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Mapping Uninterpreted Schemes into Entity-Relationship
Diagrams: Two Applications to Conceptual Schema Design

A method of mapping sets of uninterpreted record or relation schemes into entity-relationship diagrams is described and then
applied to two conceptual design problems. First, the method is applied to the design of relational databases. It is shown that
the method can be interpreted as a normalization procedure that maps a given relational schema into a new schema that
represents an entity-relationship diagram. That is, the original schema has an interpretation in terms of higher-order concepts,
which helps in understanding the semantics of the database it describes. The second design problem is related to the conversion
of conventional file systems to the database approach. The method is used in this context to obtain a database conceptual
schema from the description of the conventional system, which is one of the fundamental steps of the conversion process.

1. Introduction

The design of a database can be divided into two major
phases [1], conceptual or logical design and physical design.
The goal of the first phase is to obtain a machine-
independent, high-level description of the database, called a
conceptual schema. The second phase addresses the problem
of obtaining an efficient representation of the conceptual
schema in terms of the access methods and file structures
supported by the database management system. The result is
called an internal schema.

The design of the conceptual schema is a difficult task
since it should reflect the semantics of the real-world applica-
tion being modeled. The quality of the conceptual schema,
how faithfully it represents the application, is a prerequisite
for obtaining a semantically reliable database system. A
system with poor performance can sometimes be tolerated,
but a database system that does not reflect the real world
application is useless.

The conceptual schema consists of a set of logical data
structures describing how data are organized, and a set of
integrity constraints indicating what data values correctly
reflect concrete situations. The classes of logical data struc-
tures and integrity constraints allowed are determined by the
data model chosen.

This paper addresses two conceptual design problems: how
to define conceptual schemata for relational databases that
can be interpreted in terms of higher-level concepts; and how
to obtain a conceptual schema starting from the description
of a conventional file system.

Both problems are attacked by defining a method of
assigning an interpretation in terms of the entity-relationship
model [2] to a set of uninterpreted relation (or record)
schemes. The method analyzes the patterns of cross refer-
ences among relations to detemine whether a relation scheme
represents an entity type, a relationship type, or a combina-
tion of both.

The entity-relationship model was chosen as the target
model because it is accepted as a paradigm for high-level
data models. As the name implies, the basic concepts are that
of an entity, which stands for an object with an independent
existence, and that of a relationship, understood as a connec-
tion between entities.

The interest in such a method can be better understood by
discussing in more detail the two design problems
addressed.
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Consider first the design of relational databases. The
relational model of data, as originally conceived by Codd [3],
adopted relations (or tables) as the ony logical data struc-
tures, leaving practically all semantics to be expressed by
integrity constraints. Having relations as the sole data struc-
ture makes the model conceptually very simple. However,
since relations are semantically neutral, large relational
conceptual schemata can be difficult to understand. To
remedy this difficulty, an extended relational model, with
more semantic constructs, was proposed later by Codd [4].

The method discussed in this paper offers an alternative
solution by showing how to map relational schemata into
entity-relationship schemata. When the mapping is at all
possible, the relational schema is said to be in entity-
relationship normal form (ERNF). Besides being based on
the idea of a mapping, ERNF differs from previous normal
forms [5-7] since it depends on an analysis of certain
constraints on pairs of relations called inclusion dependencies
[8], whereas the five well-known normal forms are based on
constraints on individual relations.

Consider now the conversion of conventional file systems
to the database approach. It is claimed that the first step of
such a process should be the design of a high-level, integrated
conceptual schema and that the design should be based on
the description of the original system.

The method helps in this case because the conceptual
schema can be designed in two steps. First, a loosely
integrated relational schema that is closely correlated with
the conventional file system is defined. At this stage, prob-
lems such as domain definitions are taken care of. Then the
method is applied to integrate and normalize the relational
schema and, finally, map it into a high-level entity-relation-
ship schema.

It should be clear that the method helps just one step of the
conversion process. It covers neither the complete design of
the database nor the conversion of application programs. It
also leaves untouched the problem of initializing the data-
base operation. In particular, it does not cover physical
database design, which might be based on an analysis of the
file design, since the latter usually reflects performance
considerations.

A methodology close to that described in this paper was
developed in [9] for obtaining entity-relationship views of a
relational conceptual schema. The CHARADE project [10]
can also be compared to the method described, at least in
purpose. The conversion of conventional file systems has not
received much attention in the literature. In fact, no major
reference exists as far as we know, except in connection with
the problem of extracting data from existing files to load the
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database [11, Chap. 10.1]. The design of relational data-
bases based on normalization theory has, on the contrary, a
vast literature (good surveys can be found in [3, 11-14]), but
the notion of a normal form defined via a mapping to
entity-relationship schemata and using inclusion dependen-
cies has not been considered before.

This paper is organized as follows. Section 2 contains basic
concepts and introduces the notation used. Section 3 illus-
trates the method proposed with an example. Section 4
describes a method of combining sets of relation schemes.
Section 5 presents an algorithm that synthesizes entity-
relationship schemes from a set of uninterpreted relation
schemes and inclusion dependencies. Section 6 discusses two
applications of the algorithm described in Section 5, one in
connection with the design of relational databases and
another related to the conversion of conventional file systems
to the database approach. Finally, Section 7 contains conclu-
sions and directions for future research.

2. Basic concepts and notation

In this section, we first give a brief survey of the entity-
relationship model, which may be skipped on a first reading.
We then present the concepts and notation of the relational
model used throughout the paper.

® The entity-relationship model

The entity-relationship model provides a high-level tool to
describe databases. As the name implies, it is centered on two
informal concepts: entity and relationship. An entity is
vaguely defined as any object with an independent existence,
such as employee or department. A class of entities of the
same kind is called an entity set.

