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Error-Correcting  Codes  for  Semiconductor  Memory 
Applications: A State-of-the-Art Review 

This paper presents a state-of-the-art review of error-correcting codes for computer semiconductor memory applications. The 
construction of four classes of error-correcting codes appropriate for semiconductor memory designs is described, and for each class 
of codes the number of check bits required for  commonly used data lengths is provided. The implementation aspects of error 
correction and error detection are also discussed, and certain algorithms useful in  extending the error-correcting capability for  the 
correction of soft errors such as a-particle-induced errors are examined  in  some detail. 

Introduction 
In recent  years error-correcting codes (ECCs) have been used 
increasingly to  enhance  the system reliability and  the  data 
integrity of computer  semiconductor  memory subsystems. As 
the  trend  in  semiconductor  memory design continues toward 
higher chip density and larger storage capacity, ECCs are 
becoming  a more cost-effective means of maintaining a high 
level of system reliability [ 1-41, 

A memory system can be made fault tolerant with the 
application  of an error-correcting  code; i.e., the  mean  time 
between “failures”  of  a  properly designed memory system can 
be significantly increased with ECC. In  this  context, a system 
“fails” only  when the  errors exceed the error-correcting  capa- 
bility of the code. Also, in order  to optimize data integrity, 
the ECC should  have the capability of detecting the most 
likely of the  errors  that  are uncorrectable. 

Error-correcting  codes used in early computer  memory 
systems were of the class of single-error-correcting and double- 
error-detecting (SEC-DED)  codes  invented by R. W. Ham- 
ming [5]. A SEC-DED code is capable of correcting one  error 
and detecting two  errors  in a  codeword. The double-error- 
detecting  capability serves to  guard against data loss. In 1970, 
a new class of  SEC-DED  codes called odd-weight-column 
codes was published by Hsiao  [6].  With the  same coding 
efficiency, the odd-weight-column  codes  provide  improve- 
ments over the  Hamming codes  in speed, cost and reliability 
of the decoding logic.  As a result, odd-weight-column  codes 

have  been widely implemented by IBM and  the  computer 
industry worldwide [7- 101. Examples  of  systems which incor- 
porate  these  codes are  the IBM 158, 168,  303X, 308X,  and 
4300 series, Cray I, Tandem, etc. There  are also various 
standard  part  numbers of these  codes offered by many semi- 
conductor  manufacturers [ 1 11 (for example, the AM2960 and 
AMZ8 160 of  Advanced  Micro Devices, the MC68540 of 
Motorola, the MB 14 12A of Fujitsu, and  the  SN54/74 LS630, 
LS63 1 of  Texas  Instruments). 

The  number of errors generated  in the failure of  a memory 
chip is largely dependent  on  the  chip failure type. For example, 
a cell failure may cause one error, while a  line failure or a 
total chip failure in general causes more  than  one error. For 
ECC applications, the  memory  array  chips  are usually orga- 
nized so that  the  errors generated in a chip failure can be 
corrected by the ECC. In  the case of  SEC-DED codes, the 
one-bit-per-chip  organization is the most effective design. In 
this organization,  each  bit  of  a  codeword is stored  in  a different 
chip; thus,  any type  of failure in  a chip  can  corrupt,  at most, 
one bit of the codeword. As long as  the  errors  do  not  line  up 
in the  same codeword,  multiple errors  in  the  memory  are 
correctable. 

Memory  array  modules  are generally packaged on printed- 
circuit cards with current  semiconductor  memory technology, 
and usually a group of bits  from the  same card form a portion 
of an ECC codeword,  as  illustrated  in Figure 1. With this 
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multiple-bit-per-card type of organization, a failure at  the 
card-support-circuit level would result in a  byte error, where 
the size of the byte  is the  number of  bits feeding from  the card 
to a  codeword. In  this type of configuration,  it is important 
for data integrity that  the ECC be able to detect  byte errors 
[ 121. A SEC-DED code is in general not capable  of  detecting 
all single-byte errors.  However,  a class of SEC-DED codes 
capable  of  detecting all single-byte errors  can be constructed 
[ 13, 141. These are called single-error-correcting double-error- 
detecting single-byte-error-detecting (SEC-DED-SBD) codes. 

There  are certain design applications where the  memory 
array  cannot be organized  in  one-bit-per-chip fashion because 
of cost or other reasons  such as system granularity or power 
restrictions. As chip density increases, it  becomes more diffi- 
cult  to design a one-bit-per-chip memory system. For a  mul- 
tiple-bit-per-chip  type  of memory organization,  a single-byte- 
error-correcting double-byte-error-detecting (SBC-DBD) code 
[ 15-20] would be  more effective in error correction and  error 
detection. 

