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A. Goyal 
T. Agerwala 

Performance  Analysis of Future  Shared  Storage  Systems 

This  paper  deals  with the analysis and  design of  two  important  classes  of  computer  systems: BIP (Billion Instructions  Per 
Second)  systems consisting of a few very high performance  processors and KMIP  (K  Million Instructions  Per Second)  systems 
with hundreds of low speed  processors. Each system has large,  shared  semiconductor memories.  Simple  analytic  models are 
developed for  estimating the performance  of such systems.  The  models are validated using simulation.  They can be utilized  to 
quickly reduce the design  space  and study  various trade-o#s. The  models are applied  to BIP and KMIP  systems and  their use 
is  illustrated using examples. 

1. Introduction 
This  paper reports the analyses of two generic classes of 
systems each consisting of several processors. The first 
system, called BIP, consists of a few “supercomputers” 
sharing a large  FET memory and  address  space.  The  primary 
motivations are improved throughput, reliability,  availabili- 
ty,  and extendibility. Such  systems will provide  a total 
throughput in  excess of one billion instructions per second. 
The second system, called KMIP, consists of hundreds of 
workstations  connected to a large  central memory so that 
individual users can  share a large  database.  Example envi- 
ronments  are  airline reservations, insurance  claims process- 
ing, computer  aided design,  application software develop- 
ment,  shared  document composition,  etc. The  primary 
motivation is the  availability of low cost  workstations in the 1 
to I O  MIPS  range.  Computing environments in the 1990 
time  frame will contain  elements of both  systems. 

BIP  and  KMIP  are  important systems that have not been 
reported in the  literature.  Since  they  do not  exist yet,  there 
are no empirical  data  about  the behavior of these  systems. 
Detailed  simulation is intractable.  Several design  trade-offs 
and  parameters  must be studied prior to  implementation. 
The required  interconnection structure, its bandwidth  and 
latency, and  the  relationship of these to processor utilization 
must be determined.  These issues are studied by defining a 
queueing model of the system. The model can be simulated, 
but even this is expensive. By making  certain  approxima- 

tions, the model can be solved analytically. None of the 
existing approximations is valid for either  BIP or KMIP. A 
new approximation is introduced and is validated by compar- 
ing the  analytic results with the results obtained by simulat- 
ing the model over a large  range of parameters.  The approxi- 
mation is then used to  analyze  the  BIP  and  the  KMIP 
systems.  Using  this approach,  important  parameters  can be 
studied  quickly. Once  the trade-offs are understood and  the 
design space  reduced, more accurate information can be 
obtained  through simulation. 

In Sections  2 and 3 we discuss the systems in more detail. 
Existing models are presented in Section 4, and  their  limita- 
tions are discussed. The new approximation  and validation 
results are given. In Sections 5 and 6 the  BIP  and  the  KMIP 
systems are  analyzed. 

2. The BIP system 
The overall organization of the  BIP system is shown in Fig. 1. 
A specific structure for  achieving a billion instructions per 
second was  studied in [l]. Eight  (hypothetical) 128 MIPS 
processors are connected  using  a  single gigabyte per second 
bus to a shared memory. Each processor has its own high 
speed local memory. The access time for 1000 bytes  from the 
shared memory is 1 ps.  Several portions of this  system  were 
designed and  analyzed using  a  simulation model. High 
processor utilization was achieved with levels of multipro- 

0 Copyright 1984 by International Business Machines  Corporation.  Copying in printed  form  for  private use is permitted  without  payment of 
royalty provided that (1 )  each  reproduction is done  without  alteration  and (2) the Journal reference  and  IBM  copyright  notice  are  included on 
the first page. The  title  and  abstract,  but no other  portions, of this  paper  may be copied or distributed  royalty  free  without  further permission by 
computer-based  and  other  information-service  systems.  Permission  to republish any  other portion of this  paper  must be obtained  from  the 
Editor. 
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Figure 1 The BIP system. 

gramming of approximately  32 per  processor. This was 
critically  dependent on a  high hit  ratio in the  shared memory 
(>0.9), a  high bandwidth bus of 1 gigabyte per second 
(GBPS),  and reduced  disk latency  (10  ms).  In  the design of 
the system it was  decided that  the processor would wait 
synchronously for  data  to  arrive  from  the  shared memory. 
This waiting  was  not modeled correctly in [ l ]  but was  a 
negligible effect for the chosen  design  point. We model the 
effect of synchronous  wait accurately in Section 4. In  BIP 
systems,  like the  one described  above,  a large  shared memory 
is of prime  importance.  We describe the  main reasons below 
with the help of a  rough calculation.  Let 

Number of processors = N 
Speed per processor = S x lo6 instructions per second 
Disk access time = L x seconds 
Disk transfer  rate = D x IO6 bytes per second 
Disk to memory page size = P x lo3 bytes 
Miss rate in local memory = one in K x lo3 instructions 

K is a critical  parameter  and  must be determined experimen- 
tally. Without  shared memory,  for  a  single job,  the process- 
ing time between  two misses and  the 1/0 time for  a page 
transfer  are given by 

K 
S 

Processing time = - ms, 

P 
D 

1/0 time = - + L ms. 

Since  the 1/0 time is tens of milliseconds and  the process- 
ing time is a tenth of a millisecond (for  the technologies of 
interest), processors must  be  multiprogrammed at  very high 

96 levels. The  degree of multiprogramming  per processor,  com- 

puted  as  the 1/0 time divided by the processing time, is given 
by 

and  the required 1/0 bandwidth per job is 

D 

IOB = 
r 

P K 
- + L + -  D S 

0- megabytes per second (MBPS). 
P 
- + L  D 

The 1/0 bandwidth for the system is then 

IOS = 
P 
- + L + -  D S 

PSN 
K 

0- 

The typical  values  for  disk  access time  and  transfer  time in 
the  1990  time  frame will be  10-30 ms and 2-6 MBPS, 
respectively. For N = 10, S = 100, D = 4, P = 4, L = 20, 
and K = 10, 

DOM = 210, 

IOS = 400 MBPS. 

