
=Y cw?,

i=0
provided C,, C5, .-+, Cy_; have been chosen as “parity
frequencies.” With these parity frequencies the 2¢ — 1 spectral
components of the received word V', V3, - - -, V., give enough
syndromes to correct ¢ — 1 errors and detect ¢ errors in the
first n — 1 symbols of the received word. If there are ¢ errors
detected, then the appended symbol c, is error-free. Hence,
Va2 — ¢, gives one more valid syndrome and the ¢ errors can
be corrected.

To enhance our decoder so that it can decode a singly
extended Reed-Solomon code only requires a test of the
discrepancy for zero at iteration 27 — 1 followed by the trivial
equation S,, = V5, — v, in the frequency domain. It is trivial
to include the equivalent of this equation in the time-domain
decoder.

The decoders also work for nonprimitive Reed-Solomon
codes. These are codes whose blocklength is a divisor of
g — 1. One merely uses an element of order n for w. For
example, 51 divides 255, so one has a nonprimitive Reed-
Solomon code of blocklength 51 with 8-bit symbols. This
could be extended to blocklength 52.

One also has the option of using shortened Reed-Solomon
codes, that is, codes terminated by fixing some of the infor-
mation places at zero. The #* decoder must carry these zero
places through the calculation, so the decoding speed is deter-
mined by the blocklength of the unshortened code. The 2nt
decoder need not process the zero components. Its perform-
ance is determined by the blocklength of the shortened code.

Finally, we mention other variations that might be used.
The method of Burton [11] could be incorporated to trade a
division for multiplications. If a circuit for dividing by the
generator polynomial is available to use without additional
cost, then one might wish to divide out the generator poly-
nomial to change the input vector to length n — 2¢, thereby
obtaining some speed advantage [but at the cost of using the
divide by g(x) circuit]. One also can incorporate schemes that
kick out after fewer than 27 iterations if there are fewer than ¢
errors in the received word. Simple logical tests suffice for this
test.

Summary

Typical performance parameters for a universal decoder are
given in Table 1. Of course, one might also choose to enlarge
these numbers to handle larger codes; the parameters given
were chosen to cover most potential applications.

IBM J. RES. DEVELOP. & VOL. 28 % NO. 2 4 MARCH 1984

Table 1 Typical design parameters of the universal decoder.

n < 256 bytes

q=2,4,8,16, 32,64, 128, 256
(1-bit to 8-bit bytes)

BCH and Reed-Solomon codes

Errors and erasures decoding

Decode time (clocks): #* or 2tn

Logic delay: 7 gates/clock

Table 2 Performance calculations: (a) for the n? decoder; (b) for the
2tn decoder.

(a) n? decoder

Symbol Block Decode time Bit rate

field length per symbol* per decoder**

212 4096 4095 87.9 Kbps

28 256 255 941.2 Kbps

2 52 51 4.7 Mbps

28 18 17 14.1 Mbps

(b) 2tn decoder

Symbol Block 2t Decode time Bit rate
Sreld length per symbol* per decoder**
212 4096 400 400 899.9 Kbps
28 256 40 40 6.0 Mbps
2% 52 10 10 24.0 Mbps
28 18 6 6 40.0 Mbps

*In clock times.
** At a 30-MHz clock.

The attraction of the universal decoders is their structural
simplicity, which makes it feasible to build the decoder on a
single chip, and their versatility, which enables a single chip
to handle many applications. Of course, one can always im-
prove performance for a single application by building a more
complex decoder or one that is tailored to the application.

Performance calculations for the n? and 2¢n decoders are
listed in Table 2. These calculations pertain to a decoder that
corrects the worst-case error pattern in every received word.
We have not considered alternative configurations whose de-
coding time varies with the number of errors.

References

1. I. S. Reed and G. Solomon, “Polynomial Codes over Certain
Finite Fields,” J. Soc. Indust. Appl. Math. 8, 300-304 (1960).

2. A. Hocquenghem, “Codes Correcteurs d’Erreurs,” Chiffres 2,
147-156 (1959).

3. R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error-
Correcting Binary Group Codes,” Info. Control 3, 68-79 (1960).

4. R. E. Blahut, Theory and Practice of Error Control Codes, Addi-
son-Wesley Publishing Co., Reading, MA, 1983.

157

RICHARD E. BLAHUT

158

5. E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book
Co., Inc., New York, 1968.

6. J. L. Massey, “Shift-Register Synthesis and BCH Decoding,”
IEEE Trans. Info. Theory IT-15, 122-127 (1969).

7. G. D. Forney, Jr., “On Decoding BCH Codes,” IEEE Trans. Info.
Theory IT-11, 549-557 (1965).

8. R. E. Biahut, “Transform Decoding without Transforms,” pre-
sented at the Tenth IEEE Communication Theory Workshop,
Cypress Gardens, FL, 1980.

9. R. E. Blahut, “Transform Techniques for Error Control Codes,”
IBM J. Res. Develop. 23, 299-315 (1979).

10. J. K. Wolf, “Adding Two Information Symbols to Certain Non-
binary BCH Codes and Some Applications,” Bell Syst. Tech. J.
48, 24052424 (1969).

11. H. O. Burton, “Inversionless Decoding of Binary BCH Codes,”
IEEE Trans. Info. Theory TT-17, 464-466 (1971).

Received August 4, 1983; revised October 11, 1983

RICHARD E. BLAHUT

Richard E. Blahut IBM Federal Systems Division, Owego, New
York 13827. Dr. Blahut is an IBM Fellow at the Owego facility, where
he joined IBM in 1964. He is involved in analyzing and designing
jam-protected digital communications systems, statistical information
processing systems, and radar imaging systems. He was awarded an
IBM Outstanding Contribution Award in 1976 for developing coher-
ent passive location theory. He is also the recipient of the IEEE
Information Theory Group 1974 paper award for his paper, “Com-
putation of Channel Capacity and Rate Distortion Functions.” Dr.
Blahut is writing several textbooks, including one on error-control
codes, which has recently appeared. He was the 1982 president of the
IEEE Information Theory Group and is an IEEE Fellow and a
Courtesy Professor of Electrical Engineering at Cornell University,
Ithaca, New York. His education includes a Ph.D. in electrical engi-
neering from Cornell University in 1972, an M.S. in physics from
Stevens Institute of Technology, Hoboken, New Jersey, in 1964, and
a B.S. in electrical engineering from the Massachusetts Institute of
Technology in 1960.

IBM J. RES. DEVELOP. » VOL. 28 « NO. 2 « MARCH 1984