System reliability generally tends  to decrease as  the capacity 
of  a memory system increases. To maintain  the  same high 
level of reliability, a double-error-correcting triple-error-detect- 
ing (DEC-TED) code may be used. However, this  type  of  code 
requires  a larger number of check bits than a  SEC-DED  code 
and  more complex  hardware to  implement  the  functions of 
error correction and  error detection [S, 15, 161. 

An error-correcting  code  can be used to correct  “soft” errors 
as well as hard  errors. Soft errors  are  temporary  errors such as 
a-particle-induced errors  that disappear during  the next mem- 
ory write operation. With a maintenance strategy that allows 
the  accumulation of  hard  errors,  a high soft error rate  would 
cause  a high uncorrectable error (UE) rate. To reduce the  UE 
rate that involves soft errors,  a  SEC-DED  code can be modified 
to correct  two  hard errors or a combination of one hard and 
one soft error [21-251. 

In this  paper we review the  current  status of error-correcting 
codes  for semiconductor memory  applications and present 
the state of the  art by describing the  construction of four 
classes of  error-correcting codes suitable  for  this  type of design 
application.  These four classes are SEC-DED codes, SEC- 
DED-SBD codes, SBC-DBD codes, and  DEC-TED codes. For 
each class of  code we provide the  number of check bits 
required  for commonly used data lengths, information that is 
particularly useful to designers for system planning. We also 
discuss the  implementation aspects of error correction and 
error detection for these classes of error  control codes. In 
addition, we describe a number of algorithms useful in ex- 
tending the error-correcting capability of  codes for the correc- 
tion of soft errors such  as  a-particle-induced errors  and  other 
temporary errors. 
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Figure 1 A 4-bit-per-card memory array. 

Binary  linear block codes 
A  binary (n,k) linear block code is a  k-dimensional  subspace 
of  a  binary  n-dimensional vector space [S, 15, 161. An n-bit 
codeword  of the code contains k data bits and r = n - k  check 
bits. An r X n parity check matrix H is used to describe the 
code. Let V = (a, ,  u 2 ,  . . . , u , , )  be an n-bit vector. Then V is  a 
codeword if and  only if 

H.V’  = 0, (1) 

where V‘ denotes  the transpose  of V, and all additions  are 
performed modulo 2. 

The encoding process of a  code consists of  generating  r 
check bits for a set of k data bits. To facilitate encoding, the 
H matrix is expressed as 

where P is an r X k  binary  matrix and I, is the r X r  identity 
matrix. Then  the first k  bits of a  codeword can be designated 
as the  data bits, and  the last r  bits can be designated as the 
check bits. Furthermore,  the  ith check bit can be explicitly 
calculated from  the  ith  equation of the set of  r equations in 
( 1). A code specified by an H matrix of (2) is called a  systematic 
code. 

Any  binary  r X n  matrix H of rank r can always be 
transformed into  the systematic form of (2). Since the  rank of 
H is r, there exists a set of r linearly independent  columns. 
The  columns of the matrix can be reordered so that  the 
rightmost  r columns  are linearly independent. Applying ele- 
mentary row operations [ 161 on  the resultant  matrix,  a  matrix 
of (2) is obtained. The systematic  code obtained is  equivalent 
to  the code  defined by the original H matrix. Figure 2(a) is an 
example  of the parity check matrix of a (26,20) code in a 
nonsystematic form. Note that  the last six columns of the 
matrix are linearly independent.  The  submatrix of the six 
columns  can be inverted. The multiplication of the inverse  of 
the  submatrix  and  the transpose of the parity  check  matrix 
results in  a  matrix of systematic form shown  in Figure 2(b). 125 
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Figure 2 (26,20) code: (a) nonsystematic form; (b) systematic form. 

Table 1 Average  number of uncorrectable  errors (UEs) with three 
memory  systems  employing  different  error control schemes:  parity 
check, SEC-DED code,  and DEC-TED code. 

Time Parity SEC-DED  DEC-TED 
(x 10' hrs.) check 

0-10 49 3.2 0.56 
0-20 81 5.2 0.96 
0-30 1 1 1  6.9 1.3 
0-50 168 9.3 2.0 

0-80 253 13 2.9 

Parity check: (9,s) code. 
SEC-DED (72,641 code. 
DEC-TED (80.64) code. 

A word  read from  the  memory may not be the  same as the 
original codeword  written in  the  same location.  Let U = ( u I ,  
u2, . . . , u,) be the word read from  the  memory.  The difference 
between U and  the original  codeword V is defined as  the error 
vector E = (e,,  e2, . . . , en); Le., U = V + E. The  ith position 
of U is in  error if and only if e , I S  ' nonzero. 

The decoding process consists of determining whether U 
contains  errors  and  determining  the  error vector. To deter- 
mine whether U is in  error,  an r-bit syndrome S is calculated 
as follows: 

S = H.U'  = H.(V' + E') 

= H.E'. 

pairs  of  codewords. For a  linear  code, the  minimum distance 
of the code is equal  to  the  minimum of the weights of all 
nonzero codewords [8, 15, 161. A code is capable of correcting 
t errors  and detecting t + 1 errors if and only  if d > 2t + I .  