A relationship is a tuple of entities and represents an
association between those entities. Given a list E, -+, E, of
entity sets, not necessarily distinct, an n-ary relationship set
is a subset R of the cartesian product E, x --- x E,. Ris said
to be the total on E, iff every entity in E, participates in some
relationship in R. A binary relationship set R between E| and
E, may also be classified as »-1, 1-1, and n-m, if R is,
respectively, a many-to-one function, a one-to-one function,
or a many-to-many relation between £, and E,. For example,
a binary, n-1 relationship set, called WORKS, may be
defined between entity sets EMPLOYEES and DEPART-
MENTS indicating, for each employee, the unique depart-
ment he works in. Higher-order relationship sets, which
involve other relationship sets in their definition, are also
considered in this paper.

Entities and relationships may have properties, called
attributes. More precisely, an attribute of an entity or
relationship set S is a function from S into some domain D.
Examples are employees’ names and salaries, and the posi-
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tion an employee has in a department, which is an attribute
of the relationship WORKS.

A set K of attributes whose values uniquely identify each
entity in an entity set E is called a key of E. Keys for
relationship sets are similarly defined. Usually, the key of a
relationship set is the concatenation of the keys of the entity
sets involved.

Sometimes entities in a set F cannot be identified through
their own attributes, but only through a relationship set R to
other entity sets £,,---, £,. Then, £ is said to be a weak
entity set, R is said to be an identifying relationship set, and
E,, -+, E, are said to be identifying entity sets. (This is not
standard terminology.) In this paper, only total, binary, n-1
identifying relationship sets are used such that each weak
entity is necessarily related to exactly one identifying entity.
The familiar example is that of an entity set EMPLOYEES,
a weak entity set DEPENDENTS, and a binary, »-1 iden-
tifying relationship set DEPENDENT-OF between DE-
PENDENTS (on the “n” and ‘total’” side) and
EMPLOYEES. Intuitively, a dependent x is identified by his
name, say, and by the fact that x is related to some (unique)
employee y.

A conceptual schema in the entity-relationship model is
usually presented as an entity-relationship diagram, where

® Rectangles represent entity sets.

¢ Diamonds represent relationship sets. If R is a relationship
set between entity or relationship sets S|, -+, S, , then there
is an edge between the diamond representing R and
the figure (rectangle or diamond) representing S,,
i =1,---, n. The edge may be labeled with i, if S| is equal
to S, for some i and jin [1, n]. Otherwise, the order of the
sets in the list is irrelevant.

e Ovals represent attributes. If A4 is an attribute of an entity
or relationship set S, then there is an edge between the oval
representing 4 and the figure representing S.

o Double rectangles represent weak entity sets.

An example of an entity-relationship diagram appears in
Section 3.

Finally, we call a statement of the form E[A4,,---, 4,] an
entity typeiff E is the name of an entity set S and A4, ---, 4,
are the names of the attributes of S. Likewise, R[N, -+, N ;
A, -+, A is a relationship type iff R is the name of a
relationship set S, NV, ---, N,, are the names of the entity or
relationship sets related by S, and A, ---, A, are the names of

the attributes of S.

& Concepts from the relational mode!
This section introduces several concepts pertaining to the
relational model of data that are used throughout the paper.
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A relation scheme is a pair (R, U), where R is the name of
the relation scheme and U is a finite set {4,,---, 4} of
attributes of R. The notation R[A,,---, 4,] is used for
(R, ).

A database scheme is a finite set DS of relation schemes.
A database state or simply a state of DS is a function v
associating, to each relation scheme R in DS with n attri-
butes, # > 0, an n-ary relation r = o(R). If tisin 2(R) and X
is a sequence (or a set) of attributes of R, then 1[X] denotes
the projection of ¢ on the attributes in X.

A key of a relation scheme R in DS is a set K of distinct
attributes of R. Given a state v of DS, v is said to satisfy K iff
for any ¢ and ¢’ in o(R), if ¢{[K] = t'[K], then ¢t = ¢t'. Note
that keys need not be minimal; that is, K is a key even if there
is a strict subset of K which is also a key.

If Rand S are two relation schemes in DS and X and Y are
sequences of attributes of R and S, respectively, such that X
and Y have the same length, then the sentence R[X] C S[Y]
is called an inclusion dependency [8]. Given a state v of DS,
v is said to satisfy R[X] C S[Y] iff for any tuple ¢ in v(R)
there is a tuple u in v(S) such that 1[X] = u[Y].

Relational expressions over DS are also used with the
standard definition [13]. Given a state v of DS, v can be
extended to expressions over DS in the usual way; the value
of an expression E is denoted by v(E).

An integrity constraint is a sentence over a set of relation
schemes. Of the many families of relational integrity con-
straints studied in the literature [12, 13], only keys and
inclusion dependencies are used in this paper.

A relational schema is a pair RS = (DS, CS), where DS
is a database schema and CS is a set of integrity constraints
over DS. A database state of RS is any database state v of
DS if v satisfies all constraints in CS, then v is said to be a
consistent database state of RS.

Finally, some concepts that are not standard, but which
play a central role in later sections, are introduced.

Let R[K] C S[L] be an inclusion dependency such that L
is a key of S. Then, R[K] C S[L] is called a reference and R
is said to reference S via K and L; moreover, K is said to be an
out-key of R, and L is said to be an in-key of S. Out-keys are
called foreign keys in [14], but the name “out-key” is
preferred in this case to match the notion of in-keys. R is said

to reference S iff there are K and L such that R references S

via K and L. When the reference involves relation schemes
taken from a set of relation schemes DS, the reference is said
to be over DS.
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Not all sets of references are considered, though, since
some sets may lead to ambiguities. A set SIGM A of refer-
ences over a set of relation schemes DS is said to be
well-formed iff, for any two relation schemes R and S of DS,
if R[K] @ S[L] and R[K'] C S[L'] are in SIGM A then K
= K’ and L = L' Thus, if SIGM A is well-formed, there is
no ambiguity when we say that R references .S, since R does
not reference S in more than one way.

