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An  Introduction  to  Arithmetic  Coding 

Arithmetic coding is a data compression technique that encodes data (the data string) by creating a code string which represents a 
fractional value on the number  line between 0 and 1. The coding algorithm is symbolwise recursive; i.e., it operates upon and 
encodes (decodes) one  data  symbol per iteration or recursion. On each recursion, the algorithm successively partitions an interval 
of the number line between 0 and I ,  and retains one of the partitions as  the new interval. Thus,  the algorithm successively deals 
with smaller intervals, and the code string, viewed as a magnitude, lies in each of the nested intervals. The data string is recovered 
by using magnitude comparisons on the code string to recreate how the encoder must have successively partitioned and retained 
each nested subinterval. Arithmetic coding differs considerably from  the more familiar compression coding techniques, such as 
prefix (Huffman) codes. Also, it should not be confused with error control coding, whose object is to detect and correct  errors in 
computer operations. This paper presents the  key notions of arithmetic compression coding by  means of simple  examples. 

1. Introduction 
Arithmetic coding maps a string of data (source) symbols to  a 
code string in such a way that the original data can be 
recovered from the code string. The encoding and decoding 
algorithms perform arithmetic operations on  the code string. 
One recursion of the algorithm handles one  data symbol. 
Arithmetic coding is actually a family of codes which share 
the property of treating the code string as a magnitude. For a 
brief  history  of the development of arithmetic coding, refer to 
Appendix 1. 

Compression systems 
The notion of compression systems captures the idea that data 
may be transformed into something which  is encoded, then 
transmitted to  a destination, then transformed back into  the 
original data. Any data compression approach, whether em- 
ploying arithmetic coding, Huffman codes, or any other cod- 
ing technique, has a model which makes some assumptions 
about  the data and  the events encoded. 

The code itself can be independent of the model. Some 
systems  which compress waveforms ( e g ,  digitized  speech) 
may predict the next  value and encode the error. In this model 
the error and not the actual data is encoded. Typically, at the 
encoder side  of a compression system, the data to be com- 
pressed  feed a model unit. The model determines 1) the 
event@) to be encoded, and 2) the estimate of the relative 

frequency (probability) of the events. The encoder accepts the 
event and some indication of its relative frequency and gen- 
erates the code string. 

A simple model  is the memoryless model, where the  data 
symbols  themselves are encoded according to  a single code. 
Another model is the first-order Markov model, which  uses 
the previous symbol as the context for the current symbol. 
Consider, for example, compressing English sentences. If the 
data symbol (in this case, a letter) “q” is the previous letter, 
we would  expect the next letter to be “u.” The first-order 
Markov model  is a dependent model; we have a different 
expectation for  each  symbol (or in the example, each letter), 
depending on  the context. The context is, in a sense, a state 
governed by the past sequence of  symbols. The purpose of a 
context is to provide a probability distribution, or statistics, 
for encoding (decoding) the next symbol. 

Corresponding to the symbols are statistics. To simplify the 
discussion, consider a single-context model, i.e., the memory- 
less model. Data compression results from encoding the more- 
frequent symbols with short code-string length  increases, and 
encoding the less-frequent events with long code length in- 
creases.  Let e, denote the occurrences of the ith symbol  in a 
data string. For the memoryless model and  a given code, let 4 
denote the length (in bits) of the code-string increase associated 
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Table 1 Example  Huffman code. Encoder 
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The  encoder accepts the events to be encoded and generates 
the code string. Symbol Codeword  Probability p Cumulative 

(in  binary) probability P 

a 0 . l o o  .Ooo 
b 10 ,010 . l o o  
C 110 .oo 1 . I  10 
d 1 1 1  .oo 1 . I  11 

with symbol i. The code-string  length  corresponding to  the 
data string is obtained by replacing  each data symbol with its 
associated length and  summing  the lengths: 

c Cr4.  
I 

If 4 is large for data symbols  of high relative frequency (large 
values of c,), the given code will almost surely fail to achieve 
compression. The wrong  statistics  (a popular symbol with a 
long  length e )  lead to a  code  string which may have more bits 
than  the original data. For compression  it is imperative to 
closely approximate  the relative frequency  of the more-fre- 
quent events. Denote  the relative frequency  of  symbol i as p,  
where p, = cJN, and N is the total number of symbols in  the 
data string. If we use a fixed frequency  for each data symbol 
value, the best we can compress  (according to  our given model) 
is to assign length 4 as -log pi. Here,  logarithms are  taken  to 
the base 2 and  the  unit of length is the bit. Knowing the ideal 
length for each  symbol, we calculate the ideal code length for 
the given data string and memoryless model by replacing each 
instance  of  symbol i in  the  data string by length value -log pt, 
and  summing  the lengths. 

Let us now review the  components of a  compression system: 
the model structure for contexts  and events, the statistics unit 
for  estimation  of the event statistics, and  the encoder. 

Model structure 
In practice, the model is a finite-state machine which operates 
successively on each data symbol and  determines  the  current 
event to be encoded and its context (i.e., which relative 
frequency distribution applies to  the  current  event). Often, 
each  event is the  data symbol itself, but  the  structure  can 
define other events  from which the  data string  could be 
reconstructed. For example, one  could define an event  such 
as  the  run length of a succession of  repeated symbols, i.e., the 
number of times  the  current symbol  repeats itself. 

Statistics  estimation 
The  estimation  method  computes  the relative frequency dis- 
tribution used for each context.  The  computation may be 
performed  beforehand, or may be performed during  the  en- 
coding process, typically by a counting technique. For Huff- 
man codes, the event statistics are predetermined by the length 
of the event’s codeword. 

The  notions of model  structure  and statistics are  important 
because they  completely determine  the available  compression. 
Consider  applications  where the compression model is com- 
plex, i.e., has several contexts  and a  need to adapt  to  the  data 
string statistics. Due  to  the flexibility of arithmetic coding,  for 
such  applications the “compression problem” is equivalent to 
the  “modeling problem.” 

Desirable properties of a coding method 
We now list some properties  for which arithmetic coding  is 
amply suited. 

For most  applications, we desire thejrst-infirst-out (FIFO) 
property:  Events are decoded in  the  same  order as  they are 
encoded. FIFO coding allows for adapting  to  the statistics  of 
the  data string. With last-in  jirst-out (LIFO) coding, the last 
event encoded is the first event  decoded, so adapting is diffi- 
cult. 

We desire no  more  than a  small storage buffer at  the 
encoder. Once events are  encoded, we do  not want the  encod- 
ing of  subsequent  events to alter  what  has  already been gen- 
erated. 

The  encoding algorithm  should be capable  of  accepting 
successive events from different probability  distributions. 
Arithmetic coding has this  capability.  Moreover, the code  acts 
directly on  the probabilities, and  can  adapt  “on  the fly” to 
changing statistics. Traditional  Huffman codes require the 
design of a different codeword set for different statistics. 

An initial view of Huffman and  arithmetic codes 
We progress to a very simple arithmetic code by first using a 
prefix (Huffman) code as  an example. Our purpose is to 
introduce  the basic notions of arithmetic codes  in  a very 
simple setting. 

Consider  a  four-symbol  alphabet,  for which the relative 
frequencies 4, i ,  i ,  and Q call for respective codeword  lengths 
of 1, 2, 3, and 3. Let us order  the alphabet {a,  b, c, d) according 
to relative frequency, and use the code of Table 1. The 
probability column has the binary  fraction associated with the 
probability  corresponding to  the assigned length. 

The encoding for the  data string “a a  b c” is 0.0. IO.  110, 
where “ . ” is used as  a  delimiter to show the substitution of 
the codeword for the symbol. The code also has the prefix 
property (no codeword is the prefix of  another).  Decoding is 
performed by a matching or comparison process starting with 
the first bit of the code string. For decoding  code  string 
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00 10 1 10, the first symbol  is  decoded as “a” (the only  codeword 
beginning with 0). We remove  codeword 0, and  the  remaining 
code is 0101 10. The second  symbol  is  similarly  decoded as 
“a,” leaving 10 1 IO. For string 101 10, the  only codeword 
beginning with 10 is “b,” so we are left with 1 I O  for c. 

