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An Introduction to Arithmetic Coding

Arithmetic coding is a data compression technique that encodes data (the data string) by creating a code string which represents a
Jractional value on the number line between 0 and 1. The coding algorithm is symbolwise recursive; i.e., it operates upon and
encodes (decodes) one data symbol per iteration or recursion. On each recursion, the algorithm successively partitions an interval
of the number line between 0 and 1, and retains one of the partitions as the new interval. Thus, the algorithm successively deals
with smaller intervals, and the code string, viewed as a magnitude, lies in each of the nested intervals. The data string is recovered
by using magnitude comparisons on the code string to recreate how the encoder must have successively partitioned and retained
each nested subinterval. Arithmetic coding differs considerably from the more familiar compression coding techniques, such as
prefix (Huffman) codes. Also, it should not be confused with error control coding, whose object is to detect and correct errors in

computer operations. This paper presents the key notions of arithmetic compression coding by means of simple examples.

1. Introduction

Arithmetic coding maps a string of data (source) symbols to a
code string in such a way that the original data can be
recovered from the code string. The encoding and decoding
algorithms perform arithmetic operations on the code string.
One recursion of the algorithm handles one data symbol.
Arithmetic coding is actually a family of codes which share
the property of treating the code string as a magnitude. For a
brief history of the development of arithmetic coding, refer to
Appendix 1.

& Compression systems

The notion of compression systems captures the idea that data
may be transformed into something which is encoded, then
transmitted to a destination, then transformed back into the
original data. Any data compression approach, whether em-
ploying arithmetic coding, Huffman codes, or any other cod-
ing technique, has a model which makes some assumptions
about the data and the events encoded.

The code itself can be independent of the model. Some
systems which compress waveforms (e.g., digitized speech)
may predict the next value and encode the error. In this model
the error and not the actual data is encoded. Typically, at the
encoder side of a compression system, the data to be com-
pressed feed a model unit. The model determines 1) the
event(s) to be encoded, and 2) the estimate of the relative

frequency (probability) of the events. The encoder accepts the
event and some indication of its relative frequency and gen-
erates the code string.

A simple model is the memoryless model, where the data
symbols themselves are encoded according to a single code.
Another model is the first-order Markov model, which uses
the previous symbol as the context for the current symbol.
Consider, for example, compressing English sentences. If the
data symbol (in this case, a letter) “q” is the previous letter,
we would expect the next letter to be “u.” The first-order
Markov model is a dependent model; we have a different
expectation for each symbol (or in the example, each letter),
depending on the context. The context is, in a sense, a state
governed by the past sequence of symbols. The purpose of a
context is to provide a probability distribution, or statistics,
for encoding (decoding) the next symbol.

Corresponding to the symbols are statistics. To simplify the
discussion, consider a single-context model, i.e., the memory-
less model. Data compression results from encoding the more-
frequent symbols with short code-string length increases, and
encoding the less-frequent events with long code length in-
creases. Let ¢; denote the occurrences of the ith symbol in a
data string. For the memoryless model and a given code, let #
denote the length (in bits) of the code-string increase associated
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Table 1 Example Huffman code.

Symbol Codeword Probability p Cumulative
(in binary) probability P

a 0 100 .000

b 10 .010 100

c 110 001 110

d 111 .001 11

with symbol i. The code-string length corresponding to the
data string is obtained by replacing each data symbol with its
associated length and summing the lengths:

Z citl.
i

If # is large for data symbols of high relative frequency (large
values of ¢;), the given code will almost surely fail to achieve
compression. The wrong statistics (a popular symbol with a
long length #) lead to a code string which may have more bits
than the original data. For compression it is imperative to
closely approximate the relative frequency of the more-fre-
quent events. Denote the relative frequency of symbol 7 as p;
where p; = ¢;//N, and N is the total number of symbols in the
data string. If we use a fixed frequency for each data symbol
value, the best we can compress (according to our given model)
is to assign length 4 as —log p.. Here, logarithms are taken to
the base 2 and the unit of length is the bit. Knowing the ideal
length for each symbol, we calculate the ideal code length for
the given data string and memoryless model by replacing each
instance of symbol / in the data string by length value —log p;,
and summing the lengths.

Let us now review the components of a compression system:
the model structure for contexts and events, the statistics unit
for estimation of the event statistics, and the encoder.

Model structure

In practice, the model is a finite-state machine which operates
successively on each data symbol and determines the current
event to be encoded and its context (i.e., which relative
frequency distribution applies to the current event). Often,
each event is the data symbol itself, but the structure can
define other events from which the data string could be
reconstructed. For example, one could define an event such
as the run length of a succession of repeated symbols, i.e., the
number of times the current symbol repeats itself.

Statistics estimation

The estimation method computes the relative frequency dis-
tribution used for each context. The computation may be
performed beforehand, or may be performed during the en-
coding process, typically by a counting technique. For Huff-
man codes, the event statistics are predetermined by the length
of the event’s codeword.
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Encoder
The encoder accepts the events to be encoded and generates
the code string.

The notions of model structure and statistics are important
because they completely determine the available compression.
Consider applications where the compression model is com-
plex, i.e., has several contexts and a need to adapt to the data
string statistics. Due to the flexibility of arithmetic coding, for
such applications the “compression problem” is equivalent to
the “modeling problem.”

e Desirable properties of a coding method
We now list some properties for which arithmetic coding is
amply suited.

For most applications, we desire the first-in first-out (FIFO)
property: Events are decoded in the same order as they are
encoded. FIFO coding allows for adapting to the statistics of
the data string. With /last-in first-out (LIFO) coding, the last
event encoded is the first event decoded, so adapting is difhi-
cult.

We desire no more than a small storage buffer at the
encoder. Once events are encoded, we do not want the encod-
ing of subsequent events to alter what has already been gen-
erated.

The encoding algorithm should be capable of accepting
successive events from different probability distributions.
Arithmetic coding has this capability. Moreover, the code acts
directly on the probabilities, and can adapt “on the fly” to
changing statistics. Traditional Huffman codes require the
design of a different codeword set for different statistics.

o An initial view of Huffman and arithmetic codes

We progress to a very simple arithmetic code by first using a
prefix (Huffman) code as an example. Qur purpose is to
introduce the basic notions of arithmetic codes in a very
simple setting.

Consider a four-symbol alphabet, for which the relative
frequencies 4, 4, 1, and § call for respective codeword lengths
of 1, 2, 3, and 3. Let us order the alphabet {a, b, ¢, d} according
to relative frequency, and use the code of Table 1. The
probability column has the binary fraction associated with the
probability corresponding to the assigned length.

The encoding for the data string “a a b ¢” is 0.0.10.110,
where “.” is used as a delimiter to show the substitution of
the codeword for the symbol. The code also has the prefix
property (no codeword is the prefix of another). Decoding is
performed by a matching or comparison process starting with
the first bit of the code string. For decoding code string
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0010110, the first symbol is decoded as “a” (the only codeword
beginning with 0). We remove codeword 0, and the remaining
code is 010110. The second symbol is similarly decoded as
“a,” leaving 10110. For string 10110, the only codeword
beginning with 10 is “b,” so we are left with 110 for c.

