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A. Goyal
T. Agerwala

Performance Analysis of Future Shared Storage Systems

This paper deals with the analysis and design of two important classes of computer systems: BIP (Billion Instructions Per
Second) systems consisting of a few very high performance processors and KMIP (K Million Instructions Per Second) systems
with hundreds of low speed processors. Each system has large, shared semiconductor memories. Simple analytic models are
developed for estimating the performance of such systems. The models are validated using simulation. They can be utilized to
quickly reduce the design space and study various trade-offs. The models are applied to BIP and KMIP systems and their use

is illustrated using examples.

1. Introduction

This paper reports the analyses of two generic classes of
systems each consisting of several processors. The first
system, called BIP, consists of a few “supercomputers”
sharing a large FET memory and address space. The primary
motivations are improved throughput, reliability, availabili-
ty, and extendibility. Such systems will provide a total
throughput in excess of one billion instructions per second.
The second system, called KMIP, consists of hundreds of
workstations connected to a large central memory so that
individual users can share a large database. Example envi-
ronments are airline reservations, insurance claims process-
ing, computer aided design, application software develop-
ment, shared document composition, etc. The primary
motivation is the availability of low cost workstations in the 1
to 10 MIPS range. Computing environments in the 1990
time frame will contain elements of both systems.

BIP and KMIP are important systems that have not been
reported in the literature. Since they do not exist yet, there
are no empirical data about the behavior of these systems.
Detailed simulation is intractable. Several design trade-offs
and parameters must be studied prior to implementation.
The required interconnection structure, its bandwidth and
latency, and the relationship of these to processor utilization
must be determined. These issues are studied by defining a
queueing model of the system. The model can be simulated,
but even this is expensive. By making certain approxima-

tions, the model can be solved analytically. None of the
existing approximations is valid for either BIP or KMIP. A
new approximation is introduced and is validated by compar-
ing the analytic results with the results obtained by simulat-
ing the model over a large range of parameters. The approxi-
mation is then used to analyze the BIP and the KMIP
systems. Using this approach, important parameters can be
studied quickly. Once the trade-offs are understood and the
design space reduced, more accurate information can be
obtained through simulation.

In Sections 2 and 3 we discuss the systems in more detail.
Existing models are presented in Section 4, and their limita-
tions are discussed. The new approximation and validation
results are given. In Sections 5 and 6 the BIP and the KMIP
systems are analyzed.

2. The BIP system

The overall organization of the BIP system is shown in Fig. 1.
A specific structure for achieving a billion instructions per
second was studied in [1]. Eight (hypothetical) 128 MIPS
processors are connected using a single gigabyte per second
bus to a shared memory. Each processor has its own high
speed local memory. The access time for 1000 bytes from the
shared memory is 1 us. Several portions of this system were
designed and analyzed using a simulation model. High
processor utilization was achieved with levels of multipro-

© Copyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor. 95
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Figure 1 The BIP system.

gramming of approximately 32 per processor. This was
critically dependent on a high hit ratio in the shared memory
(>0.9), a high bandwidth bus of 1 gigabyte per second
(GBPS), and reduced disk latency (10 ms). In the design of
the system it was decided that the processor would wait
synchronously for data to arrive from the shared memory.
This waiting was not modeled correctly in [1] but was a
negligible effect for the chosen design point. We model the
effect of synchronous wait accurately in Section 4. In BIP
systems, like the one described above, a large shared memory
is of prime importance. We describe the main reasons below
with the help of a rough calculation. Let

Number of processors =N

Speed per processor = S x 10° instructions per second
Disk access time = L x 107" seconds

Disk transfer rate = D x 10° bytes per second

Disk to memory page size = P x 10’ bytes

Miss rate in local memory = one in K x 10° instructions

K is a critical parameter and must be determined experimen-
tally. Without shared memory, for a single job, the process-
ing time between two misses and the I/O time for a page
transfer are given by

K
Processing time = 3 ms,
. P
I/0 time = > + L ms.

Since the I/O time is tens of milliseconds and the process-
ing time is a tenth of a millisecond (for the technologies of
interest), processors must be multiprogrammed at very high
levels. The degree of multiprogramming per processor, com-
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puted as the I/O time divided by the processing time, is given
by

DOM = P L s
"k
and the required I/O bandwidth per job is

I0OB = P
LY
D S

~ 2 P megabytes per second (MBPS).

—+L
D

The I/0O bandwidth for the system is then

IOS=——P—>< £+L ><§><N
£+L+5 b K
D S
PSN

K

The typical values for disk access time and transfer time in
the 1990 time frame will be 10-30 ms and 2-6 MBPS,
respectively. For N = 10,8 = 100,D = 4, P = 4, L = 20,
and K = 10,

DOM = 210,
I10S = 400 MBPS.