We have described Table 1 in  terms of Huffman coding. 
We now  present an  arithmetic coding view, with the aid  of 
Figure 1. We relate arithmetic coding to  the process of sub- 
dividing the  unit interval, and we make  two points: 

Point I Each  codeword  (code point) is the  sum of the proba- 
bilities of the preceding  symbols. 

Point 2 The width or size  of the subinterval to  the right of 
each code  point corresponds to  the probability  of the 
symbol. 

We have  purposely  arranged Table 1 with the symbols 
ordered  according to  their probability p ,  and  the codewords 
are assigned in  numerical order. We now view the codewords 
as binary  fractional values (.OW, .loo, .110 and .11 I). We 
assume  that  the reader  is  familiar with binary  fractions, i.e., 
that $, i ,  and  are respectively represented  as . I ,  .O I ,  and . 1 1 1  
in  the binary number system. Notice from  the  construction 
of Table 1,  and  refemng  to  the previously stated Point I ,  that 
each  codeword is the  sum of the probabilities  of the preceding 
symbols. In  other words, each  codeword is a cumulative 
probability P. 

Now we  view the codewords  as points (or code  points) on 
the  number line from 0 to 1, or  the unit  interval, as shown  in 
Fig. 1. The  four code points divide the  unit interval into  four 
subintervals. We identify  each  subinterval  with the symbol 
corresponding to its  leftmost point.  For example, the interval 
for symbol “a” goes from 0 to . I ,  and  for symbol “d” goes 
from . I  1 1 to 1 .O. Note also from the  construction of Table 1, 
and  refemng  to  the previous Point 2, that  the width or size of 
the subinterval to  the right of each  code point corresponds to 
the probability  of the symbol. The codeword  for  symbol “a” 
has $ the interval, the codeword  for “b” (. 100) has the interval, 
and “c” (. 1 I O )  and  “d” (. 1  1 1) each  have Q of the interval. 

In the example data,  the first symbol is “a,” and  the corre- 
sponding  interval on  the  unit interval  is [O,.l). The  notation 
“[0,.1)” means  that 0 is included  in the interval, and  that 
fractions equal  to  or greater than 0 but less than . 1 are  in  the 
interval. The interval  for  symbol “b” is [.l,.l IO). Note  that .1 
belongs to  the interval  for “b” and  not for “a” Thus, code 
strings  generated by Table I which correspond to  continua- 
tions of data strings  beginning with “a,” when viewed as a 
fraction, never equal  or exceed the value 0.1. Data string 
“ a  d d d d d . . . ”  is encoded  as “0111111~. . ,”  which when 
viewed as a  fraction approaches but  never reaches value 

0 ,100 ,110 I l l  I 
I I I 

a b c d 
4 

Figure 1 Codewords of Table 1 as points on unit interval. 

a 
0 100 

b c 
,110 I l l  

d 
I 

I a ,010 I h I C I I I I  

Figure 2 Successive subdivision of unit interval for code of Table 1 
and  data string “a a b .  . . .” 

.lOOOOO. . . . We  can decode by magnitude  comparison; if the 
code  string is less than 0.1, the first data symbol must have 
been “a” 

Figure 2 shows  how the encoding process continues.  Once 
“a” has  been  encoded to [O,. l), we next subdivide  this  interval 
into  the  same  proportions  as  the original unit interval. Thus, 
the subinterval assigned to  the second “u” is [O,.Ol). For  the 
third symbol, we subdivide [0,.01), and  the subinterval be- 
longing to  third symbol “6” is [.OO l ,.OO l l ) .  Note  that each of 
the two  leading Os in the binary  representation of this  interval 
comes  from the codewords  (Table 1)  of the two  symbols “a” 
which precede the “b.” For  the  fourth symbol ”c,” which 
follows ‘‘a a b,” the corresponding  subinterval is 
[.0010110,.0010111). 

In arithmetic coding we treat  the code  points, which delimit 
the interval  partitions, as magnitudes. To define the interval, 
we specify 1) the leftmost point C, and 2) the interval  width 
A .  (Alternatively one  can define the interval by the leftmost 
point  and rightmost point, or by defining the rightmost point 
and  the available width.) Width A is  available for  further 
partitioning. 

We now  present some  mathematics  to describe what is 
happening pictorially in Fig. 2. From Fig. 2 and its  description, 
we see that  there  are two recursive operations needed to define 
the  current interval. For encoding, the recursion begins with 
the  “current” values of code point C and available  width A ,  
and uses the value of the symbol  encoded to  determine “new” 
values of code  point C and width A .  At the  end of the  current 
recursion, and before the next  recursion, the  “new” values of 
code point  and width become the  “current” values. 

New code point 
The new leftmost point of the new interval is the  sum of the 
current  code  point C, and  the  product of the interval width 137 
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I d  I a I h I ( I  , I 

I d 1  a I h I c I  
1 -  I 
Id1 a I b I C I  - 
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Figure 3 Subdivision of unit  interval for arithmetic  code of Table 2 
and  data  string “a a b. . . .” 

Table 2 Arithmetic  code  example. 

Symbol Cumulative Symbol Length 
probability P probability p 

d .ooo .oo 1 3 
b .oo 1 .010 2 
a .o I 1 . IO0  1 
C .111 .oo 1 3 

W of the  current interval and  the  cumulative probability P, 
for the symbol i being  encoded: 

New C = Current C + (A  X Pi). 

For example,  after  encoding “a a,” the  current code point C 
is 0 and  the interval  width A is .O 1. For “ a  a b,” the new code 
point is .OO I ,  determined  as 0 (current code point C), plus the 
product (.Ol) X (.loo). The factor on  the left is the width A of 
the  current interval, and  the factor on  the right is the  cumu- 
lative  probability P for symbol “b”; see the  “Cumulative 
probability” column of Table 1. 

New interval width A 
The width A of the  current interval is the  product of the 
probabilities  of the  data symbols  encoded so far. Thus,  the 
new interval width is 

New A = Current A X Pi, 

where the  current symbol is i. For example,  after  encod- 
ing “a a b,” the interval  width is ( . I )  X ( . I )  X (.Ol), which is 
.om I .  

In  summary, we can systematically calculate the next inter- 
val from  the leftmost point C and width A of the  current 
interval, given the probability p and  cumulative probability P 
values in  Table I for  the symbol to be encoded. The two 
operations (new  code point  and new width) thus  form a double 
recursion. This  double recursion is  central to  arithmetic cod- 
ing, and  this particular version is characteristic  of the class of 
FIFO arithmetic codes which use the symbol  probabilities 
directly. 

The  Huffman code  of Table I corresponds  to a special 
integer-length arithmetic code. With  arithmetic codes we can 
rearrange the symbols and forsake the  notion of a k-bit code- 
word  for  a  symbol  corresponding to a  probability  of 2-k. We 
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retain the  important  technique of the  double recursion. Con- 
sider the  arrangement of Table 2. The “codeword”  corre- 
sponds  to  the  cumulative probability P of the preceding sym- 
bols in  the ordering. 

The subdivision of the  unit interval  for  Table 2, and for the 
data string “a  a b,” is shown  in Figure 3. In this  example, we 
retain Points 1 and 2 of the previous  example, but  no longer 
have the prefix property  of  Huffman codes. Compare Figs. 2 
and 3 to see that  the interval  widths are  the  same  but  the 
locations of the intervals have been changed in Fig. 3 to 
conform with the new ordering  in Table 2. 

Let us  again  code the string “a a b c.” This example 
reinforces the  double recursion  operations, where the new 
values become the  current values for the next recursion. It is 
helpful to  understand  the  arithmetic provided here, using the 
“picture” of Fig. 3 for motivation. 

The first “a” symbol yields the code point .O 1 1 and interval 
[.O 1 1 ,. 1 1 l), as follows: 

First symbol (a )  
C N e w c o d e p o i n t C = O +  I X(.011)=.011. 

(Current  code  point  plus  current width A times P.) 
A:  New interval  width A = 1 X (.1) = . l .  

(Current width A times probability p. )  
In the  arithmetic coding  literature, we have called the value A 
X P added  to  the  old code point C, the augend. 

The second “a” identifies subinterval [.1001,.1101). 

