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Error-Correcting Codes for Semiconductor Memory
Applications: A State-of-the-Art Review

This paper presents a state-of-the-art review of error-correcting codes for computer semiconductor memory applications. The
construction of four classes of error-correcting codes appropriate for semiconductor memory designs is described, and for each class
of codes the number of check bits required for commonly used data lengths is provided. The implementation aspects of error
correction and error detection are also discussed, and certain algorithms useful in extending the error-correcting capability for the
correction of soft errors such as a-particle-induced errors are examined in some detail.

Iintroduction

In recent years error-correcting codes (ECCs) have been used
increasingly to enhance the system reliability and the data
integrity of computer semiconductor memory subsystems. As
the trend in semiconductor memory design continues toward
higher chip density and larger storage capacity, ECCs are
becoming a more cost-effective means of maintaining a high
level of system reliability [1-4].

A memory system can be made fault tolerant with the
application of an error-correcting code; i.e., the mean time
between “failures” of a properly designed memory system can
be significantly increased with ECC. In this context, a system
“fails” only when the errors exceed the error-correcting capa-
bility of the code. Also, in order to optimize data integrity,
the ECC should have the capability of detecting the most
likely of the errors that are uncorrectable.

Error-correcting codes used in early computer memory
systems were of the class of single-error-correcting and double-
error-detecting (SEC-DED) codes invented by R. W. Ham-
ming [5]. A SEC-DED code is capable of correcting one error
and detecting two errors in a codeword. The double-error-
detecting capability serves to guard against data loss. In 1970,
a new class of SEC-DED codes called odd-weight-column
codes was published by Hsiao [6]. With the same coding
efficiency, the odd-weight-column codes provide improve-
ments over the Hamming codes in speed, cost and reliability
of the decoding logic. As a result, odd-weight-column codes

have been widely implemented by IBM and the computer
industry worldwide [7-10]. Examples of systems which incor-
porate these codes are the IBM 158, 168, 303X, 308X, and
4300 series, Cray I, Tandem, etc. There are also various
standard part numbers of these codes offered by many semi-
conductor manufacturers [11] (for example, the AM2960 and
AMZ8160 of Advanced Micro Devices, the MC68540 of
Motorola, the MB1412A of Fujitsu, and the SN54/74 LS630,
LS631 of Texas Instruments).

The number of errors generated in the failure of a memory
chip is largely dependent on the chip failure type. For example,
a cell failure may cause one error, while a line failure or a
total chip failure in general causes more than one error. For
ECC applications, the memory array chips are usually orga-
nized so that the errors generated in a chip failure can be
corrected by the ECC. In the case of SEC-DED codes, the
one-bit-per-chip organization is the most effective design. In
this organization, each bit of a codeword is stored in a different
chip; thus, any type of failure in a chip can corrupt, at most,
one bit of the codeword. As long as the errors do not line up
in the same codeword, multiple errors in the memory are
correctable.

Memory array modules are generally packaged on printed-
circuit cards with current semiconductor memory technology,
and usually a group of bits from the same card form a portion
of an ECC codeword, as illustrated in Figure 1. With this
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multiple-bit-per-card type of organization, a failure at the
card-support-circuit level would result in a byte error, where
the size of the byte is the number of bits feeding from the card
to a codeword. In this type of configuration, it is important
for data integrity that the ECC be able to detect byte errors
[12]. A SEC-DED code is in general not capable of detecting
all single-byte errors. However, a class of SEC-DED codes
capable of detecting all single-byte errors can be constructed
[13, 14]. These are called single-error-correcting double-error-
detecting single-byte-error-detecting (SEC-DED-SBD) codes.

There are certain design applications where the memory
array cannot be organized in one-bit-per-chip fashion because
of cost or other reasons such as system granularity or power
restrictions. As chip density increases, it becomes more diffi-
cult to design a one-bit-per-chip memory system. For a mul-
tiple-bit-per-chip type of memory organization, a single-byte-
error-correcting double-byte-error-detecting (SBC-DBD) code
[15-20] would be more effective in error correction and error
detection.

System reliability generally tends to decrease as the capacity
of a memory system increases. To maintain the same high
level of reliability, a double-error-correcting triple-error-detect-
ing (DEC-TED) code may be used. However, this type of code
requires a larger number of check bits than a SEC-DED code
and more complex hardware to implement the functions of
error correction and error detection [8, 13, 16].

