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Mapping  Uninterpreted  Schemes  into  Entity-Relationship 
Diagrams: Two Applications to Conceptual  Schema  Design 

A method  of  mapping  sets  of uninterpreted  record or  relation schemes into  entity-relationship  diagrams  is described and then 
applied  to  two conceptual  design problems.  First, the method  is  applied  to the  design of  relational  databases. It is shown that 
the method can be interpreted as  a  normalization  procedure  that  maps  a given relational  schema into  a new schema that 
represents an entity-relationship  diagram.  That  is, the  original  schema has an interpretation in terms  of higher-order  concepts, 
which helps in understanding  the  semantics of the database it describes.  The second  design problem is related  to the conversion 
of  conventionaljile  systems  to the database  approach.  The  method  is used in this  context to  obtain  a  database conceptual 
schema from the description  of the conventional system, which is one of the fundamental  steps  of the  conversion process. 

1. Introduction 
The design of a database  can  be divided into two major 
phases [ 1 1, conceptual or logical design and physical  design. 
The goal of the first phase is to  obtain a machine- 
independent, high-level description of the  database, called  a 
conceptual schema. The second phase addresses the problem 
of obtaining  an efficient representation of the  conceptual 
schema in terms of the access  methods and file structures 
supported by the  database  management  system.  The result is 
called an internal schema. 

The design of the  conceptual  schema is a difficult task 
since  it  should reflect the  semantics of the real-world applica- 
tion being modeled. The  quality of the  conceptual  schema, 
how faithfully it  represents the  application, is a prerequisite 
for obtaining a semantically reliable database  system. A 
system  with poor performance  can sometimes be tolerated, 
but a database system that does not reflect the real world 
application is useless. 

The  conceptual  schema consists of a  set of logical data 
structures describing how data  are  organized,  and a  set of 
integrity constraints  indicating  what  data values correctly 
reflect concrete  situations.  The classes of logical data  struc- 
tures  and  integrity  constraints allowed are  determined by the 
data  model chosen. 

This  paper addresses two conceptual design  problems: how 
to define conceptual  schemata for relational  databases  that 
can be interpreted in terms of higher-level concepts; and how 
to  obtain a conceptual  schema  starting from the description 
of a conventional file system. 

Both problems are  attacked by defining a method of 
assigning an  interpretation in terms of the  entity-relationship 
model [2] to a set of uninterpreted relation (or record) 
schemes. The method analyzes  the  patterns of cross refer- 
ences among relations to  detemine  whether a  relation scheme 
represents an  entity type,  a relationship type, or a combina- 
tion of both. 

The  entity-relationship model was chosen as  the  target 
model because  it is accepted  as a paradigm for high-level 
data models. As the  name implies, the basic  concepts are  that 
of an  entity, which stands for an object with an independent 
existence, and  that of a  relationship,  understood as a  connec- 
tion between entities. 

The  interest in such  a  method can  be  better understood by 
discussing in more  detail  the  two  design  problems 
addressed. 
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Consider first the design of relational  databases.  The 
relational model of data,  as originally conceived by Codd  [3], 
adopted relations (or tables)  as  the ony logical data  struc- 
tures, leaving practically  all  semantics  to be expressed by 
integrity  constraints.  Having  relations  as  the sole data  struc- 
ture  makes  the model conceptually very simple.  However, 
since relations  are  semantically  neutral,  large relational 
conceptual  schemata  can  be difficult to  understand. To 
remedy this difficulty, an extended relational model, with 
more semantic  constructs, was proposed later by Codd  [4]. 

The method  discussed in this paper offers an  alternative 
solution by showing how to  map  relational  schemata  into 
entity-relationship  schemata.  When  the  mapping is a t  all 
possible, the  relational  schema is said to be in entity- 
relationship  normal form  (ERNF). Besides being based on 
the idea of a mapping, ERNF differs from previous normal 
forms [5-71 since it  depends on an  analysis of certain 
constraints on pairs of relations  called inclusion dependencies 
[8], whereas the five well-known normal forms  are based on 
constraints on individual  relations. 

Consider now the conversion of conventional file systems 
to  the  database  approach.  It is claimed that  the first step of 
such  a process should be the design of a high-level, integrated 
conceptual  schema  and  that  the design  should be based on 
the description of the original system. 

The method  helps in this  case because the  conceptual 
schema  can be designed in two  steps. First, a loosely 
integrated relational schema  that is closely correlated with 
the conventional file system is defined. At  this  stage, prob- 
lems such as domain definitions are  taken  care of. Then  the 
method is applied to  integrate  and  normalize  the  relational 
schema  and, finally, map it into a high-level entity-relation- 
ship  schema. 

It should be clear  that  the method  helps just  one  step of the 
conversion process. It covers neither  the  complete design of 
the  database nor the conversion of application  programs.  It 
also leaves untouched  the problem of initializing the  data- 
base operation. In particular,  it does not cover physical 
database design, which might be based on an analysis of the 
file design, since  the  latter usually  reflects performance 
considerations. 

A  methodology close to  that described in this  paper was 
developed in [9] for obtaining  entity-relationship views of a 
relational  conceptual  schema.  The  CHARADE project [ 101 
can  also be compared  to  the method described, a t  least in 
purpose. The conversion of conventional file systems has not 
received much attention in the  literature. In fact, no major 
reference  exists as  far  as we know, except in connection  with 
the problem of extracting  data  from existing files to load the 

database [ l l ,  Chap. 10.11. The design of relational data- 
bases based on normalization  theory  has, on the  contrary, a 
vast  literature (good surveys can be found in [3,11-  14]),  but 
the notion of a normal  form defined via a mapping  to 
entity-relationship  schemata  and using inclusion dependen- 
cies has not  been  considered  before. 

This  paper is organized as follows. Section 2 contains basic 
concepts and introduces the  notation used. Section  3  illus- 
trates  the method proposed with an example. Section 4 
describes  a  method of combining sets of relation  schemes. 
Section 5 presents an  algorithm  that synthesizes entity- 
relationship  schemes from a  set of uninterpreted relation 
schemes and inclusion dependencies. Section 6 discusses two 
applications of the  algorithm described in Section  5, one in 
connection  with the design of relational  databases  and 
another  related  to  the conversion of conventional file systems 
to  the  database  approach. Finally,  Section 7 contains conclu- 
sions and directions  for future  research. 

2. Basic concepts and notation 
In this section, we first give a brief survey of the  entity- 
relationship  model, which may  be skipped on a  first reading. 
We  then present the concepts and  notation of the relational 
model used throughout  the  paper. 

The entity-relationship model 
The  entity-relationship model provides a high-level tool to 
describe databases. As the  name implies,  it is centered on two 
informal concepts: entity  and relationship. An entity is 
vaguely defined as  any object  with an independent  existence, 
such as employee or department. A class of entities of the 
same kind is called an  entity  set. 