These  are  fairly severe requirements. DOM and IOS are 
inversely proportional to K .  The  large  shared memory (one 
tenth of the on-line file space) is utilized to  reduce  the 
number of 1/0 requests by an  order of magnitude. If  a 
fraction h of page requests  are serviced by the  shared 
memory, then 

10s = 
PSN(1 - h )  

K 

It is expected that K will be in the  range 5-20. If h = 0.9  can 
be achieved (either by proper structuring of the  computation 
or by providing  a very large  shared  memory),  then 

10 5 DOM 5 40, 

20 I ros I 80 MBPS, 

which are  more  reasonable goals  for the  near  future. 

Another  important issue is the block transfer size, P, on 
the buses. A large block size  increases the  latency,  whereas a 
small block size may  increase  the  page  fault  rate. If the effect 
of the block size on the  page  fault  rate is known, the model 
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developed in Section 4 can be used to  study  the effect of block 
size on processor utilization. The overhead involved during 
the  bus  setup  time  can be included in the block transfer time. 
Other issues, such as  the effect of overlapping the memory 
access with the  bus  transfer, which are not  handled specifi- 
cally by our model, are considered in some  detail in [2]. 

When  an access is made  to  the  shared memory, there  are 
two  options: either  the processor waits, or  as in the  case of 
disk  access,  it  switches to  another  task.  Task switching via an 
operating system call  may  require  many  instructions  to be 
executed. In addition  to  this  overhead, portions of the 
processor cache  are used up by the  operating system  call. If 
the processor waits  for the  page request to  be satisfied,  a 
given job is executed  for  longer  periods  without operating 
system  intervention and higher hit  ratios  are  obtained.  Some 
loss in performance  due  to waiting may be compensated by 
these  effects. Although  our  analytical model can  evaluate 
both  synchronous and asynchronous  waiting, some empirical 
data on the task  switch  overhead are required to  make this 
trade-off. 

3. The KMIP system 
The  KMIP system is based on the  assumption  that individual 
workstations of 1-10 MIPS  capability will be available a t  
very low cost in the  future.  Such a  system is reasonable where 
the individual  user  does  not require high processing speeds, 
but must  share a database with several other users. The 
overall organization of the  KMIP system is shown in Fig. 2. 
The  shared memory is assumed to have  enough  intelligence 
to service  page requests for the desk-top computers  and  to 

office automation products [3] have file servers organized in 
similar fashion. The  important difference is that in the 
KMIP system the  data  transfers occur at  the paging rates 
rather  than  the occasional file transfers required  in office 
automation systems.  Relatively  high bandwidth buses (2-5 
MBPS)  are required  for the  applications of interest here. 
Response time could be traded for communication  channel 
bandwidths. However, the processing capacity of a  1-10 
MIPS  computer would not be utilized effectively. Such 
design  trade-offs can be evaluated using our model. 

i 
~ transfer  data  to  and  from  the  mass  storage devices. Many 

The  KMIP  system, like the  BIP system, needs a large 
random access shared memory, besides the main storage 
devices, such as disks. The  important difference is that a 
page transfer  takes place in two steps. First  it is transferred 
on a local bus to a  speed matching buffer (TSMB)  and  then 
using  a local area network to  the  appropriate desk-top 
computer.  Since  the local network is limited  in bandwidth, it 
is a major source of performance  degradation. If the cost of 
the interconnection  network is not  prohibitive, the  KMIP 
approach does not require  the  desk-top  computers  to have 
local, hard disks. In the following paragraph we give the 
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Figure 2 The KMIP system. 

motivation  for  using  a large semiconductor shared memory 
and show that  the  current technology is not suitable for  a 
very high speed desk-top  computer. 

In  the  KMIP system all  computations  are performed in the 
desk-top computers.  Since these computers  are  dedicated, it 
is assumed that  they  are not multiprogrammed. If all over- 
head except the disk  access and  the  transfer times are 
ignored, the  maximum  average effective MIPS per processor 
( M e )  is 

Me = 
K ' / S  

( P l D  + L -t K'IS) 
x s' 

where K' x lo3 is the  mean  number of instructions between 
the disk  requests. Without  shared memory, if a 1-MIP 
processor missed in its local memory  once every IO 000 
instructions, its average processing power would be reduced 
to 0.25 MIPS with  a  30-ms  disk. With a large  shared 
memory K' can be increased by an  order of magnitude. For 
K' = 100  and P/D + L = 30 ms, the effective MIPS for 
100-, 5- ,  2-, and  1-MIP processors are 3.3, 2, 1.25, and 0.77, 
respectively. Thus, with current disk  technology,  non-multi- 
programmed, inexpensive processors  in the  range of 1-5 
MIPS  are reasonable,  since only 33-60  percent of the 
original MIPS  are lost due  to disk transfer  time,  as  compared 
to 97 percent  for  a 100-MIP processor. Me is further 
degraded  due  to nonzero  memory  access and  bus  transfer 
times, and even further  due  to memory and bus  interference. 
These effects can  be  evaluated using the model presented in 
the next  section. 

4. The model 
Our model is constructed  to  study various performance  and 
technology  trade-offs and  to  reduce  the design space using 
quick parametric studies. Structural questions  like the  num- 97 
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ber of buses or shared memory  modules to use, and techno- 
logical questions like transfer  rates for the bus or the  shared 
memory  for  a given performance level, are some of the 
questions  answered by the model. The desired structural 
inputs  to  the model are  the  number of processors ( N ) ,  shared 
memory  modules ( M ) ,  and buses ( B ) .  The  other system 
parameters  are  the mean processing time between page 
faults ( l l m ) ,  a constant  time  to  transfer a  page  from the 
shared memory to  the processors ( t ) ,  the probability that on 
a  page fault processor i references shared memory  module j 
(P,,), the probability that a  hit  occurs in the  shared memory 
( h ) ,  and  some probability that a read  causes a dirty page to 
be written back (mJ. The desired outputs of the model are 
processor utilization,  average  time  spent by a  page  request in 
the  shared memory system,  and  job  throughput. 