We have described Table 1 in terms of Huffman coding.
We now present an arithmetic coding view, with the aid of
Figure 1. We relate arithmetic coding to the process of sub-
dividing the unit interval, and we make two points:

Point 1 Each codeword (code point) is the sum of the proba-
bilities of the preceding symbols.

Point 2 The width or size of the subinterval to the right of
each code point corresponds to the probability of the
symbol.

We have purposely arranged Table | with the symbols
ordered according to their probability p, and the codewords
are assigned in numerical order. We now view the codewords
as binary fractional values (.000, .100, .110 and .111). We
assume that the reader is familiar with binary fractions, i.e.,
that 4, 1, and § are respectively represented as .1, .01, and .111
in the binary number system. Notice from the construction
of Table 1, and referring to the previously stated Point 1, that
each codeword is the sum of the probabilities of the preceding
symbols. In other words, each codeword is a cumulative
probability P.

Now we view the codewords as points (or code points) on
the number line from 0 to 1, or the unit interval, as shown in
Fig. 1. The four code points divide the unit interval into four
subintervals. We identify each subinterval with the symbol
corresponding to its leftmost point. For example, the interval
for symbol “a” goes from 0 to .1, and for symbol “d” goes
from .111 to 1.0. Note also from the construction of Table 1,
and referring to the previous Point 2, that the width or size of
the subinterval to the right of each code point corresponds to
the probability of the symbol. The codeword for symbol “a”
has{ the interval, the codeword for “4” (.100) has } the interval,
and “c” (.110) and “d” (.111) each have } of the interval.

In the example data, the first symbol is “a,” and the corre-
sponding interval on the unit interval is [0,.1). The notation
“[0,.1)” means that 0 is included in the interval, and that
fractions equal to or greater than 0 but less than .1 are in the
interval. The interval for symbol “b” is [.1,.110). Note that .1
belongs to the interval for “6” and not for “a.” Thus, code
strings generated by Table | which correspond to continua-
tions of data strings beginning with “a,” when viewed as a
fraction, never equal or exceed the value 0.1. Data string
“addddd--.” is encoded as “0111111...,” which when
viewed as a fraction approaches but never reaches value
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Figure 1 Codewords of Table 1 as points on unit interval.
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Figure 2 Successive subdivision of unit interval for code of Table 1
and data string “ga b---.”

.100000- - -. We can decode by magnitude comparison; if the
code string is less than 0.1, the first data symbol must have
been “a.”

Figure 2 shows how the encoding process continues. Once
“a” has been encoded to [0,.1), we next subdivide this interval
into the same proportions as the original unit interval. Thus,
the subinterval assigned to the second “a” is [0,.01). For the
third symbol, we subdivide [0,.01), and the subinterval be-
longing to third symbol “b” is [.001,.0011). Note that each of
the two leading Os in the binary representation of this interval
comes from the codewords (Table 1) of the two symbols “a”
which precede the “b.” For the fourth symbol “¢,” which
follows “a a b,” the corresponding subinterval is
[.0010110,.0010111).

In arithmetic coding we treat the code points, which delimit
the interval partitions, as magnitudes. To define the interval,
we specify 1) the leftmost point C, and 2) the interval width
A. (Alternatively one can define the interval by the leftmost
point and rightmost point, or by defining the rightmost point
and the available width.) Width 4 is available for further
partitioning,

We now present some mathematics to describe what is
happening pictorially in Fig. 2. From Fig. 2 and its description,
we se¢ that there are two recursive operations needed to define
the current interval. For encoding, the recursion begins with
the “current™ values of code point C and available width A4,
and uses the value of the symbol encoded to determine “new”
values of code point C and width 4. At the end of the current
recursion, and before the next recursion, the “new” values of
code point and width become the “current” values.

New code point
The new leftmost point of the new interval is the sum of the
current code point C, and the product of the interval width
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Figure 3 Subdivision of unit interval for arithmetic code of Table 2
and data string “a a b- - -.”

Table 2 Arithmetic code example.

Symbol Cumulative Symbol Length
probability P probability p
d .000 .001 3
b .001 .010 2
a 011 100 1
4 A11 001 3

W of the current interval and the cumulative probability P;
for the symbol i/ being encoded:

New C = Current C + (4 X P)).

For example, after encoding “a a,” the current code point C
is 0 and the interval width A4 is .01. For “a a b,” the new code
point is .001, determined as 0 (current code point C), plus the
product (.01) X (.100). The factor on the left is the width 4 of
the current interval, and the factor on the right is the cumu-
lative probability P for symbol “b”; see the “Cumulative
probability” column of Table 1.

New interval width A
The width 4 of the current interval is the product of the
probabilities of the data symbols encoded so far. Thus, the
new interval width is

New 4 = Current A X P;,

where the current symbol is i. For example, after encod-
ing “a a b,” the interval width is (.1) X (.1) X (.01), which is
.0001.

In summary, we can systematically calculate the next inter-
val from the leftmost point C and width 4 of the current
interval, given the probability p and cumulative probability P
values in Table | for the symbol to be encoded. The two
operations (new code point and new width) thus form a double
recursion. This double recursion is central to arithmetic cod-
ing, and this particular version is characteristic of the class of
FIFO arithmetic codes which use the symbol probabilities
directly.

The Huffman code of Table 1 corresponds to a special
integer-length arithmetic code. With arithmetic codes we can
rearrange the symbols and forsake the notion of a k-bit code-

138 word for a symbol corresponding to a probability of 27%, We

GLEN G. LANGDON, JR.

retain the important technique of the double recursion. Con-
sider the arrangement of Table 2. The “codeword” corre-
sponds to the cumulative probability P of the preceding sym-
bols in the ordering.

The subdivision of the unit interval for Table 2, and for the
data string “a a b,” is shown in Figure 3. In this example, we
retain Points | and 2 of the previous example, but no longer
have the prefix property of Huffman codes. Compare Figs. 2
and 3 to see that the interval widths are the same but the
locations of the intervals have been changed in Fig. 3 to
conform with the new ordering in Table 2.

Let us again code the string “a a b ¢.” This example
reinforces the double recursion operations, where the new
values become the current values for the next recursion. It is
helpful to understand the arithmetic provided here, using the
“picture” of Fig. 3 for motivation.

The first “a” symbol yields the code point .011 and interval
[.O11,.111), as follows:

First symbol (a)
C: New code point C=0+1Xx(.011) =.011.
(Current code point plus current width 4 times P.)
A: New interval width A =1 X (.1) = .1.
(Current width 4 times probability p.)
In the arithmetic coding literature, we have called the value 4
x P added to the old code point C, the augend.

The second “a” identifies subinterval [.1001,.1101).

Second symbol (a)
C: New code point = .011 + .1 X (.011) =
011 (current code point)
.0011 (current width 4 times P, or augend)
.1001. (new code point)
A: New interval width 4 = .1 X (.1) = .01.
(Current width A times probability p.)
Now the remaining interval is one-fourth the width of the unit
interval.