A relationship is a tuple of entities and represents an 
association between those  entities. Given a list E , ,  ..., E,, of 
entity sets, not necessarily distinct,  an n-ary relationship set 
is a  subset R of the Cartesian product E ,  x ... x E,,. R is said 
to be the  total on Ei iff every entity in Ei participates in some 
relationship in R. A binary  relationship set R between E ,  and 
E, may also be classified as n - I ,  1-1, and  n-m, if R is, 
respectively, a  many-to-one  function,  a  one-to-one  function, 
or a  many-to-many  relation between E,  and E , .  For example, 
a binary, n-1 relationship set, called WORKS,  may be 
defined between entity  sets  EMPLOYEES  and  DEPART- 
MENTS indicating, for each employee, the  unique  depart- 
ment  he works in. Higher-order relationship  sets, which 
involve other relationship sets in their definition, are  also 
considered in this paper. 

Entities  and relationships may have  properties,  called 
attributes.  More precisely, an  attribute of an  entity or 
relationship  set S is a  function from S into some  domain D. 
Examples  are employees’ names  and  salaries,  and  the posi- 83 
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tion an employee has in a department, which is an  attribute 
of the  relationship WORKS. 

A set  K of attributes whose values  uniquely  identify each 
entity in an  entity  set E is called  a key of E .  Keys for 
relationship  sets  are  similarly defined. Usually,  the key of a 
relationship  set is the  concatenation of the keys of the  entity 
sets involved. 

Sometimes  entities in a  set E cannot  be identified through 
their own attributes,  but only through a relationship set R  to 
other  entity  sets E , ,  ..., E,,. Then, E is said  to be a  weak 
entity  set,  R is said to be an identifying  relationship set,  and 
E , ,  ..., En are  said  to  be identifying entity  sets.  (This is not 
standard terminology.) In  this  paper, only total,  binary, n-1 
identifying relationship  sets  are used such  that  each weak 
entity is necessarily related  to  exactly  one identifying entity. 
The  familiar  example is that of an  entity set EMPLOYEES, 
a  weak entity  set  DEPENDENTS,  and a binary, n-1 iden- 
tifying relationship set DEPENDENT-OF between DE- 
P E N D E N T S  (on the  “n” and  “total”  side)  and 
EMPLOYEES. Intuitively,  a dependent  x is identified by his 
name,  say,  and by the  fact  that  x is related  to  some  (unique) 
employee y .  

A conceptual  schema in the  entity-relationship model is 
usually  presented as  an entity-relationship diagram, where 

0 Rectangles  represent  entity sets. 
Diamonds represent relationship  sets.  If R is a relationship 
set between entity or relationship setsS,, ..., Sn, then  there 
is an  edge between the  diamond  representing  R  and 
the  figure  (rectangle  or  diamond)  representing Si, 
i = 1 ,  ..., n. The  edge  may be labeled  with i ,  if S, is equal 
to S,, for some i and j in [ 1 ,  n] . Otherwise,  the  order of the 
sets in the list is irrelevant. 

0 Ovals represent  attributes. If A is an  attribute of an  entity 
or relationship  set S, then  there is an  edge between the oval 
representing A and  the figure representing S. 
Double rectangles  represent weak entity  sets. 

An example of an  entity-relationship  diagram  appears in 
Section 3. 

Finally, we call a statement of the  form E [ A , ,  ..., An]  an 
entity  type iff E is the  name of an  entity set S and A,, ..., An 
are  the  names of the  attributes of S. Likewise, R [ N , ,  ..., Nm;  
A , ,  ..., A n ]  is a  relationship type iff R is the  name of a 
relationship  set S, N , ,  ..., N ,  are  the  names of the  entity or 
relationship sets  related by S, and A , ,  ..., An are  the  names of 
the  attributes of S. 

Concepts from the  relational  model 
This section introduces several  concepts pertaining  to  the 
relational model of data  that  are used throughout  the  paper. 

A relation scheme is a pair ( R ,  U ) ,  where R is the name of 
the relation scheme  and U is a  finite  set {A, ,  ..., A,,] of 
attributes of R.   The notation R [ A , ,  ..., A,]  is used for 
( R ,  U ) .  

A database scheme is  a  finite set DS of relation  schemes. 
A database  state or simply  a state of DS is a function u 

associating, to  each  relation  scheme  R in DS with n attri- 
butes, n > 0, an  n-ary  relation  r = u(R).  If t is in v(R)  and X 
is a  sequence (or a set) of attributes of R ,  then t [ X ]  denotes 
the projection o f t  on the  attributes in X .  

A key of a  relation scheme  R in DS is a  set K of distinct 
attributes of R .  Given a state u of DS, u is said  to  satisfy  K iff 
for any t and  t’ in u(R),  if t [ K ]  = t ’ [ K ] ,  then  t = t‘.  Note 
that keys need not be minimal;  that is, K is a key even if there 
is a strict  subset of K which is also a key. 

If R  and S are two relation  schemes  in DS and  X  and  Yare 
sequences of attributes of R  and S, respectively,  such that  X 
and Y have the  same  length,  then  the  sentence R [ X ]  C S [ Y ]  
is called an inclusion dependency [ S I .  Given  a state u of DS, 
u is said to  satisfy R [ X ]  C S [ Y ]  iff for any  tuple t in u(R) 
there is a tuple u in u(S) such  that t [ X ]  = u [  Y ] .  

Relational  expressions over DS are also used with the 
standard definition [ 131. Given  a state u of DS, u can  be 
extended to expressions over DS in the  usual way; the value 
of an expression E is denoted by u(E).  

An integrity constraint is a sentence over a set of relation 
schemes.  Of the  many families of relational  integrity con- 
straints  studied in the  literature  [12, 131, only keys and 
inclusion dependencies are used in this  paper. 

A relational schema is a pair RS = (DS, CS) ,  where DS 
is a database  schema  and CS is a  set of integrity  constraints 
over DS. A database  state of RS is any  database  state u of 
DS; if u satisfies all  constraints in CS, then u is said  to be a 
consistent database  state of RS.  

Finally, some concepts that  are  not  standard,  but which 
play a central role in later sections, are  introduced. 