An error-correcting code can be used to correct “soft” errors
as well as hard errors. Soft errors are temporary errors such as
a-particle-induced errors that disappear during the next mem-
ory write operation. With a maintenance strategy that allows
the accumulation of hard errors, a high soft error rate would
cause a high uncorrectable error (UE) rate. To reduce the UE
rate that involves soft errors, a SEC-DED code can be modified
to correct two hard errors or a combination of one hard and
one soft error [21-25].

In this paper we review the current status of error-correcting
codes for semiconductor memory applications and present
the state of the art by describing the construction of four
classes of error-correcting codes suitable for this type of design
application. These four classes are SEC-DED codes, SEC-
DED-SBD codes, SBC-DBD codes, and DEC-TED codes. For
each class of code we provide the number of check bits
required for commonly used data lengths, information that is
particularly useful to designers for system planning. We also
discuss the implementation aspects of error correction and
error detection for these classes of error control codes. In
addition, we describe a number of algorithms useful in ex-
tending the error-correcting capability of codes for the correc-
tion of soft errors such as a-particle-induced errors and other
temporary errors.
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Figure 1 A 4-bit-per-card memory array.
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Binary linear block codes

A binary (n,k) linear block code is a k-dimensional subspace
of a binary n-dimensional vector space [8, 15, 16]. An n-bit
codeword of the code contains k data bits and r = n ~ k check
bits. An r X n parity check matrix H is used to describe the
code. Let V = (v,, va, - - - , v,) be an n-bit vector. Then Visa
codeword if and only if

H.V =0, o)

where V’ denotes the transpose of V, and all additions are
performed modulo 2.

The encoding process of a code consists of generating r
check bits for a set of k data bits. To facilitate encoding, the
H matrix is expressed as

H=[PL]. @

where P is an r X k binary matrix and I, is the r X r identity
matrix. Then the first & bits of a codeword can be designated
as the data bits, and the last r bits can be designated as the
check bits. Furthermore, the ith check bit can be explicitly
calculated from the ith equation of the set of r equations in
(1). A code specified by an H matrix of (2) is called a systematic
code.

Any binary r X n matrix H of rank r can always be
transformed into the systematic form of (2). Since the rank of
H is r, there exists a set of r linearly independent columns.
The columns of the matrix can be reordered so that the
rightmost r columns are linearly independent. Applying ele-
mentary row operations [16] on the resultant matrix, a matrix
of (2) is obtained. The systematic code obtained is equivalent
to the code defined by the original H matrix. Figure 2(a) is an
example of the parity check matrix of a (26,20) code in a
nonsystematic form. Note that the last six columns of the
matrix are linearly independent. The submatrix of the six
columns can be inverted. The multiplication of the inverse of
the submatrix and the transpose of the parity check matrix
results in a matrix of systematic form shown in Figure 2(b).
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Figure 2 (26,20) code: (a) nonsystematic form; (b) systematic form.

Table 1 Average number of uncorrectable errors (UEs) with three
memory systems employing different error control schemes: parity
check, SEC-DED code, and DEC-TED code.

Time Parity SEC-DED DEC-TED
(X 10° hrs.) check

0-10 49 32 0.56

0-20 81 52 0.96

0-30 111 6.9 1.3

0-50 168 9.3 2.0

0-80 253 13 2.9

Parity check: (9,8) code.
SEC-DED: (72,64) code.
DEC-TED: (80,64) code.

A word read from the memory may not be the same as the
original codeword written in the same location. Let U = (u;,
uz, - -+ , Uy) be the word read from the memory. The difference
between U and the original codeword V is defined as the error
vector E = (ey, €, - - -, €,); 1.e.,, U =V + E. The ith position
of U is in error if and only if e; is nonzero.

The decoding process consists of determining whether U
contains errors and determining the error vector. To deter-
mine whether U is in error, an r-bit syndrome S is calculated
as follows:

S=H.U =H.(V +E)
=H.E". 3)

If S is an all-zeros vector, the word U is assumed to be error-
free. If S is a nonzero vector, it is used to determine the error
vector.