Recently,  many models for  similar  systems  have been 
analyzed.  Bhandarkar proposed an  exact solution of a  system 
with B 2 M (equivalent to a crossbar  network) using a 
Markov chain method and showed that  the  state  space  gets 
very large for only a few processors [4]. He suggested an 
approximate solution to the problem which produced errors 
greater  than 10 percent for certain relevant  cases. Also, there 
was no easy way to  include asynchronous  writes or task 
switches on disk transfers. Hoogendoorn  described  a general 
memory interference  (GMI) model which had  an  error 
tolerance of less than 5 percent,  but he  did  not  consider  a 
system with an  arbitrary  number of buses, asynchronous 
writes, or task switches on disk transfers [ 5 ] .  Marson and 
Gerla assumed the page transfer  times  to  be exponentially 
distributed, which produced large  errors  as  compared  to 
constant  page  transfer  times for real  systems [6]. Pate1 98 
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applied  a  special case of the  GMI model (equal memory 
reference  probabilities,  called UMI in this paper)  to a 
multiprocessor  system  where each processor has its own 
private  cache [7]. H e  did  not  consider an  arbitrary  number of 
buses or finite shared memory. 

In  this section we present  a new model which satisfies  all 
the  requirements described earlier.  We  assume  that  the P , i s  
are all equal; however, we do mention  a way to  get  around 
this problem. The first part of this section contains a trunca- 
tion method to  include buses. This is another  approximation 
over the  already existing approximations used in the  GMI 
model. Therefore, we validate  this new approximation using 
extensive  simulations [8], some of our own and some  pre- 
viously reported in the  literature. In the second part of this 
section, we show an easy way to  include  the effect of disk 
transfers by assuming  the  degree of multiprogramming  to be 
infinite, and in the  third  part we extend our model to apply  to 
multiple stages of page  transfers  to  analyze  the  KMIP 
system. 

The  truncation  method 
The system  analyzed here is shown in Fig. 1 ,  and its 
equivalent queueing model is shown in Fig. 3.  Its operation 
and some  relevant  notation and  assumptions  are described 
next. 

1 .  A processor serves a job for an average of 1 / m  time units 
before  a miss in the local memory  occurs.  Extensive 
simulations  done by us and in [5, 71 show that  the 
distribution of this service time  has a very small effect on 
processor utilization. In the following analysis only the 
mean  service time is required, while for simulations we 
have  assumed  exponentially distributed service times with 
the  same mean. If the  time unit is one instruction  execu- 
tion time  and geometrically distributed service times  are 
used, then  the independent  probability that  any instruc- 
tion causes a miss in the local memory is m. 

2. On a miss in the local memory,  a processor references  a 
shared memory  module with an  equal probability ( 1  / M ) .  
The processor waits till the requested page is transferred 
to its local memory  (synchronous wait). 

3. The page  request arrives at  the given shared memory 
module in zero  time.  This request  is actually  transferred 
on one of the buses, and its  transmission creates a  small 
overhead.  This overhead can  be included in the model, but 
that is not the main  objective  here. 

4. The page  request  waits in a queue till all  the previous page 
requests  to  that  shared memory  module are satisfied, and 
a free bus is available. It  takes a constant  time o f t  units to 
access and  transfer a page  from  the  shared memory to  the 
local memory. 

5. The  shared memory  module and  the bus used by this 
request  become free  and  the processor starts service 
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again.  Notice  that in the above  description there is no 
miss in the  shared memory ( h  = 1); that is, none of the 
processors is multiprogrammed for the above  mode of 
operation.  We  include h < 1 later. 

6. Every  page  request  causes an  additional (in parallel) 
write request  with  probability m,. Write requests follow 
steps ( 3 )  and  (4); however, processors do not  wait  for their 
completion  before  resuming service. 

Assume that a page request takes  an  average of w time 
units to obtain the required shared memory  module and  an 
arbitrary bus. Since  the bus and  the memory  access  algo- 
rithms  do not treat a  write request differently from a read 
request,  this average wait  should be common for both of 
them.  Another point to note here is that  the  queueing system 
described here is a closed system which is always stable  and 
has  an  equilibrium  state. In  equilibrium,  the  average  request 
rate  originating from any given processor is Upm(l + m,) 
pages per unit time  (throughput per  processor),  where Up is 
processor utilization. With this  minimal explanation, we 
provide the expressions for the  average  number of busy 
memory  moedules, M',  and processor utilization, Up. Apply- 
ing Little's  formula ( L  = [A] [ W J )  to  shared memory mod- 
ules, the  average  number of busy shared memory  modules  is 
given by 

and Little's formula applied to a  single processor yields 

- + w + t  
m 

or 

1 up = 
1 + m ( w  + t )  

If processors  wait for write requests to be completed, 

1 up = 
1 + m(l + m,)(w + t )  ' 

Moreover, the  fraction of time  that a given processor has a 
request in  the  shared memory  subsystem can  be  determined 
by applying  Little's  formula to  the  shared memory subsys- 
tem as follows: 

m' = [Upm(l + m , ) ] [ ( w  + t ) ] .  (3 )  

Equation (3) is correct whether processors wait  for  write 
requests or not. The above equations  are  exact  and  can be 
found in [5 ,  71. Now, we have three  equations (1-3)  in four 
unknowns (MI ,  Up, w, and m'). Hoogendoorn approximated 
the above model with a discrete  time model where every 
processor requests  a  memory transfer of one  time unit with 
an independent  probability of m' in every time unit. Only one 
request per shared memory  module is satisfied, and  the rest 
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of the requests get lost. This is called Hoogendoorn's inde- 
pendence assumption here.  Now, for UMI, the  average 
number of busy memory  modules can be simply calculated  as 
follows. 