This concludes the list of basic definitions and notation
used in the next sections.

3. Mapping relation schemes into entity-relation-
ship concepts: an example

This section informally presents, with the help of an example,
a method of mapping a relational schema into an entity
relationship schema.

Consider a relational schema with the following set of
relation schemes (call it DS):

(1) DEPT[DNAME]
key: DNAME

(2) DEPT_MGR[DNAME MGR]
key: DNAME

(3) CLERK[SSN,NAME,AGE]
key: SSN

(4) EMP[NO,POSITION,DNAME]
key: NO

(5) DEPENDENT[NO,NAME,DOCNM]
key: NOONAME

(6) DOCTOR[DOCNM,SPECIALITY}
key: DOCNM

Without further analysis, nothing can be inferred. In
particular, the fact should be stressed that DNAME is an
attribute of DEPT and DEPT_MGR is not a sufficient
indication that any association exists between DEPT and
DEPT_MGR. At most, one may admit that these attributes
would have the same domain if a careful naming convention
were followed. (Certain view integration methodologies—
for example [15]—would identify the two occurrences of
DNAME without further consideration, which is contrary to
our view [16].)

Assume now that the set of integrity constraints of the
relational schema logically implies the following set of
references (call it SIGM A):

(7) DEPT_MGR[DNAME] C DEPT[DNAME]

(8) DEPT_MGR[MGR] C EMP[NO]

(9) CLERK[SSN] C EMP[NO]

(10) EMP[NO] C CLERK[SSN]

(11) EMP[DNAME] C DEPT[DNAME]

(12) DEPENDENT[NO] C EMP[NO]

(13) DEPENDENT[DOCNM] C DOCTOR[DOCNM]
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Then certain inferences can be drawn. Consider DOC-
TOR first. This relation scheme does not reference any other
relation scheme, but it is referenced by other relation
schemes. Thus, tuples may be freely inserted into, but not
deleted from, the relation associated with DOCTOR,
depending on how the references to DOCTOR are treated. In
general, a relation scheme R[A|, -+, 4,] of the relational
schema represents an entity type (in view of the references
contained in the set of integrity constraints of the relational
schema) when Condition 1 is satisfied:

Condition 1: R does not reference other relation schemes.

Similar observations also apply to DEPT. However, since
DEPT has just one attribute, it may also be interpreted as
representing a domain definition. In general, the choice must
take into account at least the following facts:

a. If a relation scheme R is taken as representing a domain,
entries cannot be inserted or deleted from the relation
denoted by R; however, the entity-relationship schema
will be somewhat simpler since it will contain one less
entity type. R will usually have just one attribute when it
represents a domain, although multicolumn domains are
not impossible. The cardinality of the relation denoted by
R will also tend to be small.

b. If, on the other hand, R is taken as representing an entity
type, the relation denoted by R can be modified; however,
the entity-relationship schema will have one more entity
type and, hence, will be more complex.

Another consequence is that the first choice leads to fewer
relationship types in the entity-relationship schema than the
second one.

Consider now DEPT_MGR. It references more than one
relation scheme and the set of out-keys is a key. One may
then consider that DEPT_MGR defines a relationship type.
In general, a relation scheme R[4, -+, 4,] defines a rela-
tionship type iff Condition 2 holds, where

Condition 2: R references more than one relation scheme and
the union of all out-keys of R is a key of R.

Note that R may be referenced by other relation schemes,
since higher-order relationships are allowed in the version of
the entity-relationship adopted in this paper.

Consider now EMP and CLERK. These two relation
schemes reference each other and, moreover, the references
involve only keys. More precisely, the constraints of the
relational schema imply the sentences EMP[NO] C
CLERK[SSN] and CLERK[SSN] C EMP[NO] and,
moreover, NO and SSN are keys of EMP and CLERK,
respectively. So, for any consistent state v, each element in
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v(EMP[NO]) is associated with exactly one tuple in 2(EMP)
and exactly one tuple in 2(CLERK), and vice versa. Thus,
one may collapse EMP and CLERK into one relation
scheme:

(14) EMPLOYEE[NO,NAME,AGE,

POSITION,DNAME] key: NO

The references in (7) to (13) have to be modified adequately
by replacing EMP and CLERK by EMPLOYEE as follows:

(15) DEPT_MGR[DNAME] C DEPT[DNAME]

(16) DEPT_MGR[MGR] C EMPLOYEE[NO]

(17 EMPLOYEE[DNAME] C DEPT[DNAME]

(18) DEPENDENT[NO] C EMPLOYEE[NO]

(19) DEPENDENT[DOCNM] C DOCTOR[DOCNM]

Now, EMPLOYEE cannot be considered to represent just
an entity type since Condition 1 is not satisfied. Thus, it is
proposed to break EMPLOYEE into two relation schemes:

(20) EMPL[NO,NAME,AGE,POSITION]
(21) EMPL_DEPT[NO,DNAME]

key: NO
key: NO

and to modify SIGM A accordingly:

(22) DEPT_MGR[DNAME] C DEPT[DNAME]

(23) DEPT_MGR[MGR] C EMPL[NO]

(24) EMPL DEPT[NO] C EMPL[NO]

(25) EMPL_DEPT[DNAME] C DEPT[DNAME]
(26) DEPENDENT[NO] C EMPL[NO]

(27) DEPENDENT[DOCNM] C DOCTOR[DOCNM]

Now, EMPL satisfies Condition 1 and, hence, it may be
considered to represent an entity type. As for EMPL_DEPT,
it defines a relationship type, just like DEPT_MGR.

Finally, since EMPL and EMPL_DEPT were obtained by
splitting EMPLOYEE, one may conclude that a single
relation scheme, EMPLOYEE in this case, may originate an
entity type and a relationship type.