These are fairly severe requirements. DOM and IOS are
inversely proportional to K. The large shared memory (one
tenth of the on-line file space) is utilized to reduce the
number of I/O requests by an order of magnitude. If a
fraction h of page requests are serviced by the shared
memory, then

P S(1 — h)
DOM = |~ + L} =——,
PSN(1 — h)
10S ~ — )

It is expected that K will be in the range 5-20. If # = 0.9 can
be achieved (either by proper structuring of the computation
or by providing a very large shared memory), then

10 < DOM =< 40,

20 < I0S < 80 MBPS,

which are more reasonable goals for the near future.
Another important issue is the block transfer size, P, on

the buses. A large block size increases the latency, whereas a

small block size may increase the page fault rate. If the effect
of the block size on the page fault rate is known, the model
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developed in Section 4 can be used to study the effect of block
size on processor utilization. The overhead involved during
the bus setup time can be included in the block transfer time.
Other issues, such as the effect of overlapping the memory
access with the bus transfer, which are not handled specifi-
cally by our model, are considered in some detail in [2].

When an access is made to the shared memory, there are
two options: either the processor waits, or as in the case of
disk access, it switches to another task. Task switching via an
operating system call may require many instructions to be
executed. In addition to this overhead, portions of the
processor cache are used up by the operating system call. If
the processor waits for the page request to be satisfied, a
given job is executed for longer periods without operating
system intervention and higher hit ratios are obtained. Some
loss in performance due to waiting may be compensated by
these effects. Although our analytical model can evaluate
both synchronous and asynchronous waiting, some empirical
data on the task switch overhead are required to make this
trade-off.

3. The KMIP system

The KMIP system is based on the assumption that individual
workstations of 1-10 MIPS capability will be available at
very low cost in the future. Such a system is reasonable where
the individual user does not require high processing speeds,
but must share a database with several other users. The
overall organization of the KMIP system is shown in Fig. 2.
The shared memory is assumed to have enough intelligence
to service page requests for the desk-top computers and to
transfer data to and from the mass storage devices. Many
office automation products [3] have file servers organized in
similar fashion. The important difference is that in the
KMIP system the data transfers occur at the paging rates
rather than the occasional file transfers requited in office
automation systems. Relatively high bandwidth buses (2-5
MBPS) are required for the applications of interest here.
Response time could be traded for communication channel
bandwidths. However, the processing capacity of a 1-10
MIPS computer would not be utilized effectively. Such
design trade-offs can be evaluated using our model.

The KMIP system, like the BIP system, needs a large
random access shared memory, besides the main storage
devices, such as disks. The important difference is that a
page transfer takes place in two steps. First it is transferred
on a local bus to a speed matching buffer (TSMB) and then
using a local area network to the appropriate desk-top
computer. Since the local network is limited in bandwidth, it
is a major source of performance degradation. If the cost of
the interconnection network is not prohibitive, the KMIP
approach does not require the desk-top computers to have
local, hard disks. In the following paragraph we give the
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Figure 2 The KMIP system.

motivation for using a large semiconductor shared memory
and show that the current technology is not suitable for a
very high speed desk-top computer.

In the KMIP system all computations are performed in the
desk-top computers. Since these computers are dedicated, it
is assumed that they are not multiprogrammed. If all over-
head except the disk access and the transfer times are
ignored, the maximum average effective MIPS per processor
(Me) is

K'/S

Me — s,
T @PD+LLK/S) "

where X’ x 10° is the mean number of instructions between
the disk requests. Without shared memory, if a 1-MIP
processor missed in its local memory once every 10 000
instructions, its average processing power would be reduced
to 0.25 MIPS with a 30-ms disk. With a large shared
memory K’ can be increased by an order of magnitude. For
K’ = 100 and P/D + L = 30 ms, the effective MIPS for
100-, 5-, 2-, and 1-MIP processors are 3.3, 2, 1.25, and 0.77,
respectively. Thus, with current disk technology, non-multi-
programmed, inexpensive processors in the range of 1-5
MIPS are reasonable, since only 33-60 percent of the
original MIPS are lost due to disk transfer time, as compared
to 97 percent for a 100-MIP processor. Me is further
degraded due to nonzero memory access and bus transfer
times, and even further due to memory and bus interference.
These effects can be evaluated using the model presented in
the next section.

4. The model

Our model is constructed to study various performance and
technology trade-offs and to reduce the design space using
quick parametric studies. Structural questions like the num-
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Figure 3 Queueing model for the BIP system.

ber of buses or shared memory modules to use, and techno-
logical questions like transfer rates for the bus or the shared
memory for a given performance level, are some of the
questions answered by the model. The desired structural
inputs to the model are the number of processors (V), shared
memory modules (), and buses (B). The other system
parameters are the mean processing time between page
faults (1/m), a constant time to transfer a page from the
shared memory to the processors (¢), the probability that on
a page fault processor i references shared memory module j
(P,), the probability that a hit occurs in the shared memory
(h), and some probability that a read causes a dirty page to
be written back (m, ). The desired outputs of the model are
processor utilization, average time spent by a page request in
the shared memory system, and job throughput.