Second symbol (a)  
C: New code point = .011 + . 1  X (.011) = 

.O 1 1 (current code point) 

.0011 (current width A times P, or augend) 

.lo0 1. (new code point) 

(Current width A times probability p.) 
A: New interval  width A = . 1 X ( . I )  = .O 1. 

Now the  remaining interval  is  one-fourth the width of the unit 
interval. 

For the third  symbol, “6,” we repeat the recursion. 

Third symbol ( 6 )  
C: New code point = .lo01 + .01 X (.001) = .10011. 

.lo01 (current  code  point C )  

.OOOO 1 (current width A times P, or augend) 

,1001 I (new code  point) 

(Current width A times probability p.) 

- 

A :  New interval  width A = .01 X (.01) = .0001. 

Thus, following the coding  of “a  a b,” the interval is 
[.loo1 1,.10101). 
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To  handle  the  fourth letter, “c,” we continue  as follows. 

Fourth symbol (c) 
C: New code point = .IO011 + .0001 X ( . I l l )  

= .1010011. 
. IO01 1 (current code  point) 
,0000 I 1 1 (current width A times P, or augend) 

. I O  100 1 1 (new  code point) 

(Current width A times probability p.) 
A :  New interval  width A = .0001 X (.001) = .0000001. 

Carry-over problem 
The  encoding of the  fourth symbol exemplifies a  small  prob- 
lem, called the carry-over  problem. After encoding symbols 
“a,”  “a,” and “b,” each  having  codewords  of  lengths 1, 1, and 
2, respectively, in  Table I ,  the first four bits of an encoded 
string using Huffman coding  would not change.  However,  in 
this  arithmetic code, the encoding  of  symbol “c” changed the 
value of the  third code-string  bit. (The first three  bits  changed 
from . I O 0  to .I01 .) The change was prompted by a carry-over, 
because we are basically adding  quantities  to  the code string. 
We discuss carry-over control later on  in  the paper. 

Code-string termination 
Following encoding of “a a  b c,” the  current interval is 
[.1010011,.1010100). Ifwe were to  terminate  the code  string 
at this point  (no  more  data symbols to handle), any value 
equal  to or greater than ,101001 1, but less than .1010100, 
would serve to identify the interval. 

Let us overview the example. In  our creation of code  string 
.1010011, we in effect added properly scaled cumulative prob- 
abilities P, called augends, to  the code string. For  the width 
recursion on A ,  the interval  widths are, fortuitously, negative 
integral powers of two, which can be represented  as floating 
point  numbers with one bit of precision. Multiplication by a 
negative integral  power  of  two  may be performed by a shift 
right. The code  string  for “a a  b c” is the result of the following 
sum of  augends, which displays the scaling by a right shift: 

.o 1 I 
01 1 
00 1 

1 1 1  
.101001 I 

Decoding 
Let us retain  code  string .lOlOOl 1 and decode it. Basically, 
the code  string tells the decoder  what the encoder did. In a 
sense, the decoder recursively “undoes”  the encoder’s  recur- 
sion. If, for the first data symbol, the encoder had encoded  a 
“b,” then  (referring to  the  cumulative probability P column 
of Table 2), the code-string value would be at least ,001 but 
less than .011. For encoding an “a,” the code-string value 
would be at least .O 1 1 but less than . 1 1 1. Therefore, the first 
symbol of the data string  must be “a” because code-string 
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. I O  100 1 I lies in [ .O 1 1 ,. I IO), which is a’s subinterval. We  can 
summarize  this  step  as follows. 

Step I :  Decoder C comparison Examine  the  code string and 
determine  the interval in which  it lies. Decode the  symbol 
corresponding to  that interval. 

Since the second  subinterval code  point was obtained  at  the 
encoder by adding  something  to .011, we can prepare to 
decode the second  symbol by subtracting .011 from  the  code 
string: .IO1001 1 - .011 = .0100011. We then have Step 2. 

Step 2: Decoder C readjust Subtract  from  the  code string the 
augend value of the code point  for  the decoded  symbol. 

Also, since the values  for the second  subinterval were ad- 
justed by multiplying by . I  in  the encoder  A  recursion, we 
can  “undo”  that multiplication by multiplying the  remaining 
value of the  code string by 2. Our code  string  is now .IO000 1 I .  
In summary, we have Step 3. 

Step 3: Decoder  C scaling Rescale the  code C for direct 
comparison with P by undoing  the multiplication for the 
value A .  

Now we can decode the second  symbol from  the adjusted 
code  string .IO001 1 by dealing directly with the values in 
Table 2 and repeating  Decoder  Steps 1, 2, and 3. 

Decoder Step 1 Table 2 identifies “a” as the second data 
symbol, because the adjusted  code  string is greater than .01 I 
(codeword for “a”) but less than . I  1 I (codeword  for “c”). 

Decoder Step 2 Repeating the  operation of  subtracting .O I I ,  
we obtain 

.100011 - .01 I = .001011. 

Decoder Step 3 Symbol “a” causes  multiplication by . I  at 
the encoder, so the rescaled code string is obtained by doubling 
the result of Decoder Step 2: 

.01011. 

The third  symbol is decoded as follows. 

Decoder Step 1 Referring to Table 2 to decode the third 
symbol, we see that .O I O  1 1 is equal  to or greater than ,001 
(codeword for “b”) but less than ,011 (codeword  for “a”), and 
symbol “b” is decoded. 

Decoder Step 2 Subtracting out .00 1 we have .OO 1 1 1 : 

.01011 - ,001 = ,0011 I .  

Decoder Step 3 Symbol “b” caused the  encoder  to multiply 
by .O 1 ,  which is undone by rescaling with a 2-bit shift: 

,001 11 becomes . I  1 I .  

To decode the fourth and last symbol,  Decoder Step 1 is 
sufficient. The fourth  symbol is decoded  as “c,” whose code 
point  corresponds to  the  remaining code string. 
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Symbol Codeword 
U 0 
b 10 
c I I  

(a )  

- 

IC) 

Figure 4 The  code-string  tree of a prefix code. Example code, image 
of data  string  is a single  leaf: (a) code  table, (b) data-string-to-code- 
string  transformation, (c) code-string  tree. 

A general view of the coding process 
We have related a special prefix code (the symbols were 
ordered with respect to  their probability) and a special arith- 
metic  code (the probabilities were all negative integral powers 
of  two) by picturing the  unit interval. The multiplication 
inherent  in  the  encoder width  recursion  for A ,  in  the general 
case, yields a new A which has a  greater number of significant 
digits than  the factors. In our simple  example, however, this 
multiplication did  not cause the required precision to increase 
with the length  of the code  string because the probabilities p 
were integral negative powers of two. Arithmetic coding  is 
capable  of using arbitrary probabilities by keeping the  product 
to a fixed number of bits of  precision. 

A key advance of arithmetic coding was to contain  the 
required precision so that  the significant digits of the  multi- 
plications do  not grow witb the code  string. We  can describe 
the use of a fixed number of significant bits in  the setting  of  a 
code-string  tree.  Moreover,  constrained channel codes [ 11 as 
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well as compression  codes benefit from  the code  tree view. 
Again, the code alphabet is the  binary alphabet {O, 11. The 
code-string tree represents the set of all finite binary  code 
strings, denoted {O,l)*. 

We illustrate a conventional  Huffman code  in Figure 4, 
which shows the code-string  tree  for mapping  data string 
s = “b a a c” to a binary code  string. Figure 4(a) shows a 
codeword  table for data symbols “a,” “b,” and “c.” The 
encoding  proceeds recursively. The first symbol  of  string s, 
“b,” is mapped  to  code string 10, “b a” is mapped  to code 
string 100, and so on,  as indicated in Fig. 4(b). Thus  the  depth 
of the  code tree  increases with each  recursion. In Fig. 4(c) we 
highlight the branches  traveled to  demonstrate  that  the coding 
process successively identifies the underlined  nodes in  the 
code-string  tree. The root of the codeword  tree is attached  to 
the leaf at  the  current  depth of the tree,  as  per the previous 
data symbol. 