The error-correcting capability of a code is closely related
to the minimum distance of the code. The weight of a code-
word is the number of nonzero components in the codeword.
The distance between two codewords is the number of com-
ponents in which the two codewords differ. The minimum
distance d of the code is the minimum of the distances of all
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pairs of codewords. For a linear code, the minimum distance
of the code is equal to the minimum of the weights of all
nonzero codewords [8, 15, 16]. A code is capable of correcting
t errors and detecting 7 + 1 errors if and only if d > 21 + 1.

In semiconductor memory applications, the encoding and
the decoding of a code are implemented in a parallel manner.
In encoding, the check bits are generated simultaneously by
processing the data bits in parallel. In decoding, the syndrome
is generated using the same hardware for the generation of the
check bits. The error vector is then generated by decoding the
syndrome bits in parallel. Finally, the errors are corrected by
subtracting the error vector from the fetched word. The sub-
traction is accomplished by the bit-by-bit exclusive-or (XOR)
of the components of the two vectors.

The reliability function of a memory system that employs
an error-correcting code can be handled either analytically or
through Monte Carlo methods [1-4, 26-28]. For a system
with a simple architecture, an analytical approach may be
possible. However, for a memory system consisting of hierar-
chical arrays, the memory reliability function is too intractable
to handle analytically. Monte Carlo methods are considered a
general approach to study the effectiveness of error-correcting
codes and other fault-tolerant schemes [27, 28].

To demonstrate the reliability improvement obtainable
with ECC, we consider three memory systems of four mega-
bytes. The first system consists of eight memory cards and is
designed with a parity check on each set of eight data bits.
The second system consists of 18 memory cards and is de-
signed with a (72,64) SEC-DED code. The last system consists
of 20 memory cards and is designed with an (80,64) DEC-
TED code. The memory chips for the systems are 16K-bit
chips with 128 bit lines and 128 word lines in each chip. Each
memory card contains an array of 32 X 9 chips for the first
system, and an array of 32 X 4 chips for the other two systems.
The failure rates of the chips and the card-support circuits are
assumed to be the same as those described in [27]. When a
UE occurs, the strategy is to replace the card that contains the
UE and that has the largest number of defective cells.

The modeling tool of [27] is used to simulate the reliability
of the three memory systems. The results of the simulation
are shown in Table 1. The improvement factor of ECC over
the parity check scheme on the number of UEs is over 15 for
SEC-DED code and over 84 for DEC-TED code.

SEC-DED codes

The minimum distance of a single-error-correcting and dou-
ble-error-detecting (SEC-DED) code is greater than or equal
to four. Since an n-tuple of weight three or less is not a
codeword, from Eq. (1) the sum of a set of three or fewer
columns of the H matrix must be nonzero. In other words,
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Figure 3 Parity check matrix of some SEC-DED codes: (a) (22,16)
3033); (d) (72,64) code (IBM 3081).

any set of three columns of the H matrix are linearly inde-
pendent. Thus, the H matrix of a SEC-DED code must satisfy
the following conditions:

Al. The column vectors of the H matrix are nonzero and are
distinct.

A2. The sum of two columns of the H matrix is nonzero and
is not equal to a third column of the H matrix.

Note that the sum of two odd-weight r-tuples is an even-
weight r-tuple. A SEC-DED code with r check bits can be
constructed with its H matrix consisting of distinct nonzero
r-tuples of odd weights. This is an odd-weight-column code of
Hsiao [6].

The maximum code length of an odd-weight-column code
with r check bits is 2!, for there are 2"~' possible distinct
odd-weight r-tuples. This maximum code length is the same
as that of a SEC-DED Hamming code. The maximum number
of data bits k of a SEC-DED code must satisfy k < 2! — .,
Table 2 lists the number of check bits required for a set of
data bits. Figure 3 shows examples of SEC-DED codes used
in some IBM systems.

Most of the SEC-DED codes for semiconductor memory
applications are shortened codes in that the code length is less
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code (IBM System/3); (b} (40,32) code (IBM 8130); (c) (72,64) code (IBM

Table 2 Number of check bits required for SEC-DED codes.