In semiconductor  memory applications, the encoding and 
the decoding of a  code are  implemented in  a parallel manner. 
In encoding, the check bits are generated  simultaneously by 
processing the  data bits  in parallel. In decoding, the  syndrome 
is generated using the  same hardware  for the generation of the 
check bits. The  error vector is then generated by decoding the 
syndrome bits  in parallel. Finally, the  errors  are corrected by 
subtracting the  error vector  from the fetched word. The sub- 
traction is accomplished by the bit-by-bit exclusive-or (XOR) 
of the  components of the two vectors. 

The reliability function of a memory system that employs 
an error-correcting  code can be handled  either  analytically or 
through  Monte  Carlo  methods [ 1-4,26-281. For a system 
with a  simple  architecture, an analytical approach may be 
possible. However, for  a memory system consisting of  hierar- 
chical arrays, the  memory reliability function is too intractable 
to  handle analytically. Monte Carlo methods  are considered  a 
general approach to  study  the effectiveness of  error-correcting 
codes and  other fault-tolerant  schemes [27,28]. 

To demonstrate  the reliability improvement obtainable 
with ECC, we consider three  memory systems of four mega- 
bytes. The first system consists  of eight memory  cards  and is 
designed with a panty check on each set of eight data bits. 
The second system consists of 18 memory  cards  and is de- 
signed with a (72,64) SEC-DED code. The last system consists 
of 20  memory  cards  and is designed with an (80,64)  DEC- 
TED code. The  memory chips  for the systems are I6K-bit 
chips with 128 bit lines and 128 word  lines  in  each  chip. Each 
memory card contains  an array  of 32 X 9 chips  for the first 
system, and  an  array of 32 X 4  chips  for the  other two systems. 
The failure rates  of the chips and  the card-support  circuits are 
assumed to be the  same  as those described in  [27]. When a 
UE  occurs, the strategy is to replace the card that  contains  the 
UE and  that has the largest number of defective cells. 

The modeling  tool  of  [27] is used to  simulate  the reliability 
(3) of the  three  memory systems. The results of the simulation 

The error-correcting  capability of a  code is closely related SEC-DED codes 
to  the minimum distance of the code. The weight of a  code- The  minimum distance  of  a single-error-correcting and  dou- 
word  is the  number of nonzero  components  in  the codeword. ble-error-detecting (SEC-DED)  code is greater than or equal 
The distance between two  codewords is the  number of com- to four.  Since an n-tuple of weight three or less is not a 
ponents in which the two  codewords differ. The  minimum codeword,  from  Eq. ( I )  the  sum of a set of three or fewer 

126 distance d of the code is the  minimum of the distances of all columns of the H matrix  must be nonzero. In other words, 
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Figure 3 Panty check matrix of some SEC-DED codes: (a) (22,16) code (IBM System/3); (b) (40,32) code (IBM 8130); (c) (72,64) code (IBM 
3033); (d)  (72,64)  code (IBM 3081). 

A 1. The  column vectors  of the H matrix are  nonzero  and  are 
distinct. 

A2. The  sum of two columns of the H matrix is nonzero  and 
is not equal to a third  column of the H matrix. 

8 5 
16 6 
32 7 
64 8 

128 9 
256 10 

than  the  maximum for a given number of check bits. There 
are various ways of shortening a  maximum-length  SEC-DED 
code. Usually a  code designer constructs  a  shortened  code to 
meet  certain objectives for  a  particular  application.  These 
objectives may include  the  minimization of the  number of 
circuits, the  amount of logic delay, the  number of  part num- 
bers, or  the probability of miscorrecting  triple errors [6]. 

In a write operation, check bits are generated  simultane- 
ously by processing the  data bits  in  a parallel manner accord- 
ing to Eqs. (1) and (2). In a  read operation,  syndrome bits are 
generated  simultaneously  from the word read according to 
Eq. ( 3 ) .  Typically the  same XOR tree is used to generate both 
the check bits and  the  syndrome bits (see Figure 4). 127 
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Note  that  the  sum of  two odd-weight r-tuples is an even- 
weight r-tuple. A SEC-DED  code with r check bits can be 
constructed with its H matrix  consisting of distinct nonzero 
r-tuples of odd weights. This is an odd-weight-column  code of 
Hsiao [6] .  

The  maximum code  length of an odd-weight-column  code 
with r check bits is 2"', for there  are 2"' possible distinct 
odd-weight r-tuples. This  maximum code length is the  same 
as that of a SEC-DED  Hamming code. The  maximum  number 
of data bits k of a SEC-DED code must satisfy k 5 2"' - r. 
Table 2 lists the  number of check bits  required  for  a set of 
data bits. Figure 3 shows  examples of SEC-DED  codes used 
in some IBM systems. 