At initialization, the available code space ( A )  is  a set {O,l )*, 
which corresponds to  the  unit interval. Following the encoding 
of the first data symbol b, we identify node 10 by the path 
from the root. The  depth is 2. The current code  space is now 
all continuations of code string 10. We recursively subdivide, 
or subset, the  current code space. A  property  of prefix codes 
is that a single node in  the  code space is identified as  the result 
of the subdivision operation. In  the  unit interval  analogy, 
prefix codes  identify single points  on  the interval. For arith- 
metic codes, we can view the code  as mapping a data string 
to  an interval  of the  unit interval, ,as shown  in Fig. 3, or we 
can view the result of the  mapping  as a set of finite strings, as 
shown in Fig. 4. 

2. A  Binary  Arithmetic Code (BAC) 
We have  presented  a view of prefix codes  as the successive 
application  of  a  subdivision  operation on  the code  space  in 
order  to show that  arithmetic coding successively subdivides 
the  unit interval. We conceptually  associate the  unit interval 
with the code-string tree by a  correspondence between the set 
of leaves of the code-string  tree at tree depth D on  one  hand, 
and  the rational  fractions  of denominator 2D on  the  other 
hand. 

We teach the binary  arithmetic coding (BAC) algorithm by 
means of an example. We have  already laid the  groundwork, 
since we follow the  encoder  and decoder operations  and 
general strategy of the previous  example. See [ 2 ]  for  a more 
formal  description. 

The BAC algorithm may be used for  encoding any set of 
events,  whatever the original form, by breaking the events 
down  for encoding  into a succession of  binary  events. The 
BAC accepts  this succession of events and delivers successive 
bits of the  code string. 
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The  encoder  operates  on variable MIN, whose values are T 
(true) and F (false). The  name MIN denotes  “more probable 
in.” If MIN is true  (T),  the event to be encoded  is the  more 
probable, and if MIN is false (F), the event to be encoded is 
the less probable. The decoder result is binary variable MOUT, 
of values T and F, where MOUT means  “more probable out.” 
Similarly, at  the decoder side, output value MOCJT is true  (T) 
only  when the decoded  event is the  more probable. 

In practice, data  to be encoded are  not conveniently  pro- 
vided to us as  the  “more” or “less” probable values. Binary 
data usually represent bits from the real world. Here, we leave 
to a  statistics unit  the  determination of  event values T or F. 

Consider, for example,  a black and white image of two- 
valued pels (picture  elements) which has  a  primary white 
background. For these data we associate the instances of a 
white pel value to  the  “more probable” value (T)  and a black 
pel  value into  the “less probable” value (F). The statistics unit 
would thus have an  internal variable, MVAL, indicating that 
white maps  to T. On the  other  hand, if  we had  an image with 
a  black  background, the  mapping of values black and white 
would be respectively to values T and F (MVAL is black). In 
a more complex  model, if the  same black and white image 
had  areas of white  background interspersed with neighbor- 
hoods of black, the  mapping of pel  values black/white to event 
values F and T could change dynamically  in  accordance with 
the  context (neighborhood) of the pel location. In a black 
context, the black pel  would be value T, whereas in the  context 
of  a  white  neighborhood the black pel would be value F. 

The statistics unit  must  determine  the  additional  informa- 
tion  as  to by how much value T is more  popular  than value 
F. The BAC coder requires  us to  estimate  the relative ratio of 
F to  the nearest  power of 2; does F appear 1 in 2, or I in 4, 
or 1 in 8, etc., or 1 in 4096? We therefore  have 12 distinct 
coding parameters SK, called skew, of respective index 1 
through 12, to indicate the relative frequency of value F. In a 
crude sense, we select one of 12 “codes” for each  event to be 
encoded or decoded. By approximating  to 12 skew values, 
instead of using a continuum of values, the  maximum loss in 
coding efficiency is less than 4 percent  of the original file size 
at probabilities falling between skew numbers 1 and 2.  The 
loss at higher skew numbers is even less; see [2]. 

In what follows, our  concern is how to code  binary  events 
after the relative frequencies  have been estimated. 

The basic encoding process 
The  double recursion  introduced  in conjunction with Table 2 
appears in the BAC algorithm as a  recursion on variables C 
(for code point)  and A (for available space). The BAC algo- 
rithm is initialized with the code  space as  the unit interval 
[O , l )  from value 0.0 to value 1.0, with C = 0.0 and A = 1.0. 

IBM J .  RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984 

The BAC coder successively splits the width or size of the 
available  code  space A ,  or current interval, into two subinter- 
vals. The left subinterval is associated with F and  the right 
subinterval with T. Variables C and A jointly describe the 
current interval  as, respectively, the leftmost point  and  the 
width. As with the initial  code space, the  current interval is 
closed on  the left and  open  on  the right: [C,C + A ) .  

In the BAC, not all interval  widths are integral negative 
powers of two. For example,  where p of  event F is 4, the  other 
probability  for T must be i. For  the width associated with T 
of j ,  we have more  than  one bit of precision. The product  of 
probabilities  greater than f can lead to a growing precision 
problem. We solve the  problem by representing  space A with 
a floating point  number  to a fixed precision. We introduce 
variable E for the  exponent, which controls  the “data  han- 
dling” and “shifting”  aspect  of the algorithm. We represent 
variable A in floating point with the most significant bit of A 
in  position E from  the left. Thus  the leading  I-bit  of the binary 
representation of A has value 2-”. For example, if A = 

0.00101 I ,  E has value 3, 2? is 0.001, and A is 1.01 1. 

In the  encoder A recursion of the example of Table 2, the 
width is determined by a  multiplication. In the simple BAC 
algorithm, the smaller  width is determined by the value SK, 
as  in Eq. ( I ) ,  which follows. The  other width is the difference 
between the  current width and  the smaller  width,  as  in Eq. 
(2), which follows. No multiplication is needed. 

The  current interval is split according to the skew value SK 
as follows. If SK is 1, the interval is split nearly in half, and if 
SK is 12, the interval is split with a very small  subinterval 
assigned to F. Note that we roughly subdivide the  current 
interval  in  a way which corresponds  to  the relative frequency 
of  each  event. Let W(F) and W(T)  be respectively the subin- 
terval  widths assigned to F and  to T. Specifically, 

W(F) = 2-(E+SK), (1) 

with the  remainder of the interval width A assigned to  T: 

W(T) = A - 2-(E+SK), (2) 

We  can  summarize  the handling of an event (value T or F) 
in the BAC algorithm  in three steps. The first and second steps 
correspond to  the A and C recursions described earlier. The 
third  step is a “data handling” or scaling step which we have 
ignored in the earlier examples. Let s denote  the string  of data 
symbols  already  encoded, and let notation C(s); A($), and E($) 
respectively denote  the values of variables C, A ,  and E follow- 
ing the  encoding of the  data string.  Now,  after  handling the 
next event T, let the new values of variables C, A ,  and E be 
respectively denoted C(s,T), A(s,T), and  E(s,T). 
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Table 3 Example  encoding-refining the  interval. 

Event MIN SK E W(F) C A 
(value) (skew) (A’s lead Os) (F width)  (least  pt)  (interval A) 

Initial - - 0 - 0.o000oo 1 . m 0  
1 T 3 0 .00 1 0.001o00 0.1 1 1000 
2 T 1 1 .o 1 0.01 lo00 0.101o00 
3 F 1 1 .o 1 0.01 lo00 0.01oooo 
4 T 1 2 .oo 1 0 . 1 m  0.001o00 

0 ,001 1 
r I 1 1 c c 1 - / 

Y 

F T 

Subd~v i s~on  point 

Figure 5 Interval  splitting-subdivision  for  Event 1, Table 3.  

Width ,101 
h . 

0 O l l  . I  101 I 
I I Y- I 

L 1 

(a)  
t Subdlvlslun polnt 

- Width 010 

0 ,011 IO1 I 
I \ 

L J 
J 

(b )  

Figure 6 Interval  splitting-subdivision for Event 3, Table 3: (a) 
Current  interval  at  end of  Event 2 and  subdivision  point. (b) Current 
interval  following  encoding  of  Event 3.  

Step I Given skew SK and E (the leading Os of A ) ,  subdivide 
the  current width as in Eqs. ( I )  and (2). 

Step 2 Given  the event values (T or F), C, W(T), and W(F), 
describe the new  interval: 

If T: C(s,T) = C(s) + W(F) and A(s,T) = W(T). ( 3 4  

If F: C(s,F) = C(s) and A(s,F) = W(F). (3b) 

Step 3 Given  the new value of A ,  determine  the new value 
of E 

If T: If A(s,T) < 2-€(”), then  E(s,T) = E($) + 1; 

otherwise  E(s,T) = E($). 