Data bits Check bits

=]
S
[«=TN-R-CREN I NV

[ ]
A
=)
—

than the maximum for a given number of check bits. There
are various ways of shortening a maximum-length SEC-DED
code. Usually a code designer constructs a shortened code to
meet certain objectives for a particular application. These
objectives may include the minimization of the number of
circuits, the amount of logic delay, the number of part num-
bers, or the probability of miscorrecting triple errors [6].

In a write operation, check bits are generated simultane-
ously by processing the data bits in a parallel manner accord-
ing to Egs. (1) and (2). In a read operation, syndrome bits are
generated simultaneously from the word read according to
Eq. (3). Typically the same XOR tree is used to generate both
the check bits and the syndrome bits (see Figure 4). 127
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Figure 4 Generation of check bits and syndrome bits.
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Figure 5 Error detection and correction block diagram.

An algorithm for correcting single errors and detecting
multiple errors is described as follows:

1. Test whether S is 0. If S 1s 0, the word is assumed to be
error-free.

2. IfS # 0, try to find a perfect match between S and a
column of the H matrix. The match can be implemented
in n r-way AND gates.

3. If S is the same as the ith column of H, the jth bit of the
word is in error.

4. If S is not equal to any column of H, the errors are detected
as uncorrectable (UE).

This algorithm applied to a SEC-DED code corrects all single
errors and detects all double errors. Multiple-bit errors may
be detected or falsely corrected. The extent of multiple errors
detected depends on the structure of the code.

As shown in Figure 5, hardware implementation of the
error correction and detection mainly consists of an r-way OR
gate for testing nonzefo syndrome, n r-way AND gates for
decoding syndromes, an n-way NOR gate for generating UE
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signal, and n two-way XOR gates for inverting the code bit in
error. Additionally, an »-bit data register and control logic for
timing are required.

A UE signal can also be generated based on the logical OR
of the minterms of all UE syndromes. A subset of all UE
syndromes is the set of even-weight syndromes caused by even
numbers of errors. This subset of syndromes can be recognized
by an r-way XOR gate.

The failure of a common logic support in the memory may
result in an all-ones or an all-zeros pattern in a codeword. In
this case, the error vector in general contains a multiple
number of errors that are not detectable by a SEC-DED code.
To prevent this kind of data loss, the code can be constructed
or modified so that an all-ones or an all-zeros n-tuple is not a
codeword. For example, if the check bits are inverted before
the codeword is written into the memory, then all the code-
words stored in the memory are nonzero. In general, the
detection of all-ones and all-zeros errors can be achieved by
inverting a subset of the check bits [9].

SEC-DED-SBD codes

In some applications it is required that the memory array
chips be packaged in a b-bits-per-chip organization. A chip
failure or a word-line failure in this case would result in a
byte-oriented error that contains from 1 to b erroneous bits.
Byte errors can also be caused by the failures of the supporting
modules at the memory card level. The class of SEC-DED
codes that are capable of detecting all single-byte errors (SEC-
DED-SBD codes) may be used to maintain data integrity in
these applications.

The H matrix of a SEC-DED-SBD code can be divided into
N blocks of r X b submatrices, B;, B,, ---, B,, where B;
represents the parity checks for byte position /. From (3), the
syndrome of a byte error at position / is a sum of the columns
of B; that correspond to the bit error positions within the byte.
The syndromes of all possible byte errors at position / are the
sum of all possible combinations of the columns of B;. Let
(B;) denote the sums of all possible nonzero linear combina-
tions of the columns of B;. Each member of (B;) should be
nonzero and should not be equal to a column of By, for j # i.
Otherwise, the byte error at position / will be mistaken as no
error or as a correctable single error at position j. Thus, the H
matrix of a SEC-DED-SBD code must satisfy the conditions
Al and A2 given previously, as well as the following condition:

A3. Each vector of (B;) is nonzero and is not equal to a
column vector of B, for j # i.

For b = 4, most of the SEC-DED codes for practical
applications can be reconfigured to detect single-byte errors.
The reconfiguration involves the regrouping or rewiring of the
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(b)

Figure 6 Examples of SEC-DED-SBD codes: (a) (40,32) code, b = 4; (b) (72,64) code, b = 4; (c) (72,64) code, b= 3 and b= 4.

bit positions of the original code. Since the same encoding
and decoding hardware can be used, no additional hardware
is required if a SEC-DED code can be reconfigured for single-
byte error detection. Figure 6 illustrates some examples of
SEC-DED-SBD codes. The codes in Figs. 6(a) and (b) are
obtained from those in Figs. 3(b) and (d) by reconfiguration,
and the code in Fig. 6(c) is the same as that in Fig. 3(c). The
(72,64) codes of Fig. 6 are those used in IBM systems 3081
and 3033.