Most of the  SEC-DED codes  for semiconductor  memory 
applications  are shorfened codes in that  the code  length is less 



r 
I chcck bit\ signal, and n two-way XOR gates for  inverting the code  bit  in 

data bits (read) error. Additionally, an n-bit data register and  control logic for 
timing  are required. 

XOR 
tree A UE signal can also be generated based on  the logical OR 

of the  minterms of all UE syndromes.  A subset of all UE 

numbers of  errors. This subset  of syndromes  can be recognized 
by an r-way XOR gate. 

I syndromes is the set of even-weight syndromes caused by even 
Bit-wise 

XOR 

Figure 4 Generation of check bits and syndrome bits. 
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Error  corrector 
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( n  two-way XOK 

u 
Corrected  word 

Figure 5 Error detection and correction block diagram. 

An algorithm  for  correcting single errors  and detecting 
multiple errors is described  as follows: 

1. Test  whether S is 0. If S is 0, the word is assumed to be 

2. If S # 0, try to find a perfect match between S and a 
column of the H matrix. The match can be implemented 
in n r-way AND gates. 

3. If S is the  same as the  ith  column of H, the  ith bit  of the 
word is in error. 

4. If S is not  equal  to  any  column  of H, the  errors  are detected 

error-free. 

as  uncorrectable (UE). 

This algorithm  applied to a SEC-DED code  corrects all single 
errors  and detects all double errors.  Multiple-bit errors  may 
be detected or falsely corrected. The extent of multiple errors 
detected depends  on  the  structure of the code. 

As shown in Figure 5, hardware implementation of the 
error correction and detection  mainly  consists of an r-way OR 
gate for testing nonzero  syndrome, n r-way AND gates for 

128 decoding  syndromes, an n-way NOR gate for  generating UE 

The failure of a common logic support  in  the  memory may 
result in  an all-ones or an all-zeros pattern in  a  codeword. In 
this case, the  error vector  in general contains a multiple 
number of errors  that  are  not detectable by a SEC-DED code. 
To prevent this  kind of data loss, the code  can be constructed 
or modified so that  an all-ones or an all-zeros n-tuple is not a 
codeword. For example, if the check  bits are inverted before 
the codeword is written into  the  memory,  then all the code- 
words  stored in  the  memory  are nonzero. In general, the 
detection  of  all-ones and all-zeros errors  can be achieved by 
inverting  a  subset  of the check  bits [9]. 

SEC-DED-SBD codes 
In  some applications it is  required that  the  memory array 
chips be packaged in  a b-bits-per-chip organization. A chip 
failure or a  word-line  failure in  this case would result in  a 
byte-oriented error  that  contains  from 1 to b erroneous bits. 
Byte errors  can also be caused by the failures of the  supporting 
modules  at  the  memory card level. The class of  SEC-DED 
codes that  are capable of detecting all single-byte errors (SEC- 
DED-SBD codes) may be used to  maintain  data integrity  in 
these applications. 

The H matrix of a  SEC-DED-SBD  code can be divided into 
N blocks of r X b submatrices, BI, Bz, . . .  , B,, where Bi 
represents the parity  checks for byte position i. From (3), the 
syndrome of a  byte error  at position  i is a sum of the  columns 
of B, that correspond to  the bit error positions  within the byte. 
The syndromes  of all possible byte errors  at position i are  the 
sum of all possible combinations of the  columns of B,. Let 
(B,) denote  the  sums of all possible nonzero linear combina- 
tions of the  columns of B,. Each member of (B,) should be 
nonzero  and should not be equal to a column of B,, for j # i. 
Otherwise, the byte error  at position  i will be mistaken as  no 
error or as a  correctable single error  at  positionj.  Thus,  the H 
matrix  of  a  SEC-DED-SBD  code must satisfy the  conditions 
A 1 and A2 given previously, as well as  the following condition: 

A3. Each vector of (B,) is nonzero  and is not equal to a 
column vector of B,, for j # i. 

For b I 4, most of the  SEC-DED codes  for practical 
applications can be reconjgured  to detect single-byte errors. 
The reconfiguration involves the regrouping or rewiring of the 
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Figure 6 Examples of SEC-DED-SBD  codes: (a) (40,32) code, b = 4; (b) (72,64) code, b = 4; (c) (72,64) code, b = 3 and b = 4. 

bit  positions of the original code. Since the  same encoding 
and decoding  hardware can be used, no  additional hardware 
is required if a SEC-DED code can be reconfigured for single- 
byte error detection. Figure 6 illustrates some examples of 
SEC-DED-SBD codes. The codes in Figs. 6(a) and (b)  are 
obtained  from those  in Figs. 3(b) and (d) by reconfiguration, 
and  the  code in Fig. 6(c) is the  same  as  that  in Fig. 3(c). The 
(72,64)  codes  of Fig. 6 are those used in IBM systems 3081 
and 3033. 