Let R [ K ]  C S [ L ]  be  an inclusion dependency  such that L 
is a key of S. Then, R [ K ]  C S [ L ]  is  called  a reference and  R 
is said to reference S via K and L; moreover, K is said to  be  an 
out-key of R, and L is said to be an in-key of S. Out-keys  are 
called  foreign keys in [ 141, but  the  name “out-key’’ is 
preferred in this  case  to  match  the notion of in-keys. R is said 
to reference S iff there  are K and  L  such  that  R references S 
via K and  L.  When  the reference involves relation  schemes 
taken  from a  set of relation  schemes DS, the reference is said 
to be over DS. 
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Not  all  sets of references are considered, though, since 
some sets  may lead to  ambiguities. A  set SIGMA of refer- 
ences over a set of relation schemes DS is said to  be 
well-formed iff, for any two relation  schemes  R and S of DS, 
if R[K] S[L]  and  R[K'] C S[L']  are in SIGMA  then K 
= K' and L = L'. Thus, if SIGMA is well-formed, there is 
no ambiguity when we say that R  references S, since  R does 
not  reference S in more  than  one way. 

This concludes the list of basic  definitions and notation 
used in the next  sections. 

3. Mapping relation schemes into entity-relation- 
ship concepts: an example 
This section  informally  presents,  with the  help of an example, 
a  method of mapping a relational  schema  into  an  entity 
relationship  schema. 

Consider  a relational  schema with the following set of 
relation  schemes (call  it DS):  

(1)  DEPT[DNAME] 
key:DNAME 

(2)  DEPT-MGR[DNAME,MGR] 
key:DNAME 

key: SSN 

key:NO 

key: N 0 , N A M E  

key:DOCNM 

(3)  CLERK[SSN,NAME,AGE] 

(4) EMP[NO,POSITION,DNAME] 

( 5 )  DEPENDENT[NO,NAME,DOCNM] 

( 6 )  DOCTOR[DOCNM,SPECIALITY] 

Without  further analysis,  nothing can be inferred.  In 
particular,  the  fact should be stressed that  DNAME is an 
attribute of DEPT  and  DEPT-MGR is not  a sufficient 
indication that  any association  exists between DEPT  and 
DEPT-MGR.  At most, one may  admit  that  these  attributes 
would have the  same  domain if a careful  naming convention 
were followed. (Certain view integration methodologies- 
for example [ 15]-would identify the two occurrences of 
DNAME without further  consideration, which is contrary  to 
our view [ 161 .) 

Assume now that  the set of integrity  constraints of the 
relational  schema logically implies the following set of 
references  (call it  SIGMA): 

(7) DEPT-MGR[DNAME] C DEPT[DNAME] 
(8) DEPT-MGR[MGR] C EMP[NO] 
(9) CLERK[SSN] C EMP[NO] 
(10)  EMP[NO] C CLERK[SSN] 
(1 1)  EMP[DNAME] C DEPT[DNAME] 
(12)  DEPENDENT[NO] C EMP[NO] 
(13)  DEPENDENT[DOCNM] C DOCTOR[DOCNM] 

Then  certain inferences can be drawn. Consider DOC- 
TOR first. This relation scheme does  not  reference any  other 
relation scheme,  but it  is  referenced by other relation 
schemes. Thus, tuples may be freely  inserted  into, but not 
deleted  from,  the  relation associated  with DOCTOR, 
depending on how the references to  DOCTOR  are  treated. In 
general, a  relation scheme  R[A,, ..., A,,] of the relational 
schema represents an  entity  type (in view  of the references 
contained in the set of integrity  constraints of the  relational 
schema) when  Condition  1  is satisfied: 

Condition 1: R  does  not reference  other relation  schemes. 

Similar observations  also  apply to  DEPT. However,  since 
DEPT  has  just  one  attribute, it may also be interpreted  as 
representing  a domain definition. In general,  the choice must 
take  into  account  at least the following facts: 

a. If a  relation scheme R is taken  as  representing a domain, 
entries  cannot be inserted or deleted from  the relation 
denoted by R; however, the  entity-relationship  schema 
will be somewhat  simpler  since  it will contain  one less 
entity type.  R will usually  have just one attribute when it 
represents  a domain,  although multicolumn domains  are 
not impossible. The  cardinality of the relation  denoted by 
R will also  tend to  be  small. 

b. If, on the  other  hand, R is taken  as  representing  an  entity 
type, the relation  denoted by R can be modified; however, 
the  entity-relationship  schema will have one more entity 
type  and, hence, will be more complex. 

Another consequence is that  the first choice  leads to fewer 
relationship  types in the  entity-relationship  schema  than  the 
second one. 

Consider now DEPT-MGR.  It references  more than one 
relation scheme  and  the set of out-keys is a key. One  may 
then consider that  DEPT-MGR defines  a  relationship  type. 
In  general, a  relation scheme  R[A,, ..., A,,] defines a  rela- 
tionship type iff Condition 2 holds, where 

Condition 2: R  references more than one relation scheme  and 
the union of all out-keys of R is a key of R. 

Note  that R may be referenced by other relation  schemes, 
since higher-order relationships are allowed in the version of 
the  entity-relationship  adopted in this paper. 

Consider now EMP  and  CLERK.  These two relation 
schemes reference  each  other  and, moreover, the references 
involve only keys. More precisely, the  constraints of the 
relational  schema  imply  the  sentences  EMP[NO] C 
CLERK[SSN]  and  CLERK[SSN] C EMP[NO]  and, 
moreover, N O  and SSN are keys of EMP  and  CLERK, 
respectively. So, for any consistent state u, each  element in 85 
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u(EMP[NO]) is associated with exactly one tuple in u(EMP) 
and exactly one tuple in u(CLERK), and vice versa. Thus, 
one may collapse EMP and CLERK into one relation 
scheme: 

(14)  EMPLOYEE[NO,NAME,AGE, 
POSITION,DNAME] key: NO 

The references in (7) to (1 3) have to be  modified adequately 
by replacing EMP and CLERK by EMPLOYEE as follows: 

(15) DEPT-MGR[DNAME] C DEPT[DNAME] 
(16) DEPT-MGR[MGR] C EMPLOYEE[NO] 
(17) EMPLOYEE[DNAME] C DEPT[DNAME] 
(18) DEPENDENT[NO] C EMPLOYEE[NO] 
(19) DEPENDENT[DOCNM] C DOCTOR[DOCNM] 

Now, EMPLOYEE cannot be considered to represent just 
an entity  type since Condition 1 is  not satisfied. Thus,  it is 
proposed to break EMPLOYEE into two relation schemes: 

(20) EMPL[NO,NAME,AGE,POSITION] key: NO 
(21) EMPL-DEPT[NO,DNAME]  key:NO 

and to modify SIGMA accordingly: 

(22) DEPT-MGR[DNAME] C DEPT[DNAME] 
(23) DEPT-MGR[MGR] C EMPL[NO] 
(24) EMPL  DEPT[NO] C EMPL[NO] 
(25) EMPL-DEPT[DNAME] C DEPT[DNAME] 
(26) DEPENDENT[NO] C EMPL[NO] 
(27) DEPENDENT[DOCNM] C DOCTOR[DOCNM] 

Now, EMPL satisfies Condition 1 and, hence, it may be 
considered to represent an entity type. As for EMPL-DEPT, 
it defines a relationship type, just like DEPT-MGR. 