Techniques for the construction of SEC-DED-SBD codes
have been presented in [13, 14]. Let N(r,b) be the code length
in b-bit bytes. For b = 3, it is shown in [14] that optimal codes
with N(r,3)= | 2""'/3 |, where | x | denotes the integer part
of x, can be constructed. For other values of b, the construction
of the longest code for a given r is an open question. A list of
the code lengths of some known SEC-DED-SBD codes is
given in Table 3.

SBC-DBD codes

For a memory system packaged in a b-bits-per-chip organi-
zation, the reliability provided by a SEC-DED code may not
be acceptable. To increase the reliability, a byte-oriented error-
correcting code may be used [15-20, 29]. In this section, we
discuss the construction and implementation of single-byte-
error-correcting and double-byte-error-detecting (SBC-DBD)
codes.

A codeword of a SBC-DBD code consists of N b-bit bytes.
A binary b-tuple is considered an clement of the finite field
GF(2%) of 2° elements [8, 15, 16]. For example, all binary 3-
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Table 3 Code length in bytes for some SEC-DED-SBD codes.

b 3 4 5 6 7 8 9
r
b+1 2 2 3 3 3 3 3
b+2 5 6 7 8 9 10 11
b+3 10 12 15 16 18 20 22

b+4 21 26 31 36 41 46 51
b+5 42 52 63 72 82 92 102
b+6 85 106 127 148 169 190 211

Table 4 All binary 3-tuples expressed as elements of GF(8).

0=000
=100
x'=010
x2=001
x*=110
x*=011
x*=111
xt=101

tuples can be assigned as the elements of GF(8), as shown in
Table 4. In the finite-field representation of b-tuples, the sum
of two elements is the bit-by-bit XOR of the two associated
b-tuples. The product of two elements X' and X’ is X* with
k=1i+jmod (2%) — 1. For example, X’ + X*=(1 1 0)+
(1 0 D=@O 1 1)=X*and X*.X®= X?from Table 4.

With the finite-field representation, an SBC-DBD code is a
linear code over GF(2%) with a minimum distance d = 4. The
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Figure 7 (10,7) SBC-DBD code with b = 3.

Table 5 Number of check bits required for SBC-DBD codes.

Bits per byte Data bits per ECC word
16 32 64 128
2 8 10 10 12
3 9 12 12 12
4 12 12 14 16
b>5 3b 3b 3b 3b

code can also be defined by the parity check matrix H of (1)
and (2), with the components of the matrices and vectors
considered elements of GF(2?%). Let h;, 1 < i < N, be the
column vectors of the H matrix. The SBC-DBD code must
satisfy the following conditions:

Bl. h; # X-h;for i # j, X € GF(2?).
B2. h:+ X,-h; # X2 by, for distinet 7, j, £, and X, X, € GF(2).

Let r be the number of check bytes of an SBC-DBD code
over GF(2%). For r = 3, a code of length N = 2 + 2° bytes can
be constructed by extending a Reed-Solomon code of length
(2% — 1 [15-19]. The parity check matrix of the code can be
expressed as

I 1 I ... 1 I OO
H=|I T T ... T 0 1 0}, 4)
I T2 T T2 Q0 0 1

where I is the b X b identity matrix, O is a b X b all-zero
matrix, T is the » X b companion matrix of X, and X is a
primitive element of GF(2%) [15, 16]. If X is a root of the
primitive polynomial P(X) = ay + a X + axX* + -, +
ap-1x""", the companion matrix of X is

00 --- 0 a
10 . 0 g
T 01 0 a
00 - 1 ap

For example, the companion matrix of X in Table 4 is
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001
T= |1 0 1],
010

and the H matrix for a (10,7) SBC-DBD code with b = 3 is
shown in Figure 7.