If F: E(s,F) = E(s) + SK. 

We continue  the discussion by an example,  where we en- 
code the four-event  string T,  T, F, T under respective skews 
3,  I ,  1, 1. The  encoding is described by Table 3, and  the 
following description accompanies  this table. 

For Event I ,  SK is  3 and E is 0. For  Step 1, the width 
associated with the value F, W(F), is 2” or 0.001. W(T) is 
what is left over, or 1 .000 - 0.001 = 0. I 1 1. See Figure 5. 
Relative to  Step 2, Eq. (3), the subdivision point is C + W(T) 
or 0 + .OO 1 = .001. Since the  binary value is T and  the relative 
frequency  of the T event is equal  to  or greater than 4, we keep 
the larger (rightmost)  subinterval. Refemng  to Fig. 5 ,  we see 
that  the new values of C and A which describe the interval are 
now C(T) = 0.001 and A(T) = W(T) = 0.11 1. For  Step 3, we 
note  that A has  developed  a  leading 0, so E = 1. 

For Event 2 of Table 3,  the skew SK is 1 and E is  now I ,  
so W(F)i~2-(~+~)or0.01.  W(T)isthus0.111 -0.010=0.101. 
The subdivision point of the  current interval is C + W(F), or 
0.01 1. Again, the event value is T, so we keep the rightmost 
part. The new value of C is the subdivision point 0.0 1 1, and 
the new value ofA is W(T) or 0,101.  The leading 1 -bit  position 
of A has  not changed, so E is still 1. 

For Event 3 of Table 3, see Figure 6, which displays current 
interval [.011,1) of  width .101. The smaller width W(F) is 
2-(’+’) or .01. We add this  value to C to  obtain 
C + W(F), or subdivision point .101. See Fig. 6(a). Refemng 
to Event  3  of  Table 3, the value to  encode is F, so we must 
now keep the left side  of the subdivision. By keeping the F 
subinterval, the value of C remains  at .01 I and A becomes 
W(F) or 0.01. Available width A has  a new leading 0, so E 
becomes 2. The resulting  interval is shown in Fig. 6(b). 

Separation of data  handling from the arithmetic 
Arithmetic codes generate the code  string by adding a sum- 
mand (called augend in the  arithmetic coding  literature) to 
the  current code  string and possibly shifting the result. The 
summation  operation creates  a  problem called the carry-over 
problem. We can,  in  the course of code  generation, shift out a 
long  string  of 1s from  the coding process. An addition could 
propagate  a  carry into  the long  string of Is, changing the 
values of  higher-order  bits  until  a 0 is converted to a 1 and 
stopping  the curry chain. 

In this section we show  how the  arithmetic using A and C 
can be separated from  the carry-over  handling and  data- 

GLEN G. LANGDON. JR IBM J. RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984 



buffering functions. The scheme  of Table 3 assumes that  the 
A and C registers are  quite long, Le., that they increase in 
length  with the  number of events  encoded. As the value of 
variable E increases, so does  the length  of A and C. In reality, 
the A and C registers can be made of fixed precision, and  the 
results shifted left out of the C register. Also, the leading Os of 
the A register are  not needed, which justifies  a fixed-length A 
register. Let A, C, and W denote fixed-length registers (perhaps 
no  more  than 16 bits, for  example). 

In making the  adjustment  to fixed-length registers C and A, 
Eq. (1) and Eq. (2) are normalized to  operate  on A: 

W(F) = 2-sK, 

W(T) = A - 2-sK 

The widths  W may have  leading Os, and when  becoming the 
new A we must renormalize. Thus,  as  the A register develops 
leading Os, a normalization left shift restores value 1 to  the 
most significant bit of the A register. However, A and C must 
maintain their relative alignment, so we have a rule: Register 
C undergoes a normalization shift whenever register A does. 

The basic conceptual  input/output view of the algorithm, 
both  for the compression and decompression process, is shown 
in Figure 7. In this figure we have  decomposed the encoding 
task into  the  encoder itself which handles the A and C registers, 
and  the special arbitrarily  long FIFO buffer Q which handles 
the  code string and  the carry-over. Note  that  the  encoder  and 
decoder  in  practice are interfaced to  the original data via a 
statistics unit which is not shown. The statistics unit provides 
skew numbers SK. 

The encoder  accepts successive events of binary information 
from the  input variable MIN, whose values T or F are encoded 
under a  coding parameter SK. The code  string is shifted out 
of the encoder into a FIFO storage unit Q. At the  other  end 
of Q, the decoder receives the code  string  from FIFO Q. The 
decoder is also supplied  the same value of the coding param- 
eter SK under which the successive input values MIN were 
encoded.  The decoder, with a knowledge of the code  string C 
coming  from Q at  one  input  port  and  the successive coding 
parameter values at  the  other  input port SK coming from the 
decoder’s statistics unit, produces successive values at  output 
port MOUT. 

For  the description  of the algorithm given here, we assume 
that  the  FIFO store Q has sufficient capacity for the entire 
code  string, and  that Q has the capability of propagating an 
incoming carry. Thus,  in Fig. 7 the encoder has an  output 
ADD+l which signifies a  carry-over  from the  encoder  to  the 
FIFO buffer Q. When ADD+l is active, the  FIFO buffer first 
propagates the carry  (adds 1 to  the lowest-order bit position 
of Q) and  then performs the shift. 

ADD+/ 

SK M I N  (SK and MIN supplied by Statiatlcs  unit) 
(4 bits) ( I  bit) 

Bit-yerial  shift-In of code-strlng 

Serlal-by-bit FIFO 
f“ buffer  storage  unlt 

with “Add I ”  capablllty 

blts 

- Bit-wrlal  \hltt-out of code-string hits 

(supplied by 
Model  unit) 

M O U I  
( I  blt) 

(to Model unit) 

Figure 7 Block diagram of a binary event encoder/decoder system. 

I I 
t t 

N 0 DONE’? 

Q,C t \hl Q,C,O 

c 
EXIT 

Figure 8 Flowchart for BAC algorithm encoder. 

The BAC encoder algorithm with normalization is described 
in flowchart form in Figure 8. The figure uses a  simple register 
transfer notation we define  in the obvious way by example. 
We assume  the existence of three  reasters: Q (the  FIFO buffer), 
C, and A. Let us assume  that values of SK are limited to 1, 2, 
and 3 .  Registers C and A are  one bit longer than the maximum 
SK, and so are 4 bits. Register C is initialized to 0.000, and 
Register A is initialized to 1.000. The basic idea of the algo- 
rithm using normalization is very simple. To  encode a T,  add 
2-sK to C and subtract 2-sK from A. Let “,” denote  concaten- 
ation. In the register transfer notation. 143 
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Table 4 Example encoding with normalization. 

Event MIN SK Q C A Normalization 

Initial - - - 
1 T 3  

0.000 1 .ooo - 
0 0.010 1.110 

2 T 1  0 0.110  1.010 
Yes 
No 

3 F 1 00 1.100  1.000 F-shift of SK 
4 T I 010 0.000 1.000 Yes 

____ 

Q,C e Q,C + 2-sK, ( 4 4  

A c A - 2-sK. (4b) 

If the result in A is equal to or greater than I .OOO, we are  done 
with the  double recursion. If the result in A is less than 1 .OOO, 
a normalization shift is needed. We shift Q and C left as a 
pair, and shift left A. Let “shl” denote shift left one bit, and 
“shl’” denote a shift left of two bits, etc. If A is less than I .OOO, 
then 

Q,C +- shl Q G O ,  ( 5 4  

A t shl A,O. (5b) 

In the above, “,O” denotes “0-fill” (the vacated positions are 
filled with Os). 

If the symbol to be encoded is F, Fig. 8 shows that  the 
action to perform is relatively simple: 

Q,C e shlSK Q,C,O, ( 6 4  

A t 1.0. (6b) 

We use the  same example as in Table 3 redone as shown  in 
Table 4. Columns Q, C, and A show the result of applying the 
MIN and SK values of that step. The first row is the initiali- 
zation. 

