74

VINCENT KRUSKAL

Vincent Kruskal

Managing Multi-Version Programs with an Editor

When more than one version of a program must be maintained, generally much of the code is repeated unchanged in many
versions. Techniques such as “deltas” and conditional compilation are commonly used to avoid duplicating these common
parts. In addition to saving storage, these methods aid the programmer greatly in managing updates to the versions.
Unfortunately, these representations of multi-version programs can appear very unlike a program, making them difficult to
edit. Described here is a new method of automating much of the bookkeeping involved in dealing with multi-version programs.
It entails use of a special editor that enables a multi-version program to be seen and modified in a fashion that is far closer to

that normally permitted for a single-version program.

1. Introduction

A multi-version program is a data structure that contains
fragments of code as well as control information to deter-
mine, for each version, which of the fragments are needed.
An automatic process can produce, on demand, any desired
version upon presentation of a version name or equivalent
identifier.

Two techniques are in common use for dealing with the
many cases in which multi-version programs are encoun-
tered. So-called ‘“‘deltas” represent reasonably well
sequences of versions over time but represent concurrently
existing versions poorly. Conversely, conditional compilation
allows concurrent versions to be represented well but in
practice not sequences of versions. Moreover, both represen-
tations can seem very unnatural to the programmer.

A special editor is described in this paper to deal with both
concurrent and sequential multi-version programs in a uni-
form manner. The code for only the version the programmer
is working on is displayed and no version control information
is displayed. If he is editing more than one version, one of
them is displayed as an example and the sections that differ
between those versions are highlighted. Multi-version docu-
mentation, as well as code, is often maintained as well.

In this paper, we first review some typical instances of
multi-version programs. We then describe the traditional

delta and conditional compilation methods for representing
multi-version programs. In the next section, a method is
reviewed in which an editor is used to overcome some of the
human factors problems associated with these traditional
methods. Finally, some specifics about the editor, P-EDIT,
are discussed.

2. The need for multi-version program control
One use of multi-version programs is as part of an applica-
tion customizer, such as MACS [1]. Here a prospective user
fills out a questionnaire to make his needs known to the
customizer program, which in responée produces an appro-
priate version of the application program, along with custom-
ized documentation. By far the most expensive part of a
customizer is the multi-version program (and documenta-
tion) within it that defines the possible versions that can be
produced. Operating systems are also often written as multi-
version programs, with management at each installation
choosing an appropriate version for their system.

Another common use for multi-version programs results
from the need to maintain a record of the changes that were
made to a program. Here a suitable time period is chosen
(daily, edit session, etc.), and a new version is created each
time the program is changed within the period; alternatively,
a method of naming versions is chosen (version 2.4.3, etc.)
and a new version created when deemed appropriate. In

© Copyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

IBM J. RES. DEVELOP. e VOL. 28 e NO. | e JANUARY 1984

either case, a sequence of versions is generated, usually with
a clearly latest version of primary interest. Thus, sequences
of versions seem quite different from the concurrent versions
of an application customizer. In fact, they are sometimes
given different names, as in SVCE’s versions and revisions
[2], and some multi-version techniques only handle one or
the other. However, the distinction is sometimes not so clear,
as when there is a released version being maintained and a
next version being developed. Here a redundancy of effort
can be avoided by making the latest two versions concurrent
to the maintainers, the developers, or both.

When a large application program is being constructed by
a group, there is often need for one programmer to work on a
temporary version of one module without imposing his
transitory problems on the others in the group. Complex
relationships can develop among such versions when, say, one
programmer wishes to make the module he is writing con-
form with another module that is not yet ready to be turned
over to the group as a whole. A sufficiently powerful version
control system can solve many of the problems inherent in
this situation so that it is even possible to relax the common
module ownership rules that forbid more than one program-
mer from modifying a particular piece of a program. Owner-
ship of versions, rather than modules, can provide the same
control with far greater freedom.