In a given time  unit,  each  shared memory  module  is 
addressed with probability m'/M from  the local memory. 
The probability that a shared memory  module is not 
requested is (1 - m'/M)  N .  Conversely, the probability that 
a  module is requested is [ 1 - ( I  - m ' / M ) N ] .  Therefore,  the 
probability that i shared memory  modules are requested is 

and  the expected number of busy memory  modules is given 
by 

This gives us four  equations ( 1  -4) in four unknowns (M ' ,  Up,  
w, and m'), which can be reduced to a single  nonlinear 
equation in Up. Therefore,  the  performance of the system can 
be evaluated by solving this  nonlinear equation. Both 
Hoogendoorn and  Patel observed that  the above approxima- 
tion for evaluating M' and Up matches very well with the 
simulation  results. Equation  (4) becomes quite complex for 
nonuniform  reference  probabilities. M' can still be evaluated 
by using an  iterative method as suggested in [ 5 ] .  Although 
the  GMI model can be extended to model bus  contention, we 
show only the UMI extension. 

The probability that i (1 5 i 5 M )  shared memory mod- 
ules are requested is given in Eq.  (4a), which is a  binomial 
probability distribution. If B 1 M ,  then  Eq.  (4a) also gives 
the probability that i ( 1  5 i 5 M )  shared memory modules 
are busy. However, if B < M ,  the  maximum possible number 
of busy memory  modules is B. Therefore,  the  average  num- 
ber of busy memory  modules  for an  arbitrary  number of 
buses is approximated  as 

M' = 2 (;I [ I  - (1 - m ' / M ) N I i  
,=O 

and  the  utilization of an individual bus is given by 

This simple  method for redistributing  the probabilities is 
called truncation in this  paper. Truncation is a very simple 
extension of the independence approximation  already  made 
by Hoogendoorn. Since  the independence assumption  has 
been validated for a large  number of test cases in [ 5 ,  71, we 
expect  it to work well with the truncation extension  also. 99 
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Table 1 Average  number of busy memory  modules  with N = M = 16, no writes,  and infinite shared  memory;  (a) our simulation, (b) analysis, 
and ( c )  Lang's simulation. 

Mean processing  time I 2 4 8 16 32 

Buses 

1 a 1 1 1 1 0.8584 
b 

0.4794 
1 1 1 0.9997 0.8719 0.481 1 

C 1 
2 a 2 2 2 1.6616 0.9316 0.4852 

b 2 2 1.9963 1.6655 0.933 1 0.4847 
C 2 

3 a 3 3 2.7924 1.7547 0.9391 
b 3 2.9953 2.7810 1.7479 0.9396 
C 3 

4 a 4 3.9581 3.0523 1.7667 
b 3.9943 3.9200 3.0368 1.7660 
C 4 

5 a 4.9889 4.61 38 3.1146 
b 4.9553 4.5467 3.1056 
C 4.98 

6 a 5.8796 4.8807 3.1288 
b 5.7856 4.8384 3.1337 
C 5.85 

7 a 6.4716 4.9567 
b 6.3743 4.9576 
C 6.43 

8 a 6.7388 4.9848 
b 6.7174 5.0007 

6.70 
a 6.8144 
b 

5.0083 
6.8795 5.0206 

C 6.82 
10 a 6.8404 

b 6.9499 
C 6.83 

11 a 6.8536 
b 6.9758 
C 6.83 

12 a 6.8469 
b 6.9825 
C 6.83 

C 

9 

Example 1 
a. N = M = 16, B is increased from 1 to 16. 
b. m,  = 0 (no write requests). 
c.  The sum of the memory  access time  and  the  bus  transfer 

time is assumed to be constant a t  1 time unit, Le., t = 1. 
d.  The mean processor service time is varied  from 1 to 3 2  in 

multiples of 2. 

Table 1 shows the  average  number of busy memory 
modules obtained  from  the simulation (a)  and  the analysis 
(b). Processor  utilization can be obtained  from Eq. (1). All 
analytical results are within 2 percent of the  means  obtained 
from  simulation. The  average  number of busy memory 
modules  increases  linearly in the beginning  (region 1) as  the 
number of buses increases. It  tapers off very quickly and does 
not change  any  further (region 2). We  truncate  each column 
in the  table when increasing the  number of buses  does  not 
change  the  analytical value of M' in the  third  place  after  the 
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Table 2 Processing power for N = 6, M = 4, B = 2. 

P 

0.001 
0.01 
0.1 
0.333 
0.5 
0.75 
I .O 
3.0 
5.0 

5.99 
5.94 
5.42 
4.14 
3.37 
2.49 
1.95 
0.66 
0.40 

5.994 
5.940 
5.418 
4.164 
3.384 
2.508 
1.944 
0.666 
0.402 

A large  number of simulations were run to  validate  the 
above model. These  simulations were run long enough so that 
90 percent  confidence intervals for M' and Up had relative 

100 half-widths of less than 2 percent. 
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Table 3 Average  number of busy memory  modules with m, = 0.3, N = M = 16, and infinite shared memory; (a) simulation, (b) analysis. 

Mean  processing  time I 2 4 8 16 32 

Buses 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

12 

13 

a 1 
b 1 
a 2 
b 2 
a 3 
b 3 
a 4 
b 4 
a 4.9989 
b 4.9978 
a 5.9824 
b 5.9819 
a 6.8936 
b 6.8980 
a 7.6089 
b 7.6525 
a 8.0455 
b 8.1590 
a 8.2419 
b 8.4420 
a 8.2984 
b 8.5757 
a 8.3429 
b 8.6295 
a 8.3421 
b 8.6490 

1 
1 

2 
3 
3 
3.9981 
3.9968 
4.9451 
4.9499 
5.6633 
5.6866 
6.0589 
6.0899 
6.1989 
6.2725 
6.2844 
6.3475 
6.3 154 
6.3772 
6.3204 
6.3840 

1 
1 
2 

2.9924 
2.9882 
3.6629 
3.6964 
3.9007 
3.9352 
4.0034 
4.0082 
4.0265 
4.033 1 
4.0314 
4.041  3 

1 
1 
1.9036 
1.9554 
2.2116 
2.2361 
2.2733 
2.2771 
2.2848 
2.2830 
2.2898 
2.2928 

0.9683  0.6138 
0.9939  0.6197 
1.1904  0.63  12 
1.2059  0.63 10 
1.2155  0.6332 
1.2165  0.6330 
1.2185 
1.2205 

decimal. In the first  region, buses are  the bottleneck, and in 
the second  region,  memory interference is the bottleneck. 
Notice  that when the value of l / m  is large,  the buses are 
never a  bottleneck. If there were no bottlenecks, the maxi- 
mum processor utilization would be that  obtained  from  Eq. 
(2) by setting w to zero. The  analytic  and  simulated probabil- 
ity distribution for the  number of busy memory  modules is 
given in [2],  and it is concluded that  although  the  simulated 
probability distribution is not exactly  the  truncated binomial, 
the probability mass does  tend to  stack  up a t  B and  its  mean 
is very accurate  (Table l ) ,  as predicted  in the truncation 
approximation. 