Recently, many models for similar systems have been
analyzed. Bhandarkar proposed an exact solution of a system
with B = M (equivalent to a crossbar network) using a
Markov chain method and showed that the state space gets
very large for only a few processors [4]. He suggested an
approximate solution to the problem which produced errors
greater than 10 percent for certain relevant cases. Also, there
was no easy way to include asynchronous writes or task
switches on disk transfers. Hoogendoorn described a general
memory interference (GMI) model which had an error
tolerance of less than 5 percent, but he did not consider a
system with an arbitrary number of buses, asynchronous
writes, or task switches on disk transfers [5]. Marson and
Gerla assumed the page transfer times to be exponentially
distributed, which produced large errors as compared to
constant page transfer times for real systems [6]. Patel
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applied a special case of the GMI model (equal memory
reference probabilities, called UMI in this paper) to a
multiprocessor system where each processor has its own
private cache [7]. He did not consider an arbitrary number of
buses or finite shared memory.

In this section we present a new model which satisfies all
the requirements described earlier. We assume that the P,’s
are all equal; however, we do mention a way to get around
this problem. The first part of this section contains a trunca-
tion method to include buses. This is another approximation
over the already existing approximations used in the GMI
model. Therefore, we validate this new approximation using
extensive simulations [8], some of our own and some pre-
viously reported in the literature. In the second part of this
section, we show an easy way to include the effect of disk
transfers by assuming the degree of multiprogramming to be
infinite, and in the third part we extend our model to apply to
multiple stages of page transfers to analyze the KMIP
system.

® The truncation method

The system analyzed here is shown in Fig. 1, and its
equivalent queueing model is shown in Fig. 3. Its operation
and some relevant notation and assumptions are described
next.

1. A processor serves a job for an average of 1 /m time units
before a miss in the local memory occurs. Extensive
simulations done by us and in [5,7] show that the
distribution of this service time has a very small effect on
processor utilization. In the following analysis only the
mean service time is required, while for simulations we
have assumed exponentially distributed service times with
the same mean. If the time unit is one instruction execu-
tion time and geometrically distributed service times are
used, then the independent probability that any instruc-
tion causes a miss in the local memory is m.

2. On a miss in the local memory, a processor references a
shared memory module with an equal probability (1/M).
The processor waits till the requested page is transferred
to its local memory (synchronous wait).

3. The page request arrives at the given shared memory
module in zero time. This request is actually transferred
on one of the buses, and its transmission creates a small
overhead. This overhead can be included in the model, but
that is not the main objective here.

4. The page request waits in a queue till all the previous page
requests to that shared memory module are satisfied, and
a free bus is available. It takes a constant time of ¢ units to
access and transfer a page from the shared memory to the
local memory.

5. The shared memory module and the bus used by this
request become free and the processor starts service
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again. Notice that in the above description there is no
miss in the shared memory (h = 1); that is, none of the
processors is multiprogrammed for the above mode of
operation. We include A < 1 later.

6. Every page request causes an additional (in parallel)
write request with probability m_,. Write requests follow
steps (3) and (4); however, processors do not wait for their
completion before resuming service.

Assume that a page request takes an average of w time
units to obtain the required shared memory module and an
arbitrary bus. Since the bus and the memory access algo-
rithms do not treat a write request differently from a read
request, this average wait should be common for both of
them. Another point to note here is that the queueing system
described here is a closed system which is always stable and
has an equilibrium state. In equilibrium, the average request
rate originating from any given processor is U m(1 + m,)
pages per unit time (throughput per processor), where U, is
processor utilization. With this minimal explanation, we
provide the expressions for the average number of busy
memory moedules, M', and processor utilization, U,. Apply-
ing Little’s formula (L = [A][W]) to shared memory mod-
ules, the average number of busy shared memory modules is
given by

M’ = [NUm(1 + m)][1], )

and Little’s formula applied to a single processor yields

1 1
U = —
P 1 m]
— 4w+t
m
or
— (20)
- . a
Pl +mw+ 1)
If processors wait for write requests to be completed,
U = : (2b)
P+ m(l +mYw+ 1)

Moreover, the fraction of time that a given processor has a
request in the shared memory subsystem can be determined
by applying Little’s formula to the shared memory subsys-
tem as follows:

m' = [Um(l + m)[(w + 1)]. 3)

Equation (3) is correct whether processors wait for write
requests or not. The above equations are exact and can be
found in [35, 7]. Now, we have three equations (1-3) in four
unknowns (M’, U, w, and m’). Hoogendoorn approximated
the above model with a discrete time model where every
processor requests a memory transfer of one time unit with
an independent probability of m’ in every time unit. Only one
request per shared memory module is satisfied, and the rest
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of the requests get lost. This is called Hoogendoorn’s inde-
pendence assumption here. Now, for UMI, the average
number of busy memory modules can be simply calculated as
follows.

In a given time unit, each shared memory module is
addressed with probability m’/M from the local memory.
The probability that a shared memory module is not
requested is (1 — m’/M)". Conversely, the probability that
a module is requested is [1 — (1 — m’/M)N]. Therefore, the
probability that i shared memory modules are requested is

M N N Mi
= =m/MTT I - m'/MYT] (4a)

1

and the expected number of busy memory modules is given
by

M =M[l - (1 -m/M)"]. (4b)

This gives us four equations (1-4) in four unknowns (M", U,
w, and m’), which can be reduced to a single nonlinear
equation in U,. Therefore, the performance of the system can
be evaluated by solving this nonlinear equation. Both
Hoogendoorn and Patel observed that the above approxima-
tion for evaluating M’ and U, matches very well with the
simulation results. Equation (4) becomes quite complex for
nonuniform reference probabilities. M’ can still be evaluated
by using an iterative method as suggested in [5]. Although
the GMI model can be extended to model bus contention, we
show only the UMI extension.