For the third symbol, “b,” we repeat the recursion.

Third symbol (b)
C: New code point = .1001 + .01 X (.001) = .10011.
.1001 (current code point C)
.00001 (current width A times P, or augend)
.10011 (new code point)
A: New interval width 4 = .01 X (.01) = .0001.
(Current width 4 times probability p.)
Thus, following the coding of “a a b,” the interval is
[.10011,.10101).
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To handle the fourth letter, “c,” we continue as follows.

Fourth symbol (¢)
C: New code point = .10011 + .0001 x (.111)
=.1010011.
10011 (current code point)
.0000111 (current width A times P, or augend)

.1010011 (new code point)
A: New interval width 4 = .0001 x (.001) = .0000001.
(Current width A4 times probability p.)

Carry-over problem

The encoding of the fourth symbol exemplifies a small prob-
lem, called the carry-over problem. After encoding symbols
“a,” “a,” and “b,” each having codewords of lengths 1, 1, and
2, respectively, in Table 1, the first four bits of an encoded
string using Huffman coding would not change. However, in
this arithmetic code, the encoding of symbol “¢” changed the
value of the third code-string bit. (The first three bits changed
from .100 to .101.) The change was prompted by a carry-over,
because we are basically adding quantities to the code string.
We discuss carry-over control later on in the paper.

Code-string termination

Following encoding of “a a b ¢,” the current interval is
[.1010011,.1010100). If we were to terminate the code string
at this point (no more data symbols to handle), any value
equal to or greater than .1010011, but less than .1010100,
would serve to identify the interval.

Let us overview the example. In our creation of code string
101001 1, we in effect added properly scaled cumulative prob-
abilities P, called augends, to the code string. For the width
recursion on A, the interval widths are, fortuitously, negative
integral powers of two, which can be represented as floating
point numbers with one bit of precision. Multiplication by a
negative integral power of two may be performed by a shift
right. The code string for “a a b ¢” is the resuit of the following
sum of augends, which displays the scaling by a right shift:

011
011
001
11
1010011

Decoding

Let us retain code string .1010011 and decode it. Basically,
the code string tells the decoder what the encoder did. In a
sense, the decoder recursively “undoes” the encoder’s recur-
sion. If, for the first data symbol, the encoder had encoded a
“b,” then (referring to the cumulative probability P column
of Table 2), the code-string value would be at least .001 but
less than .011. For encoding an “a,” the code-string value
would be at least .011 but less than .111. Therefore, the first

“ %

symbol of the data string must be “a” because code-string
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.1010011 lies in [.011,.110), which is a’s subinterval. We can
summarize this step as follows.

Step 1: Decoder C comparison Examine the code string and
determine the interval in which it lies. Decode the symbol
corresponding to that interval.

Since the second subinterval code point was obtained at the
encoder by adding something to .011, we can prepare to
decode the second symbol by subtracting .011 from the code
string: .1010011 — .011 = .0100011. We then have Step 2.

Step 2: Decoder C readjust Subtract from the code string the
augend value of the code point for the decoded symbol.

Also, since the values for the second subinterval were ad-
justed by multiplying by .1 in the encoder A recursion, we
can “undo” that multiplication by multiplying the remaining
value of the code string by 2. Our code string is now .1000011.
In summary, we have Step 3.

Step 3: Decoder C scaling Rescale the code C for direct
comparison with P by undoing the multiplication for the
value A.

Now we can decode the second symbol from the adjusted
code string .100011 by dealing directly with the values in
Table 2 and repeating Decoder Steps 1, 2, and 3.

Decoder Step 1 Table 2 identifies “a” as the second data
symbol, because the adjusted code string is greater than .01
(codeword for “a”) but less than .111 (codeword for “c”).

Decoder Step 2 Repeating the operation of subtracting .011,
we obtain
.100011 — 011 = .001011.

Decoder Step 3 Symbol “a” causes multiplication by .1 at
the encoder, so the rescaled code string is obtained by doubling
the result of Decoder Step 2:

.01011.
The third symbol is decoded as follows.

Decoder Step 1 Referring to Table 2 to decode the third
symbol, we see that .01011 is equal to or greater than .001
(codeword for “b”) but less than .011 (codeword for “a”), and
symbol “b™ is decoded.

Decoder Step 2 Subtracting out .001 we have .00111:
01011 — .001 = .00111.

Decoder Step 3 Symbol “b” caused the encoder to multiply
by .01, which is undone by rescaling with a 2-bit shift:

.00111 becomes .111,

To decode the fourth and last symbol, Decoder Step 1 is
sufficient. The fourth symbol is decoded as “c,” whose code
point corresponds to the remaining code string.
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Symbol Codeword
a 0
b 10

c I

(a)

baac — 100011

(b)
Root
o First symbol
Second symbol
Third symbol
Fourth symbol
Current leaf

{ch

Figure 4 The code-string tree of a prefix code. Example code, image
of data string is a single leaf: (a) code table, (b) data-string-to-code-
string transformation, (c) code-string tree.

~ A general view of the coding process

We have related a special prefix code (the symbols were
ordered with respect to their probability) and a special arith-
metic code (the probabilities were all negative integral powers
of two) by picturing the unit interval. The multiplication
inherent in the encoder width recursion for 4, in the general
case, yields a new 4 which has a greater number of significant
digits than the factors. In our simple example, however, this
multiplication did not cause the required precision to increase
with the length of the code string because the probabilities p
were integral negative powers of two. Arithmetic coding is
capable of using arbitrary probabilities by keeping the product
to a fixed number of bits of precision.

A key advance of arithmetic coding was to contain the
required precision so that the significant digits of the multi-
plications do not grow with the code string. We can describe
the use of a fixed number of significant bits in the setting of a
code-string tree. Moreover, constrained channel codes [1] as
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well as compression codes benefit from the code tree view.
Again, the code alphabet is the binary alphabet {0,1}. The
code-string tree represents the set of all finite binary code
strings, denoted {0,1}*.

We illustrate a conventional Huffman code in Figure 4,
which shows the code-string tree for mapping data string
s = “baac to a binary code string. Figure 4(a) shows a
codeword table for data symbols “a,” “b,” and “c.” The
encoding proceeds recursively. The first symbol of string s,
“b,” is mapped to code string 10, “b a” is mapped to code
string 100, and so on, as indicated in Fig. 4(b). Thus the depth
of the code tree increases with each recursion. In Fig. 4(c) we
highlight the branches traveled to demonstrate that the coding
process successively identifies the underlined nodes in the
code-string tree. The root of the codeword tree is attached to
the leaf at the current depth of the tree, as per the previous
data symbol.

At initialization, the available code space (4) is a set {0,1}*,
which corresponds to the unit interval. Following the encoding
of the first data symbol b, we identify node 10 by the path
from the root. The depth is 2. The current code space is now
all continuations of code string 10. We recursively subdivide,
or subset, the current code space. A property of prefix codes
is that a single node in the code space is identified as the result
of the subdivision operation. In the unit interval analogy,
prefix codes identify single points on the interval. For arith-
metic codes, we can view the code as mapping a data string
to an interval of the unit interval, as shown in Fig. 3, or we
can view the result of the mapping as a set of finite strings, as
shown in Fig. 4.