In the first column of Table 1 ,  we have  included  some 
simulation statistics  (c) for M’ obtained by Lang  et  al.  [9]. 
Besides simulation  variations,  a small  discrepancy between 
their simulation statistics  and ours is due  to  the  fact  that  they 
model the processor service time ( l / m )  using  a geometric 
distribution with mean 1, whereas we used an exponential 
distribution with the  same mean. This observation  also shows 
that  the processor service time  distribution  has  little effect on 
the  performance of the system shown in Fig. 1 .  

In [6], Marson  and  Gerla  obtained  some simulation 
results  for  multiple  bus architectures. For constant memory 
access and bus transfer times, they  obtained processing 

power which is equivalent to NUP in our case. The value of p 
used there is equivalent to  the product mt.  We  compare our 
analytical results  for  a  system with N = 6, M = 4, and B 
= 2 to  their  simulation  results [6, Table IV], in our  Table 2. 
Time t is assumed to  be  constant a t  1 ,  and m is varied from 
0.001 to 5 .  The  analytical  results  are within 1 percent of their 
simulation. 

Example 2 
Same  as  Example 1, except that  m, = 0.3. 

This increases the memory interference  and decreases 
processor utilization [Eq.  (2b)l.  When memory interference 
is extremely  high, the independence assumption is not very 
good. This is evident from  the  fact  that  the  largest relative 
error is in the  last  entry of the first  column of Table 3, where 
there is no bus interference  and consequently the  truncation 
extension does not  affect the  analytical results and  the  error 
is due  to  the independence assumption only. However, the 
relative errors  are still less than 4 percent. (Similar observa- 
tion is made  after we include the disk transfers.)  Since most 
real  system  designs  tend to keep processor utilization very 
high (or average  number of busy memory  modules low), our 
analysis is quite  pragmatic. 

Patel [7] presents  several local memory organizations, 
such as  buffered  write-back, write-through, etc.  Different 101 

A. GOYAL AND T. AGERWALA 1BM J. RES. DEVELOP. VOL. 28 NO. I JANUARY 1984 



Terminal. I i Local buses I 

Disks Shared memory 
queues 

Speed 
matching : 
buffer 

Stage 1 Stage 2 

Figure 4 Queueing model for the KMIP system. 

organizations  require  appropriate  changes in the expressions 
for Up, M‘, and m’, whereas  the  equation for the equivalent 
model, Eq. ( 5 ) ,  remains  the  same. In the following subsec- 
tions we present some useful models for finite/infinite  shared 
memory and synchronous/asynchronous waits on readlwrite 
requests. 

Injinite shared  memorylasynchronous wait 
In this case, processors do not even wait for the read requests 
to be completed.  As soon as a miss in the local  memory 
occurs, they  start working on another  job.  To keep the 
analysis  simple, we assume  an infinite  supply of jobs at  the 
processor. In other words, processors are not  idle  because of a 
lack of jobs. A job switch  causes  a certain  amount of 
overhead (e.g., for 110 routines, dispatching, etc.) which 
takes,  say, to units of time.  Therefore,  the processor utiliza- 
tion becomes 

1 
1 + mt,, 

up = -, ( 7 )  

and  the expression for M’ remains  the  same  as Eq. (1). 
Equations ( I )  and (7) can  be solved exactly to  obtain Up and 
M ’ .  Hence, no validation is required. 

Finite shared memory/synchronous wait at shared mem- 
orylsynchronous wait at disk 
This model is useful in analyzing  the  KMIP system  described 
in Section 3.  A busy processor requests a shared memory 
transfer with probability mh and a  disk transfer with  proba- 
bility m ( l  - h)  in every time unit. The  time  to service  a 
shared memory transfer is ( w  + t ) ,  and a  disk transfer is 

where 

102 L = latency + seek, 

k’ = number of pages transferred  from  the disk  subsystem, 
D‘ = disk  speed in pages per unit time. 

The first term in t ,  is for the  transfer of a block of k‘ pages 
from  the disk to the  shared memory, and  the second term is 
for the  transfer of a  single  page from  the  shared memory to 
the local memory of the requesting  processor. Therefore,  the 
processor utilization becomes 

1 
1 + mh(w + t )  + m ( l  - h ) t , .  

up = (9) 

Processor  wait on writes can be included by multiplying m 
with (1 + m,) in the above equation.  Similarly,  the  average 
number of busy memory  modules can be calculated  as 

M‘ = NU,m[l  + m, + (1 - h ) k ’ ] t .  (10) 

The equivalent  unit request  rate on the network is evaluated 
by including the traffic created by disks. Therefore,  the 
equation for m’ becomes 

m’ = U p m [ l  + m ,  + ( 1  - h ) k ’ ] ( w  + t ) .  ( 1  1) 

The above three  equations,  together with Eq. ( 5 ) ,  can be 
solved to  evaluate system performance.  The validation of this 
disk model is done later in this section. 

0 Finite shared  memorylsynchronous wait at shared mem- 
orylasynchronous wait  at  disk 
Now  a processor does not  wait  for  disk transfers.  This model 
is used to  analyze  the  BIP  system.  Again  to keep the analysis 
simple, we assume  an infinite  supply of jobs at  the processor. 
Processor utilization then becomes 

1 

1 + m(w + t )  + m(1 - h) t , ’  
up = 

and  the  terms for M’ and m’ used in the  last subsection are 
still  valid. The  analytical results are still  within 5 percent of 
the simulation as evident from  the  tables given in [2]. If a 
processor does not wait  for  read transfers also, Eq. (7) for Up 
and  Eq. (10) for M’ describe  the  exact system  behavior. 