The probability that 7 (1 < i < M) shared memory mod-
ules are requested is given in Eq. (4a), which is a binomial
probability distribution. If B = M, then Eq. (4a) also gives
the probability that i (1 < i < M) shared memory modules
are busy. However, if B << M, the maximum possible number
of busy memory modules is B. Therefore, the average num-
ber of busy memory modules for an arbitrary number of
buses is approximated as

=0\ {

M (M Wi
M=% -0 -m/M"]

N M- . R
x [(1 —m'/M)"] min (i, B), (%)
and the utilization of an individual bus is given by
U,=M/B. (6)

This simple method for redistributing the probabilities is
called truncation in this paper. Truncation is a very simple
extension of the independence approximation already made
by Hoogendoorn. Since the independence assumption has
been validated for a large number of test cases in [5, 7], we
expect it to work well with the truncation extension also.
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Table 1 Average number of busy memory modules with N = M == 16, no writes, and infinite shared memory; (a) our simulation, (b) analysis,
and (c) Lang’s simulation.

Mean processing time 1 2 4 8 16 32
Buses
1 a 1 1 1 1 0.8584 0.4794
b 1 1 1 0.9997 0.8719 0.4811
c 1
2 a 2 2 2 1.6616 0.9316 0.4852
b 2 2 1.9963 1.6655 0.9331 0.4847
c 2
3 a 3 3 2.7924 1.7547 0.9391
b 3 2.9953 2.7810 1.7479 0.9396
c 3
4 a 4 3.9581 3.0523 1.7667
b 3.9943 3.9200 3.0368 1.7660
c 4
5 a 4.9889 4.6138 3.1146
b 4.9553 4.5467 3.1056
c 4.98
6 a 5.8796 4.8807 3.1288
b 5.7856 4.8384 3.1337
c 5.85
7 a 6.4716 4.9567
b 6.3743 4.9576
c 6.43
8 a 6.7388 4.9848
b 6.7174 5.0007
c 6.70
9 a 6.8144 5.0083
b 6.8795 5.0206
¢ 6.82
10 a 6.8404
b 6.9499
c 6.83
11 a 6.8536
b 6.9758
¢ 6.83
12 a 6.8469
b 6.9825
c 6.83
Table 2 Processing power for N = 6, M = 4, B = 2. Example 1
a. N= M = 16, Bis increased from 1 to 16.
p P Py b. m,, = 0 (no write requests).
0.001 5.99 5.994 c. The s.um of the memory access time.and th'e l:.>us transfer
0.01 5.94 5.940 time is assumed to be constant at 1 time unit, i.e., r = 1.
0.1 5.42 5.418 d. The mean processor service time is varied from 1 to 32 in
0.333 4.14 4.164 tipl £2
0.5 3.37 3.384 multipies ot 2.
0.75 2.49 2.508
1.0 1.95 1.944 Table 1 shows the average number of busy memory
3.0 0.66 0.666 btained fi he simulati d th .
50 0.40 0.402 modules obtained from the simulation (a) and the analysis
(b). Processor utilization can be obtained from Eq. (1). All
analytical results are within 2 percent of the means obtained
from simulation. The average number of busy memory
modules increases linearly in the beginning (region 1) as the
A large number of simulations were run to validate the number of buses increases. It tapers off very quickly and does
above model. These simulations were run long enough so that not change any further (region 2). We truncate each column
90 percent confidence intervals for M’ and U, had relative in the table when increasing the number of buses does not
100 half-widths of less than 2 percent. change the analytical value of M’ in the third place after the
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Table 3 Average number of busy memory modules with m, = 0.3, N = M = 16, and infinite shared memory; (a) simulation, (b) analysis.

Mean processing time 1 2 4 8 16 32
Buses
1 a 1 1 1 1 0.9683 0.6138
b 1 1 1 1 0.9939 0.6197
2 a 2 2 2 1.9036 1.1904 0.6312
b 2 2 2 1.9554 1.2059 0.6310
3 a 3 3 2.9924 2.2116 1.2155 0.6332
b 3 3 2.9882 2.2361 1.2165 0.6330
4 a 4 3.9981 3.6629 2.2733 1.2185
b 4 3.9968 3.6964 2.2771 1.2205
5 a 4.9989 4.9451 3.9007 2.2848
b 4.9978 4.9499 3.9352 2.2830
6 a 5.9824 5.6633 4.0034 2.2898
b 5.9819 5.6866 4.0082 2.2928
7 a 6.8936 6.0589 4.0265
b 6.8980 6.0899 4.0331
8 a 7.6089 6.1989 40314
b 7.6525 6.2725 4,0413
9 a 8.0455 6.2844
b 8.1590 6.3475
10 a 8.2419 6.3154
b 8.4420 6.3772
11 a 8.2984 6.3204
b 8.5757 6.3840
12 a 8.3429
b 8.6295
13 a 8.3421
b 8.6490

decimal. In the first region, buses are the bottleneck, and in
the second region, memory interference is the bottleneck.
Notice that when the value of 1/m is large, the buses are
never a bottleneck. If there were no bottlenecks, the maxi-
mum processor utilization would be that obtained from Eq.
(2) by setting w to zero. The analytic and simulated probabil-
ity distribution for the number of busy memory modules is
given in {2], and it is concluded that although the simulated
probability distribution is not exactly the truncated binomial,
the probability mass does tend to stack up at B and its mean
is very accurate (Table 1), as predicted in the truncation
approximation.