2. A Binary Arithmetic Code (BAC)

We have presented a view of prefix codes as the successive
application of a subdivision operation on the code space in
order to show that arithmetic coding successively subdivides
the unit interval. We conceptually associate the unit interval
with the code-string tree by a correspondence between the set
of leaves of the code-string tree at tree depth D on one hand,
and the rational fractions of denominator 22 on the other
hand.

We teach the binary arithmetic coding (BAC) algorithm by
means of an example. We have already laid the groundwork,
since we follow the encoder and decoder operations and
general strategy of the previous example. See [2] for a more
formal description.

The BAC algorithm may be used for encoding any set of
events, whatever the original form, by breaking the events
down for encoding into a succession of binary events. The
BAC accepts this succession of events and delivers successive
bits of the code string.
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The encoder operates on variable MIN, whose values are T
(true) and F (false). The name MIN denotes “more probable
in.” If MIN is true (T), the event to be encoded is the more
probable, and if MIN is false (F), the event to be encoded is
the less probable. The decoder result is binary variable MOUT,
of values T and F, where MOUT means “more probable out.”
Similarly, at the decoder side, output value MOUT is true (T)
only when the decoded event is the more probable.

In practice, data to be encoded are not conveniently pro-
vided to us as the “more” or “less” probable values. Binary
data usually represent bits from the real world. Here, we leave
to a statistics unit the determination of event values T or F.

Consider, for example, a black and white image of two-
valued pels (picture elements) which has a primary white
background. For these data we associate the instances of a
white pel value to the “more probable” value (T) and a black
pel value into the “less probable” value (F). The statistics unit
would thus have an internal variable, MVAL, indicating that
white maps to T. On the other hand, if we had an image with
a black background, the mapping of values black and white
would be respectively to values T and F (MVAL is black). In
a more complex model, if the same black and white image
had areas of white background interspersed with neighbor-
hoods of black, the mapping of pel values black/white to event
values F and T could change dynamically in accordance with
the context (neighborhood) of the pel location. In a black
context, the black pel would be value T, whereas in the context
of a white neighborhood the black pel would be value F.

The statistics unit must determine the additional informa-
tion as to by how much value T is more popular than value
F. The BAC coder requires us to estimate the relative ratio of
F to the nearest power of 2; does F appear 1 in 2, or 1 in 4,
or | in 8, etc., or 1 in 4096? We therefore have 12 distinct
coding parameters SK, called skew, of respective index 1
through 12, to indicate the relative frequency of value F. In a
crude sense, we select one of 12 “codes” for each event to be
encoded or decoded. By approximating to 12 skew values,
instead of using a continuum of values, the maximum loss in
coding efficiency is less than 4 percent of the original file size
at probabilities falling between skew numbers 1 and 2. The
loss at higher skew numbers is even less; see [2].

In what follows, our concern is how to code binary events
after the relative frequencies have been estimated.

o The basic encoding process

The double recursion introduced in conjunction with Table 2
appears in the BAC algorithm as a recursion on variables C
(for code point) and A (for available space). The BAC aigo-
rithm is initialized with the code space as the unit interval
[0,1) from value 0.0 to value 1.0, with C = 0.0 and 4 = 1.0.
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The BAC coder successively splits the width or size of the
available code space A, or current interval, into two subinter-
vals. The left subinterval is associated with F and the right
subinterval with T. Variables C and A jointly describe the
current interval as, respectively, the leftmost point and the
width. As with the initial code space, the current interval is
closed on the left and open on the right: [C,C + A).

In the BAC, not all interval widths are integral negative
powers of two. For example, where p of event F is £, the other
probability for T must be 2. For the width associated with T
of 3, we have more than one bit of precision. The product of
probabilities greater than 1 can lead to a growing precision
problem. We solve the problem by representing space 4 with
a floating point number to a fixed precision. We introduce
variable E for the exponent, which controls the “data han-
dling” and “shifting” aspect of the algorithm. We represent
variable 4 in floating point with the most significant bit of 4
in position E from the left. Thus the leading 1-bit of the binary
representation of 4 has value 272, For example, if 4 =
0.001011, E has value 3, 27%i5 0.001, and A is 1.011.

In the encoder A recursion of the example of Table 2, the
width is determined by a multiplication. In the simple BAC
algorithm, the smaller width is determined by the value SK,
as in Eq. (1), which follows. The other width is the difference
between the current width and the smaller width, as in Eq.
(2), which follows. No multiplication is needed.

The current interval is split according to the skew value SK
as follows. If SK is 1, the interval is split nearly in half, and if
SK is 12, the interval is split with a very small subinterval
assigned to F. Note that we roughly subdivide the current
interval in a way which corresponds to the relative frequency
of each event. Let WAF) and W(T) be respectively the subin-
terval widths assigned to F and to T. Specifically,

W(F) = 27®&+SK), (1)
with the remainder of the interval width A assigned to T:
W(T) = A — 27E+SK, (2)

We can summarize the handling of an event (value T or F)
in the BAC algorithm in three steps. The first and second steps
correspond to the 4 and C recursions described earlier. The
third step is a “data handling” or scaling step which we have
ignored in the earlier examples. Let s denote the string of data
symbols already encoded, and let notation ({(s), A(s), and E(s)
respectively denote the values of variables C, 4, and E follow-
ing the encoding of the data string. Now, after handling the
next event T, let the new values of variables C, 4, and E be
respectively denoted C(s,T), A(s,T), and E(s,T).

Steps for encoding of next event
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Table 3 Example encoding—refining the interval.

Event MIN SK
(value) (skew)

E
(A’s lead 0Os)

WI(F) c A
(F width) (least pt) (interval A)

Initial
1

-

3
1
1
1

[ e e )

2
3
4

— 0.000000
.001 0.001000
.01 0.011000
.01 0.011000
.001 0.100000

1.000000
0.111000
0.101000
0.010000
0.001000

4] .001 1
E r : 1 1 \
C A A

~——— ~—
F [ T
Subdivision point

Figure 5 Interval splitting—subdivision for Event 1, Table 3.

Width .101

0 .01l 1 101

L r 1 'S
| =

e

(a) Subdivision point

Width .010
101 1

'

7

=)
2

mm

(b)
Figure 6 Interval splitting—subdivision for Event 3, Table 3: (a)

Current interval at end of Event 2 and subdivision point. (b) Current
interval following encoding of Event 3.

Step 1 Given skew SK and E (the leading Os of 4), subdivide
the current width as in Egs. (1) and (2).