Another instance of the need for a more powerful version
control system results from the requirement of some custom-
ers of certain kinds of programs to make local modifications.
One way that software manufacturers can satisfy this need is
to sell the needed modification to the customer as a custom-
ized product. However, the cost of such customized products
tends to be quite high, primarily because of the high cost of
maintaining them while making changes to the general
product. Since the general product with the modifications
needed by a particular user is simply an example of another
version of the product, any method that substantially reduces
the cost of maintaining an additional version would permit
software manufacturers to quote far lower prices for custom-
ized products.

A kind of version control not otherwise discussed here is
really the same concept at a macroscopic level: control over
which modules should be selected to generate a particular
version of a large system. Here the control is exercised at the
module level, rather than at the code fragment level. How-
ever, the typical procedure for building a large system from
modules is governed by a control file for each version to be
built. Such control files themselves can be thought of as
programs written in a very special purpose language. Thus,
code fragment version control might well prove useful even at
the module level if one multi-version control file were main-
tained, rather than many separate ones. This would be

IBM J. RES. DEVELOP. ¢ VOL. 28 @ NO. | « JANUARY 1984

particularly true when a large amount of duplication existed
in the otherwise separate control files.

3. Representations of multi-version programs
Two general ways are used to represent multi-version pro-
grams, deltas and internal Boolean expressions.

® Deltas

Deltas are instructions on how to modify a previous version to
produce the next version. They use line numbers or similar
identification to name the points in the previous version
where the modifications are to be made. Deltas are really
packages of edit commands and were, in fact, originally
invented to provide batch editing for tapes at least as early as
the FAP assembler for the IBM 7090. They are still used for
purposes other than version control, i.e., to send instructions
on how to modify a program at a remote location. However,
they look nothing like the edit commands common today in
interactive editors and are quite difficult to deal with. Each
delta is usually represented as a separate file. (The SCCS
system, described in a paper which gives an excellent descrip-
tion of the problems of deltas [3], is an exception.) Thus,
there is typically a base file and a sequence of delta files.
Additional mechanisms are often introduced to permit cata-
loging of the order in which the deltas are to be applied for
various versions.

Deltas work fairly well to represent sequences of versions,
but they represent concurrent versions poorly. Concurrent
versions are represented as a tree of deltas. Take a simple
case of a multi-version file with three concurrent versions, X,
Y, and Z. A typical representation might assign to X the role
of being the base, and one delta would represent the transfor-
mation of X into ¥ and a separate delta would represent the
transformation of X into Z. But if a particular place in X had
to be changed in the same way for both ¥ and Z, that change
would have to be represented in both the X to ¥ delta and the
X to Z delta. But the duplication of identical code is exactly
what is being avoided by having multi-version programs.
When a programmer is changing that section of the X to ¥’
delta, he is given no help in making the corresponding change
to the X to Z delta, not even help in knowing that it should be
done. It cannot be argued that the original deita representa-
tion was wrong, i.e., that ¥ should have been the base and
that Y to X and Y to Z should have been the deltas. For in
some other place in the program, X and Z might be the same
while Y is different.

Actual attempts to use deltas to represent concurrent
versions usually are a bit more complex. Often an attempt is
made to have the deltas represent a sequence over time, as
well as concurrent versions. It is sometimes useful to do this,
but it is extremely limiting. Deltas are of primary importance
here, because an interesting technique is in current use to

75

VINCENT KRUSKAL

76

deal with their obscure data representation, which is not
generally available for their alternative, described next.

® Internal Boolean expressions

The alternative to deltas is to have meta-linguistic condi-
tional statements placed within an otherwise normal-looking
program. This is often called conditional assembly or compi-
lation. The interpretation of these conditional statements is
sometimes done during compilation [4] and sometimes by a
pre-processor {5]. But in either case there are meta-
conditional statements that contain Boolean expressions
which cause the compiler to ignore or to compile the
fragments of code referred to by the conditional statements.
When editing such a multi-version program, these meta-
conditional statements are visible, and alternative fragments
of code that would not coexist in any version are seen close
together. If overused, the result can be impossible to deal
with.