In the first column of Table 1, we have included some
simulation statistics (¢) for M’ obtained by Lang et al. [9].
Besides simulation variations, a small discrepancy between
their simulation statistics and ours is due to the fact that they
model the processor service time (1/m) using a geometric
distribution with mean 1, whereas we used an exponential
distribution with the same mean. This observation also shows
that the processor service time distribution has little effect on
the performance of the system shown in Fig. 1.

In [6], Marson and Gerla obtained some simulation
results for multiple bus architectures. For constant memory
access and bus transfer times, they obtained processing
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power which is equivalent to NU, in our case. The value of p
used there is equivalent to the product mt. We compare our
analytical results for a system with N = 6, M = 4, and B
= 2 to their simulation results [6, Table IV], in our Table 2.
Time ¢ is assumed to be constant at 1, and m is varied from
0.001 to 5. The analytical results are within 1 percent of their
simulation.

Example 2
Same as Example 1, except that m, = 0.3.

This increases the memory interference and decreases
processor utilization [Eq. (2b)]. When memory interference
is extremely high, the independence assumption is not very
good. This is evident from the fact that the largest relative
error is in the last entry of the first column of Table 3, where
there is no bus interference and consequently the truncation
extension does not affect the analytical results and the error
is due to the independence assumption only. However, the
relative errors are still less than 4 percent. (Similar observa-
tion is made after we include the disk transfers.) Since most
real system designs tend to keep processor utilization very
high (or average number of busy memory modules low), our
analysis is quite pragmatic.

Patel [7] presents several local memory organizations,
such as buffered write-back, write-through, etc. Different
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Figure 4 Queueing model for the KMIP system.

organizations require appropriate changes in the expressions
for Up, M', and m’, whereas the equation for the equivalent
model, Eq. (§), remains the same. In the following subsec-
tions we present some useful models for finite/infinite shared
memory and synchronous/asynchronous waits on read/write
requests.

& Infinite shared memory/asynchronous wait

In this case, processors do not even wait for the read requests
to be completed. As soon as a miss in the local memory
occurs, they start working on another job. To keep the
analysis simple, we assume an infinite supply of jobs at the
processor. In other words, processors are not idle because of a
lack of jobs. A job switch causes a certain amount of
overhead (e.g., for I/O routines, dispatching, etc.) which
takes, say, ¢, units of time. Therefore, the processor utiliza-
tion becomes

1
Pl me)’

(7

and the expression for M’ remains the same as Eq. (1).
Equations (1) and (7) can be solved exactly to obtain U, and
M'. Hence, no validation is required.

o Finite shared memory/synchronous wait at shared mem-
ory/synchronous wait at disk

This model is useful in analyzing the KMIP system described
in Section 3. A busy processor requests a shared memory
transfer with probability m#h and a disk transfer with proba-
bility m(1 — A) in every time unit. The time to service a
shared memory transfer is (w + ¢), and a disk transfer is

k!
td=(w+L+5—,+k’t)+(w+t), (8)

where

L = latency + seek,

A. GOYAL AND T. AGERWALA

k' = number of pages transferred from the disk subsystem,
D' = disk speed in pages per unit time.

The first term in #, is for the transfer of a block of k' pages
from the disk to the shared memory, and the second term is
for the transfer of a single page from the shared memory to
the local memory of the requesting processor. Therefore, the
processor utilization becomes

1
U = .
Pl + mh(w + 1) + m(1 — k)t

(€))

Processor wait on writes can be included by multiplying m
with (1 + m,) in the above equation. Similarly, the average
number of busy memory modules can be calculated as

M = NUm[l + m, + (1 — K]z, (10)

The equivalent unit request rate on the network is evaluated
by including the traffic created by disks. Therefore, the
equation for m’ becomes

m' =Um[l + m, + (1 - hk'](w +1). (1

Th¥: above three equations, together with Eq. (5), can be
solved to evaluate system performance. The validation of this
disk model is done later in this section.

® Finite shared memory/synchronous wait at shared mem-
ory/asynchronous wait at disk

Now a processor does not wait for disk transfers. This model
is used to analyze the BIP system. Again to keep the analysis
simple, we assume an infinite supply of jobs at the processor.
Processor utilization then becomes

1
U = i)
Pl +mw+ 1) + m(l — h)t,

12)

and the terms for M’ and m' used in the last subsection are
still valid. The analytical results are still within 5 percent of
the simulation as evident from the tables given in [2]. If a
processor does not wait for read transfers also, Eq. (7) for U,
and Eq. (10) for M’ describe the exact system behavior.