Finally, since EMPL and EMPL-DEPT were obtained by 
splitting EMPLOYEE, one may conclude that a single 
relation scheme, EMPLOYEE in this case, may originate an 
entity type and  a relationship type. 

The analysis of DEPENDENT is also interesting. 
DEPENDENT references two other relation schemes, but 
the union of its out-keys does not contain a key. Hence, 
DEPENDENT does  not satisfy Condition 2. It is then 
proposed to  break  DEPENDENT  into two relation 
schemes: 

(28) DEP[NO,NAME] key: N0,NAME 
(29) DEPDOC[NO,NAME,DOCNM] key: N0,NAME 

References (26)  and  (27) are replaced by 

(30) DEP[NO] C EMPL[NO] 
(31) DEPDOC[NO,NAME] C DEP[NO,NAME] 
(32) DEPDOC[DOCNM] C DOCTOR[DOCNM] 
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Now DEPDOC represents a relationship type since it 
satisfies Condition 2. As for DEP,  it will  be considered to 
represent a weak entity type subordinated to EMPL, 
together with its identifying relationship type. In general, a 
relation scheme R [ A , ,  ..., A,]  is considered to represent a 
weak entity type, together with its identifying relationship 
type, when Condition 3 is met: 

Condition 3: R references just one relation scheme and the 
out-key of R intersects every key  of R.  

Thus, when all attributes in the out-key are dropped, R is 
left with no keys, i.e., tuples in R lose their identity. 

The final result of the discussion is a  set of relation 
schemes (call it DS’): 

(32) DEPT[DNAME] 
key:DNAME 

key:DOCNM 

key: NO 

key: N0,NAME 

key:DNAME 

key: N0,DNAME 

key: N0,NAME 

(33) DOCTOR[DOCNM,SPECIALITY] 

(34) EMPL[NO,NAME,AGE,POSITION] 

(35) DEP[NO,NAME] 

(36) DEPT-MGR[DNAME,MGR] 

(37) EMPL-DEPT[NO,DNAME] 

(38) DEPDOC[NO,NAME,DOCNM] 

and a  set of references (call it SIGMA’): 

(39) DEP[NO] C EMPL[NO] 
(40) DEPT-MGR[MGR]C  EMPL[NO] 
(41) DEPT-MGR[DNAME] C DEPT[DNAME] 
(42)  EMPL-DEPT[NO] C EMPL[NO] 
(43) EMPL-DEPT[DNAME] C DEPT[DNAME] 
(44) DEPDOC[NO,NAME)] C DEP[NO,NAME] 
(45) DEPDOC[DOCNM] C DOCTOR[DOCNM] 

Each relation scheme in DS‘ represents an entity type, a 
relationship type, or a weak entity type. The corresponding 
entity-relationship diagram is shown in Fig. 1. Each object in 
the  diagram has the same name  and the same attributes as 
the corresponding relation scheme. The only exception is 
DEP, which  is mapped into  a weak entity type with the same 
name  and  attributes, except those in the out-key of DEP,  and 
a binary relationship type, DEP-OF-EMP, which acts as the 
identifying relationship type. For the  sake of simplicity, 
attributes  are omitted in the figure. 

This concludes the analysis of the running example. Sec- 
tions 4 and 5 bring precision to the discussion in this section. 
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4. Folding relation schemes 
This section defines an operation  called folding, which 
collapses  relation  schemes that always denote  the  same  entity 
or relationship set. Folding is essentially the operation used 
to collapse EMP  and  CLERK  into  EMPLOYEE in Section 
3. Folding will not collapse, however, relation  schemes that 
may  denote  distinct  sets of entities (or relationships), even if 
the  entities (or relationships) are of the  same type. Thus, 
folding will not destroy  any  generalization  hierarchy, in the 
sense of [ 171, that  may be represented by the original  set of 
relation  schemes. 

The  operation of folding is defined in three steps: 

Dejinition I 
Let DS be a set of relation  schemes and  let SIGMA be a 
well-formed set of references over DS.  Thefolding  graph of 
SIGMA is the  digraph G = (V, E )  where 

i. V =  DS; 
ii. ( R ,  S) is in E iff there is a  reference R [ K ]  C S [ L ]  in 

SIGMA, where K is a key  of R and L is a key of S. 

Note  that, since SIGMA is assumed to be well-formed, to 
each arc (R,  S) in E there corresponds  a unique reference 
R [ K ]  C S[L] in SIGMA, which is called the reference 
generating (R,  S). 

Whenever  two  relation  schemes belong to  the  same cycle 
in G ,  they may always  denote  the  same set of objects and, 
hence, they  may potentially be folded together. However, 
this is not  always the case,  because the following problem 
may arise. 

Example 2 
Consider the following relation  schemes and references: 

( 1 )  EMP[SSN,NO,NAME] 
(2)  CLERK[SSN,NO,DEPT] 
(3)  EMP[SSN] CLERK[SSN] 
(4) CLERK[NO] C EMP[NO] 

Then,  EMP  and  CLERK  cannot be replaced by the relation 
scheme 

( 5 )  EMPLOYEE[SSN,NO,NAME,DEPT] 

because EMP  and  CLERK may be associated with different 
relations, as for example 

EMP  SSN  NO  NAME  CLERK  SSN  NO  DEPT 
1 2 John 1 1 Toys 
2 1 Mary 2  2 Sales 

These two  relations satisfy  (3)  and (4), but  they  cannot be 
merged into a  single  relation  since SSNs  and  NOS  appear 
reversed. Note  that  the example in Section  3 is not  affected 
by this problem. This concludes the  example. 
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Figure 1 The final entity-relationship  diagram. 

In view of Example 2, relation  schemes are folded together 
only if they belong to a  special kind of cycle. 