Representing sequences of versions over time by this
method is unworkable, since the number of changes are great
and not normally of interest to the programmer. Thus, we
often see two different version-control systems being used
(and having to be learned) within the same project: a delta
system for recording sequences over time and an internal
Boolean expression system for concurrent versions. Worse,
more than one Boolean expression system is often used, one
for each programming language being used. However,
human factors aside, there is no multi-version program that
cannot be represented by the internal Boolean expression
method, a fact exploited by the approach to be described in
this paper.

e Support by an editor

In the cases of both deitas and internal Boolean expression
control, the raw data representation is quite unnatural, and
the programmer may have to deal with an object that is little
like a source program. But in the case of deltas, a method has
been developed to avoid this problem. Editors, such as
XEDIT [6], have been built to interpret the delta language
and can thus be instructed to edit some version, usually the
latest, of a multi-version program represented as deltas. The
user is then placed in an environment where it appears to him
that he is editing this version, even though it does not exist as
such outside the editor. He uses normal editing commands,
but when he declares that he is finished editing, only the
changes are recorded, in the form of a delta, rather than the
entire version. This delta would optionally be a modification
of the last delta applied when he started editing, or it might
be a new delta to be added to the delta sequence.

This method was a significant improvement over the direct
editing of deltas. It solved all of the human factor problems,
but left the problems of dealing with concurrent versions,

VINCENT KRUSKAL

which are inherent with the delta representation. This paper
presents a way to extend this idea to the internal Boolean
expression representation.

It is interesting to observe how the limitations of the delta
representation show through such a delta editor. Take again
the exampie of the three-version program with version X, the
base, and deltas Y and Z. When the programmer changes
version Y with this editor, he is not told which parts of it are
the same in version Z. Even if he knew this from experience,
he could not change both versions at once. So we see that he
needs two facilities: notification of commonality and the
ability to change more than one version at a time. The
following discussion shows how this can be provided by
permitting him to edit both versions at once and defining
appropriate methods of displaying them to inform him which
sections are common to both. This has not been attempted
using a delta representation; any such attempt would result
in generating an unmanageably large number of deltas. This
technique is only realistically possible with the internal
Boolean expression representation.

4. Generalized support by an editor

® The beginning

When the editing of a file begins using the method described
in this paper, the entire multi-version file is brought into
storage so that the user can quickly choose the versions that
are to be edited at the moment. All code fragments and
controlling Boolean expressions are immediately available to
the editor, so that it can easily create whatever environment
the user requests. The user can define a default environment
so that he is not necessarily put into the position of editing all
versions initially. For example, if there were a sequence of
versions, he would probably want to specify that he be
automatically editing only the latest version. He might also
want a new latest version to be created for him. From that
point on in this simple case, he could use the editor normally
with no special knowledge that he is editing a multi-version
program.

Another kind of automatic initialization might be required
for an application program that consists of many related
files. Here, the user may specify that no matter which of
these files he is editing, the corresponding versions of them
should be available. Thus, for example, if he is editing the
latest version of a program and he also wishes to edit the
documentation file, the latest version of the documentation
file will be edited as well. Conversely, it is important to be
able to edit other files under independent version control.

® Sequences of versions
With nothing more said, this support for sequences of
versions is the same as that provided by delta-oriented

IBM J. RES. DEVELOP. = VOL. 28 e NO. 1 ¢ JANUARY 1984

editors, which can apply and generate deltas. But since the
editor can permit the simultaneous editing of more than one
version, the user could request to edit, say, both last month’s
version and the current version, or even all the versions that
have existed since the beginning of the year. The details of
how this works are left to the next section, but it can now be
seen that since the editor is responsible for keeping the user
informed of the commonality among the versions being
edited, it must in this case highlight the fragments of code
that differ among the points of time selected (these being the
parts not common among the versions). A command is
provided to restore some code from the past into the present
(RESTORE). Even such a change as that is properly
recorded in the sense that the restored code will be controlled
by a Boolean expression that specifies that this code existed
for a time, then disappeared, and then existed once again
(1981 <=YEAR<1982| YEAR>=1983). This is an
implicit way to introduce an OR into Boolean expressions. As
will be seen, most complex Boolean expressions are intro-
duced in such implicit ways, thus freeing the user from
having to deal with them explicitly.