The analysis of DEPENDENT is also interesting.
DEPENDENT references two other relation schemes, but
the union of its out-keys does not contain a key. Hence,
DEPENDENT does not satisfy Condition 2. It is then
proposed to break DEPENDENT into two relation
schemes:

(28) DEP{NO,NAME] key: NO,NAME
(29) DEPDOC[NO,NAME,DOCNM] key: NO,NAME

References (26) and (27) are replaced by

(30) DEP[NO] C EMPL[NO]
(31) DEPDOC[NO,NAME] C DEP[NO,NAME]
(32) DEPDOC[DOCNM] C DOCTOR[DOCNM]
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Now DEPDOC represents a relationship type since it
satisfies Condition 2. As for DEP, it will be considered to
represent a weak entity type subordinated to EMPL,
together with its identifying relationship type. In general, a
relation scheme R[A,,---, A,] is considered to represent a
weak entity type, together with its identifying relationship
type, when Condition 3 is met:

Condition 3: R references just one relation scheme and the
out-key of R intersects every key of R.

Thus, when all attributes in the out-key are dropped, R is
left with no keys, i.e., tuples in R lose their identity.

The final result of the discussion is a set of relation
schemes (call it DS’):

(32) DEPT{DNAME]
key: DNAME

(33) DOCTOR[DOCNM,SPECIALITY]
key: DOCNM

(34) EMPL[NO,NAME,AGE,POSITION]
key: NO

(35) DEP[NO,NAME]
key: NO,NAME

(36) DEPT_MGR[DNAME,MGR]
key: DNAME

(37) EMPL_DEPT[NO,DNAME]
key: NO,DNAME

(38) DEPDOC[NO,NAME,DOCNM]
key: NOONAME

and a set of references (call it SIGMA'):

(39) DEP[NO] C EMPL[NO]

(40) DEPT_MGR[MGR]C EMPL[NO]

(41) DEPT_MGR[DNAME] C DEPT[DNAME]
(42) EMPL_DEPT[NO] C EMPL[NO]

(43) EMPL_DEPT[DNAME] C DEPT[DNAME]
(44) DEPDOC[NO,NAME)] C DEP[NO,NAME]
(45) DEPDOC[DOCNM] C DOCTOR[DOCNM]

Each relation scheme in DS’ represents an entity type, a
relationship type, or a weak entity type. The corresponding
entity-relationship diagram is shown in Fig. 1. Each object in
the diagram has the same name and the same attributes as
the corresponding relation scheme. The only exception is
DEP, which is mapped into a weak entity type with the same
name and attributes, except those in the out-key of DEP, and
a binary relationship type, DEP-OF-EMP, which acts as the
identifying relationship type. For the sake of simplicity,
attributes are omitted in the figure.

This concludes the analysis of the running example. Sec-
tions 4 and 5 bring precision to the discussion in this section.
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4. Folding relation schemes

This section defines an operation called folding, which
collapses relation schemes that always denote the same entity
or relationship set. Folding is essentially the operation used
to collapse EMP and CLERK into EMPLOYEE in Section
3. Folding will not collapse, however, relation schemes that
may denote distinct sets of entities (or relationships), even if
the entities (or relationships) are of the same type. Thus,
folding will not destroy any generalization hierarchy, in the
sense of [17], that may be represented by the original set of
relation schemes.

The operation of folding is defined in three steps:

Definition 1

Let DS be a set of relation schemes and let SIGMA be a
well-formed set of references over DS. The folding graph of
SIGM A is the digraph G = (V, E) where

i. V= DS;
ii. (R,S) is in E iff there is a reference R[K] C S[L] in
SIGMA, where K is a key of R and L is a key of S.

Note that, since SIGM A is assumed to be well-formed, to
each arc (R, S) in E there corresponds a unique reference
R[K] C S[L] in SIGMA, which is called the reference
generating (R, S).

Whenever two relation schemes belong to the same cycle
in G, they may always denote the same set of objects and,
hence, they may potentially be folded together. However,
this is not always the case, because the following problem
may arise.

Example 2
Consider the following relation schemes and references:

(1) EMP[SSN,NO,NAME]
(2) CLERK|[SSN,NO,DEPT]

(3) EMP[SSN] & CLERK[SSN]
(4) CLERK[NO] C EMP[NO]

Then, EMP and CLERK cannot be replaced by the relation
scheme

(5) EMPLOYEE[SSN,NO,NAME,DEPT]

because EMP and CLERK may be associated with different
relations, as for example

EMP SSN NO NAME CLERK SSN NO DEPT
1 2 John 1 1 Toys
2 1 Mary 2 2 Sales

These two relations satisfy (3) and (4), but they cannot be
merged into a single relation since SSNs and NOs appear
reversed. Note that the example in Section 3 is not affected
by this problem. This concludes the example.
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EMPL DEPT
DEP-OF-EMP EMPL__DEPT
DEP DEPDOC DOCTOR

Figure 1 The final entity-relationship diagram.

In view of Example 2, relation schemes are folded together
only if they belong to a special kind of cycle.

Definition 3

Let G = (V, E) be the folding graph of SIGMA. Let R and
S be two relation schemes in V. R and S are said to be
equivalent iff

i. There is a cycle (R, --+, R,, R|) in G such that R, = R
and R, = S for some jin [1, k];

i. If R,_\[K,, ;] C R[K,] and R [L]] C R, |[K,, ]
generate (R, ,R,) and (R, , R, ), respectively, then

K, = L,, for each m in [1, k] (sum and subtraction is

modulo k). K, is also said to be the folding key of R, , and

the ith attribute of K, is said to correspond to the ith

attribute of K, for any m, j in [1, k].