Step 2 Given the event values (T or F), C, W(T), and WAF),
describe the new interval:

If T: C(s,T) = C(s) + W(F) and A(s,T) = W(T). (3a)
If F: C(s,F) = C(s) and A(s,F) = W(F). (3b)

Step 3 Given the new value of 4, determine the new value
of E:

If T: If A(s,T) < 2759, then E(s5,T) = E(s) + 1;
otherwise E(s,T) = E(s).
If F: E(s,F) = E(s) + SK.
We continue the discussion by an example, where we en-
code the four-event string T, T, F, T under respective skews

3, 1, 1, 1. The encoding is described by Table 3, and the
following description accompanies this table.

GLEN G. LANGDON, JR.

For Event 1, SK is 3 and E is 0. For Step 1, the width
associated with the value F, WAF), 1s 272 or 0.001. WAT) is
what is left over, or 1.000 — 0.001 = 0.111. See Figure 5.
Relative to Step 2, Eq. (3), the subdivision point is C + WAT)
or 0 +.001 =.001. Since the binary value is T and the relative
frequency of the T event is equal to or greater than 3, we keep
the larger (rightmost) subinterval. Referring to Fig. 5, we see
that the new values of C and 4 which describe the interval are
now ((T) = 0.001 and A(T) = WA(T) = 0.111. For Step 3, we
note that 4 has developed a leading 0, so E = 1.

For Event 2 of Table 3, the skew SK is 1 and E is now 1,
so W(F)is 27"*Yor 0.01. WAT)is thus 0.111 — 0.010 =0.101.
The subdivision point of the current interval is C + WAF), or
0.011. Again, the event value is T, so we keep the rightmost
part. The new value of C is the subdivision point 0.011, and
the new value of 4 is W(T) or 0.101. The leading 1-bit position
of 4 has not changed, so E is still 1.

For Event 3 of Table 3, see Figure 6, which displays current
interval [.011,1) of width .101. The smaller width W(F) is
27+ or .0l. We add this value to C to obtain
C + WA(F), or subdivision point .101. See Fig. 6(a). Referring
to Event 3 of Table 3, the value to encode is F, so we must
now keep the left side of the subdivision. By keeping the F
subinterval, the value of C remains at .011 and 4 becomes
WAF) or 0.01. Available width 4 has a new leading 0, so E
becomes 2. The resulting interval is shown in Fig. 6(b).

o Separation of data handling from the arithmetic
Arithmetic codes generate the code string by adding a sum-
mand (called augend in the arithmetic coding literature) to
the current code string and possibly shifting the result. The
summation operation creates a problem called the carry-over
problem. We can, in the course of code generation, shift out a
long string of 1s from the coding process. An addition could
propagate a carry into the long string of Is, changing the
values of higher-order bits until a 0 is converted to a 1 and
stopping the carry chain.

In this section we show how the arithmetic using 4 and C
can be separated from the carry-over handling and data-

IBM J. RES. DEVELOP. » VOL. 28 e NO. 2 « MARCH 1984




buffering functions. The scheme of Table 3 assumes that the
A and C registers are quite long, i.e., that they increase in
length with the number of events encoded. As the value of
variable £ increases, so does the length of 4 and C. In reality,
the A and C registers can be made of fixed precision, and the
results shifted left out of the C register. Also, the leading Os of
the A register are not needed, which justifies a fixed-length 4
register. Let A, C, and W denote fixed-length registers (perhaps
no more than 16 bits, for example).

In making the adjustment to fixed-length registers C and A,
Eq. (1) and Eq. (2) are normalized to operate on A:

W(F) =275,
W(T) = A — 275K,

The widths W may have leading 0Os, and when becoming the
new A we must renormalize. Thus, as the A register develops
leading Os, a normalization left shift restores value 1 to the
most significant bit of the A register. However, A and C must
maintain their relative alignment, so we have a rule: Register
C undergoes a normalization shift whenever register A does.

The basic conceptual input/output view of the algorithm,
both for the compression and decompression process, is shown
in Figure 7. In this figure we have decomposed the encoding
task into the encoder itself which handles the A and C registers,
and the special arbitrarily long FIFO buffer Q which handies
the code string and the carry-over. Note that the encoder and
decoder in practice are interfaced to the original data via a
statistics unit which is not shown. The statistics unit provides
skew numbers SK.

The encoder accepts successive events of binary information
from the input variable MIN, whose values T or F are encoded
under a coding parameter SK. The code string is shifted out
of the encoder into a FIFO storage unit Q. At the other end
of Q, the decoder receives the code string from FIFO Q. The
decoder is also supplied the same value of the coding param-
eter SK under which the successive input values MIN were
encoded. The decoder, with a knowledge of the code string C
coming from Q at one input port and the successive coding
parameter values at the other input port SK coming from the
decoder’s statistics unit, produces successive values at output
port MOUT.

For the description of the algorithm given here, we assume
that the FIFO store Q has sufficient capacity for the entire
code string, and that Q has the capability of propagating an
incoming carry. Thus, in Fig. 7 the encoder has an output
ADD+1 which signifies a carry-over from the encoder to the
FIFO buffer Q. When ADD+1 is active, the FIFO buffer first
propagates the carry (adds 1 to the lowest-order bit position
of Q) and then performs the shift,
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SK MIN
(4 bits) (1 bity

ADD+ —————

(SK and MIN supplied by Statistics unit)

~+———— Bit-serial shift-in of code-string bits

Serial-by-bit FIFO
Q |-——— buffer storage unit
with “Add 17" capability

<————— Bit-serial shift-out of code-string bits

SK Decoder
(4 bits)
(supplied by
Model unit)
Mour
(1 bit)
(to Model unit)

Figure 7 Block diagram of a binary event encoder/decoder system.
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0« shl* 0.

!
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Figure 8 Flowchart for BAC algorithm encoder.

The BAC encoder algorithm with normalization is described
in flowchart form in Figure 8. The figure uses a simple register
transfer notation we define in the obvious way by example.
We assume the existence of three registers: Q (the FIFO buffer),
C, and A. Let us assume that values of SK are limited to 1, 2,
and 3. Registers C and A are one bit longer than the maximum
SK, and so are 4 bits. Register C is initialized to 0.000, and
Register A is initialized to 1.000. The basic idea of the algo-
rithm using normalization is very simple. To encode a T, add
275K to C and subtract 2% from A. Let “,” denote concaten-
ation. In the register transfer notation,
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Table 4 Example encoding with normalization.

Event MIN SK Q C A Normalization
Initial — — — 0.000 1.000 —
1 T 3 0 0.010 1.110 Yes
2 T 1 0 0.110 1.010 No
3 F 1 00 1.100 1.000  F-shift of SK
4 T 1 010 0.000 1.000 Yes
0.C < Q.C+ 27, (4a)
A A-25 (4b)

If the result in A is equal to or greater than 1.000, we are done
with the double recursion. If the result in A is less than 1.000,
a normalization shift is needed. We shift Q and C left as a
pair, and shift left A. Let “shl” denote shift left one bit, and
“sh1>” denote a shift left of two bits, etc. If A is less than 1.000,
then

0,C « shl 0,C,0, (5a)
A < shl A,0. (5b)

In the above, “,0” denotes “0-fill” (the vacated positions are
filled with Os).