Multiple  stages of access 
It is possible to extend the above  model to multiple stages of 
access and  transfer.  Some multiprocessing  systems  have two 
or more stages in which the accesses and  transfers  take place. 
For example, in the  KMIP system shown in Fig. 2, a  page is 
first  read from  the  shared memory to a  speed matching 
buffer using  a local bus, and  then  this page is transferred  to 
the requesting processor using  a local area network. The 
equivalent  queueing model for the  KMIP system is shown in 
Fig. 4. We  denote  the first and  the second stages by 
subscripts 1 and 2, respectively. Any  stage  can be modeled by 
any  one of the  four models  presented up  to  this point. 
Specifically, the first stage will use  the model with synchro- 
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nous waits at  the disk and  the second stage will use the model 
with infinite shared memory and synchronous wait. Assume 
that  all  the  parallel  branches in the second stage  are identi- 
cal. The  average  number of busy TSMBs (speed matching 
buffers) per local area network, M i ,  can be written  as 

M i  = N,Upm(l  + m,)t,, (13) 

where N ,  is the  number of processors on each local area 
network, and t ,  is the  transfer  time for  a  single  page on this 
network. The corresponding mi is given by Eq. (3), where w 
and t are replaced by w2 and t,, respectively. The  average 
number of busy shared memory  modules, M i ,  is given by 

M’, = N,!?U,m[h + m, + (1 - h ) k ’ ] t , ,  (14) 

where Q is the  total  number of parallel branches in stage 2 
(total  number of local area networks). We use h instead of 1 
[see Eq. ( I O ) ]  inside the  parentheses because we assume  that 
a  page transferred from the disk is received by both the 
shared memory and  the speed matching buffer simultaneous- 
ly. The corresponding equation for mi is therefore 

mi = U P m [ h  + rn, + (1 - h ) k ’ ] ( t ,  + w , ) ,  (15) 

and  the  equation for Up is given by 

up = 

1 

1 + rn w, + t ,  + h(w, + 1 , )  + (1 - h )  w ,  + L + - + k ’ t ,  1 ( D  k‘ ) .  
(16) 

The equivalent model [Eq. ( 5 ) ]  can be applied to  stages 1 
and 2 in succession to yield two nonlinear equations in wI,  w,, 
and Up. These  equations,  together with Eq.  (16),  can be 
solved numerically to  evaluate  the  performance of the sys- 
tem. We  programmed a very simple bisection method in 
64-bit arithmetic  to solve the above equations.  The solution 
did not converge  for  cases  where  utilizations for both 
networks (UBI, U,,) were  extremely close to  one (>0.99). In 
all other cases, the solution  converged very quickly. The 
number of iterations was substantially  smaller when we 
applied the bisection method to  the less loaded (low bus 
utilization)  stage first. The  details of the  experiments per- 
formed on the KMIP system are given in [2]. All utilization 
statistics were estimated within  four  percent of the means 
obtained via simulation. 

There  are two main contributions of the above models. 
First,  limited-bus architectures  can be analyzed,  and second, 
multiple stages of access and  transfer  can be accommodated. 
None of these  have been previously reported in the  literature. 
Experimentation shows that most of the  errors introduced in 
the above model are  due to the memory interference model 
chosen, and not because of the truncation extension. Had we 
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Figure 5 Analysis of a BIP system with 100 MIPS/processor, 4K 
bytes/page, r n w  = 0.3, and M = E = 1. 

applied the truncation extension to  Rau’s model [ l o ]  (zero 
processing time), more accurate results  could  have been 
obtained. However,  within the regions of interest (Up > 0.5 
for the  BIP  and U,,, U,, < 0.9 for the  KMIP),  the above 
models can be used to  analyze  the  BIP  and  the  KMIP 
systems with sufficient accuracy. 

5. Analysis of the BIP system 
The interconnection structures considered here  are crossbar 
and multiple buses. Our primary concern here is the  band- 
width that should be provided for  a  single block transfer  from 
the  shared memory to a processor. The effect of writing  back 
dirty pages is included in the model, as described in Section 
4. All graphs  drawn in this section assume  that 0.3 page is 
written back for every page  read.  The overhead is included in 
the  transfer  time t and consists of several  delays: determining 
where the block is located in the  shared memory,  establishing 
the connection, and  initiating  the access. The overhead is 
dependent on the technology and  the complexity of the 
interconnection  network and must be determined for each 
system. For the  BIP system [ I ]  this  overhead was approxi- 
mately 1 MS. This section  discusses  system  design issues in the 
case where the processor waits for a shared memory trans- 
fer. 

Infinite shared memory 
Given the  average  number of instructions executed between 
page faults ( K )  and  the speed of the processor (S), the mean 103 
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arrival  rate of requests, m, from a processor to  the  shared 
memory  subsystem is known.  For  different  system structures 
with varying numbers of buses ( B )  and memory  modules 
( M ) ,  the model in Section  4 provides the processor utilization 
(Up). The response time  has two  components, the  average 
wait time (w) and  the fixed service time ( t ) .  Since we are 
interested in the  latency  requirements, results are plotted as 
shown in Fig. 5, i.e., maximum service time ( t )  allowed vs K ,  
for fixed processor utilization. 

Curves  a, b, and c are for Up = 0.8,  0.85, and 0.9, 
respectively,  for S = 100, and for N = 1 .  Since  there is no 
interference, these  curves  place an  upper bound on the 
service time ( t )  and,  therefore, a lower bound on the technol- 
ogy. Curves  d,  e,  and f a r e  for M = B = 1 and N = 8. At Up 
= 0.9 and K = 10,  the  maximum service time allowed is 6 
ps. Assuming 1 ps as  overhead,  the access and  transfer  must 
take place  within  5 ps. Therefore,  for a 4K-byte  page size, the 
bus bandwidth  must be at  least 800  MBPS,  and even if the 
memory  access and  the bus transfers  are overlapped  per 1000 
bytes, the memory  access time  must be less than 1 ps. This 
example  illustrates  the following important point: Synchro- 
nous paging  with low performance  degradation places  severe 
requirements on the  bus technology. Figure 5  also gives the 
average wait time (w) for a fixed Up and K as explained 
below. 