Definition 4

Let DS be a set of relation schemes, and let SIGMA be a
well-formed set of references over DS. Let G = (V, E) be the
folding graph of SIGM A. The folding of DS and SIGMA is
the set DS’ and SIGM A’ of relation schemes and references
obtained as follows:

(1) Let DS(1) = DS, SIGMA(1) = SIGMAand i = 1,
initially;

(2) While there are two equivalent relation schemes
R[X] and S[Y] in DS(i) with folding keys K and L
do:

(2.1) Increment i;
(2.2) Rename all attributes of S that also occur in R,
adjusting all references to S accordingly;
(2.3) Create DS(i) and SIGM A(i) as follows:
(2.3.1) DS(i) is DS(i — 1) except that R[.X] and S[Y] are
replaced by R'[X’], where X' = (X U Y) — L and
R’ has as keys those of R and .S, except L;
(2.3.2) SIGMA(i) is SIGMA(i — 1) except that
o If R[W] C T[V] (or T[V] C R[W]) occurs in
SIGMA (i — 1), replace it by R'[W] C T[V] (or
T[V] & R'[W]);
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o If S[W] C T[V] (or T[V] C S[W]) occurs in
SIGMA (i — 1), replaceit by R'[W'] C T[V] (or
T[V] C R'[W’]), where W' is W with each
attribute in L replaced by the corresponding attri-
bute of K;
(3) DS’ = DS(i) and SIGMA’ = SIGMA(i), when the
loop terminates.

Example 5
Consider again part of the original set of relation schemes
and references of Section 3:

(1) CLERK[SSN,NAME, AGE]}
key: SSN

(2) EMP[NO,POSITION,DNAME]
key: NO

(3) DEPENDENT[NO,NAME,DOCNM]
key: NO,NAME

(4) CLERK[SSN] C EMP[NO]

(5) EMP[NO] C CLERK[SSN]

(6) DEPENDENT([NO] C EMP[NO]

The corresponding folding graph is G = (¥, E), where

V = {CLERK,EMP,DEPENDENT])
E = {(CLERK,EMP),(EMP,CLERK)}

The folding of these relation schemes and references then
collapses CLERK and EMP into a single relation scheme,
producing

(1) CLERK'[SSN,NAME,AGE,POSITION,DNAME]
key: SSN

(2) DEPENDENT[NO,NAME,DOCNM]
key: NOONAME

(3) DEPENDENT[NO] C CLERK’[SSN]

This concludes the example.

Folding has an important property that essentially says
that no information is lost during the operation. This prop-
erty is defined in general as follows:

Definition 6

Let RS = (DS, CS) and RS’ = (DS’, CS’) be two relational
schemata. RS’ is said to represent RS iff, for each relation
scheme R in DS, there is an expression E over DS’ such that,
for every consistent state v” of RS’, the function » from DS
into relations constructed by taking z(R) = o'(E) is a
consistent state of RS.

Proposition 7

Let DS’ and SIGMA’ be the folding of DS and SIGMA.
Then (DS’, SIGMA’) represents (DS, SIGMA), and vice
versa.

Sketch of proof
It can be proved by induction on i that (DS(i), SIGMA(i))
represents (DS, SIGM A) and vice versa.
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Basis i = 1. There is nothing to prove, since DS(1) = DS
and SIGMA(1) = SIGMA.

Induction step Let i > 1 and suppose that (DS(i — 1),
SIGMA(i — 1)) represents (DS, SIGMA). Let DS(i) and
SIGMA(i) be the result of the ith step of the algorithm in
Definition 4. Then it can be proved that, since R and S are
equivalent, step 3 of the algorithm is such that (DS(i), SIG-
MA(i)) represents (DS(i — 1), SIGMA(i — 1)) and vice
versa. But the property of representation is transitive. Hence,
(DS(i), SIGMA()) represents (DS, SIGMA). Therefore,
one may conclude that (DS’, SIGMA’) represents
(DS, SIGM A) and vice versa, if the former pair is the folding
of the latter pair.

This concludes the discussion of folding.

5. An algorithm mapping a family of relational
schemata into entity-relationship schemata

In this section, the remarks made in Section 3 are trans-
formed into an algorithm mapping a set of relation schemes
and a set of references into an entity-relationship schema.

Let us begin with a comprehensive definition of what it
means for a relation scheme to define an entity-relationship
object in the presence of a set of references. These concepts
were already illustrated in Section 3.

Definition 8

Let DS be a set of relation schemes and SIGMA be a
well-formed set of references. Let R be a relation scheme in
DS.

a. R defines an entity type in the presence of SIGMA iff
STGM A contains no reference of the form R[K] C S[L],
for any S'in DS.

b. R defines a weak entity type in the presence of SIGM A iff
SIGMA contains a single reference of the form R[K]
C S[L], for some S in DS, and K intersects every key of
R. R is also said to be subordinated to S in the presence of
SIGMA.

¢. R defines a relationship type in the presence of SIGM A
iff SIGM A contains a set of references of the form R[K| ]
CS, L), - RIK,]CS,[L,]suchthat K, U --- UK
is a key of R. R is also said to relate the relation schemes it
references.

d. R defines an ER-object iff R defines either an entity type,
a weak entity type, or a relationship type.

e. DS and SIGM A define an entity-relationship schema (or,
simply, an ER-schema) iff each relation scheme in DS
defines an ER-object.

The definitions in (a), (b), and (c) are justified by
comparing the behavior of the relation denoted by R with the
behavior of entity sets, weak entity sets, and relationship sets.
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Let v be a state of DS satisfying SIGM A. Thus, if R satisfies
(a), then the existence of tuples in »(R) is not constrained by
the existence of tuples in any other relation, since R refer-
ences no relation scheme. Now, if R satisfies (b), then if K is
deleted from the attribute set of R, no key of R is left, i.e.,
tuples in v(R) lose their identity. It should be said at this
point that, if R satisfies (b), then R actually represents the
weak entity set together with its identifying relationship set.
Finally, if R satisfies (c), each tuple in z(R) uniquely
determines a tuple in (R,) x --- x v(R,,), that is, a rela-
tionship between entities in z(R),---, v(R,,), where
R, -+, R, is the set of all relation schemes referenced by R.
Indeed, since the union of all out-keys of R is a key of
R, no two tuples in o(R) determine the same tuple in
vo(R,) x -+ x v(R,,).