Dejinition 3 
Let G = (V,  E )  be the folding graph of SIGMA. Let R and 
S be two relation  schemes in V. R and S are said to be 
equivalent i f f  

i. There is a  cycle (Rl, ..., R,, R , )  in G such that R ,  = R 
and  R, = S for somej  in [ 1, k]; 

generate (R, - , ,   R , )   and  (Rm,   R , , , ) ,  respectively, then 
K,,, = L,, for each m in [ 1, k] (sum and  subtraction is 
modulo k). K,,, is also said  to be thefolding key of Rm, and 
the  ith  attribute of K ,  is said  to  correspond  to  the  ith 
attribute of K,, for any m , j  in [ l ,   k] .  

ii. If R,- , [K,- , l  c R,,,[K,,,I  and R,,,[L,,,I c Rm+IIKm+,l 

Dejinition 4 
Let DS be a  set of relation  schemes, and let SIGMA be a 
well-formed set of references over DS.  Let G = (V,  E )  be the 
folding graph of SIGMA. The  folding of D S  and SIGMA is 
the set DS’  and SIGMA’ of relation  schemes and references 
obtained  as follows: 

( 1 )  LetDS(1) = D S , S I C M A ( l )   = S I G M A a n d i =  1, 
initially; 

(2)  While  there  are two  equivalent  relation  schemes 
R [ X ]  and  S[Y] in DS(i) with folding keys K and L 
do: 

(2.1)  Increment i; 
(2.2)  Rename all attributes of S that also  occur in R ,  

adjusting all  references to S accordingly; 
(2.3)  Create  DS(i)  and SIGMA(i) as follows: 

(2.3.1)  DS(i) is DS(i ~ 1) except that R [ X ]  and  S[Y]  are 
replaced by R ’ [ X ’ ] ,  where X’ = ( X  U Y )  - L and 
R‘ has as keys those of R and S, except L; 

If R [   W ]  C T [  VI (or T [ V ]  C R [ W ] )  occurs in 
SIGMA (i - I ) ,  replace it by R’[  W ]  C T [  VI (or 

(2.3.2) SIGMA(i) is SIGMA(i - 1) except that 

T[VI R ’ [ W I ) ;  87 
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0 If S[W] C T [  VI (or T [  VI C S [ W ] )  occurs in 
SIGMA ( i  - I ) ,  replace  it by R’[ W‘] C T [  VI (or 
T[V] C R’[W’]),  where W’ is W with each 
attribute in L replaced by the corresponding attri- 
bute of K 

(3) DS‘ = DS(i)  and SIGMA’ = SIGMA(i) ,  when the 
loop terminates. 

Example 5 
Consider again  part of the original set of relation  schemes 
and references of Section 3: 

(1) CLERK[SSN,NAME,AGE] 
key: SSN 

key:NO 

key: N0,NAME 

(2) EMP[NO,POSITION,DNAME] 

(3) DEPENDENT[NO,NAME,DOCNM] 

(4) CLERK[SSN] C EMP[NO] 
(5) EMP[NO] C CLERK[SSN] 
(6) DEPENDENT[NO] C EMP[NO] 

The corresponding  folding graph is G = (V,  E ) ,  where 

v = {CLERK,EMP,DEPENDENT} 
E = {(CLERK,EMP),(EMP,CLERK)} 

The folding of these  relation  schemes and references then 
collapses CLERK  and  EMP  into a  single  relation  scheme, 
producing 

( I )  CLERK[SSN,NAME,AGE,POSITION,DNAME] 
key: SSN 

key: N 0 , N A M E  
(2) DEPENDENT[NO,NAME,DOCNM] 

(3) DEPENDENT[NO] C CLERK’[SSN] 

This concludes the  example. 

Folding has  an  important property that essentially  says 
that no information is lost during  the  operation.  This prop- 
erty is defined in general  as follows: 

Dejinition 6 
Let R S  = (DS,  CS)  and  RS‘ = (DS’,  CS’) be two relational 
schemata.  RS’ is said  to represent RS iff, for each relation 
scheme R in DS, there is an expression E over DS’ such  that, 
for every  consistent state v’ of RS‘,  the function v from DS 
into relations constructed by taking  v(R) = v’ (E)  is a 
consistent state of RS. 

Proposition 7 
Let DS’ and SIGMA’ be  the folding of DS and SIGMA. 
Then (DS’,   SIGMA’) represents (DS,  SIGMA), and vice 
versa. 

Sketch  of  proof 
It  can be proved by induction on i that (DS(i) ,   SIGMA(i))  
represents (DS,   SIGMA) and vice versa. 88 
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Basis i = 1. There is nothing to prove, since DS( 1) = DS 
and SIGMA( 1) = SIGMA. 

Induction step Let i > 1 and suppose that (DS(i  - I ) ,  
SZGMA(i - 1)) represents (DS,  SIGMA). Let DS(i)  and 
SIGMA(i) be  the  result of the  ith  step of the  algorithm in 
Definition 4. Then it can  be proved that, since  R and S are 
equivalent,  step 3 of the  algorithm is such that (DS(i) ,  SIG- 
M A ( i ) )  represents (DS(i  - l ) ,  SIGMA(i - 1)) and vice 
versa. But  the property of representation is transitive.  Hence, 
(DS(i) ,   SIGMA(i))  represents (DS,   SIGMA).  Therefore, 
one  may  conclude  that ( D S ‘ ,   S I G M A ’ )  represents 
(DS,   SIGMA) and vice versa, if the  former pair is the folding 
of the  latter  pair. 

This concludes the discussion of folding. 

5. An algorithm mapping a family of relational 
schemata  into entity-relationship schemata 
In  this section, the  remarks  made in Section 3 are  trans- 
formed into  an  algorithm  mapping a  set of relation  schemes 
and a  set of references into  an  entity-relationship  schema. 

Let us begin with a  comprehensive definition of what it 
means for  a  relation scheme  to define an  entity-relationship 
object in the presence of a  set of references. These concepts 
were already  illustrated in Section 3. 

Dejinition 8 
Let DS be a  set of relation  schemes and SIGMA be a 
well-formed set of references. Let R be a  relation scheme in 
DS. 

a. R defines an entity  type in the presence of SIGMA iff 
SIGMA contains no reference of the  form  R[K] C S [ L ] ,  
for any S in DS. 

b. R dejines a weak  entity  type in the presence of SIGMA iff 
SIGMA contains a  single  reference of the  form  R[K] 
C S [ L ] ,  for  some S in DS, and K  intersects every key of 
R. R is also  said to  be subordinated to S in the presence of 
SIGMA. 

c. R dejines a relationship  type in the presence of SIGMA 
iff SIGMA contains a  set of references of the  form R[K,]  
C S ,  [L,], ..., R[K,] C S,[L,] such that K ,  U ... U K,,, 
is a key of R. R is also said  to relate the relation  schemes  it 
references. 

d. R deJines an ER-object iff R defines either  an  entity type, 
a  weak entity type, or a  relationship  type. 

e. DS and SIGMA dejine an entity-relationship schema (or, 
simply, an  ER-schema) iff each relation scheme in DS 
defines an  ER-object. 

The definitions in (a),  (b),  and  (c)  are justified by 
comparing  the behavior of the relation  denoted by R  with the 
behavior of entity sets,  weak entity  sets,  and relationship  sets. 
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Let v be a state of DS satisfying SIGMA.  Thus, if R satisfies 
(a),  then  the existence of tuples in v(R) is not constrained by 
the existence of tuples in any  other relation,  since R refer- 
ences no relation scheme. Now, if R satisfies (b),  then if K is 
deleted from  the  attribute set of R, no key  of R is left, i.e., 
tuples in v(R) lose their  identity.  It should be said at this 
point that, if R satisfies (b),  then R actually  represents  the 
weak entity set together with its identifying relationship set. 
Finally, if R satisfies (c),  each  tuple in v(R) uniquely 
determines a tuple in v(RiI)  x ... x v(Rim), that is, a  rela- 
tionship  between  entities in v ( R , , ) ,  ..., v(R,,), where 
R,, ..., Rim is the set of all relation  schemes  referenced by R. 
Indeed,  since the union of all  out-keys of R is a key of 
R,  no two  tuples in v(R) determine  the  same  tuple in 
v(RiI) X ... X v(Rim). 