Using the H matrix of Eq. (4), the last three column
positions of H can be designated as the positions of check
bytes and the other column positions of H can be designated
as data byte positions. The check bytes can be generated with
an XOR tree just as in the case of SEC-DED codes. The
syndrome can also be generated with the same XOR tree. For
decoding, the syndrome S is divided into three parts, S, S,,
S;. Each S; consists of b bits and represents the parity check
equations for the ith row of (4). From (3), if E is a single-byte
error pattern at data byte position i, then E is a unique solution
to the following three equations:

Sl = E
S, =T .E’,
S; = T*.E’.

On the other hand, if E is a byte error pattern at check byte
position i, where i = 1, 2, or 3, then E = S/ and the other two
subsyndromes are zeros. The following steps can be taken to
find the correctable single-byte error patterns and to detect
multiple uncorrectable byte errors.

1. If S is a zero vector, assume that there is no error. If S is
nonzero, go to step 2.

2. If one of the subsyndromes S; # 0, and the other two
subsyndromes are zero, i = 1, 2, 3, the check byte position
i with error pattern S is assumed. Otherwise, go to step 3.

3. Assume that E = S/ Find j that satisfies 0 < i <N — 4, T".
E’' =8, and T?.E’ = S;. If i has a solution, the byte error
with pattern E at data byte position / is assumed. If i has
no solution, then an uncorrectable error is detected.

A block diagram for the generation of the error pointers for
the code of Fig. 7 is shown in Figure 8.

The extended Reed-Solomon codes defined in Eq. (4) are
optimal in that no other SBC-DBD codes with three check
bytes contain more data bytes. However, there exists only one
code for a given byte size b. When b is small, the code may
be too short for memory applications. For example, the code
for b = 2 can only accommodate six data bits. This code
certainly is not practical for most applications. In order to
increase the code length for a given b, additional check bits
are required.

Techniques for the construction of SBC-DBD codes for r >
3 can be found in [15, 16, 30, 31]. Table S lists the minimum
number of check bits required for some known SBC-DBD
codes.
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DEC-TED codes

A memory system with a large capacity or with high chip
failure rates may use a double-error-correcting and triple-
error-detecting (DEC-TED) code to meet its reliability require-
ments. A DEC-TED code is also attractive for a memory with
a high soft error rate. Although there are schemes [21-25], to
be discussed in a subsequent section, for a SEC-DED code to
correct hard-hard and hard-soft types of double errors, these
schemes cannot correct double soft errors and they require
the interruption of a normal memory read operation, With a
DEC-TED code, any combination of hard and soft double
errors, including double soft errors, can be corrected auto-
matically without system interruption.

A minimum distance of a DEC-TED code is at least equal
to six. The parity check matrix H of a DEC-TED code must
have the property that any linear combination of five or fewer
columns of H is not an all-zeros vector.

A class of DEC-TED binary linear block codes can be
constructed according to the theory of BCH codes
[8,15,16,32,33]. Let X be a root of a primitive binary
polynomial P(X) of degree m. The powers of X can be
considered elements of GF(N), N = 2™ and can be expressed
as binary m-tuples. A binary code defined by (1) with the
following parity check matrix is a DEC-TED code:

11 1 ... 1
H= (1 X X ... X" [, 5)
1 X3 X6 . X}(N—Z)

The powers of X in H are expressed in m-tuples. Since there
are 2m + 1 linearly independent row vectors in H, the number
of check bits of the code is 2m + 1. The code length is equal
to N — 1. The code can be extended to length N by adding a
column of 1 followed by 2m zeros. Figure 9(a) shows the
parity check matrix of a (31,20) code constructed from Eq.

3).

A full-length BCH code can be shortened by deleting a
number of columns from its H matrix. The shortened code
has a minimum distance at least as large as the original code.
The number of check bits of the shortened code may be less
than the original code when proper bit positions are deleted
[34-35]. In particular, let Y be a row vector in the space
generated by the row vectors of H. Deleting the column
positions of H where the corresponding positions of Y are
ones, then the shortened H matrix has one fewer linearly
independent row vector and the shortened code has one fewer
check bit than the original code. Table 6 presents a list of the
number of check bits required for some DEC-TED BCH
codes.