With the help of these definitions, the conceptual schema
design problem addressed in this section can be posed as
follows.

Problem Pl

Given a set DS of relation schemes and a well-formed set
SIGM A of references over DS, construct a set DS’ of relation
schemes and a set SIGM A’ of references over DS’ such that
i) DS' and SIGM A’ define an ER-schema; ii) (DS, SIGM A)
represents (DS’, SIGMA’); iii) (DS’, SIGMA') represents
(DS, SIGMA).

Condition (i) guarantees that an entity-relationship
schema can be associated with DS’ and SIGMA’, which was
the primary goal of this section. The other two conditions
guarantee that the relational schemas RS = (DS, SIGMA)
and RS’ = (DS’, SIGMA’) are equivalent in the sense that
each consistent state of RS can be mapped by relational
algebra expressions into a consistent state of RS’, and vice
versa. This notion of equivalence correponds to that hinted at
in [18], but differs from definitions of equivalence based on
the universal relation assumption sometimes adopted
[5, 19, 20].

Figure 2 describes an algorithm that solves Problem P1.

The algorithm in Fig. 2 works as follows. The initial
folding operation is used to collapse relation schemes that
represent the same ER-object, thus avoiding trivial violations
of the conditions expressed in Definition 8. After folding,
each relation scheme R is inspected to determine if it defines
an ER-object. The algorithm is in fact an optimized form of
the following case analysis:

Case 1: R references no relation scheme.
The R trivially defines an entity type and nothing is
done.

Case 2: R references exactly one relation scheme.
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Case 2.1: Every key intersects the out-key.
Then R defines a weak entity type and
nothing is done.

Case 2.2: Some key of R is disjoint from the out-key
of R.
Then R is replaced by RR, and RR,,
which define the entity type and the rela-
tionship type originally represented by R,
respectively.

Case 3: R references more than one relationship schema.

Case 3.1: The union of out-keys of R is a key of R.
Then R defines a relationship type and
nothing is done.

Case 3.2: The union of out-keys of R is not a
key of R. R is replaced by RR, and
RR, .-~ RR,, which define the entity
type and the binary relationship types
originally represented by R, respectively.
(The binary relationships are equivalent
to the original relationship represented by
R)

Note that RR, and R have the same set of attributes when
(K, U UK)C(PU---U P,). The algorithm in this
case works basically by reorganizing the references. As such,
RR,, -+, RR, are not redundant since tuples can be freely
inserted in RR,, but not in RR,.

The way Case 3.2 is treated may be better understood by
means of an example.

Example 9

Consider the following relation schemes and references:
(1) SUPPLIER [S#,SNAME] Key: S#

2) PROJECT[J#LIDER] Key: J#

3) SPJ[S#,P#J#QTY]

4) SPJ[S#] C SUPPLIER][S#]
5) SPJ[J#] C PROJECT[J#]
Then, SUPPLIER and PROJECT define entity types, but
SPJ defines no ER-object since it has two out-keys, S# and
J#, which do not cover the key S#,P#. The solution adopted in
the algorithm amounts to replacing (3) by

Key: S#,P#

(6) SPJO[S#P#QTY] key: S#,P#
9) SPJ1[S#P#] key: S#,P#
(10)  SPJ2[S#,P#J#) key: S#,P#,J#

(11)  SPJ1[S#,P#] C SPJO[S#,P#]
(12)  SPJI[S#] C SUPPLIER[S#]
(13)  SPJ2[S#,P#] C SPJO[S#,P#]
(14)  SPJ2[J#] C PROJECT[J#]

This solution amounts to recognizing a new entity type
represented by SPJO (meaning “order,” say), with key S#,P#
and attributes S#,P# and QTY. This is accompanied by two
new relationship types represented by SPJ1 and SPJ2 (mean-
ing “order-supplier” and “order-project,” respectively).

MARCO A. CASANOVA AND JOSE E. AMARAL DE SA




ERDESIGN(DS,SIGMA;DS  SIGMA’)
/*input: DS, SIGMA—a set of relation schemes and a well-formed set of references over DS
output: DS’, SIGMA’—a set of relation schemes and references such that:
(i) DS’ and SIGMA'’ define an entity-relationship schema
(ii) (DS, SIGMA’) represents (DS, SIGMA)
(iii) (DS, SIGMA) represents (DS’, SIGMA')*/
/*The following notation is used:
R[X] —a relation scheme in DS’
Pl, ---, Pm—the set of all keys of R
Fl1, ---, Fp —the set of all rel. schemes such that there
is a reference R[Ki] C Fi[Mi] in SIGMA’
T1, ---, Tq—the set of all rel. schemes such that there
is a reference Tj[Lj] C R[Nj] in SIGMA'’
Ki,Mi —(as above)
Lj,Nj —(as above)*/

begin
fold DS and SIGMA into DS’ and SIGMA’;
for each relation scheme R in DS’
that does not define an ER-object do
begin
/*selection of a key of R*/
if R has a key disjoint from all out-keys
then let Pj be any key of R disjoint from
all out-keys of R;
else let Pj be any key of R;
/*
RRO[M] defines the entity type represented in R
and has all references and keys of R
*
/
let M be X-(K1 U *=- U Kp)-(P1 U -~ U Pm));
delete R[X] from DS’;
add RRO[M] to DS’ with all keys of R;
foreachj=1,...,qdo
begin delete Tj{Lj] C R[Nj] from SIGMA’;
add Tj[Lj] C RRO[Nj] to SIGMA";
end
/*
RRi[Pj U Ki] defines a relationship type represented
originally in R, for each out-key Ki of R
*/
foreachi=1,...,pdo
begin add RRi[Pj U Ki] to DS’ with key Pj U Ki;
delete R[Ki} C Fi[Mi] from SIGMA’;
add RRi[Ki] C Fi[Mi] to SIGMA’;
add RRi[Pj] C RRO[Pj] to SIGMA’;
end
end
end