® Concurrent versions

Since the underlying data structure of these multi-version
files is the traditional one of Boolean expressions associated
with code fragments, it is clear that the innovation of this
editor is the way in which this material is presented to the
user. As previously mentioned, it is important that he not be
confused with complex Boolean expressions or code frag-
ments that do not correspond to a normal source program. To
achieve this, only one version of the program is actually
displayed, even when he is editing more than one version. He
controls which version is displayed, or if he fails to exert such
control, it is done by the editor. In the latter case, the editor
uses heuristics to avoid gratuitous changing of the version
displayed. For example, no change is made while the user
scrolls through the file. Also, if the user changes his environ-
ment, in the sense of which versions he is editing, and returns
to a previous environment, the editor remembers which
version it was previously displaying in that environment.

This control over which version is displayed can be seen as
a multi-dimensional extension of the normal two-dimen-
sional scrolling that editors provide (vertical and horizontal).
While this can be thought of as adding a third dimension, it is
most usefully thought of as adding many dimensions. If there
is a sequence of versions over time, there is a TIME

dimension. If there are concurrent versions to support the
program running under different operating systems, there is
a SYSTEM dimension. If there are concurrent versions to
support single- and double-precision computation, there is a
PRECISION dimension. Each of these dimensions varies
independently from the others. The total number of versions

IBM J. RES. DEVELOP. e VOL. 28 e NO. | » JANUARY 1984

in this case is the number of checkpoints times the number of
systems supported times two (the number of precisions).

The version to be displayed can be specified by requesting
the editor to HIDE some code that is displayed or UNHIDE
some that is not. These commands often leave a choice for the
editor to arbitrate if there are more than two versions of that
code. In order to make sure that all are seen, the user can
request a VIEWSHOW that starts a loop, displaying each in
turn when the user requests STEP. The loop is terminated by
UNSHOW. Such a loop can be imbedded within other loops.
All editing is permitted even when such a loop is active. The
final and least often used alternative is to specify an explicit
Boolean expression (VIEW PRECISION=DOUBLE).
This might or might not leave a choice for the editor to
arbitrate, depending on the complexity of the Boolean
expression specified with respect to the Boolean expressions
controlling the code looked at.

The user must be warned that other versions of the code he
is looking at exist, just as editors often tell him that he is
missing something above, below, to the left of, or to the right
of the screen. This is done by highlighting (e.g., brightening)
displayed code that is in some, but not all, versions being
edited. However, this leaves nothing to highlight if a section
of code is absent in the displayed version but not in all
versions being edited. In this case, an adjacent section is
highlighted, perhaps in a different color, if available. By this
method the user sees nothing but a normal source program,
yet is warned of which code is common and which varies
among the versions being edited.

® Selecting the versions to be edited

The versions to be edited are ultimately selected by speci-
fying a Boolean expression, although this is usually done
implicitly. This Boolean expression is called the mask, since
it masks out the unwanted versions. The editor simulates that
the masked-out versions do not exist by comparing the
Boolean expressions controlling the code fragments with the
mask. If a particular Boolean expression is inconsistent with
the mask, the editor operates as though its code did not exist.
If that Boolean expression must be true given the mask (the
mask implies the Boolean expression), the corresponding
code is in all versions being edited. Such code is called fixed,
in the sense of “determined”—it is determined that the code
is in the versions being edited. If that Boolean expression
might or might not be true given the mask, the corresponding
code is in some, but not all, of the versions edited and is
displayed bright if it is in the version being displayed. Such
code is called unfixed.

In order to permit parts of the mask to be manipulated
independently, the editor actually provides any number of
masks. But operationally, there is only one, the AND of all

VINCENT KRUSKAL

78

the masks. Multiple masks are just a technique of referring
to parts of the real operational mask. Some of these masks
have user-chosen names, often denoting the restriction they
define, say, TIME. Others form a push-down list to permit a
user to save one version of an environment and enter a more
restrictive one, a common operation (PUSHMASK and
POPMASK). Masks can be turned off temporarily (TURN
TIME OFF) to permit the editor to remember its correct
value, but to ignore it for now.