At K = 10 and Up = 0.9, from  curved, t is 10 MS. The wait 
time is therefore 4 ps. Curves  g, h, and i are for N = 64  and 
M = B = 1. Clearly,  the response time in this system is 
dominated by the wait time.  The required  service time 
cannot be supported with the  available technology. In this 
case, w must  be reduced by increasing M and B. The precise 
effect is shown in Figs. 6 and 7 for U p  = 0.8 and 0.9, 
respectively. From Fig. 7, at  K = 10, a t  least  8  memories and 
8 buses are needed to  obtain t = 6 ps, each of which will have 
the  same  requirements  as mentioned in the previous para- 
graph, provided the overhead remains at  1 ps. 

Figure 7 also illustrates  that  the system is either memory 
limited or bus  limited at  different  values of M and B. At 
( M ,  B )  = (2, 2),  the system is completely  bus  limited, and 
increasing M to 4 has no effect on t .  Average  wait time w is 
substantially reduced in moving from  (4,  2) to (4,4).  At 
(4,4)  the system is not  bus  limited;  increasing M from 4 to 8 
reduces w. At B = 8 the system is no longer  bus limited; 
increasing M from 8 to 16 to 32 decreases w continuously. 
For N = 64, S = 100, the  appropriate system structure is M 
= 16 and B = 8. The analysis of a  16-processor  system is 
described in [2], and  it is concluded that, in general, N/4  
buses and  N/2 memories represent a good cost-effective 
design  point. Based on availability  considerations,  a constant 
number of buses and memory  modules may be added. 
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Figure 8 Analysis of a 16-processor system with 100 MIPS/ 
processor, 4K bytes/page, mw = 0.3, and t = 5 ~ s .  

The latency requirements on the bus and memory can be 
reduced to  some  extent by using certain design  techniques. 
The  interested  reader is refeired  to [2] for details. In general, 
t must be chosen so that  degradation is maintained within 
certain bounds, since K will be specified as a range. In Fig. 8, 
U p  is plotted against traffic intensity,  the  product mt. Time t 
is chosen to be 5 p s ,  so that  the expected  traffic  intensity for a 
range of K ( 5  to 20) is below 10". At  higher levels, 
performance is too  sensitive to K .  In Fig. 9, we have  plotted 
processor utilization vs K ,  keeping the  total  available bus 
bandwidth at  4 GBPS. All curves are for  a  system  in which N 
= M = 16. For nominal  values of K ( 5  to 20), four buses of 
one gigabyte  each  are recommended. 

Finite shared memory 
In the previous analysis,  page transfers between local and 
shared memories  were  included, but 1 / 0  transfers were 
completely  ignored. In some environments, the required 1/0 
bandwidth  can be large. Since 1/0 transfers utilize the bus 
and  the  shared memory  resources, their effect cannot be 
neglected. 

In Section  4, the execution  model  was extended  to  include 
the effect of 1 / 0  transfers. 1/0 bandwidth was  considered, 
but  it was assumed that  the  degree of multiprogramming was 
large enough so that  there was no degradation in per- 

I B M  J.  RES. DEVELOP. . VOL. 28 * NO. I - JANUARY 1984 

L 

si 
2 

g 0.0 I I I I I I I I I  I I I I I I I L  
I 10  10 

Instructions executed between page faults (K) 

Figure 9 Analysis of a 16-processor system with 100 MIPS/ 
processor, 4K bytes/page, m, = 0.3, and  network  bandwidth = 4 
gigabytes/second. 

formance  due  to 1/0 latency. (I/O latency affects  utilization 
and bus bandwidths if processors  wait  synchronously  for the 
disk transfers.  Such systems are considered in the next 
section.) This model gives a lower bound on t .  The infinite 
shared memory  analysis provided the  upper bound. For a 
given level of performance  the overall  design space  can now 
be substantially  constrained. 

Figure 10 gives the effect of disk transfer on t for N = 16, 
U p  = 0.9, and K = 10. The  minimum service time required 
for 4K- and  64K-byte disk transfers is plotted against  the 
mean  number of instructions between page  faults in shared 
memory. If the x axis is extended to infinity, shared memory 
page faults go to zero, which is equivalent to infinite shared 
memory.  For  a given miss ratio a  page  size of 64K bytes 
always require higher  bus bandwidth  than a page size of 4K 
bytes. If the miss ratio is reduced by 16 times in going from 
64K bytes to  4K bytes, their corresponding latency require- 
ments, t ,  become comparable. 

The BIP systems  studied in this section are  fairly complex, 
consisting of multiple processors, memories, buses, and disks. 
These systems  have been modeled using a very simple 
approach which includes the effects of synchronous  wait on 
shared memory transfers  and asynchronous  wait on 1/0 
transfers.  The model predicts  (as  expected)  that  bus  latency 105 
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Figure 10 Analysis of 16-processor system with 100 MIPS/ 
processor, 4K b y t e s / p a g e ,  m, = 0.3, and U p  = 0.9. 

is critical  and allows one  to  study  the precise  trade-offs 
between latency per bus and  the  number of buses and 
memories. The model can be used to  study  performance 
degradation  due  to  failures which result in the loss of buses 
and memories. In designing BIP systems, hit  ratios in local 
and  shared memory are  critical  parameters which must  be 
estimated for each  environment.  Once these parameters  are 
known, for given performance levels, the design space  can be 
substantially reduced  using the models developed. Subse- 
quently, more detailed analysis and  simulation  can  be 
attempted for specific implementations. 