Table 3 Code length  in bytes for some  SEC-DED-SBD  codes. 

3 4 5 6  7 8 9  

~ 

2 2   3 3 3 3 3  
5 6 7 8 9 1 0 1 1  

10 12  15  16 18 20 22 
21 26 31  36  41 46 51 
42 52 63  12 82 92 102 
85 106 127  148  169 190 211 

b +  1 
b + 2  
b + 3  
b + 4  
b + 5  
b + 6  

Techniques for the  construction of SEC-DED-SBD codes 
have been presented  in [ 13, 141. Let N( r,b) be the code  length 
in b-bit bytes. For b = 3 ,  it  is  shown in [ 141 that  optimal codes 
with N(r,3)  = L2"'/3 J , where 1 x J denotes  the integer  part 
ofx,  can  be constructed. For  other values of b, the  construction 
of the longest code  for  a given r is an  open  question. A list of 
the code  lengths  of some known  SEC-DED-SBD  codes is 
given in Table 3. 

Table 4 All binary 3-tuples expressed  as  elements of GF(8). 

o = o  0 0 
xo= 1 0 0 
x ' = O  I O  
x2=o 0 1 
x 3 = 1  1 0  
x4=0 1 I 
x5=1 1 I 
x 6 = 1 0  I 

SBC-DBD codes 
For a memory system packaged in  a b-bits-per-chip organi- 
zation, the reliability provided by a SEC-DED  code may  not 
be acceptable. To increase the reliability, a byte-oriented error- 
correcting  code may  be used [ 15-20, 291. In this section, we 
discuss the  construction  and  implementation of single-byte- 
error-correcting and double-byte-error-detecting (SBC-DBD) 
codes. 

tuples can be assigned as the  elements of GF(8),  as  shown in 
Table 4. In  the finite-field representation of b-tuples, the  sum 
of two elements is the bit-by-bit XOR of the two associated 
6-tuples. The  product of two elements X '  and X' is X k  with 
k = i + j m o d ( 2 " ) -   1 . F o r e x a m p l e , X 3 + X 6 = ( 1  I 0 ) +  
( I  0 1) = (0 1 1) = X4, and X 3 . X 6  = X' from  Table 4. 

A codeword  of  a SBC-DBD code consists of N b-bit bytes. 
A binary  6-tuple is considered an  element of the finite field 
GF(2") of 2" elements [8, 15, 161. For example, all binary 3- 

With the finite-field representation, an SBC-DBD  code is a 
linear  code  over GF(2") with a minimum distance d 2 4. The 129 
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Table 5 Number of check bits required for SBC-DBD  codes. 

Bits per byte Data bits per ECC word 

16 32 64 I28 

2 8 10 10 12 
3 9 12 12 12 
4 12 12 14 16 

b > 5  36 3b 36 3b 

code can also  be  defined by the parity check matrix H of (1) 
and (2), with the components of the matrices and vectors 
considered elements of  GF(2').  Let h,, 1 I i I N,  be the 
column vectors of the H matrix. The SBC-DBD  code must 
satisfy the following conditions: 

B1. h, # X.h, for i # j ,  X E GF(2'). 
B2. hi + XI. h, # X2. hh for distinct i , jJ and Xl,Xz E GF(2'). 

Let r be the number of check  bytes  of an SBC-DBD code 
over GF(2'). For r = 3, a code of length N = 2 + 2' bytes can 
be constructed by extending a Reed-Solomon code of length 
(2') - 1 [ 15-19]. The parity  check matrix of the code can be 
expressed  as 

I . . .  I 

where I is the b x b identity matrix, 0 is a b X b all-zero 
matrix, T is the b X b companion matrix of X ,  and X is a 
primitive  element of  GF(2') [ 15, 161. If X is a root of the 
primitive  polynomial ex) = + a,X + a2X2 + . . ., + 
U ~ - ~ X ' - ~ ,  the companion matrix of X is 

For example, the companion matrix of X in Table 4 is 130 
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T =  E 8 4, 
and  the H matrix for a (10,7) SBC-DBD code with b = 3 is 
shown in Figure 7. 

Using the H matrix of  Eq. (4), the last three column 
positions of H can be designated as the positions of check 
bytes and  the other column positions of H can be designated 
as data byte positions. The check bytes can be generated with 
an XOR tree just as in the case  of SEC-DED codes. The 
syndrome can also  be generated with the same XOR tree. For 
decoding, the syndrome S is divided into three parts, SI, Sz, 
S3. Each Si consists of b bits and represents the parity check 
equations for the ith row  of (4). From (3), if E is a single-byte 
error pattern at data byte position i, then E is a unique solution 
to  the following three equations: 

SI = E', 

S2 = T'.E', 

S3 = T2'.E'. 