& Multiple stages of access

It is possible to extend the above model to multiple stages of
access and transfer. Some multiprocessing systems have two
or more stages in which the accesses and transfers take place.
For example, in the KMIP system shown in Fig. 2, a page is
first read from the shared memory to a speed matching
buffer using a local bus, and then this page is transferred to
the requesting processor using a local area network. The
equivalent queueing model for the KMIP system is shown in
Fig. 4. We denote the first and the second stages by
subscripts 1 and 2, respectively. Any stage can be modeled by
any one of the four models presented up to this point.
Specifically, the first stage will use the model with synchro-
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nous waits at the disk and the second stage will use the model
with infinite shared memory and synchronous wait. Assume
that all the parallel branches in the second stage are identi-
cal. The average number of busy TSMBs (speed matching
buffers) per local area network, M, can be written as

My = N,Um(l + m)t,, (13)

where N, is the number of processors on each local area
network, and ¢, is the transfer time for a single page on this
network. The corresponding m) is given by Eq. (3), where w
and ¢ are replaced by w, and ¢,, respectively. The average
number of busy shared memory modules, M, is given by

M| = NQU,m[h + m, + (1 — b)k']z,, (14)

where £ is the total number of parallel branches in stage 2
(total number of local area networks). We use A instead of 1
[see Eq. (10)] inside the parentheses because we assume that
a page transferred from the disk is received by both the
shared memory and the speed matching buffer simultaneous-
ly. The corresponding equation for m, is therefore

my = Umlh + m, + (1 - K1, +w)), (15)
and the equation for U, is given by
U, =

1

K '
1 +m w2+t2+h(w,+tl)+(l—h)(wl+L+—5+k’tl)

(16)

The equivalent model [Eq. (5)] can be applied to stages 1
and 2 in succession to yield two nonlinear equationsin w , w,,
and U,. These equations, together with Eq. (16), can be
solved numerically to evaluate the performance of the sys-
tem. We programmed a very simple bisection method in
64-bit arithmetic to solve the above equations. The solution
did not converge for cases where utilizations for both
networks (Uy,, Uy,) were extremely close to one (>0.99). In
all other cases, the solution converged very quickly. The
number of iterations was substantially smaller when we
applied the bisection method to the less loaded (low bus
utilization) stage first. The details of the experiments per-
formed on the KMIP system are given in [2]. All utilization
statistics were estimated within four percent of the means
obtained via simulation.

There are two main contributions of the above models.
First, limited-bus architectures can be analyzed, and second,
multiple stages of access and transfer can be accommodated.
None of these have been previously reported in the literature.
Experimentation shows that most of the errors introduced in
the above model are due to the memory interference model
chosen, and not because of the truncation extension. Had we
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Figure 5 Analysis of a BIP system with 100 MIPS/processor, 4K
bytes/page,m, = 0.3,and M = B = 1.

applied the truncation extension to Rau’s model [10] (zero
processing time), more accurate results could have been
obtained. However, within the regions of interest (U, > 0.5
for the BIP and Uy, Uy, < 0.9 for the KMIP), the above
models can be used to analyze the BIP and the KMIP
systems with sufficient accuracy.

5. Analysis of the BIP system

The interconnection structures considered here are crossbar
and multiple buses. Our primary concern here is the band-
width that should be provided for a single block transfer from
the shared memory to a processor. The effect of writing back
dirty pages is included in the model, as described in Section
4. All graphs drawn in this section assume that 0.3 page is
written back for every page read. The overhead is included in
the transfer time ¢ and consists of several delays: determining
where the block is located in the shared memory, establishing
the connection, and initiating the access. The overhead is
dependent on the technology and the complexity of the
interconnection network and must be determined for each
system. For the BIP system [1] this overhead was approxi-
mately 1 us. This section discusses system design issues in the
case where the processor waits for a shared memory trans-
fer.

® [nfinite shared memory
Given the average number of instructions executed between
page faults (K) and the speed of the processor (), the mean
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Figure 6 Analysis of a 64-processor system with 100 MIPS/
processor, 4K bytes/page, m, = 0.3,and U, = 0.8.

arrival rate of requests, m, from a processor to the shared
memory subsystem is known. For different system structures
with varying numbers of buses (B) and memory modules
(M), the model in Section 4 provides the processor utilization
(U,). The response time has two components, the average
wait time (w) and the fixed service time (). Since we are
interested in the latency requirements, results are plotted as
shown in Fig. 5, i.e., maximum service time (¢) allowed vs K,
for fixed processor utilization.

Curves a, b, and ¢ are for U, = 0.8, 0.85, and 0.9,
respectively, for S = 100, and for N = 1. Since there is no
interference, thése curves place an upper bound on the
service time (¢) and, therefore, a lower bound on the technol-
ogy. Curves d, e,and fare for M = B = 1and V = 8. At U,
= 0.9 and K = 10, the maximum service time allowed is 6
us. Assuming 1 us as overhead, the access and transfer must
take place within 5 us. Therefore, for a 4K-byte page size, the
bus bandwidth must be at least 800 MBPS, and even if the
memory access and the bus transfers are overlapped per 1000
bytes, the memory access time must be less than 1 ps. This
example illustrates the following important point: Synchro-
nous paging with low performance degradation places severe
requirements on the bus technology. Figure 5 also gives the
average wait time (w) for a fixed U, and K as explained
below.
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Figure 7 Analysis of a 64-processor system with 100 MIPS/
processor, 4K bytes/page, m, = 0.3,and U, = 0.9.