The H matrix defined by (5) can be transformed into the
systematic form of (2) for the generation of check bits (see
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Figure 8 Generation of error vectors for a (10,7) SBC-DBD code
with b= 3.
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Figure 9 Parity check matrix of a (31,20) code: (a) nonsystematic
form H; (b) systematic form H1.

Table 6 Number of check bits required for DEC-TED BCH codes.

Data bits Check bits
8 9
16 11
32 13
64 15
2™ 2m+3

Fig. 9 for example). Let H1 be the parity check matrix in
systematic form, and T be an r X r transformation matrix that
satisfies

H = T.H1. (6)

The generation of check bits from matrix H1 can be imple-
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Table 7 Example of locating erasures.

Direction of 10-~--- Ji
stuck fauits

T, (WRITE) 11
T, (READ) 10
T; (WRITE) 00
T; (READ) 10
T, (READ) + 00
T; (READ)
ERASURE ERROR

mented with an XOR tree. For decoding, it is convenient to
define the syndrome S from (3) with the H matrix instead of
the H1 matrix. The syndrome can be generated using an XOR
tree associated with the H matrix. Thus, two separate XOR
trees are used to generate check bits and syndrome bits. The
syndrome can also be generated by first generating S1 from
Eq. (3) with the H1 matrix, then multiplying matrix T by S1.
Using this approach, the same XOR tree can be used to
generate check bits and S1. The validity of this procedure
follows directly from Eq. (6).

The syndrome S can be divided into three parts, Sy, S;, and
S,, where Sy consists of one bit, and S, and S, consist of m
bits. Let the bit positions of the code be assigned as the powers
of X. Assume that E, and E, are the positions of two erroneous
bits. Then So = 0and S, = E, + E,, S; = E! + E3. Since
St + S, = E3E; + E,E} = E,E,S,, the error positions E; and
E; are roots of the quadratic equation

Sy +Sly+(Si+Sy)=0. @)

On the other hand, if there is only one error, then So = 1 and
the error position is the root of the linear equation y + S, =
0.

The major part of the error correction is to find the error
positions from the syndrome. Once the error positions are
known, the errors are corrected by inverting the data bits at
the error positions. The error positions are determined by
solving Eq. (7). If Sp = 0, and Eq. (7) has two solutions, then
the solutions are the positions of two errors. If S, = 1, and
Eq. (7) degenerates to a linear equation, then the solution is
the position of a single error. Uncorrectable errors are detected
if Eqg. (7) has no solution when Sy = 0, or Eq. (7) does not
degenerate into a linear equation when Sy = 1.

There are various schemes for solving Eq. (7) [36-38]. The
equation can be solved algebraically using hardware that im-
plements finite-field operations as in [36]. It can also be solved
by substituting all possible solutions into the equation, as in
[38]. Another approach is to store the error positions of
correctable errors in a table. The syndrome is used as the
address to the table of error positions [37].

C. L. CHEN AND M. Y. HSIAO

Extended error correction

Errors in semiconductor memory can be broadly divided into
hard errors and soft errors {24, 25]. Hard errors are caused by
stuck faults or by permanent physical damage to the memory
devices. Soft errors are temporary errors or a-particle-induced
errors that will be erased during the next data storage opera-
tion. For this discussion, the errors that will stay in their
locations during the next few write cycles are considered hard
errors.

Error-correcting codes can be used to correct hard as well
as soft errors. However, the maintenance strategy for a system
may allow the hard errors to accumulate. The presence of
errors in the memory increases the probability of uncorrecta-
ble errors (UE) due to the lineup of multiple errors in a
codeword. The UE rate can be reduced by repair service
scheduled periodically. It can also be reduced by extending
the conventional error correction to some of the otherwise
uncorrectable errors. The latter approach is especially attrac-
tive when the soft error rates are high, because it does not
require the replacement of memory components. The ex-
tended error-correction schemes are discussed in this section.

The errors for which locations but not values are known
are called erasures [15, 16]. Erasures are easier to correct than
random errors. Let 7 and e be the number of random errors
and erasures, respectively, that a code is capable of correcting;
then the minimum distance d of the code must satisfy [15,
16],

U+e<d (8)

For example, a SEC-DED code is capable of correcting one
random error and one erasure.