With  the help of these definitions, the  conceptual  schema 
design  problem addressed in this section can be posed as 
follows. 

Problem PI 
Given a set DS of relation  schemes and a  well-formed  set 
S I G M A  of references over DS, construct a  set DS’ of relation 
schemes and a  set SIGMA’ of references over DS’ such  that 
i) DS’ and SIGMA‘ define an  ER-schema; ii) (DS, S I G M A )  
represents (DS’, SIGMA‘);  iii) (DS’, S I G M A ’ )  represents 
(DS, S I G M A  ) . 

Condition  (i)  guarantees  that  an  entity-relationship 
schema  can be associated with DS’ and SIGMA’,  which was 
the  primary goal of this section. The  other two  conditions 
guarantee  that  the  relational  schemas RS = (DS, S I G M A )  
and RS‘ = (DS‘, SIGMA’)  are equivalent in the sense that 
each consistent state of RS can be mapped by relational 
algebra expressions into a  consistent state of RS‘, and vice 
versa. This notion of equivalence  correponds to  that hinted at  
in [ 181, but differs from definitions of equivalence  based on 
the  universal  relation  assumption  sometimes  adopted 
[ 5 ,  19, 201. 

Figure 2  describes an  algorithm  that solves Problem  P1. 

The  algorithm in Fig. 2 works as follows. The initial 
folding  operation is used to collapse  relation  schemes that 
represent the  same  ER-object,  thus avoiding  trivial violations 
of the conditions  expressed in Definition 8. After folding, 
each relation scheme R is inspected to  determine if it defines 
an  ER-object.  The  algorithm is in fact  an optimized form of 
the following case analysis: 

Case I :  R references no relation  scheme. 
The R trivially defines an  entity  type  and nothing is 
done. 

Case 2: R references  exactly one relation scheme. 

Case 2.1: Every key intersects the  out-key. 
Then R defines a  weak entity  type  and 
nothing is done. 

Case 2.2: Some key of R is disjoint from  the out-key 
of R. 
Then R is replaced by RR, and RR,, 
which define the  entity  type  and  the rela- 
tionship type originally  represented by R,  
respectively. 

Case 3: R references  more than one relationship  schema. 
Case 3.1: The union of out-keys of R is a key of R. 

Then R defines a relationship  type  and 
nothing is done. 

Case 3.2: The union of out-keys of R is not  a 
key of R. R is replaced by RR, and 
RR,, ..., RR,, which define the  entity 
type  and  the binary  relationship  types 
originally  represented by R, respectively. 
(The  binary relationships are equivalent 
to  the original  relationship  represented by 
R.) 

Note  that RR, and R have the  same set of attributes when 
( K ,  U . . . U K,) C (P, U ... U P,). The  algorithm in this 
case works basically by reorganizing the references.  As such, 
RR,, ..., RRP are not redundant since  tuples can be freely 
inserted in RR,, but not in RR,. 

The way Case 3.2 is treated  may be better understood by 
means of an  example. 

Example 9 
Consider the following relation  schemes and references: 

(1)  SUPPLIER[S#,SNAME] Key: S# 
(2)  PROJECT[J#,LIDER] Key: J# 
(3)  SPJ[S#,P#,J#,QTYl Key: S#,P# 
(4) SPJ[S#] C SUPPLIER[S#] 
( 5 )  SPJ[J#] C PROJECT[J#] 

Then,  SUPPLIER  and  PROJECT define entity types, but 
SPJ defines no ER-object since  it has two out-keys, S# and 
J#, which do not cover the key S#,P#.  The solution adopted in 
the  algorithm  amounts  to replacing (3) by 

(6) SPJO[S#,P#,QTYl key: S#,P# 
(9)  SPJl [S#,P#l key: S#,P# 
( 1  0) SPJ2[S#,P#,J#l key: S#,P#,J# 
(1  1) SPJl  [S#,P#] C SPJO[S#,P#] 
(12)  SPJl[S#] C SUPPLIER[S#] 
(13)  SPJ2[S#,P#] C SPJO[S#,P#] 
(14)  SPJ2[J#] C PROJECT[J#] 

This solution amounts  to recognizing a new entity  type 
represented by SPJO (meaning “order,” say), with key S#,P# 
and  attributes S#,P# and  QTY.  This is accompanied by two 
new relationship types represented by SPJl  and  SPJ2  (mean- 
ing “order-supplier”  and “order-project,’’ respectively). 
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ERDESICN(DS,SIGMA;DS‘,SIGMA’) 
/*input: DS, SIGMA-a set of relation  schemes and a well-formed  set of references over DS 
output: DS’, SIGMA’-a set of relation  schemes and references such  that: 

(i) DS’ and  SIGMA’ define an  entity-relationship  schema 
(ii) (DS’, SIGMA’)  represents (DS, SIGMA) 
(iii) (DS, SIGMA)  represents (DS’, SIGMA‘)*/ 

R[X] -a relation scheme in DS’ 
PI ,  . . ., Pm-the set of all keys of R 
FI, . . ., Fp -the set of all rel. schemes  such that  there 

TI, . . ., Tq -the set of all rel. schemes  such that  there 

Ki,Mi -(as above) 
Lj,Nj -(as above)*/ 

/*The following notation is used: 

is a  reference R[Ki] C Fi[Mi] in SIGMA’ 

is a  reference Tj[Lj] C R[Nj] in SIGMA’ 

begin 
fold DS and  SIGMA  into DS’ and  SIGMA’; 
for each relation scheme R in DS‘ 

that does not define an  ER-object  do 
begin 

/*selection of a key of R*/ 
i f  R has a key disjoint  from  all  out-keys 

then let Pj be any key of R  disjoint from 
all  out-keys of R; 

else let  Pj be any key of R; 

RRO[ MI defines the  entity  type represented in R 
/ *  

and  has all  references and keys of R 

let  M be X-(Kl U ... U Kp)-(PI U .‘. U Pm)); 
delete  R[X]  from DS’; 
add  RRO[M]  to DS’ with all keys of R; 
for each j = 1 ,  . . ., q do 
begin delete  Tj[Lj] C R[Nj]  from  SIGMA’; 

add  Tj[Lj] C RRO[Nj]  to  SIGMA‘; 

* /  

end 

/ *  
RRi[Pj U Ki] defines a relationship  type represented 

originally in R, for each out-key  Ki of R 
*I 
for each i = 1, . . ., p do 
begin add  RRi[Pj U Ki]  to DS’ with key Pj U Ki; 

delete  R[Ki] C Fi[Mi] from SIGMA’; 
add  RRi[Ki] C Fi[Mi]  to  SIGMA’; 
add  RRi[Pj] C RRO[Pj] to  SIGMA’; 

end 
end 

end 

Figure 2 Algorithm to solve Problem PI.  
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A second and  equally viable treatment of Case 3.2 would 
be to  add a new relation scheme  and a new reference as 
follows: 

( 6 )  PART(P#) key: P# 
(7) SPJ[P#] C PART[P#] 

This solution fixes the problem by adding  the  entity  type 
(defined by PART)  that was  missing  in the  relationship  type 
between suppliers-parts-projects (defined now  by SPJ), so to 
speak. 