Event I ,  with C and A as initialized,  encodes value T with 
an SK of 3. The  arithmetic result for Eq. (4a)  is C = 0.000 + 
0.001, and for Eq. (4b) is A = 1.000 - .OOl = 0.1 1 1. Since 
0. I I I is less than 1 .O, we must apply  Eq. ( 5 )  to normalize. 
Following the  normalization shift, Q is  now 0, C is 0.010, and 
A is 1.1 10. 

Event 2 encodes value T with a skew of 1. We perform the 
operations of Eq. (4a), resulting  in C of 0. I 10 as follows: 

0.010 (old C) 

0.1 10 (new C) 
+ - . I  (2-l) 

Equation (4b) gives 1 .O 10 for A: 

1.1 10 (old A) 

1.010 (new A) 
- . I  (-2”) 

Since the register A result is greater than 1 .O, the normalization 
shift of Eq. ( 5 )  is not needed. 

Event 3 encodes value F at skew 1. The algorithm for 
encoding  an F is Eq. (6). The value F is encoded by shifting 
the Q,C pair left SK bits and reinitializing A to 1.000. Sum- 
marizing  Event 3, an F of skew I is a  one-bit shift left for Q,C, 
so Q is 00 and C is 1.100. Equation (6b) reinitializes A to 
1 .ooo. 

Event 4 illustrates  a  carry-over.  Event  4  encodes value T 
with a skew of 1. Following Eq. (4a), adding 2” (0.100) to C 
( 1.100) results in 10.OOO, where indicates the carry-out from 
the C register. This  carry propagates to Q by activating  encoder 
output signal ADD+I, and this  carry-over  operation  converts 
Q from 00 to 0 1. Meanwhile,  for Eq. (4b), 2” subtracts  from 
register A leaving 0.100, so the normalization shift of Eq. ( 5 )  
is needed. Q now  becomes 010. The value  of  code  string is 
0100000, which is the  same result of Table 3, as  expected. 

Carry-over control 
Arithmetic coding  ensures that  no  future value of Ccan exceed 
the  current value of C + A .  Consequently,  once  a  carry-over 
has  propagated into a given code-string  position in Q, no  other 
carry-over will reach the  same code-string  position. In the 
above  sample, the second  bit of the code  string received a 
carry-over. The algorithm  ensures that this same bit  position 
(second from  the beginning) cannot receive another carry- 
over during  the succeeding  encoding  operations. This obser- 
vation  leads to a method for controlling the carry called bit- 
stufing [3]. At the  encoder side, if  16 Is in a row are  emitted, 
the buffer can insert (stuff) a 0. This 0 converts to a I and 
blocks the carry from reaching the string  of 16 Is. Therefore 
a bit-stuff permits  the block with the 16 Is to be transmitted. 
At the decoder side, if the decoder encounters 16 Is in  a row, 
the decoder buffer removes and examines the stuffed bit. If 
the stuffed bit value is I ,  the carry is propagated  inside the 
decoder. 

Code-string termination 
When the encoding is done,  the C register may be shifted into 
the Q FIFO store.  However,  after the last event  has been 
coded, we remain with interval [C,C + A ) .  If  we know the 
length of the  data string, then we know  when we have decoded 
the last event.  Therefore, any code  string whose magnitude 
lies in [C,C + A )  decodes to  the original data string. In the 
present case, we can simply truncate  the trailing Os. The 
truncation process leaves “01” as  the code  string, with the 
convention  that  the decoder  insert  as many trailing Os as it 
takes to decode four  data bits. 

In the general case, any code  string  greater than 0100000 
(smallest value  in current interval) and strictly less than C + 
A = 010000 + 0001000 = 010100 suffices. Our shortest 
selection remains 0 I .  
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Decoding process 
The decoding part of the BAC algorithm  is  shown in Figure 
9. Consider  decoding the example  code  string of Table 4. We 
demonstrate  the decoding process with the  aid of Table 5. 
Register A is  initialized to 1.000 and C is initialized to  the 
first four bits out of the FIFO buffer Q. Since Q only  has 2 
bits (OI) ,  we insert Os as needed. C is initialized to 0.100. The 
description  of  each  event that follows accompanies Fig. 9 and 
one line  of  Table 5. 

Event I To decode the first event we need the value of SK, 
which is 3. We subtract 2" from C as  an intermediate result 
called CBUF.  CBUF is 0.01 I ,  which is greater than 0, so the 
resulting bit is T. So 2-' is subtracted  from A, giving 0.1 1 1  
and  the  contents of CBUF are  transferred into C. Register A 
is less than 1.0, so a  normalization shift is needed. C and A 
arenow0.110and 1.110. 

Event 2 Now we obtain  the second value of SK, which is I .  
Subtracting 2", or 0.100, from C gives a CBUF value of 
0.0 IO, which is positive. Therefore the result is T, and 0.010 
is the new value of C. Subtracting 0.100 from register A gives 
1 .O IO, so no normalization is needed. 

Event 3 For the  third event, SK is again I ,  so we again 
subtract 0.100 from C (which is now 0.010). The result CBUF 
is negative, so the  event is F. We do  not load C from CBUF, 
but simply shift C one position left, and reinitialize A. C is 
now 0.100 and A is 1 .OOO. 

Event 4 The  fourth SK is I ,  and subtracting 0.100 from C 
leaves 0.000 for CBUF. The result is not negative, so the event 
is T. To  continue  the algorithm, we subtract 2" from A, 
discover that  the result 0.100 is less than I ,  and  do a normal- 
ization shift of C and A. A is now 1.000 and decoding is 
complete. 

Note  that  column A and  the Normalization columns  of 
Table 4 (encoder) and Table 5 (decoder) are identical. The A 
register contents always follow the  same sequence of values 
for the decode  phase as for the  encode phase. 

Framework for  prefix codes and arithmetic codes 
We can apply the code-string-tree  representation of the coding 
operations  to  arithmetic codes. However, unlike prefix codes, 
in arithmetic coding the encoding of a given symbol  may 
result in  a  code  space described by continuations of more  than 
one leaf of the tree. We illustrate the point by showing the 
example of Event 1 of Table 4 in the form  of  a  code-string 
tree  of Figure 10. 

The smallest subinterval at  the  current  depth is a single leaf. 
With  a maximum skew SK of 2-3, we identify value ,001 with 
a single leaf at  the  current  depth. With  a maximum SK of 3, 
the value of A can range  from 1 .OOO to 1.1 IO .  At the  same 
current  depth where 2" is one leaf, the subset of code-string 
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C shl' Q,O 

Pet SK 

A t shl A 
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Figure 9 Flowchart for BAC algorithm  decoder. 

A = 1.000 

S u b d l v l w n  point 
f o r  SK = 3 

(a) 

f -  v 

C = 0 0 0 1  unnornmalized A =  I 110 (normal lzed)  
C =(1.010 dfter  norrnallzatmn 

(b l  

Figure 10 Code-string tree for Event I ,  Table 4: (a) Initial tree. (b) 
Following encoding of Event 1 .  

Table 5 Example decoding. 

Event SK C (ajier) A (aJier) CBUF MOUT Normalization 
-~ 

Initial - 0.100 1.000 - - 
I 3 0.110 1.110 0.011 T Yes 
2 I 0.010 1.010 0.010 T No 
3 I 0.100 1.000 -1.110 F F-shiftofSK 
4 I 0.000  1.000 0.000 T Yes 

- 
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. 
C=O.OIl unnormalized 
C = O .  110 after normalization 

A =  1.010 

Subdivision  polnt 
(a) 

A =  I 000 

(b )  

Figure 11 Code-string  tree for Event 3, Table 4: (a) Following  Event 
2. (b) Following  Event 3. 

tree leaves which describe the code  space is from eight leaves 
to 14 leaves. Also at  this  depth,  an SK of  2  corresponds to two 
leaves and  an SK of 1 corresponds to  four leaves. The initial 
code-string tree  has eight leaves (A = 1.000) and a depth of 
three. See Fig. 10(a) for the subdivision point for  Event I of 
Table 4. Event I is T, so we keep the right subset of seven 
leaves. For subsequent  encoding, the code  string will be a 
continuation of 001, 0 1, or 1, and we clearly are  not dealing 
with a prefix code. 