If the symbol to be encoded is F, Fig. 8 shows that the
action to perform is relatively simple:

0,C « shI’* 0,C,0, (6a)
A< 10. (6b)

We use the same example as in Table 3 redone as shown in
Table 4. Columns Q, C, and A show the result of applying the
MIN and SK values of that step. The first row is the initiali-
zation.

Event 1, with C and A as initialized, encodes value T with
an SK of 3. The arithmetic result for Eq. (4a) is C = 0.000 +
0.001, and for Eq. (4b) is A = 1.000 — .001 = 0.111. Since
0.111 is less than 1.0, we must apply Eq. (5) to normalize.
Following the normalization shift, Q is now 0, C is 0.010, and
Ais 1.110.

Event 2 encodes value T with a skew of 1. We perform the
operations of Eq. (4a), resulting in C of 0.110 as follows:

0.010 (old C)
+ .1 2™
0.110 {(new C)

Equation (4b) gives 1.010 for A:

1.110 (old A)
- .1 (=27

Since the register A result is greater than 1.0, the normalization
shift of Eq. (5) is not needed.

Event 3 encodes value F at skew 1. The algorithm for
encoding an F is Eq. (6). The value F is encoded by shifting
the Q,C pair left SK bits and reinitializing A to 1.000. Sum-
marizing Event 3, an F of skew | is a one-bit shift left for Q,C,
so @ is 00 and C is 1.100. Equation (6b) reinitializes A to
1.000.

Event 4 illustrates a carry-over. Event 4 encodes value T
with a skew of 1. Following Eq. (4a), adding 27" (0.100) to C
(1.100) results in '0.000, where ! indicates the carry-out from
the C register. This carry propagates to Q by activating encoder
output signal ADD+ 1, and this carry-over operation converts
Q from 00 to 01. Meanwhile, for Eq. (4b), 27! subtracts from
register A leaving 0.100, so the normalization shift of Eq. (5)
is needed. Q now becomes 010. The value of code string is
0100000, which is the same result of Table 3, as expected.

o Carry-over control

Arithmetic coding ensures that no future value of C can exceed
the current value of C + 4. Consequently, once a carry-over
has propagated into a given code-string position in Q, no other
carry-over will reach the same code-string position. In the
above sample, the second bit of the code string received a
carry-over. The algorithm ensures that this same bit position
(second from the beginning) cannot receive another carry-
over during the succeeding encoding operations. This obser-
vation leads to a method for controlling the carry called bit-
stuffing [3]. At the encoder side, if 16 1s in a row are emitted,
the buffer can insert (stuff ) a 0. This 0 converts to a 1 and
blocks the carry from reaching the string of 16 1s. Therefore
a bit-stuff permits the block with the 16 1s to be transmitted.
At the decoder side, if the decoder encounters 16 1s in a row,
the decoder buffer removes and examines the stuffed bit. If
the stuffed bit value is 1, the carry is propagated inside the
decoder.

o Code-string termination

When the encoding is done, the C register may be shifted into
the Q FIFO store. However, after the last event has been
coded, we remain with interval [C,C + A). If we know the
length of the data string, then we know when we have decoded
the last event. Therefore, any code string whose magnitude
lies in [C,C + A) decodes to the original data string. In the
present case, we can simply truncate the trailing Os. The
truncation process leaves “01” as the code string, with the
convention that the decoder insert as many trailing Os as it
takes to decode four data bits.

In the general case, any code string greater than 0100000
(smallest value in current interval) and strictly less than C +
A = 010000 + 0001000 = 010100 suffices. Our shortest

144 1.010  (new A) selection remains 01.
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e Decoding process

The decoding part of the BAC algorithm is shown in Figure
9. Consider decoding the example code string of Table 4. We
demonstrate the decoding process with the aid of Table S.
Register A is initialized to 1.000 and C is initialized to the
first four bits out of the FIFO buffer Q. Since Q only has 2
bits (01), we insert Os as needed. C is initialized to 0.100. The
description of each event that follows accompanies Fig. 9 and
one line of Table 5.

Event I To decode the first event we need the value of SK,
which is 3. We subtract 273 from C as an intermediate result
called CBUF. CBUF is 0.011, which is greater than 0, so the
resulting bit is T. So 27% is subtracted from A, giving 0.111
and the contents of CBUF are transferred into C. Register A
is less than 1.0, so a normalization shift is needed. C and A
are now 0.110 and 1.110.

Event 2 Now we obtain the second value of SK, which is 1.
Subtracting 27", or 0.100, from C gives a CBUF value of
0.010, which is positive. Therefore the result is T, and 0.010
is the new value of C. Subtracting 0.100 from register A gives
1.010, so no normalization is needed.

Event 3 For the third event, SK is again 1, so we again
subtract 0.100 from C (which is now 0.010). The result CBUF
is negative, so the event is F. We do not load C from CBUF,
but simply shift C one position left, and reinitialize A. C is
now 0.100 and A is 1.000.

Event 4 The fourth SK is 1, and subtracting 0.100 from C
leaves 0.000 for CBUF. The result is not negative, so the event
is T. To continue the algorithm, we subtract 27! from A,
discover that the result 0.100 is less than 1, and do a normal-
ization shift of C and A. A is now 1.000 and decoding is
complete.

Note that column A and the Normalization columns of
Table 4 (encoder) and Table 5 (decoder) are identical. The A
register contents always follow the same sequence of values
for the decode phase as for the encode phase.

e Framework for prefix codes and arithmetic codes

We can apply the code-string-tree representation of the coding
operations to arithmetic codes. However, unlike prefix codes,
in arithmetic coding the encoding of a given symbol may
result in a code space described by continuations of more than
one leaf of the tree. We illustrate the point by showing the
example of Event 1 of Table 4 in the form of a code-string
tree of Figure 10.

The smallest subinterval at the current depth is a single leaf.
With a maximum skew SK of 273, we identify value .001 with
a single leaf at the current depth. With a maximum SK of 3,
the value of A can range from 1.000 to 1.110. At the same
current depth where 272 is one leaf, the subset of code-string
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Figure 9 Flowchart for BAC algorithm decoder.

C=0.000 A=1.000

Subdivision point
for SK=3

A =1.110 (normalized)
(b)

Figure 10 Code-string tree for Event 1, Table 4: (a) Initial tree. (b)
Following encoding of Event 1.

Table 5 Example decoding.

Event SK C (after) A(afiery CBUF MOUT Normalization

Initial — 0.100 1.000 — — —_
1 3 0110 1.110 0.011 T Yes
2 1 0010 1.010 0.010 T No
3 1 0.100 1.000 -1.110 F F-shift of SK
4 1 0.000 1.000 0.000 T Yes
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0,
EIESAITAN NN

.011 unnormalized
.110 after normalization

A=1.010

Subdivision point

(a)

Figure 11 Code-string tree for Event 3, Table 4: (a) Following Event
2. (b) Following Event 3.

tree leaves which describe the code space is from eight leaves
to 14 leaves. Also at this depth, an SK of 2 corresponds to two
leaves and an SK of 1 corresponds to four leaves. The initial
code-string tree has eight leaves (A = 1.000) and a depth of
three. See Fig. 10(a) for the subdivision point for Event 1 of
Table 4. Event 1 is T, so we keep the right subset of seven
leaves. For subsequent encoding, the code string will be a
continuation of 001, 01, or 1, and we clearly are not dealing
with a prefix code.