As pointed out before, masks are often set in response to a
user’s declaration of the default environment desired when
an editing session begins. A typical command that might be
issued automatically is MASK V VERSION> =2.3.4 to set
the V mask so that only the latest version is being edited.
Note that sequences are defined by a greater-than-or-equal
relation so that the next version, established by MASK V
VERSION>=2.3.5, say, will incorporate the earlier ver-
sion except where explicitly changed in the new version.

Users often zoom into a more restrictive environment,
make a few changes, and return. Often this is done as a resuit
of the user’s understanding of the meaning of some unfixed
code. He might say that he wants to make changes only to the
versions that contain that code by using the FIX command to
set a mask so that the code ceases to be unfixed. Or,
alternatively, he might say he wants to make changes only to
the versions that do not have that code by using the
EXCLUDE command, which similarly sets a mask. After
making the changes he had in mind, he would use the
UNMASK command to clear the mask just set. In order to
make a change to some unfixed code itself, it is not necessary
to go through the trouble of fixing it, making the change, and
then clearing the mask. In that case, normal editing com-
mands can be used, since no editing operation will modify
versions not currently being edited. Similarly, there is also a
shorthand for inserting some code after some unfixed code
only in the versions that contain it (ANNEX).

There is an analogy between the HIDE command and the
EXCLUDE command. HIDE is a multi-dimensional scroll-
ing command that gets rid of a line only in the sense of what
is being displayed. EXCLUDE is a version control command
that gets rid of code in the sense of restricting which versions
are being edited. (Contrast these with DELETE, which gets
rid of code in the sense that it no longer exists in the versions
being edited.) Similarly, the VIEWSHOW command is
analogous to the SHOW command. VIEWSHOW guaran-
tees that each version of a section of code will be displayed,
and SHOW guarantees that a mask will be set in turn so that
cach version of a section of code will be the version edited. As
with VIEWSHOW, SHOW is used to assure that no versions
are missed. Note that “each version of a section of code” does
not mean each version of the entire program, since that

VINCENT KRUSKAL

section may not vary in some dimension. So although the
code against which the SHOW was issued will necessarily be
fixed during the loop, other sections of code might well
remain unfixed. A typical use of SHOW is to make corre-
sponding, but different, changes to the one section of code
according to which version of another will coexist with it.

® [nternal operation

Since the current mask (the AND of all masks turned on)
determines which versions are being edited, a request to
insert new code into the file is done so that the controlling
Boolean expression for it is precisely the current mask.
Similarly, the request to delete code from the file modifies
that code’s Boolean expression so that it becomes the AND of
what it used to be and the NOT of the mask. If the result of
this AND is FALSE, the code is in no version and can be
physically deleted. Modifying existing code is just a combi-
nation of deleting it relative to the current mask and insert-
ing its new version as before. But here if the modified code
was unfixed, the inserted code would be further restricted by
making its controlling Boolean expression be the AND of the
original controlling Boolean expression and the mask.

® Dealing explicitly with Boolean expressions

The above method of presenting multi-version files was
designed with the intention that the user need never deal with
Boolean expressions explicitly, except for simple relations
when a new version is created. But as in most high-level
approaches, this is only imperfectly the case.

A number of commands are provided to display the
Boolean expressions controlling fragments of code. BOOL
does that for a small segment of code. SHOWPARM
displays the dimension names (VERSION) and the values to
which they are compared in relations (2.4.3 and so forth).
SHOWUNTFIXED displays all alternatives at once, along
with the controlling Boolean expressions for a small segment
of code.

Similarly, commands are provided to display the masks.
MASKS displays the names of the masks in use. MASK
displays the value of one of them. SHOWMASKS displays
all the masks, along with their values, and which are turned
on or off.