With only seven leaves at  depth three, we increase the  depth 
by one  to four, so that we now  have 14 leaves at  the new 
depth.  This process of increasing the  depth corresponds to  the 
normalization  shifting done in Table 4. The result is shown 
in Fig. 10(b). 

Figure 11 shows  Event 3 of the example. Figure I I (a) shows 
the subdivision point for the skew of 1 for  Event 3. An SK of 
1 corresponds to a  subinterval of four leaves, which are  the 
leftmost leaves of the  current interval. The event value is F, 
so in  this case we retain the left subinterval with the  four 
leaves. Figure 1 I(b) shows the result after  encoding  Event 3. 
Since  only four leaves were taken, we increase the tree depth 
one level, again  analogous to  the normalization operation in 
the example  of Table 4. Now the  current code space which 
we subdivide  for  Event 4 consists  of the  continuations of  code 
strings: 01 1 and 100. 

We close this section with a suggestion. The  path by which 
we discovered the particular  binary arithmetic code described 
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generalization of Golomb's  code [4]. However, an interesting 
relationship exists, which the readers are invited to discover 
for themselves. We suggest that a Golomb code be selected, 
that a short  run be encoded, and  that  the reader construct  the 
corresponding  code-string tree. 

3. The  general  case:  Multisymbol  data  alphabets 
As noted  from  the example  of Table 2, arithmetic coding 
applies to n-symbol alphabets as well. Here we use notation A 
and C in the arbitrarily  long register sense of Table 3, and 
A(s)  and C(s) are  the respective values following the encoding 
of data string s. We describe some encoding equations for 
multisymbol  alphabets. 

Encoding 
Let the n-symbol alphabet, whatever it may be, have an 
ordering. Our interest is in the symbol  position of the ordering: 
1, 2, . . ., k, . . ., n. Let relative frequencies p l ,  p2, . . ., pn, and 
interval  width A(s)  be given. The interval is subdivided ac- 
cording to relative frequencies, so the respective widths  are 
p I  X A(s) ,  pz X A(s) ,  . . ., pn X A(s) .  Recall the calculation of 
cumulative probabilities P :  

Pk = pJ for k 2 2,  and PI = 0. 
Jck 

For encoding  the  event whose order is k, following the  encod- 
ing of  prior  string s, the new subinterval [C(s,k),C(s,k) + 
A(s,k)) is described with the following two equations of the 
familiar arithmetic coding double recursion: 

C(s,k)  = C(s) + D(s,k),  where D(s,k) = A(s )  x Pk, (7) 

A(s,k) = A(s )  X P k  . (8) 

Decoding 
Let I C(s) I denote  the result  of the  termination  operation  on 
C(s), where it is understood  that  the decoder  inserts  trailing 
Os as  needed. The decoding operation, also  performed  recur- 
sively per  symbol, may be accomplished by subtracting out of 
I C(s) I the previously decoded summands.  For example, let so 
be the prefix of data string s which has  already  been  decoded. 
We are now left with quantity I C(s) I - C(so). The decoder 
must find symbol i such that 

D(so,k) 5 I C(S) 1 - C(X') < D(so,k + I) ,  

where k < n. We decode  symbol n if D(so,n) 5 I C(s) I - C(so). 

Precision problem 
Equations (7) and (8) describe Elias' code, which has  a preci- 
sion  problem. If A ( s )  has 8 bits of precision, and P k  has 8 bits 
of precision, then A(s,k) requires 16 bits of precision. If we 
keep the 16-bit result, A needs 24 bits of precision for the next 
recursion, and so on.  In practice, we wish A(s,k)  to have the 
same precision as A(s) ,  and use fixed-precision registers A and 
C for the  arithmetic as we do  in  the BAC examples  of  Tables 
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4 and 5. Pasco [ 5 ] ,  who is responsible for the first FIFO 
arithmetic code, solved the precision problem by truncating 
the  product of  Eq. (8) to  the  same precision as A(s). In terms 
of the leaves at  the  current  depth of the code-string  tree, 
truncation  in Eq. (8) allows gaps to  form  in  the code space. A 
gap is a leaf of the  current interval which is not assigned to 
any of the symbols. For such unassigned leaves, no  data string 
maps  to a continuation of  such leaves, and  there is some 
wasted code space. Martin [6] and  Jones [7], independently 
of Pasco and each other, discovered practical versions of Eqs. 
(7) and (8) which partition the  code space and have no gaps. 
They do this by ensuring  that 

C(s,k + 1) = C(s,k) + A(s,k). 

Decodability 
Codes are  not uniquely  decodable if two data strings map 
into  the  same code  space. In  arithmetic codes, if the subdivi- 
sion  of the interval yields an overlap, more  than  one  data 
string can  map  to  the overlapped  subinterval.  Overlap oc- 
curs when, in subdividing  interval A(s), the  sum of the sub- 
interval  widths exceeds A(s)  itself. Thus,  some  continuations 
of data string s may  map  to  the subinterval whose least point 
is C(s + I). We define  string s + 1 to be the  data string  of the 
same length as s which is next in  the lexical ordering. If s is 
already the last string in  the ordering, i.e., string “n n . . .n,” 
then C(n n . . . n) is 1 .OOO. The general decodability  criterion 
is thus 

C(s,n) + A(s,n) c C(s + I) ,  (9) 

where s,n denotes symbol n concatenated  to string s. For 
arithmetic codes which do not explicitly use value A(s,n), it 
may be calculated as C(s n n n n, . . .) - C(s,n). In cases where 
Eq. (9) is violated, the interval of overlap is 

[C(s + I),C(s,n) + A(s,n)). 

Similarly, a gap is formed between the mappings  of data string 
s a n d s +  1 if 

C(S + I )  - C(S) > A(s,l) + . . . + A(s,n). (10) 

A gap  does  not affect decodability;  it  simply means  that  the 
code  space is not fully utilized. 

P-based arithmetic codes 
For P-based arithmetic codes, the code  space is represented  as 
a number A which is subdivided by a  multiplication in pro- 
portion  to  the relative frequencies  of the symbols. 

The decodability criterion for P-based codes is given by 

A(s)  2 A ( $ , ] )  + A(s,2) + . . . + A(s,n). (1 1) 

If this equation is met with equality  for all s, then  the algorithm 
leaves no gaps. 

L-based arithmetic codes 
The L-based arithmetic codes  represent the width of the code 
space A(s)  as a value 2-[y(s)+x(s)1, where Y(s) is an integer and 

X ( s )  is a  rational  fraction  of an integer denominator  M. In 
fact, the length  of the code  string  for s, denoted L(s), is 
Y(s) + X@). Here, Y(s)  corresponds to E(s) of the example of 
Table 3.  [When  the code  string is terminated following the 
encoding of the last symbol, the code-string length of C(s) is 
within a few bits of L(s).] For L-based arithmetic codes, D(s,i) 
is determined  as  the  product 

D(s,k) = D(X(s),k) x 2TY‘”), (12) 

so that 

C(s,k) = C(s) + D(s,k). 

Since there are M distinct values of X($) ,  i.e., 0, 1/M, 2/ 
M ,  . . ., ( M  - l ) / M ,  and n symbols, we precalculate an M-by- 
n table of values D(X,k). [Actually, for symbol k = 1, the 
value of D is 0, SO only M-by-(n - 1) values need be stored.] 
In Eq. (12),  multiplication by 2-‘(”) is simply  a  shift. 

Corresponding to the relative frequency estimates, pkr are 
instead length approximations, 4 = -log P k .  These lengths 
must satisfy the generalized Kraft  inequality [8]. Following 
encoding of symbol k, the  internal variables are updated: 

L(s,k) = Y(s) + X ( s )  + 4 ,  

where again L(s) is broken into integer  part Y(s,k) and fraction 
part X(s,k). The decodability  criterion  of Eq. ( 1  1) is also the 
decodability  criterion  for L-based codes if A(s,k) is as defined 
in  Eq. (13). 