The  algorithm  can be modified to  opt between the two 
alternatives,  perhaps prompted by the  designer, if additional 
information is available  to  guide  the choice. 

The  correctness of the  algorithm in  Fig. 2 is stated in the 
following theorem. 

Theorem 10 
The  algorithm in Fig. 2 correctly solves Problem P1. 

Proof 
It  has  to be proved that, given a  set DS of relation  schemes 
and a well-formed set SIGMA of references over DS, the 
algorithm  outputs a  set DS' of relation  schemes and a  set 
SIGMA' of references over DS' such that 

A. DS' and SIGMA' define an  ER-schema; 
B. (DS', SIGMA') represents (DS,  SIGMA); 
C.  (DS,  SIGMA) represents (OS', SIGMA') 

Consider (A) first. After folding, the loop must  terminate 
because DS' initially contains a  finite number of relation 
schemes  satisfying the loop condition and,  at  each  iteration, 
each such  relation  scheme is replaced by other relation 
schemes not  satisfying  the loop conditions. Indeed,  let R be 
the relation scheme selected at  some loop iteration.  There  are 
three  cases  to consider: 

Case 1: R references no relation  scheme. 
Then, R defines an  entity  type  and could not have 
been selected  for the loop iteration. 

Case 2.1: Every key intersects  the out-key. 
Case 2: R references  exactly  one  relation  scheme. 

Then, R defines a weak entity  type  and 
could not have been selected  for the loop 
iteration. 

Case 2.2: Some key of R is disjoint from  the out-key 
of R. 
Then, R is replaced by RR, and R R , ,  
which define an  entity  type  and a  rela- 
tionship  type,  respectively. 

Case 3: R references  more than  one  relationship  schema. 
Case 3.1: The  set of out-keys of R is a key of R.  

Then, R defines a relationship  type  and 
could not have been selected  for the loop 
iteration. 

Case 3.2: The  set of out-keys of R is not a key of 
R. 
R is  replaced by RR, and RR, ,  ..., RRp, 
which define an  entity  type  and  binary 
relationship  types, respectively. 

Therefore,  the loop terminates  and, moreover, the loop 
condition must be false in the final state. So the loop 
terminates in a state such that  each relation  scheme in DS' 
defines an  ER-object,  from which assertion (A) is immedi- 
ately  established.  This concludes this  part of the proof. 

To prove (B) and  (C),  it suffices to observe that, by 
Proposition 7, (B) and (C) hold after  the folding of DS and 
SZGMA and  that (B)  and  (C)  are preserved each  time  the 
algorithm replaces  a  relation scheme R by other relation 
schemes,  since R is the  natural  join of RR,, . . ., RRp and RR, 
contains  all keys of R and, in turn, RR, is obtained  from R by 
projection. This concludes the proof. 

To conclude,  one can easily  convert the  output of the 
algorithm in Fig. 2 into  an  entity-relationship schema by 
mapping  each relation scheme R into  the  ER-object E that it 
defines; the set of attributes  and keys of E is equal  to  the set 
of attributes  and keys of R,  respectively. The only exception 
is when R defines a weak entity type. Let K be the out-key of 
R and S be the relation scheme R is subordinated to. In this 
case, R is mapped  into a  weak entity  type W with the  same 
name  and  attributes  as R,  except  those in K ,  and  into a 
binary relationship  type  (the identifying  relationship type of 
W ) ,  with no attributes, between W and  the ER-object 
defined by S. 

6. Two applications of the  method 
This section  discusses  two applications of the  algorithm 
described in Section 5 ,  one  in  connection with the design of 
relational databases  and  another  related  to  the conversion of 
conventional file systems to  the  database  approach. 

An application to the design of relational databases 
The relational model of data,  as originally conceived by Codd 
[3] adopted relations (or tables)  as  the only logical data 
structure, leaving practically all  semantics  to be expressed by 
integrity  constraints. However, since  relations are  semanti- 
cally neutral,  large relational conceptual schemes  tend to  be 
difficult to  understand.  One possible strategy  to remedy this 
difficulty would be  to extend the  relational model with more 
semantic  constructs. A solution  along  these lines was pro- 
posed in [4]. However, adding more constructs has an 
adverse effect  on the  data definition and  data  manipulation 
languages of the model, since they become more complex. In 
addition, several database  management systems,  based on 
the original  relational model, are  already .in use. 

~ 
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A  second possible solution would be  to use  a conceptual 
design  method that leads to  relational  database  schemata 
that have an  interpretation in terms of semantic concepts 
that  are easy to  grasp.  This  alternative is then briefly 
explored in this section. 

This is exactly  the  case when the  relational  schema defines 
an  ER-schema (in the sense of Definition 8). Since  this 
condition is related  to  many  other conditions on relational 
schemata, generally  called normal  forms,  the following defi- 
nition is introduced: 

Definition 11 
Let RS = (DS,  C S )  be a relational  schema,  where DS is a 
set of relation  schemes and CS is a  set of functional  depen- 
dencies and inclusion dependencies. RS is said  to  be in 
Entity-Relationship  Normal Form (ERNF) iff 

i. Each  relation  scheme is in BCNF; 
ii. Each inclusion dependency R [ X ]  C S [ Y] in CS is such 

that Y is a key of S (i.e., the dependency is a reference); 
iii. RS defines an  ER-schema  (cf. Definition 8). 

Going  back  to  the  algorithm in Fig. 2, it  can be interpreted 
as a mapping  from  relational  schemata, whose constraints 
are keys and inclusion dependencies of a  special form (i.e., 
references), into equivalent relational  schemata  that define 
an  ER-schema.  Note  that  this is just  the inverse of the 
operation commonly  considered, i.e., mapping  ER-schemata 
into relational schemata. As such,  the  algorithm in Fig. 2 can 
then be viewed as a normalization  procedure  that  maps a 
relational schema  that  contains  an  ER-schema  into  an 
equivalent relational  schema  that defines an  ER-schema. 