Also provided is a way to modify the controlling Boolean
expressions using the same editing commands as are used for
the text (EDITMODE BOOLEAN). Such direct modifica-
tion could result in an attempt to introduce syntax that is not
representable internally. Such errors are caught and
reported. The editor must assure that any such direct editing
be done only to the versions being edited, as usual. This is
accomplished by making the new Boolean expression be
(B&- M)|(B'&M), where B is the previous Boolean expres-

IBM J. RES. DEVELOP. » VOL. 28 ® NO. 1 ¢ JANUARY 1984

sion, M is the current mask, and B’ is the new Boolean
expression. Because of this, even though the modification
was specified using normal text editing commands, the result
will generally be more complex than a simple textual
change.

More common than direct editing of Boolean expressions
is the use of the MAKE command. This is not a textual
editing command and does not depend on the EDITMODE
feature. It edits the Boolean expressions in a semantic
fashion and is, therefore, much easier and safer to use. It acts
on a segment of code, typically the entire program, and takes
as arguments an equal relation and an arbitrary Boolean
expression. It searches the Boolean expressions that control
the specified segment of code for semantic occurrences of the
equal relation (VERSION=2.4.3). Any relation based on
the same dimension as in the equal relation (VERSION) is
deemed a ‘“‘semantic occurrence.” This is because such a
relation can be thought of as having that equal relation as
part of it [VERSION>2.4.3 can be thought of as VER-
SION>2.4.3 & -(VERSION=24.3)]. MAKE replaces
the equal relation part of each such relation with the
specified Boolean expression (see Table 1). The result may
be simply to change the names being used in the Boolean
expressions (MAKE GENDER=MALE SEX=MALE).
Or it might be to introduce a new version that is to be initially
the same as an existing version (MAKE GENDER =MALE
GENDER =MALE | GENDER = NEUTER). It may even
be used to remove a version altogether (MAKE GEN-
DER=NEUTER FALSE). But it never will have the effect
of creating a version of the segment to which it is applied that
did not exist before. That is, it cannot place two mutually
exclusive segments of code in the same version or remove part
of one version of the segment without removing all of that
version. Some of its uses are a bit obscure but can be nicely
packaged in an editor that has macros or other means of
extensibility. For example, the PURGE macro can be used to
remove all versions prior to 2.4.3 (MAKE VERSION=2.4.3
VERSION < =24.3).

Of course, as with EDITMODE BOOLEAN, the editor
assures that the modifications made by the MAKE com-
mand are done only to the versions being edited
[(B&-M|(B'&M)]. Therefore, the previous example to
remove old versions from the file would have to be preceded
by a command to cause these versions to be edited (TURN V
OFF).

To change an equal relation £ to a Boolean expression B in
a semantically consistent fashion, all relations R that make
up the Boolean expressions involved that act over the same
dimension as £ must be replaced as in Table 1. The value to
which a dimension name is compared in a relation X is shown
in the table as V(X)[V(VERSION <2.4.3) is 2.4.3].

IBM J. RES. DEVELOP. ® VOL. 28 ¢ NO. 1 e JANUARY 1984

Table 1 Replacements for the MAKE command.

Type of relation, R | V(E)< | vE)= | WE)>
iRy | vy | v
<= | RIB |RIB | R&-B
= | R&-B |B | R&-B
>= | rR&-B |(R&-E)|| RIB
B
< | RIB |(RIE)&-~B| R&-B
a= | RIB |-B | RIB
> | R&-B |R&-B | RIB

5. Related work

All techniques of dealing with multi-version programs men-
tioned here have a common deficiency: a particular segment
of code can occur only once (zero or one time) in a given
version, and the relative order of code cannot be different
between versions. This forces an artificial duplication of code
in certain unusual cases. It appears that Theodor Nelson
plans to address these cases in his XANADU system,
proposed but not yet implemented [7].

James King has proposed a related editor that would
permit the user to view a program under various simplifying
assumptions. This would differ from the editor discussed
here in that the purpose is to clarify a single-version program.
The Boolean expressions acted upon would be those coded in
the program itself. This editor would use King’s program
reduction techniques [8].

6. P-EDIT

The ideas presented here have been implemented by the
author and Paul Kosinski [9, 10] using a Boolean expression
simplifier written by Peter Sheridan [11] at the IBM
Thomas J. Watson Research Center at Yorktown Heights,
New York. It has a small community of users within IBM,
and the next step is to arrange a realistic field trial in a
substantial program development project.