On the other hand, if E is a byte error pattern at check  byte 
position i, where i = 1, 2, or 3, then E = S: and  the other two 
subsyndromes are zeros. The following steps can be taken to 
find the correctable single-byte error patterns and  to detect 
multiple uncorrectable byte errors. 

I .  If S is a zero vector, assume that there is no error. If S is 
nonzero, go to step 2. 

2.  If one of the subsyndromes S, # 0, and  the  other two 
subsyndromes are zero, i = 1,2, 3, the check  byte position 
i with error pattern S is assumed. Otherwise, go to step 3. 

3. Assume that E = S:. Find i that satisfies 0 5 i < N - 4, T'. 
E' = S2, and T2'. E' = S3. If i has a solution, the byte error 
with pattern E at data byte position i is assumed. If i has 
no solution, then an uncorrectable error is detected. 

A block diagram for the generation of the error pointers for 
the code of  Fig. 7 is shown in Figure 8. 

The extended Reed-Solomon codes defined  in  Eq. (4) are 
optimal in that  no other SBC-DBD codes with three check 
bytes contain more data bytes.  However, there exists only one 
code for a given  byte  size b. When b is small, the code may 
be too short for memory applications. For example, the code 
for b = 2 can only accommodate six data bits. This code 
certainly is not practical for most applications. In order to 
increase the code  length  for a given b, additional check  bits 
are required. 

Techniques for the construction of SBC-DBD codes for r > 
3 can be found in [ 15, 16, 30, 311. Table 5 lists the minimum 
number of check bits required  for some known  SBC-DBD 
codes. 
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DEC-TED codes SI 

A memory system  with a large capacity or with  high chip sz 
failure rates may use a double-error-correcting and triple- S, 
error-detecting (DEC-TED) code to meet its reliability require- 
ments. A DEC-TED code is also attractive for a memory with 
a high  soft error rate. Although there are schemes [21-251, to 
be  discussed in a subsequent section, for a SEC-DED code to 
correct hard-hard and hard-soft  types of double errors, these 
schemes cannot correct double soft errors and they require s, 
the interruption of a normal memory read operation. With a 
DEC-TED code, any combination of hard and soft double 
errors, including double soft errors, can be corrected auto- 
matically without system interruption. Figure 8 Generation of error  vectors for a (10,7) SBC-DBD code 

El E? €7 €8 E9 El 0 

with b = 3. 

A minimum distance of a DEC-TED code is at least equal 
to six. The  panty check matrix H of a DEC-TED code must 
have the property that any linear combination of  five or fewer 
columns of H is not an all-zeros  vector. 

A class  of DEC-TED binary linear block codes can be 
constructed according to the theory of BCH codes 
[8, 15,  16,  32, 331.  Let X be a root of a primitive binary 
polynomial P(X) of  degree  m. The powers of X can be 
considered elements of GF( N), N = 2", and can be expressed 
as binary m-tuples. A binary code defined by (1 )  with the 
following  parity  check matrix is a DEC-TED code: 

1 1  . . 1 . 1 . . . 1 1 1 . . 1 1 1 . . . . . . . . . .  I "  
. I 1  . . I . I . . . 1 1 1 . . 1 1 1 . . . . . . . . . .  I .  
. . 1 1 . . ] . 1 . . . ] 1 ] . . 1 ] 1 . . . . . . . . . .  1 

(b )  

The powers of X in H are expressed in m-tuples. Since there 
are 2m + 1 linearly independent row vectors in H, the number 
of check bits of the code is  2m + 1. The code length is equal 
to N - 1. The code can be extended to length N by adding a Figure 9 Parity  check  matrix of a (31,20) code: (a) nonsystematic 
column of 1 followed by  2m zeros. Figure 9(a) shows the form H; (b) 'ysternatic form H1. 
parity check matrix of a (31,20) code constructed from Eq. 
(5).  

A full-length BCH code can be shortened by deleting a 
number of columns from its H matrix. The shortened code 
has a minimum distance at least as large  as the original  code. 
The number of check bits of the shortened code may be  less 
than the original code when proper bit positions are deleted 
[34-351.  In particular, let Y be a row  vector  in the space 
generated by the row vectors of H. Deleting the column 
positions of H where the corresponding positions of Y are 
ones, then the shortened H matrix has one fewer  linearly 
independent row vector and the shortened code has one fewer 
check  bit than the original  code. Table 6 presents a list  of the 
number of check bits required for some DEC-TED BCH 
codes. 

Table 6 Number of check  bits  required for DEC-TED BCH codes. 

Data bits Check bits 

8 9 
16 I I  
32 13 
64 15 
2" 2 m + 3  

Fig. 9 for example). Let HI be the parity check matrix in 
systematic form, and T be an r X r transformation matrix that 
satisfies 

The H matrix defined by ( 5 )  can be transformed into the 
H = T . H l .  

systematic form of (2) for the generation of check  bits  (see The generation of check bits from matrix HI can be imple- 131 
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Table 7 Example of locating erasures. 