With only seven leaves at depth three, we increase the depth
by one to four, so that we now have 14 leaves at the new
depth. This process of increasing the depth corresponds to the
normalization shifting done in Table 4. The result is shown
in Fig. 10(b).

Figure 11 shows Event 3 of the example. Figure 11(a) shows
the subdivision point for the skew of 1 for Event 3. An SK of
1 corresponds to a subinterval of four leaves, which are the
leftmost leaves of the current interval. The event value is F,
so in this case we retain the left subinterval with the four
leaves. Figure 11(b) shows the result after encoding Event 3.
Since only four leaves were taken, we increase the tree depth
one level, again analogous to the normalization operation in
the example of Table 4. Now the current code space which
we subdivide for Event 4 consists of the continuations of code
strings: 011 and 100.

We close this section with a suggestion. The path by which
we discovered the particular binary arithmetic code described
here [2] was a simplification of the code in [3] and was not a
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generalization of Golomb’s code [4]. However, an interesting
relationship exists, which the readers are invited to discover
for themselves. We suggest that a Golomb code be selected,
that a short run be encoded, and that the reader construct the
corresponding code-string tree.

3. The general case: Multisymbol data alphabets
As noted from the example of Table 2, arithmetic coding
applies to n-symbol alphabets as well. Here we use notation A
and C in the arbitrarily long register sense of Table 3, and
A(s) and C(s) are the respective values following the encoding
of data string s. We describe some encoding equations for
multisymbol alphabets.

e Encoding
Let the n-symbol alphabet, whatever it may be, have an
ordering. Our interest is in the symbol position of the ordering;
1,2, .-+, k, -, n. Let relative frequencies py, pa, - - -, Pn, and
interval width A(s) be given. The interval is subdivided ac-
cording to relative frequencies, so the respective widths are
D1 X A(S), p2 X A(s), - -+, pn X A(s). Recall the calculation of
cumulative probabilities P:
Po=Y pfork=2and P, = 0.

J<k
For encoding the event whose order is ., following the encod-
ing of prior string s, the new subinterval [((s,k),C(s,k) +
A(s,k)) is described with the following two equations of the
familiar arithmetic coding double recursion:

C(s,k) = C(s) + D(s,k), where D(s,k) = A(s) X Py, )]
A(s,k) = A(s) X pi. (8)
e Decoding

Let | C(s)| denote the result of the termination operation on
C(s), where it is understood that the decoder inserts trailing
0s as needed. The decoding operation, also performed recur-
sively per symbol, may be accomplished by subtracting out of
| C(s)| the previously decoded summands. For example, let s°
be the prefix of data string s which has already been decoded.
We are now left with quantity | C(s)| — C(s°). The decoder
must find symbol / such that

D(s°k) = | C(s)| — C(s°) < D(s%k + 1),
where k < n. We decode symbol 7 if D(s%,n) = | C(s)| — C(s9).

e Precision problem

Equations (7) and (8) describe Elias’ code, which has a preci-
sion problem. If A(s) has 8 bits of precision, and p; has 8 bits
of precision, then A(s,k) requires 16 bits of precision. If we
keep the 16-bit result, 4 needs 24 bits of precision for the next
recursion, and so on. In practice, we wish A(s,k) to have the
same precision as A(s), and use fixed-precision registers A and
C for the arithmetic as we do in the BAC examples of Tables
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4 and S. Pasco [5], who is responsible for the first FIFO
arithmetic code, solved the precision problem by truncating
the product of Eq. (8) to the same precision as A(s). In terms
of the leaves at the current depth of the code-string tree,
truncation in Eq. (8) allows gaps to form in the code space. A
gap is a leaf of the current interval which is not assigned to
any of the symbols. For such unassigned leaves, no data string
maps to a continuation of such leaves, and there is some
wasted code space. Martin [6] and Jones [7], independently
of Pasco and each other, discovered practical versions of Eqs.
(7) and (8) which partition the code space and have no gaps.
They do this by ensuring that

C(s,k + 1) = C(s,k) + A(s,k).

e Decodability

Codes are not uniquely decodable if two data strings map
into the same code space. In arithmetic codes, if the subdivi-
sion of the interval yields an overlap, more than one data
string can map to the overlapped subinterval. Overlap oc-
curs when, in subdividing interval A(s), the sum of the sub-
interval widths exceeds A(s) itself. Thus, some continuations
of data string s may map to the subinterval whose least point
is C(s + 1). We define string s + 1 to be the data string of the
same length as s which is next in the lexical ordering. If s is
already the last string in the ordering, i.e., string “n n ---n,”
then C(n n - .- n)is 1.000. The general decodability criterion
is thus

C(s,n) + A(s,n) < C(s + 1), %)

where s,n denotes symbol n concatenated to string s. For
arithmetic codes which do not explicitly use value A(s,n), it
may be calculated as C(s nnnn, - - -) — C(s,n). In cases where
Eq. (9) is violated, the interval of overlap is

[C(s + 1),C(s,n) + A(s,n)).

Similarly, a gap is formed between the mappings of data string
sand s + 1 if

Cs+ )= Cs) > A(s, 1) + - -« + A(s,n). (10)
A gap does not affect decodability; it simply means that the

code space is not fully utilized.

o P-based arithmetic codes

For P-based arithmetic codes, the code space is represented as
a number 4 which is subdivided by a multiplication in pro-
portion to the relative frequencies of the symbols.

The decodability criterion for P-based codes is given by
A(S) = A(s,1) + A(5,2) + - - - + A(s,n). (11)

If this equation is met with equality for all s, then the algorithm
leaves no gaps.

o [-based arithmetic codes
The L-based arithmetic codes represent the width of the code
space A(s) as a value 271Y*¥] where ¥(s) is an integer and
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X(s) is a rational fraction of an integer denominator M. In
fact, the length of the code string for s, denoted L(s), is
Y(s) + X(s). Here, Y(s) corresponds to E(s) of the example of
Table 3. [When the code string is terminated following the
encoding of the last symbol, the code-string length of C(s) is
within a few bits of L(s).] For L-based arithmetic codes, D(s,i)
is determined as the product

D(s,k) = D(X(5),k) x 27Y®), (12)
so that
C(s,k) = C(s) + D(s,k).

Since there are M distinct values of X(s), i.e., 0, 1/M, 2/
M, ..., (M- 1)/M, and n symbols, we precalculate an M-by-
n table of values D(X,k). [Actually, for symbol k = 1, the
value of D is 0, so only M-by-(n — 1) values need be stored.]
In Eq. (12), multiplication by 27% is simply a shift.