The normal edit commands, not the ones introduced for
multi-version programs, are like the ones typically supported
by editors that run under the IBM Virtual Machine/System
Product (VM/SP) [12]. Since P-EDIT runs under VM/SP,
there is little new for users of that system to learn in order to
edit a single-version program or the latest version of a
multi-version program representing a sequence of versions.

To provide support for any kind of file, none of the existing
representations of internal Boolean expression control were
chosen, since each supports only the programming language
for which it was designed. Rather, each physical line of a
multi-version file contains two fields, the normal text for the
line and the Boolean expression that controls in which

79

VINCENT KRUSKAL

80

versions that text should appear. Since variable-length rec-
ords with more than one terminal blank are rare in the
VM/SP environment, the existence of exactly two terminal
blanks is used to signify that the preceding nonblank charac-
ters are a Boolean expression. The absence of a Boolean
expression is a shorthand for TRUE and permits a single-
version file to be treated as a multi-version file that happens
to have only one version.

This compromise to achieve language independence works
quite well in practice. However, objections have sometimes
been raised in the case of structured languages (where
indentation is typically used to illustrate the structure) when
identical code occurs at different levels in two versions. For
example, in one version a fragment of code might be executed
unconditionally and in another conditionally, which would
make it indented more. This would make the entire fragment
formally different in the two versions, not just the indenta-
tion of it. Also, with files representing documentation, the
user will get better results if lines are broken at natural
syntactic points, rather than when there is no more room on a
line. The latter will tend to generate too many unimportant
differences between versions when, say, a paragraph is
reformatted following the removal of only a few words.

But all the above comments apply only to P-EDIT per se,
not to this method of dealing with multi-version files in
general. The general method would fit quite well in syntax-
directed editors, which have some knowledge of the program-
ming language [13, 14]. In fact, it was first implemented for
such an editor [15, 16]. It also would fit quite well into a true
document editor that continually keeps the document for-
matted [17].

Any editor is greatly improved by having facilities by
which it can be extended, especially a multi-version editor.
P-EDIT permits this by using a general-purpose macro
interpreter, EXEC 2 (18], which is part of VM/SP. In
addition to macros, which extend the command set, P-EDIT
has quite a few places where it calls such programs. Exam-
ples are whenever a specified number of changes are made to
a file, whenever the edit session starts, and whenever editing
of a particular file starts. The latter is done according to the
type of file being edited, usually the name of the compiler
that will process it. This is how the aforementioned default
environment is specified, by writing an EXEC 2 program to
issue the P-EDIT commands that should be initially done.
Thus, multi-version files typically have a different file type
for each application being maintained, and by convention
files of the same type share the same masks. In addition,
EXEC 2 is used to permit the user to write extended Boolean
expressions [MEMBER(X, (A, B, C)) would become
X=A|X=B|X=C] and the values within them
[TIME>=CURRENT(TIME) would become

VINCENT KRUSKAL

TIME>=1983.4.5.30.4.1]. These are also used as an inter-
face to the file system to permit, for example, convenient
access to stored Boolean expressions [READ(YORK-
TOWN, SYSGEN) would become the Boolean expression
stored in the SYSGEN file under the name YORK-
TOWN].

P-EDIT also supports an UNDO command, which per-
mits recent commands to be undone entirely. This, clearly, is
an important feature for any editor, but is particularly
important for editors such as P-EDIT that record changes
rather than simply make them. This is because trivial
mistakes are often immediately detected and repaired. With-
out an UNDO command, the repairing would involve normal
edit commands that just happened to restore the code. This
cannot easily be detected by the editor and would still be
recorded as a change, thus generating spurious differences
between versions.

In cases where the availability of UNDO fails to avoid
spurious differences between versions, the user can use the
MERGE command to combine mutually exclusive, identical
text. A syntax-directed editor could do this merging opera-
tion automatically.