For k < n define 

A(s,k) = B(s,k + 1 )  - B(s,k), 

and for n, 

A(s,n) = B(s,n,n) + B(s,n,n,n) + . . .. (13) 

Applications 
Langdon and Rissanen [ 3 ]  applied  a FIFO P-based binary 
arithmetic code to the encoding  of black and white images, 
using as a context  the value of neighboring pels already 
encoded. This work  introduced the notion ofthe binary  coding 
parameter called skew. A  binary  code is particularly useful for 
black and white images because the contexts  employed for 
successive pels may have different relative frequencies. Tra- 
ditional  run-length  codes  such  as Golomb’s [4]  are only de- 
signed for a  particular relative frequency for the repeating 
symbol. In [ 3 ] ,  a  method to dynamically adapt  to  the pel 
statistics is described.  Particularly  simple adaptation tech- 
niques exist for determining  the skew number. 

Arithmetic  coding can also be applied to file compression 
[5-7,9, I O ] .  In [9], the first-order contexts are also determined 
adaptively.  A linearized binary  tree  can be used to store the 
skew numbers required to  encode  the decomposed 8-bit byte 
as eight encodings, each of a  binary  event. 147 
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Arithmetic  codes  have  been  employed to design codes  for a 
constrained channel. A constrained  channel  has  an alphabet, 
e.g. (0,1], where not all  strings in (0,1]* are allowed. The 
Manchester  code, where clocking and  data  information  are 
recorded  together, is an  example of a constrained channel 
code used in magnetic  recording  channels. Shannon [ I  I ]  
studied the constrained channel, defined the  constraints  in 
terms of allowed transitions in a state  table, and  determined 
the probabilities  for the allowed transitions which are needed 
in  order  to  map  the  maximum  amount of information  to a 
set of allowed strings. Guazzo [ 121 showed that  mapping  data 
strings to  channel strings is analogous to  the decompression 
operation,  and recovering the  data string from  the  channel 
string  corresponds to  the compression  operation. Martin  et a]. 
[ I ]  showed that  the  dual of decodability for  compression 
coding is representability for  constrained channel coding. To 
be representable, the  encoding  operation  can have  overlaps 
but  cannot have a gap. Some interesting L-based codes for 
constrained channels  are derived in [ 131. 

Guazzo [ 121, in  addition  to suggesting the application to 
constrained-channel codes, contributed a code which subdi- 
vides the code  space  according to  the given probabilities. 
However, the subdivision method is quite  crude  compared  to 
Pasco’s [5]. 

4. Comments 
Arithmetic  codes can achieve  compression as close to  the ideal 
as desired, for given statistics. In  addition,  the P-based 
FIFO  arithmetic codes which accept statistics directly facilitate 
dynamic  adaptation  to  the statistics  in one pass of the  data 
[3]. A good  binary  code is important,  as  Shannon  and  others 
have  noted, because other alphabets can be converted to 
binary form by decomposition. 

Of ovemding  importance  to compression  now is the  mod- 
eling of the  data. Rissanen and Langdon [ 141 have  studied a 
framework  for the encoding  of data strings and have assigned 
a cost to a model based on  the coding parameters required. 
Different modeling approaches  may be compared. They 
showed that blocking to  form larger alphabets results in  the 
same model entropy  at  the  same cost in coding parameters  as 
a symbolwise approach.  In general, the compression system 
designer seeks ways to give up a small percentage of the ideal 
compression  in order  to simplify the  implementation.  The 
existence of an efficient coding technique now places the 
emphasis on efficient context selection and parameter-reduc- 
tion  techniques [ 141. 

Acknowledgments 
Most of the author’s  work in this field was done  jointly with 
J. Rissanen, and  this debt  is  obvious. I also owe a debt to  Joan 
Mitchell, who has made several contributions  to  arithmetic 

148 coding [ 151. If this paper is more accessible to  the general 

GLEN G. LANGDON. JR. 

reader, it is due  to Joan’s  gracious and  patient  encouragement. 
I thank  Gerry Goertzel  for his insights in explaining the 
operation of arithmetic coding. I have also benefited from  the 
encouragement of Janet Kelly, Nigel Martin,  Stephen  Todd, 
Ron Arps, and  Murali Varanasi. 

Appendix 1: Origins of arithmetic  coding 
The first step  toward arithmetic coding was taken by Shannon 
[ 1 I],  who observed in a 1948 paper  that messages N symbols 
long  could be encoded by  first sorting the messages in order 
of their probabilities and  then sending the  cumulative proba- 
bility of the preceding messages in the ordering. The code 
string was a binary  fraction and was decoded by magnitude 
comparison. The next  step was taken by Peter Elias in an 
unpublished result; Abramson [ 161 described Elias’ improve- 
ment in 1963 in a note  at  the  end of a chapter. Elias observed 
that Shannon’s  scheme  worked  without  sorting the messages, 
and  that  the  cumulative probability of a message of N symbols 
could be recursively calculated from individual  symbol  prob- 
abilities and  the  cumulative probability  of the message of N 
- 1 symbols. Elias’ code was studied by Jelinek [ 171. The 
codes of Shannon  and Elias suffered from a serious  problem: 
As the message increased in length the  arithmetic involved 
required increasing precision. By using fixed-width arithmetic 
units for  these codes, the  time  to  encode each  symbol is 
increased linearly with the length of the code string. 

Meanwhile, another  approach  to coding was having a sim- 
ilar  problem with precision. In 1972, Schalkwijk [ 181 studied 
coding from  the  standpoint of providing an index to  the 
encoded  string  within a set of, possible strings. As symbols 
were added  to  the string, the index  increased  in size. This is a 
last-in-jirst-out (LIFO)  code, because the last symbol  encoded 
was the first symbol  decoded.  Cover [ 191 made  improvements 
to this  scheme, which is  now called enumerative coding. These 
codes suffered from  the  same precision problem. 

Both Shannon’s code  and  the Schalkwijk-Cover code can 
be viewed as a mapping of strings to a number, forming  two 
branches of pre-arithmetic codes, called FIFO (@st-in-jirst- 
out) and LIFO. Both branches use a double recursion, and 
both  have a precision problem.  Rissanen [8] alleviated the 
precision problem by suitable approximations in designing a 
LIFO  arithmetic code. Code strings  of any length  could be 
generated with a fixed calculation time per data symbol using 
fixed-precision arithmetic. 

Pasco [ 5 ]  discovered a FIFO  arithmetic code, discussed 
earlier, which controlled the precision problem by essentially 
the  same idea  proposed by Rissanen. In Pasco’s work, the 
code  string was kept in  computer  memory  until  the last symbol 
was encoded.  This strategy allowed a carry-over to be propa- 
gated over a long  carry chain. Pasco [5] also conjectured on 
the family of arithmetic codes based on  their mechanization. 
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In Rissanen [8] and  Pasco [ 5 ] ,  the  original (given, or pre- 
sumed) symbol  probabilities were used. (In  practice, we  use 
estimates of the  relative  frequencies.  However,  the notion of 
an  imaginary “source” emitting symbols according to given 
probabilities  is commonly found in the coding literature.) In 
[20] and [3], Rissanen  and  Langdon  introduced  the notion of 
coding parameters “based” on the symbol probabilities.  The 
uncoupling of the coding parameters  from  the  symbol  proba- 
bilities  simplifies  the implementation of the code at  very little 
compression loss, and gives the code designer some tradeoff 
possibilities. In [20] it  was  stated  that  there  were  ways to block 
the  carry-over, and in [3] bit-stuffing  was  presented. In [ 101 F. 
Rubin also improved  Pasco’s code by preventing  carry-overs. 
The  result  was  called  a  “stream” code. Jones [7] and Martin 
[6] have  independently  discovered  P-based FIFO arithmetic 
codes. 

Rissanen  and  Langdon [20] successfully  generalized  and 
characterized  the  family of arithmetic codes through  the no- 
tion of the  decodability  criterion  which  applies to all  such 
codes, be they LIFO or FIFO,  L-based or P-based. The arith- 
metic coding family is seen to be  a  practical  generalization of 
many  pre-arithmetic coding algorithms,  including  Elias’ code, 
Schalkwijk [ 181, and  Cover [ 191. Gilbert  and  Moore [21] 
devised  the prefix coding approach  used  in  Table 1. In [22], 
Rissanen  presents  an  interesting  view of an  arithmetic code as 
a  number-representation system, and shows that  Elias’ code 
and  enumerative codes are duals. 
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