Figure 2 Algorithm to solve Problem P1.
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A second and equally viable treatment of Case 3.2 would
be to add a new relation scheme and a new reference as
follows:

(6) PART(P#) key: P#
(7) SPI{P#] C PART[P#]

This solution fixes the problem by adding the entity type
(defined by PART) that was missing in the relationship type
between suppliers-parts-projects (defined now by SPJ), so to
speak.

The algorithm can be modified to opt between the two
alternatives, perhaps prompted by the designer, if additional
information is available to guide the choice.

The correctness of the algorithm in Fig. 2 is stated in the
following theorem.

Theorem 10
The algorithm in Fig. 2 correctly solves Problem P1.

Proof

It has to be proved that, given a set DS of relation schemes
and a well-formed set SIGMA of references over DS, the
algorithm outputs a set DS’ of relation schemes and a set
SIGM A’ of references over DS’ such that

A. DS’ and SIGM A’ define an ER-schema;
B. (DS’, SIGMA') represents (DS, SIGMA);
C. (DS, SIGM A) represents (DS’, SIGMA")

Consider (A) first. After folding, the loop must terminate
because DS’ initially contains a finite number of relation
schemes satisfying the loop condition and, at each iteration,
each such relation scheme is replaced by other relation
schemes not satisfying the loop conditions. Indeed, let R be
the relation scheme selected at some loop iteration. There are
three cases to consider:

Case 1: R references no relation scheme.
Then, R defines an entity type and could not have
been selected for the loop iteration.
Case 2: R references exactly one relation scheme.
Case 2.1: Every key intersects the out-key.
Then, R defines a weak entity type and
could not have been selected for the loop
iteration.
Case 2.2: Some key of R is disjoint from the out-key
of R.
Then, R is replaced by RR, and RR,,
which define an entity type and a rela-
tionship type, respectively.
Case 3: R references more than one relationship schema.
Case 3.1: The set of out-keys of R is a key of R.
Then, R defines a relationship type and
could not have been selected for the loop
iteration.
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Case 3.2: The set of out-keys of R is not a key of
R.
Ris replaced by RR; and RR,, -, RR ,
which define an entity type and binary
relationship types, respectively.

Therefore, the loop terminates and, moreover, the loop
condition must be false in the final state. So the loop
terminates in a state such that each relation scheme in DS’
defines an ER-object, from which assertion (A) is immedi-
ately established. This concludes this part of the proof.

To prove (B) and (C), it suffices to observe that, by
Proposition 7, (B) and (C) hold after the folding of DS and
SIGMA and that (B) and (C) are preserved each time the
algorithm replaces a relation scheme R by other relation
schemes, since R is the natural join of RR,, -, RR, and RR,
contains all keys of R and, in turn, RR, is obtained from R by
projection. This concludes the proof.

To conclude, one can easily convert the output of the
algorithm in Fig. 2 into an entity-relationship schema by
mapping each relation scheme R into the ER-object E that it
defines; the set of attributes and keys of E is equal to the set
of attributes and keys of R, respectively. The only exception
is when R defines a weak entity type. Let K be the out-key of
R and S be the relation scheme R is subordinated to. In this
case, R is mapped into a weak entity type W with the same
name and attributes as R, except those in K, and into a
binary relationship type (the identifying relationship type of
W), with no attributes, between W and the ER-object
defined by S.

6. Two applications of the method

This section discusses two applications of the algorithm
described in Section 5, one in connection with the design of
relational databases and another related to the conversion of
conventional file systems to the database approach.

® An application to the design of relational databases

The relational model of data, as originally conceived by Codd
[3] adopted relations (or tables) as the only logical data
structure, leaving practically all semantics to be expressed by
integrity constraints. However, since relations are semanti-
cally neutral, large relational conceptual schemes tend to be
difficult to understand. One possible strategy to remedy this
difficulty would be to extend the relational model with more
semantic constructs. A solution along these lines was pro-
posed in [4]. However, adding more constructs has an
adverse effect on the data definition and data manipulation
languages of the model, since they become more complex. In
addition, several database management systems, based on
the original relational model, are already .in use.
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A second possible solution would be to use a conceptual
design method that leads to relational database schemata
that have an interpretation in terms of semantic concepts
that are easy to grasp. This alternative is then briefly
explored in this section.

This is exactly the case when the relational schema defines
an ER-schema (in the sense of Definition 8). Since this
condition is related to many other conditions on relational
schemata, generally called normal forms, the following defi-
nition is introduced:

Definition 11

Let RS = (DS, CS) be a relational schema, where DS is a
set of relation schemes and CS is a set of functional depen-
dencies and inclusion dependencies. RS is said to be in
Entity-Relationship Normal Form (ERNF) iff

i. Each relation scheme is in BCNF;
ii. Each inclusion dependency R[X] C S[Y] in CS is such
that Yis a key of S (i.e., the dependency is a reference);
iii. RS defines an ER-schema (cf. Definition 8).

Going back to the algorithm in Fig. 2, it can be interpreted
as a mapping from relational schemata, whose constraints
are keys and inclusion dependencies of a special form (i.e.,
references), into equivalent relational schemata that define
an ER-schema. Note that this is just the inverse of the
operation commonly considered, i.e., mapping ER-schemata
into relational schemata. As such, the algorithm in Fig. 2 can
then be viewed as a normalization procedure that maps a
relational schema that contains an ER-schema into an
equivalent relational schema that defines an ER-schema.