AtK = 10and U, = 0.9, from curve d, 7 is 10 ps. The wait
time is therefore 4 us. Curves g, h, and i are for N = 64 and
M = B = 1. Clearly, the response time in this system is
dominated by the wait time. The required service time
cannot be supported with the available technology. In this
case, w must be reduced by increasing M and B. The precise
effect is shown in Figs. 6 and 7 for U, = 0.8 and 0.9,
respectively. From Fig. 7, at K = 10, at least 8 memories and
8 buses are needed to obtain ¢ = 6 us, each of which will have
the same requirements as mentioned in the previous para-
graph, provided the overhead remains at 1 ps.

Figure 7 also illustrates that the system is either memory
limited or bus limited at different values of M and B. At
(M, B) = (2, 2), the system is completely bus limited, and
increasing M to 4 has no effect on ¢. Average wait time w is
substantially reduced in moving from (4, 2) to (4,4). At
(4, 4) the system is not bus limited; increasing M from 4 to 8
reduces w. At B = 8 the system is no longer bus limited;
increasing M from 8 to 16 to 32 decreases w continuously.
For N = 64, 5 = 100, the appropriate system structure is M
= 16 and B = 8. The analysis of a 16-processor system is
described in [2], and it is concluded that, in general, N/4
buses and N/2 memories represent a good cost-effective
design point. Based on availability considerations, a constant
number of buses and memory modules may be added.
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Figure 8 Analysis of a 16-processor system with 100 MIPS/
processor, 4K bytes/page, m, = 0.3,and t = 5 us.

The latency requirements on the bus and memory can be
reduced to some extent by using certain design techniques.
The interested reader is referred to [2] for details. In general,
t must be chosen so that degradation is maintained within
certain bounds, since K will be specified as a range. In Fig. 8,
U, is plotted against traffic intensity, the product mz. Time ¢
is chosen to be 5 us, so that the expected traffic intensity for a
range of K (5 to 20) is below 107", At higher levels,
performance is too sensitive to K. In Fig. 9, we have plotted
processor utilization vs K, keeping the total available bus
bandwidth at 4 GBPS. All curves are for a system in which N
= M = 16. For nominal values of K (5 to 20), four buses of
one gigabyte each are recommended.

® Finite shared memory

In the previous analysis, page transfers between local and
shared memories were included, but I/O transfers were
completely ignored. In some environments, the required /0
bandwidth can be large. Since I/O transfers utilize the bus
and the shared memory resources, their effect cannot be
neglected.

In Section 4, the execution model was extended to include
the effect of 1/O transfers. I/O bandwidth was considered,
but it was assumed that the degree of multiprogramming was
large enough so that there was no degradation in per-
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Figure 9 Analysis of a 16-processor system with 100 MIPS/
processor, 4K bytes/page, m, = 0.3, and network bandwidth = 4
gigabytes/second.

w

formance due to I/O latency. (I/O latency affects utilization
and bus bandwidths if processors wait synchronously for the
disk transfers. Such systems are considered in the next
section.) This model gives a lower bound on ¢. The infinite
shared memory analysis provided the upper bound. For a
given level of performance the overall design space can now
be substantially constrained.

Figure 10 gives the effect of disk transfer on ¢ for N = 16,
U, = 0.9, and K = 10. The minimum service time required
for 4K- and 64K-byte disk transfers is plotted against the
mean number of instructions between pa‘ge faults in shared
memory. If the x axis is extended to infinity, shared memory
page faults go to zero, which is equivalent to infinite shared
memory. For a given miss ratio a page size of 64K bytes
always require higher bus bandwidth than a page size of 4K
bytes. If the miss ratio is reduced by 16 times in going from
64K bytes to 4K bytes, their corresponding latency require-
ments, ¢, become comparable.

The BIP systems studied in this section are fairly complex,
consisting of multiple processors, memories, buses, and disks.
These systems have been modeled using a very simple
approach which includes the effects of synchronous wait on
shared memory transfers and asynchronous wait on I/O
transfers. The model predicts (as expected) that bus latency
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Figure 10 Analysis of 16-processor system with 100 MIPS/
processor, 4K bytes/page, m, = 0.3,and U, = 0.9.

is critical and allows one to study the precise trade-offs
between latency per bus and the number of buses and
memories. The model can be used to study performance
degradation due to failures which result in the loss of buses
and memories. In designing BIP systems, hit ratios in local
and shared memory are critical parameters which must be
estimated for each environment. Once these parameters are
known, for given performance levels, the design space can be
substantially reduced using the models developed. Subse-
quently, more detailed analysis and simulation can be
attempted for specific implementations.