7. Summary

Many programming projects involve multi-version programs
in one way or another. The programmers have to suffer either
dealing explicitly with a confusing data structure or dealing
with one that often proves inadequate to their needs. A
technique has been outlined that permits more than one
version to be edited at once without confusing the user by
displaying version control information or the code for more
than one version. This offers a new high-level way to interact
with multi-version files that promises to make such programs
more reliable, less expensive, and useful to a wider number of
users.

It is hoped that widespread use of these techniques will not
only solve problems recognized today, but open up new
opportunities. While it is always difficult to anticipate such
gained opportunities, it seems likely that these techniques
will permit software manufacturers to respond more flexibly
to their customer’s individual needs and to remove much of
the formal interaction required between programmers work-
ing in large groups.

Acknowledgments

The author is indebted to those who worked with him to
implement P-EDIT, Paul Kosinski and Peter Sheridan.
Support and encouragement have been provided at different
times by various IBM Research Division managers: Patricia
Goldberg, Archie McKellar, and Herbert Schorr. Also due
mention is Leroy Junker, who as an inquisitive and aggres-

IBM J. RES. DEVELOP. o VOL. 28 ¢ NO. 1 ¢ JANUARY 1984

sive user, par excellence, has made getting the bugs and
quirks out of P-EDIT far easier than it would have been
otherwise.

References

1. R. D. Gordon, “The Modular Application Customizing Sys-
tem,” IBM Syst. J. 19, 4, 521-541 (1980).

2. G. E. Kaiser and A. N. Hapermann, “An Environment for
System Version Control,” Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA, February 2,
1982.

3. M. J. Rochkind, “The Source Code Control System (SCCS),”
IEEE Trans. Software Eng. SE-1, 370-376 (December 1974).

4. IBM Document Composition Facility: User’s Guide (SCRIPT/
VS), Order No. SH20-9161, available through IBM branch
offices.

S. IBM OS PL/I Optimizing Compiler: Programmer’s Guide,
Order No. SC33-0006, available through IBM branch offices.

6. IBM Virtual Machine/System Product: System Product Editor
Command and Macro Reference (XEDIT), Order No. SC24-
5221, available through IBM branch offices.

7. T. Nelson, “A New Home for the Mind,” Datamation 28, 3,
168180 (March 1982).

8. J. C. King, “Program Reduction using Symbolic Execution,”
ACM-SIGSOFT Software Eng. Notes 6, 1, 9—14 (January
1981).

9. V. Kruskal, “Applications of Parametric Files Using P-EDIT,”
Research Report RC-8628, 1BM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1980.

10. V. Kruskal, “P-EDIT Reference Manual,” available from the
author.

11. P. B. Sheridan, “A Formula Decision/Simplification Program,”
Research Report RC-7132, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1978.

IBM J. RES. DEVELOP. ¢ VOL. 28 e NO. 1 ¢ JANUARY 1984

12. IBM Virtual Machine/System Product: Introduction (VM/SP),
Order No. SR-20-6200, available from IBM branch offices.

13. C. N. Alberga, A. L. Brown, G. B. Leeman, M. Mikelsons, and
M. N. Wegman, “A Program Development Tool,” IBM J. Res.
Develop. 28, 1, 60—73 (1984, this issue).

14. T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer:
A Syntax-Directed Programming Environment,” Commun.
ACM 24, 563-573 (September 1981).

15. W.G. Howe, V. Kruskal, and I. Wladawsky, “A New Approach
for Customizing Business Applications, Research Report RC-
5474, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, 1975.

16. V. Kruskal, “An Editor for Parametric Programs,” Research
Report RC-6070, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, 1976.

17. J. Prager and S. Borkin, “POLITE Progress Report,” Scientific
Center Report G320-2140, IBM Scientific Center, Cambridge,
MA, April 1982.

18. IBM Virtual Machine/System Product: Reference Manual,
Order No. SC24-5215, available from IBM branch offices.

Received May 5, 1983, revised August 24, 1983

Vincent Kruskal IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Mr. Kruskal was manager of
systems development at the University of Chicago Computation
Center prior to joining the IBM Research Division in 1971. There he
has worked in the areas of operating systems and program develop-
ment tools. He is currently working in the office systems group in the
Computer Sciences Department.

81

VINCENT KRUSKAL