In memory applications, the hard errors can be considered
erasures if their locations can be identified. To locate the
erasures of a particular word in the memory, we may apply
some test patterns to the memory. Assume that any binary
pattern can be written into the memory. An example is shown
in Table 7 for finding the locations of erasures with two test
patterns, T, and T, of length 8, where T, is the complement
of T. Before the test patterns are written into and read out of
the memory, the word originally stored in the memory is read
out and stored in a temporary storage. The erasure vector is
obtained by the complement of T/(READ) + T»(READ). The
locations of the erasures are indicated by the ones in the
erasure vector. Since T, can be arbitrarily chosen, we may
also use the word that originally stored in the memory as 7.
This approach for locating the erasures, known as the double
complement algorithm, saves one write and one read opera-
tion. An example of the algorithm is shown in Table 8.

Some system designs permit only the codewords to be
written into the memory [21, 22, 25]. If the complement of a
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codeword is not a codeword, then the approaches just de-
scribed for the identification of erasures are not applicable. In
this case, one solution is to design codes with some special
properties [21, 22]. Another solution is to employ three test
patterns in locating the erasures [25]. The test patterns are
chosen in such a way that they contain at least one 1 and one
0 in every bit position. It can be shown that three test patterns
are sufficient to satisfy this condition for any linear code.

Once the locations of the erasures are identified, algorithms
can be designed to correct the hard and soft errors, provided
that the number of errors satisfies Eq. (8). Assume that the
double complement algorithm is applicable for locating the
erasures. The following procedure can be used to correct up
to two hard errors or a combination of one hard and one soft
error for a SEC-DED code:

1. Read word 7, from a memory location.

2. If a single error in T, is detected by the ECC logic, the
error in the word is corrected, and the corrected codeword
is sent out to its destination.

3. If uncorrectable errors in T are detected by the ECC logic,
the complement of T, is written into the same memory
location. Then the word from the same memory location
is read and complemented. Let the resultant word be T;
(see Table 8).

4. If a single error in T; is detected by the ECC logic, the
error is corrected. The corrected word is sent out to its
destination and is also written into the same memory
location.

5. If no error is detected by the ECC logic, 75 is assumed
error free. T is sent out to its destination and is also written
into the same memory location.

6. If uncorrectable errors are detected by the ECC logic, the
original word is declared uncorrectable.

Note that double soft errors are not correctable by this pro-
cedure. All single errors are corrected at the normal speed.
The correction of hard-hard and hard-soft types of double
errors takes more time because additional write and read
operations are involved. The procedure can be modified or
refined to correct additional multiple hard errors [21, 24] at
the expense of speed and cost. The procedure can also be
extended to correct multiple errors beyond the random error-
correcting capability of SBC-DBD codes and DEC-TED codes.

The procedure just described derives the information on
erasures at the time when the double error occurs. A different
method is to store the information on the erasure errors in a
table [22]. This approach increases the speed of correcting
double errors. However, the table has to be constantly updated
to reflect the true status of the erasures in the memory.

There are other schemes for the correction of multiple
erasures [39-41]. These schemes involve the design of codes
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Table 8 Example of double complement algorithm.

Original word = 7', (WRITE)
Hard and soft errors H-----
T, (READ) 0
T, (WRITE) = T, (READ) 1
T> (READ) 0
T:; (READ) + T; (READ) 01
Erasure error 1
T3 = T, (READ) 1
Soft error = T5 + T, (WRITE) 0

COOm = =O | O

with additional check bits, which are used to mask the erasures
in decoding. For example, a (76,64) code can be designed to
correct double erasures and single random errors, and to detect
double random errors [40].

Conclusions

Advances in semiconductor technology have brought about
very high levels of integration, especially in the memory area
where circuit densities are up to 256K bits per chip. In VLSI
memory, higher density usually means a reduced signal-to-
noise margin. It also increases the likelihood of soft errors due
to radiation and other sources. Error-correcting codes have
provided a very effective solution to these problems. They
have become an essential part of modern memory design. In
the future, the ECC could even be an integral part of the
memory chips that manufacturers would offer.

In this paper, we have described the essentials of the prin-
cipal error-correcting codes used in semiconductor memory
design applications. The class of SEC-DED codes is currently
most widely used throughout the industry. However, more
powerful codes such as SBC-DBD and DEC-TED codes are
quite likely to be used in future commercial systems.
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