6. Analysis of the KMIP system 
In this section the  bandwidth  requirements of the  KMIP 
interconnection  network are  determined.  The  analysis of the 
KMIP system involves two steps. First,  the concept of an 
active user is introduced,  and  all  subsequent  analysis is based 
on the  number of active  users. In  KMIP, it is assumed that on 
a miss in shared memory,  a 4K-byte page is first transferred 
from  the disk to  the  shared memory and  the speed matching 
buffer, and  then  from  the speed matching buffer to  the 
requesting  computer.  In  step 2 ,  we use the multiple stages of 
access model from Section  4 to  evaluate  the  latency  require- 
ments on both the local and  the long buses for  a given level of 
processor utilization. The  maximum possible utilization may 
be found by setting  average wait times in Eq.  (16)  to zero. It 106 
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is shown that  the long buses are  the bottlenecks  for  achieving 
effective MIPS close to  the  potential, when the  number of 
active  users is large. The effect of increasing the  number of 
access  ports per desk-top computer is discussed briefly. An 
example is given to  illustrate design  trade-offs. 

Active users 
A computer is active when an  instruction  stream is executed 
locally in response to a  single  user command,  and  it  generates 
page faults  at  the  rate of one every 10K-100K instructions. 
As  long as a  user is thinking, he is not active. Requests for file 
transfers for editing,  storing, back-up, and  journaling  do not 
create  an  active user. One  study [ 1 1 1  shows that  the  number 
of active  users can  be  anywhere from one in 10 to one in 50 
installed terminals (in  peak  hours) even in scientific  environ- 
ments. That is, for  every active user supported on the  system, 
10-50 desk-top  computers should be allowed to use the 
system to optimize  cost vs performance. Our subsequent 
analysis only deals with active users  since they place the most 
stringent  requirements on the network.  For  a given environ- 
ment, a specific ratio  must be obtained empirically to com- 
pute  the  total  number of desk-top computers  to be installed. 
In the following section, we give an  example  to show how the 
model of Section 4 can  be used to  evaluate  KMIP systems. 

Numerical  example 
Given 100 personal computers of 2 MIPS  capability  each, 
design  a KMIP system. 

The first step is to find what bus bandwidths  are feasible 
over the required distances. Assume that a maximum of 10 
MBPS  and  100  MBPS  are  reasonable for the long and  the 
short buses, respectively. Some  empirical  data, such as hit 
ratio in the  shared memory (h  = 0.9) and  the  number of 
instructions  (10K) processed before  a page-fault in the local 
memory, are also given. The second  assumption  implies that 
l / m  = 5 ms. Assume that  it  takes  an  average of 30 ms  for 
disk latency  and seek and 1  ms to  transfer a 4K-byte page. 
Given these data,  one  can  evaluate Me ( = 1.25)  from the 
equation given earlier in Section 3, which implies that 
processor utilization cannot exceed 0.625. Assuming that we 
are satisfied with  a processor utilization of 0.5, what values of 
N , ,  Q ,  and B ,  should be used? 

Let us find the  total  bandwidth  requirements for each of 
the  stages.  Since we know N,Q = 100,  the  number of page 
requests  made per second are known: 

N,QU,m = 10 000. 

Assuming that for every 4K-byte  page  request  there is 1K 
bytes of overhead, the  total  bandwidth  requirement for each 
stage is 50 MBPS.  Let us provide twice that  amount in each 
stage  to keep the wait times  small, which gives Q = 10, N ,  
= 10,  and B ,  = 1 .  Now,  the  last model of Section 4 can be 
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used to  evaluate  the  performance of the above  configura- 
tion: 

U p  = 0.563,  (0.562) 

W ,  + t ,  = 73.4, (72.85) F S ,  

w2 + t ,  = 705.5, (744.4) p s ,  

U,, = 0.563, (0.562). 

The above  system has been over-designed. One could 
reduce  the  bandwidth of each long bus, or could reduce  the 
number of long buses without  going below a U p  of 0.5. A few 
iterations would be required to  satisfy  all  the design  require- 
ments.  The  approach outlined in the previous paragraph 
gives a satisfactory  starting point. We  simulated  the above 
configuration to increase the reader’s confidence in our 
model. The  simulation results are given above (in paren- 
theses). 

In this  section we analyzed systems  consisting of hundreds 
of slow speed processors (1-5 MIPS) connected via time- 
shared buses to a large  shared  memory.  The motivation  for 
considering  such  systems was given. The focus was on the 
interconnection  network requirements. A 2-MIP desk-top 
computer is degraded  to  approximately 1.25 MIPS  due  to 
waiting  synchronously for disk transfers  (for typical  page 
sizes and hit ratios).  After this  effect, the most important 
factor is the  latency of the long buses. Based on the models 
developed in Section 4, latency  requirements were obtained 
for these buses given certain levels of further  performance 
degradation. For example,  a 2-MIP processor will be 
degraded  to  1.13  MIPS if IO-MBPS-long buses are used with 
10 active users each.  (Note: 10 active users does not imply 10 
desk-top computers per long bus.) As in Section 5 ,  models 
are used to  obtain only the first-order estimates  and  to  reduce 
the overall  design  space. 

7. Conclusions 
Simple models were developed for studying several  impor- 
tant  computer systems  consisting of processors, buses, and 
shared memory  modules. The models used the independence 
approximation  suggested by Hoogendoorn. A further 
approximation, called truncation, was introduced to  analyze 
multiple  bus  systems. The  analytical results  were  within 5 
percent of the simulation  results over the design space of 
interest.  The models  were  applied to  BIP  and  KMIP systems. 
It was shown that for specified levels of performance  the 
models can be used to quickly reduce  the design space,  after 
which more accurate  (and expensive)  techniques can be 
applied to  obtain  better  performance  estimates. 

The results indicate  that  the  bandwidth of a  single  bus is 
the most critical  parameter. If the required bandwidth 
cannot be supplied on a  single  bus due to technological 
constraints, it may be traded  to some extent with an 

increased number of buses and  shared memory  modules, as 
shown in this  paper. Since  the  number of buses is a parame- 
ter in our models, the effect of bus failures on system 
performance  may be studied by varying this  parameter.  This 
is in contrast  to  the previous analytical models which 
assumed  a fully functional  interconnection  network  (cross- 
bar)  during  their development. 
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