6. Analysis of the KMIP system

In this section the bandwidth requirements of the KMIP
interconnection network are determined. The analysis of the
KMIP system involves two steps. First, the concept of an
active user is introduced, and all subsequent analysis is based
on the number of active users. In KMIP, it is assumed that on
a miss in shared memory, a 4K-byte page is first transferred
from the disk to the shared memory and the speed matching
buffer, and then from the speed matching buffer to the
requesting computer. In step 2, we use the multiple stages of
access model from Section 4 to evaluate the latency require-
ments on both the local and the long buses for a given level of
processor utilization. The maximum possible utilization may
be found by setting average wait times in Eq. (16) to zero. It
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is shown that the long buses are the bottlenecks for achieving
effective MIPS close to the potential, when the number of
active users is large. The effect of increasing the number of
access ports per desk-top computer is discussed briefly. An
example is given to illustrate design trade-offs.

® Active users

A computer is active when an instruction stream is executed
locally in response to a single user command, and it generates
page faults at the rate of one every 10K—100K instructions.
As long as a user is thinking, he is not active. Requests for file
transfers for editing, storing, back-up, and journaling do not
create an active user. One study [11] shows that the number
of active users can be anywhere from one in 10 to one in 50
installed terminals (in peak hours) even in scientific environ-
ments. That is, for every active user supported on the system,
10-50 desk-top computers should be allowed to use the
system to optimize cost vs performance. Our subsequent
analysis only deals with active users since they place the most
stringent requirements on the network. For a given environ-
ment, a specific ratio must be obtained empirically to com-
pute the total number of desk-top computers to be installed.
In the following section, we give an example to show how the
model of Section 4 can be used to evaluate KMIP systems.

® Numerical example
Given 100 personal computers of 2 MIPS capability each,
design a KMIP system.

The first step is to find what bus bandwidths are feasible
over the required distances. Assume that a maximum of 10
MBPS and 100 MBPS are reasonable for the long and the
short buses, respectively. Some empirical data, such as hit
ratio in the shared memory (h = 0.9) and the number of
instructions (10K) processed before a page-fault in the local
memory, are also given. The second assumption implies that
1/m = 5 ms. Assume that it takes an average of 30 ms for
disk latency and seek and 1 ms to transfer a 4K-byte page.
Given these data, one can evaluate Me ( = 1.25) from the
equation given earlier in Section 3, which implies that
processor utilization cannot exceed 0.625. Assuming that we
are satisfied with a processor utilization of 0.5, what values of
N,,%, and B, should be used?

Let us find the total bandwidth requirements for each of
the stages. Since we know N,2 = 100, the number of page
requests made per second are known:

N,2U,m = 10 000.

Assuming that for every 4K-byte page request there is 1K
bytes of overhead, the total bandwidth requirement for each
stage is 50 MBPS. Let us provide twice that amount in each
stage to keep the wait times small, which gives £ = 10, N,
= 10, and B, = 1. Now, the last model of Section 4 can be
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used to evaluate the performance of the above configura-
tion:

U, = 0.563, (0.562)
w, + 1, = 13.4, (72.85) s,
w, + 1, = T05.5, (744.4) s,
Uy, = 0.563, (0.562).

The above system has been over-designed. One could
reduce the bandwidth of each long bus, or could reduce the
number of long buses without going below a U, of 0.5. A few
iterations would be required to satisfy all the design require-
ments. The approach outlined in the previous paragraph
gives a satisfactory starting point. We simulated the above
configuration to increase the reader’s confidence in our
model. The simulation results are given above (in paren-
theses).

In this section we analyzed systems consisting of hundreds
of slow speed processors (1-5 MIPS) connected via time-
shared buses to a large shared memory. The motivation for
considering such systems was given. The focus was on the
interconnection network requirements. A 2-MIP desk-top
computer is degraded to approximately 1.25 MIPS due to
waiting synchronously for disk transfers (for typical page
sizes and hit ratios). After this effect, the most important
factor is the latency of the long buses. Based on the models
developed in Section 4, latency requirements were obtained
for these buses given certain levels of further performance
degradation. For example, a 2-MIP processor will be
degraded to 1.13 MIPS if 10-MBPS-long buses are used with
10 active users each. (Note: 10 active users does not imply 10
desk-top computers per long bus.) As in Section 5, models
are used to obtain only the first-order estimates and to reduce
the overall design space.

7. Conclusions

Simple models were developed for studying several impor-
tant computer systems consisting of processors, buses, and
shared memory modules. The models used the independence
approximation suggested by Hoogendoorn. A further
approximation, called truncation, was introduced to analyze
multiple bus systems. The analytical results were within 5
percent of the simulation results over the design space of
interest. The models were applied to BIP and KMIP systems.
It was shown that for specified levels of performance the
models can be used to quickly reduce the design space, after
which more accurate (and expensive) techniques can be
applied to obtain better performance estimates.

The results indicate that the bandwidth of a single bus is
the most critical parameter. If the required bandwidth
cannot be supplied on a single bus due to technological
constraints, it may be traded to some extent with an
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increased number of buses and shared memory modules, as
shown in this paper. Since the number of buses is a parame-
ter in our models, the effect of bus failures on system
performance may be studied by varying this parameter. This
is in contrast to the previous analytical models which
assumed a fully functional interconnection network (cross-
bar) during their development.
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