Direction of 
stuck faults 

1 0 " " - 1  

TI (WRITE) 1 1  0 0  1 1  0 0  
TI (READ) 1 0 0 0 1 1 0 1  
Tz (WRITE) 0 0  1 1  0 0  1 1  
T2 (READ) 1 0 1 1 0 0 1 1  
Ti (READ) + 0 0 1  I 1  1 1 0  

Tz (READ) 
ERASURE  ERROR 1 1 0 0 0 0 0 1  

mented with an  XOR tree. For decoding, it is convenient  to 
define the  syndrome S from (3) with the H matrix instead  of 
the H1 matrix. The  syndrome  can be generated  using an  XOR 
tree associated with the H matrix.  Thus, two  separate XOR 
trees are used to generate  check  bits and  syndrome bits. The 
syndrome  can also be generated by first generating SI from 
Eq. (3) with the H1 matrix,  then multiplying  matrix T by S1. 
Using this  approach,  the  same  XOR tree can be used to 
generate  check  bits and SI. The validity of this  procedure 
follows directly from Eq. (6). 

The  syndrome S can be divided into  three parts, &, SI, and 
S2, where & consists  of one bit, and SI and S2 consist of m 
bits. Let the  bit positions  of the  code be assigned as the powers 
ofX. Assume that El and E2 are  the positions  of  two erroneous 
bits. Then & = 0 and SI = El + E2, S2 = E: + E:. Since 
S: f S2 = E:E2 + EIE: = EIE2SI, the  error positions El and 
E2 are  roots of the  quadratic  equation 

SI$ + s:y + (s: + S2) = 0. (7) 

On  the  other  hand, if there is only  one error, then So = 1 and 
the  error position is the  root of the linear equation y + SI = 

0. 

The  major  part of the  error correction is to find the  error 
positions from  the  syndrome,  Once  the  error positions are 
known, the  errors  are corrected by inverting the  data bits at 
the  error positions. The  error positions are  determined by 
solving Eq. (7). If SO = 0, and Eq. (7) has  two solutions, then 
the solutions are  the positions of two errors. If So = 1, and 
Eq. (7) degenerates to a linear  equation,  then  the solution is 
the position  of a single error.  Uncorrectable errors  are detected 
if Eq. (7) has  no solution  when & = 0, or Eq. (7) does  not 
degenerate into a  linear equation when So = 1. 

There  are various  schemes  for solving Eq. (7) [36-381. The 
equation  can  be solved algebraically using  hardware that  im- 
plements finite-field operations  as  in [36]. It can also be solved 
by substituting all possible solutions into  the  equation, as in 
[38]. Another  approach is to  store  the  error positions of 
correctable errors  in a  table. The  syndrome is used as the 
address to  the table of error positions [37]. 

Extended error  correction 
Errors  in semiconductor  memory  can be broadly  divided into 
hard errors  and soft errors [24,25]. Hard  errors  are caused by 
stuck  faults or by permanent physical damage to  the  memory 
devices. Soft errors  are  temporary  errors or a-particle-induced 
errors  that will be erased during  the next data storage opera- 
tion. For this discussion, the  errors  that will stay in  their 
locations during  the next few write cycles are considered  hard 
errors. 

Error-correcting  codes can be used to correct  hard as well 
as  soft  errors.  However, the  maintenance strategy for  a system 
may allow the  hard  errors  to  accumulate.  The presence of 
errors  in  the  memory increases the probability of uncorrecta- 
ble errors  (UE)  due  to  the  lineup of  multiple errors in  a 
codeword. The  UE  rate  can be reduced by repair service 
scheduled periodically. It can also be reduced by extending 
the  conventional  error correction to  some of the otherwise 
uncorrectable  errors. The latter approach is especially attrac- 
tive when the soft error rates are high, because it  does not 
require the replacement  of memory  components.  The ex- 
tended error-correction  schemes are discussed in this section. 

The  errors for which locations but  not values are known 
are called erasures [ 15, 161. Erasures are easier to correct than 
random errors. Let t and e be the  number of random  errors 
and erasures, respectively, that a  code  is  capable of correcting; 
then  the  minimum distance d of the code  must satisfy [ 15, 
161, 

2t + e <  d. (8) 

For example,  a  SEC-DED  code is capable of correcting one 
random  error  and  one erasure. 

In  memory applications, the hard errors can be considered 
erasures if their locations can  be identified. To locate the 
erasures of a  particular  word  in the  memory, we may apply 
some test patterns  to  the memory.  Assume that  any binary 
pattern  can  be written into  the memory. An example is shown 
in Table 7 for finding the locations  of  erasures with two test 
patterns, TI and T2, of length 8, where T2 is the  complement 
of TI. Before the test patterns  are written into  and read out of 
the  memory,  the word originally stored in  the  memory is read 
out  and stored  in  a temporary storage. The erasure vector is 
obtained by the  complement of TI(READ) + T,(READ). The 
locations  of the erasures are indicated by the  ones in the 
erasure  vector.  Since TI can be arbitrarily  chosen, we may 
also use the word that originally stored  in the  memory as TI. 
This  approach for locating the erasures, known as the double 
complement  algorithm, saves one write and  one read  opera- 
tion. An example  of the algorithm is shown  in Table 8. 