An application to the  conversion of conventional file 
systems  to the database  approach 
This section briefly addresses the  conceptual design  problem 
generated by the conversion of conventional file systems to 
the  database  approach. 

The key idea is that  the  conceptual  schema of the final 
database system  should be designed  from the description of 
the conventional file system in two successive steps of 
abstraction.  The first step consists of obtaining a relational 
schema  that closely resembles the description of the files. 
Relation schemes, keys, and  domain definitions are defined 
by inspecting file descriptions, and references are  obtained 
mostly by analyzing  update  programs.  Details concerning 
the physical structure of files and records must be abstracted 
at  this  step.  The resulting schema will probably be loosely 
structured, since file structures  tend  to reflect performance 
considerations and not the  semantics of data.  The second step 
consists of massaging the  relational  schema until it defines 
an  entity-relationship  schema, which is essentially the prob- 
lem solved in Sections 3 to 5. Therefore,  the  remainder of this 
section need address  just  the first step. 

Let us begin with a few additional concepts.  A conven- 
tional file system is understood here  to be a set of files 
together with  a  set of update  programs on the files. Each file 
is described by listing the  structure of the records it stores, 
the access  method  used, and  the key, if any.  As in COBOL or 
PL/I, a  record structure is defined by listing the record name 
and  the field names  and types. The access  method can  either 
be sequential,  direct, indexed-sequential, or based on B-trees 
(i.e., VSAM).  The  last  three involve the notion of a key. 

There  are two  problems to be faced when defining  a 
relational  schema  from a set of  file descriptions and  update 
programs: how to  obtain relation  schemes and  domain defini- 
tions from file descriptions; and how to find keys and 
references from file descriptions and  update  programs. 

The first  problem is easier to solve. Each file description 
will generate  either a  relation scheme or a domain definition. 
These  alternatives were  essentially  those discussed in Section 
3 in a  different  context. The relation scheme resulting from a 
file description, if this is the case, may not be in first normal 
form [6] if the record structure  contains  repeating groups. 
The following example illustrates  this point. 

Example 12 
Consider the following record structure (using the  syntax of 
PL/I) containing data  about employees and  their  depen- 
dents; since each employee may have  many dependents, 
DEPENDENTS is an  array whose size is given by NODEP. 

(1)  DCL 1 EMP  BASED, 
2 EMP#  FIXED(S), 
2 NAME, 

3 GIVENNAME CHAR( lo), 
3 FAMILYNAME CHAR(IO), 

2 NODEP  BIN  FIXED(  15), 
2 DEPENDENTS (I  REFER(NODEP)), 

3 GIVENNAME CHAR( 10); 
3 MIDDLENAME CHAR( 10); 

DCL I BIN  FIXED(  15); 

This record structure will generate  the following relation 
scheme,  where the  bracketed  attributes  indicate  nonatomic 
entries: 

(2) EMP[EMP#,GIVENNAME,FAMILYNAME, 
NODEP, 

DEPENDENT.MIDDLENAME}] 
{DEPENDENTGIVENNAME, 

Since  this relation scheme is not in first normal form, it is 
replaced by two new relation  schemes and a  reference: 

(3) EMPl  [EMP#,GIVENNAME,FAMILYNAME, 

(4) DEP[EMP#,GIVENNAME,MIDDLENAME] 
(5)  DEP[EMP#] C EMPl  [EMP#] 

NODEP] 
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It is interesting to nc )te  that  the  reference is  usually omitted 
when normalizing schemes, which is not reasonable since 
every dependent must be the  dependent of some employee. 
This concludes the example. 

As for the second  problem,  defining keys can  be relatively 
easy, but not defining  references. Indeed, keys can  be 
extracted  directly  from file descriptions, but references  have 
to be defined by inspecting the behavior of update  programs. 
However, the following general observations can  be made. 
Let F and F‘ be two files, and  assume  that  their descriptions 
were mapped  into  relation schemes R [ U ]  and R’[U’], respec- 
tively. Let X and X’ be sequences of attributes of R and R‘ 
with the  same  length,  and  assume  that  they correspond to 
record fields of the  same name. A reference R [ X ]  C R ’ [ X ’ ]  
will be added  to  the relational schema if the following two 
conditions are  met by all updates  to F and F’: 

a.  The insertion of a record r in F is conditioned to  the 
existence of a  record r’ in F such  that .(X) = r’(X’) or the 
insertion of a  record r in F forces the insertion of a  record 
r’ in F with r ( X )  = r ’ (X ’ ) ,  if no such  record  exists. 

b. The deletion of a  record r’ from F‘ is conditioned on the 
absence of a  record r in F such that r ( X )  = r’(X’)  or the 
deletion of a  record r ‘  from F‘ forces the deletion of all 
records r in F such that r ( X )  = r’(X’). 

It is not difficult to write down similar conditions that 
guarantee  that  the  reference is always obeyed in the presence 
of other forms of update. 

A very common situation where  conditions (a)  and  (b)  are 
met occurs when the second file, F’ in the above  discussion, 
plays the role of a master file or of a data pool (that is, a  set of 
relatively stable  data  that is frequently  referred  to by appli- 
cation  programs,  but seldom updated,  and which is used to 
validate  input records and impose uniformity of reference 
across files). 

This concludes our brief remarks on how to  map conven- 
tional file system  descriptions into  relational  schemata. 

It should be stressed that  the design of the  conceptual 
schema is just  one of the steps  necessary to convert conven- 
tional file systems to  the  database  approach.  The  actual 
conversion of application  programs,  and physical database 
design, are  certainly  other  important issues that must be 
investigated. 

Finally, it is clear  that without appropriate  dictionary 
facilities the method proposed in this section will hardly be 
possible to apply. This issue thus deserves further  attention. 
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7. Conclusions and directions for future re- 
search 
A method of assigning an  interpretation in terms of the 
entity-relationship model to a set of relation  schemes was 
described. The method  was  based on an explicit set of 
references  across  relation  schemes,  formalized as a special 
type of inclusion dependency. The essential  aspects of the 
method  were captured by a  design algorithm. 

A straightforward application of the method to the design of 
relational databases led to  the concept of entity-relationship 
normal form (ERNF). ERNF is  of interest by itself since it 
offers a guide to  the design of relational databases whose 
constraints are functional and inclusion dependencies. 

The method is also  a step  towards designing entity- 
relationship schemata  from conventional file system  descrip- 
tions. Since  quite  frequently record  references will be diffi- 
cult  to unveil, the method will be useful in this context only if 
the conventional  system has  already been cleaned up suffi- 
ciently, that is, record  types  have been made uniform, data 
pools exist to  harness cross-references between records from 
different files, and so on. 
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