® An application to the conversion of conventional file
systems to the database approach

This section briefly addresses the conceptual design problem
generated by the conversion of conventional file systems to
the database approach.

The key idea is that the conceptual schema of the final
database system should be designed from the description of
the conventional file system in two successive steps of
abstraction. The first step consists of obtaining a relational
schema that closely resembles the description of the files.
Relation schemes, keys, and domain definitions are defined
by inspecting file descriptions, and references are obtained
mostly by analyzing update programs. Details concerning
the physical structure of files and records must be abstracted
at this step. The resulting schema will probably be loosely
structured, since file structures tend to reflect performance
considerations and not the semantics of data. The second step
consists of massaging the relational schema until it defines
an entity-relationship schema, which is essentially the prob-
lem solved in Sections 3 to 5. Therefore, the remainder of this
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Let us begin with a few additional concepts. A conven-
tional file system is understood here to be a set of files
together with a set of update programs on the files. Each file
is described by listing the structure of the records it stores,
the access method used, and the key, if any. Asin COBOL or
PL/I, a record structure is defined by listing the record name
and the field names and types. The access method can either
be sequential, direct, indexed-sequential, or based on B-trees
(i.e., VSAM). The last three involve the notion of a key.

There are two problems to be faced when defining a
relational schema from a set of file descriptions and update
programs: how to obtain relation schemes and domain defini-
tions from file descriptions; and how to find keys and
references from file descriptions and update programs.

The first problem is easier to solve. Each file description
will generate either a relation scheme or a domain definition.
These alternatives were essentially those discussed in Section
3 in a different context. The relation scheme resulting from a
file description, if this is the case, may not be in first normal
form [6] if the record structure contains repeating groups.
The following example illustrates this point.

Example 12

Consider the following record structure (using the syntax of
PL/I) containing data about employees and their depen-
dents; since each employee may have many dependents,
DEPENDENTS is an array whose size is given by NODEP.

(1) DCL 1EMP BASED,
2 EMP# FIXED(5),
2 NAME,
3GIVENNAME  CHAR(10),
3 FAMILYNAME  CHAR(10),

2 NODEP BIN FIXED(15),
2 DEPENDENTS (IREFER(NODEP)),
3GIVENNAME  CHAR(10);
3 MIDDLENAME CHAR(10);

DCL1 BIN FIXED(15);

This record structure will generate the following relation
scheme, where the bracketed attributes indicate nonatomic
entries:

(2) EMP[EMP#,GIVENNAME FAMILYNAME,
NODEP,
{DEPENDENT.GIVENNAME,
DEPENDENT.MIDDLENAME}]

Since this relation scheme is not in first normal form, it is
replaced by two new relation schemes and a reference:

(3) EMPI1[EMP#,GIVENNAME,FAMILYNAME,
NODEP]

(4) DEP[EMP#GIVENNAME,MIDDLENAME]

(5) DEP[EMP#] C EMP1[EMP#]
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It is interesting to note that the reference is usually omitted
when normalizing schemes, which is not reasonable since
every dependent must be the dependent of some employee.
This concludes the example.

As for the second problem, defining keys can be relatively
easy, but not defining references. Indeed, keys can be
extracted directly from file descriptions, but references have
to be defined by inspecting the behavior of update programs.
However, the following general observations can be made.
Let F and F’ be two files, and assume that their descriptions
were mapped into relation schemes R[U] and R'[U’], respec-
tively. Let X and X” be sequences of attributes of R and R’
with the same length, and assume that they correspond to
record fields of the same name. A reference R[X] C R'[X']
will be added to the relational schema if the following two
conditions are met by all updates to F and F’:

a. The insertion of a record r in F is conditioned to the
existence of a record r’ in F such that #(X) = r'(X’) or the
insertion of a record r in F forces the insertion of a record
r'in F with r(X) = r'(X’), if no such record exists.

b. The deletion of a record r’ from F’ is conditioned on the
absence of a record r in F such that r(X) = r'(X’) or the
deletion of a record r’ from F’ forces the deletion of all
records rin F such that r(X) = r'(X’).

It is not difficult to write down similar conditions that
guarantee that the reference is always obeyed in the presence
of other forms of update.

A very common situation where conditions (a) and (b) are
met occurs when the second file, F’ in the above discussion,
plays the role of a master file or of a data pool (that is, a set of
relatively stable data that is frequently referred to by appli-
cation programs, but seldom updated, and which is used to
validate input records and impose uniformity of reference
across files).

This concludes our brief remarks on how to map conven-
tional file system descriptions into relational schemata.

It should be stressed that the design of the conceptual
schema is just one of the steps necessary to convert conven-
tional file systems to the database approach. The actual
conversion of application programs, and physical database
design, are certainly other important issues that must be
investigated.

Finally, it is clear that without appropriate dictionary
facilities the method proposed in this section will hardly be
possible to apply. This issue thus deserves further attention.
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7. Conclusions and directions for future re-
search

A method of assigning an interpretation in terms of the
entity-relationship model to a set of relation schemes was
described. The method was based on an explicit set of
references across relation schemes, formalized as a special
type of inclusion dependency. The essential aspects of the
method were captured by a design algorithm.

A straightforward application of the method to the design of
relational databases led to the concept of entity-relationship
normal form (ERNF). ERNF is of interest by itself since it
offers a guide to the design of relational databases whose
constraints are functional and inclusion dependencies.

The method is also a step towards designing entity-
relationship schemata from conventional file system descrip-
tions. Since quite frequently record references will be diffi-
cult to unveil, the method will be useful in this context only if
the conventional system has already been cleaned up suffi-
ciently, that is, record types have been made uniform, data
pools exist to harness cross-references between records from
different files, and so on.
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