Some system designs permit  only  the codewords to be 
written into  the  memory [2 I ,  22,251. If the  complement of  a 
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codeword is not a  codeword, then  the approaches just de- 
scribed for the identification of erasures are  not applicable. In 
this case, one solution  is to design codes with some special 
properties  [2 I ,  221. Another solution is to employ three test 
patterns in  locating the erasures  [25]. The test patterns  are 
chosen  in  such a way that they contain  at least one I and  one 
0 in every bit  position. It can be shown that  three test patterns 
are sufficient to satisfy this condition for any linear  code. 

Once  the locations  of the erasures are identified, algorithms 
can be designed to correct the hard and soft errors, provided 
that  the  number of errors satisfies Eq. (8). Assume that  the 
double  complement algorithm is applicable  for  locating the 
erasures. The following procedure can be used to correct up 
to two  hard errors or a combination of one hard and  one soft 
error for a SEC-DED code: 

1. Read  word TI  from  a memory location. 
2. If a single error in TI  is detected by the ECC logic, the 

error in the word is corrected, and  the corrected  codeword 
is sent out  to its destination. 

3.  If uncorrectable errors in TI are detected by the ECC logic, 
the  complement of TI  is  written into  the  same  memory 
location. Then  the word from the  same  memory location 
is read and  complemented. Let the resultant  word be T3 
(see Table 8). 

4. If a single error in T3 is detected by the ECC logic, the 
error is corrected. The corrected  word is sent out  to its 
destination and is also written into  the  same  memory 
location. 

5. If no  error is detected by the ECC logic, T3 is assumed 
error free. T, is sent  out  to its  destination and is also written 
into  the  same  memory location. 

6. If uncorrectable errors are  detected by the ECC logic, the 
original word is declared  uncorrectable. 

Note  that  double soft errors  are  not correctable by this  pro- 
cedure. All single errors  are corrected at  the  normal speed. 
The correction of hard-hard and hard-soft types of double 
errors  takes  more  time because additional write and read 
operations  are involved. The procedure  can be modified or 
refined to correct additional multiple  hard errors [21, 241 at 
the expense of speed and cost. The procedure  can also be 
extended to correct  multiple errors beyond the  random error- 
correcting  capability of SBC-DBD codes and  DEC-TED codes. 

The procedure just described derives the  information on 
erasures at  the  time when the double  error occurs. A different 
method is to store the  information on the erasure errors in  a 
table [22]. This  approach increases the speed of correcting 
double errors.  However, the table has to be constantly  updated 
to reflect the  true  status of the erasures  in the memory. 

There  are  other schemes  for the correction of multiple 
erasures [39-411. These  schemes  involve the design of codes 

Table 8 Example  of  double  complement  algorithm. 

Original word = TI (WRITE) 
Hard  and soft errors 
TI (READ) 
Tz (WRITE) TI (READ) 
Tz (READ) 
TI (READ) + Tz (READ) 
Erasure  error 

Soft error = T, + TI (WRITE) 
Tj = Tz (READ) 

1 1  0 0  1 I O 0  

0 1 0 0 1 1 1 0  
I O  1 I O 0 0  I 
0 0 1 1 0 0 0 1  
0 1 1 1 1 1 1 1  
1 0 0 0 0 0 0 0  
l l O O I l l 0  
0 0 0 0 0 0 1 0  

H ” ” - S -  

with additional check bits, which are used to mask the erasures 
in decoding. For example, a (76,64)  code can be designed to 
correct double erasures and single random errors, and  to detect 
double  random  errors [40]. 

Conclusions 
Advances  in semiconductor technology  have  brought about 
very high levels of integration, especially in  the  memory  area 
where circuit  densities are  up  to 256K  bits  per  chip. In VLSI 
memory, higher density usually means a  reduced signal-to- 
noise margin. It also increases the likelihood of soft errors  due 
to radiation and  other sources. Error-correcting  codes  have 
provided  a very effective solution to these  problems.  They 
have  become an essential part of modem  memory design. In 
the  future,  the ECC could even be an integral  part of  the 
memory  chips  that  manufacturers would offer. 

In this  paper, we have described the essentials of the prin- 
cipal error-correcting  codes used in semiconductor  memory 
design applications. The class of SEC-DED  codes is currently 
most widely used throughout  the industry. However, more 
powerful codes  such  as  SBC-DBD and  DEC-TED codes are 
quite likely to be used in future commercial systems. 
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