Corresponding to the relative frequency estimates, p;, are
instead length approximations, 4 = —log pi. These lengths
must satisfy the generalized Kraft inequality [8]. Following
encoding of symbol k&, the internal variables are updated:

L(s,k) = Y(s) + X(5) + 4,

where again L(s) is broken into integer part Y(s,k) and fraction
part X(s,k). The decodability criterion of Eq. (11) is also the
decodability criterion for L-based codes if A(s,k) is as defined
in Eq. (13).

For k < n define
A(s,k) = B(s,k + 1) — B(s,k),
and for n,

A(s,n) = B(s,n,n) + B(s,nnn) + - - -. (13)

o Applications

Langdon and Rissanen [3] applied a FIFO P-based binary
arithmetic code to the encoding of black and white images,
using as a context the value of neighboring pels already
encoded. This work introduced the notion of the binary coding
parameter called skew. A binary code is particularly useful for
black and white images because the contexts employed for
successive pels may have different relative frequencies. Tra-
ditional run-length codes such as Golomb’s [4] are only de-
signed for a particular relative frequency for the repeating
symbol. In [3], a method to dynamically adapt to the pel
statistics is described. Particularly simple adaptation tech-
niques exist for determining the skew number.

Arithmetic coding can also be applied to file compression
[5-7, 9, 10]. In [9], the first-order contexts are also determined
adaptively. A linearized binary tree can be used to store the
skew numbers required to encode the decomposed 8-bit byte
as eight encodings, each of a binary event.
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Arithmetic codes have been employed to design codes for a
constrained channel. A constrained channel has an alphabet,
e.g. {0,1}, where not all strings in {0,1}* are allowed. The
Manchester code, where clocking and data information are
recorded together, is an example of a constrained channel
code used in magnetic recording channels. Shannon [11]
studied the constrained channel, defined the constraints in
terms of allowed transitions in a state table, and determined
the probabilities for the allowed transitions which are needed
in order to map the maximum amount of information to a
set of allowed strings. Guazzo [12] showed that mapping data
strings to channel strings is analogous to the decompression
operation, and recovering the data string from the channel
string corresponds to the compression operation. Martin et al.
[1] showed that the dual of decodability for compression
coding is representability for constrained channel coding. To
be representable, the encoding operation can have overlaps
but cannot have a gap. Some interesting L-based codes for
constrained channels are derived in [13].

Guazzo [12], in addition to suggesting the application to
constrained-channel codes, contributed a code which subdi-
vides the code space according to the given probabilities.
However, the subdivision method is quite crude compared to
Pasco’s [5].

4. Comments

Arithmetic codes can achieve compression as close to the ideal
as desired, for given statistics. In addition, the P-based
FIFO arithmetic codes which accept statistics directly facilitate
dynamic adaptation to the statistics in one pass of the data
[3]. A good binary code is important, as Shannon and others
have noted, because other alphabets can be converted to
binary form by decomposition.

Of overriding importance to compression now is the mod-
eling of the data. Rissanen and Langdon [14] have studied a
framework for the encoding of data strings and have assigned
a cost to a model based on the coding parameters required.
Different modeling approaches may be compared. They
showed that blocking to form larger alphabets results in the
same model entropy at the same cost in coding parameters as
a symbolwise approach. In general, the compression system
designer seeks ways to give up a small percentage of the ideal
compression in order to simplify the implementation. The
existence of an efficient coding technique now places the
emphasis on efficient context selection and parameter-reduc-
tion techniques [14].
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Appendix 1: Origins of arithmetic coding

The first step toward arithmetic coding was taken by Shannon
[11], who observed in a 1948 paper that messages N symbols
long could be encoded by first sorting the messages in order
of their probabilities and then sending the cumulative proba-
bility of the preceding messages in the ordering. The code
string was a binary fraction and was decoded by magnitude
comparison. The next step was taken by Peter Elias in an
unpublished result; Abramson [16] described Elias’ improve-
ment in 1963 in a note at the end of a chapter. Elias observed
that Shannon’s scheme worked without sorting the messages,
and that the cumulative probability of a message of N symbols
could be recursively calculated from individual symbol prob-
abilities and the cumulative probability of the message of N
— 1 symbols. Elias’ code was studied by Jelingk [17]. The
codes of Shannon and Elias suffered from a serious problem:
As the message increased in length the arithmetic involved
required increasing precision. By using fixed-width arithmetic
units for these codes, the time to encode each symbol is
increased linearly with the length of the code string.

Meanwhile, another approach to coding was having a sim-
ilar problem with precision. In 1972, Schatkwijk [18] studied
coding from the standpoint of providing an index to the
encoded string within a set of possible strings. As symbols
were added to the string, the index increased in size. This is a
last-in-first-out (LIFO) code, because the last symbol encoded
was the first symbol decoded. Cover [19] made improvements
to this scheme, which is now called enumerative coding. These
codes suffered from the same precision problem.

Both Shannon’s code and the Schalkwijk-Cover code can
be viewed as a mapping of strings to a number, forming two
branches of pre-arithmetic codes, called FIFO (first-in-first-
out) and LIFO. Both branches use a double recursion, and
both have a precision problem. Rissanen {8] alleviated the
precision problem by suitable approximations in designing a
LIFO arithmetic code. Code strings of any length could be
generated with a fixed calculation time per data symbol using
fixed-precision arithmetic.

Pasco [5] discovered a FIFO arithmetic code, discussed
earlier, which controlled the precision problem by essentially
the same idea proposed by Rissanen. In Pasco’s work, the
code string was kept in computer memory until the last symbol
was encoded. This strategy allowed a carry-over to be propa-
gated over a long carry chain. Pasco [5] also conjectured on
the family of arithmetic codes based on their mechanization.
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In Rissanen [8] and Pasco [S5], the original (given, or pre-
sumed) symbol probabilities were used. (In practice, we use
estimates of the relative frequencies. However, the notion of
an imaginary “source” emitting symbols according to given
probabilities is commonly found in the coding hiterature.) In
[20] and [3], Rissanen and Langdon introduced the notion of
coding parameters “based” on the symbol probabilities. The
uncoupling of the coding parameters from the symbol proba-
bilities simplifies the implementation of the code at very little
compression loss, and gives the code designer some tradeoff
possibilities. In [20] it was stated that there were ways to block
the carry-over, and in [3] bit-stuffing was presented. In [10] F.
Rubin also improved Pasco’s code by preventing carry-overs.
The result was called a “stream” code. Jones [7] and Martin
[6] have independently discovered P-based FIFO arithmetic
codes.

Rissanen and Langdon [20] successfully generalized and
characterized the family of arithmetic codes through the no-
tion of the decodability criterion which applies to all such
codes, be they LIFO or FIFO, L-based or P-based. The arith-
metic coding family is seen to be a practical generalization of
many pre-arithmetic coding algorithms, including Elias’ code,
Schalkwijk [18], and Cover [19]. Gilbert and Moore [21]
devised the prefix coding approach used in Table 1. In [22],
Rissanen presents an interesting view of an arithmetic code as
a number-representation system, and shows that Elias’ code
and enumerative codes are duals.
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