
C. N. Alberga 
A. L. Brown 
G. B. Leernan, Jr. 
M. Mikelsons 
M. N. Wegrnan 

A Program Development Tool 

In this paper we describe how we have combined a number of tools  (most  of which are tailored  to  a  particular  programming 
language)  into a single system  to  aid in the  reading, writing, and running ofprograms.  We  discuss the efficacy and the structure 
of two such systems, one of which has been used to build  several  large application  programs.  We report some of the experience 
we have gained in evolving  these systems.  We  first describe  the system components  which  users have found  most  important; 
some of the  facilities  described here are new in the literature.  Second, we attempt  to show how these tools form a synergistic 
union, and we illustrate this point  with  a number of  examples.  Third, we illustrate the  use of various system  commands in the 
development of  a  simple  program. Fourth, we discuss the implementation of the system components and indicate how some of 
them have been generalized. 

1. Introduction 
High level languages  are often used to improve programmer 
productivity and  program  quality.  The  actual writing  of 
programs is a small portion of the  entire  task.  Yet  the tools 
which support  the  rest of the  programming effort are rela- 
tively primitive and  unrelated  to  one  another. By allowing the 
various tools that  the  programmer  deals with to know about 
the  language  (and  about  each  other),  the  gains in using  a 
high level language  can be amplified. For example, a 
programmer should never have to look at  the assembly 
language listing to  debug a program not written in assembly 
language.  This  paper discusses the design  goals that led to 
such  a  system and  tries  to  justify  the  authors’ belief that it 
has productivity advantages. 

A major  drawback with current methodology is that  the 
programmer is forced to  deal with  several  differing  environ- 
ments to accomplish his task,  as  illustrated in Figs. 1 and 2. 
For example,  the source  code is frequently  created  and 
modified with the  help of an  editor which merely manipu- 
lates  strings of text.  The  editor  may or may not provide some 
formatting, which usually amounts  to  the  indentation of lines 
to  emphasize various programming  language  structures.  The 

programmer  then typically leaves the  editing environment 
and compiles the  program. If syntax  errors  are  encountered, 
he  must  return  to  the  editor  to  make  the desired changes.  At 
some  point the compilation  succeeds, and  the  program is then 
loaded. This  step  may uncover additional errors. If so, the 
programmer must return  to  the  editing environment, then 
the  command environment, to  repeat  the preceding  steps. 
Finally, the  program runs successfully but often gives unsat- 
isfactory  results. There  may be a  debugging  environment, 
but  frequently its  use requires  another compilation. 

We  attempt in this  paper  to  demonstrate  that it is both 
simpler and more  productive for the  programmer  to have  a 
single, unified interface  through which to  accomplish his 
task.  With advanced formatting  techniques  he  can envision 
his program in the  conceptual levels of detail in which he 
creates  it.  He  can uncover syntax  errors immediately. He  can 
make  changes  to  the source  code and see the effects a t  once. 
Finally,  he can monitor the execution of the  program in 
varying amounts of detail.  With  the goal of making programs 
easier to write we have  investigated the combining  of  a 
number of powerful tools so that  the combination would be 
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easy to  use [ 11. The tools we have integrated  are sensitive to 
the  source  language of the  programs being written. 

The collection of tools has been so highly integrated  that 
they  may be thought of as a single tool. This tool has five 
major components: a display  system  for programs  and  data 
(much like a pretty  printer [2] except that it is designed for a 
CRT),  an  editor  (for modifying program  text), an interpreter 
(which allows dynamic  program  analysis), a compiler, and a 
file system. We call  such  a tool a Program Development 
Environment (PDE). 

All of the tools we discuss share a  common representation 
of a program,  the program’s parse  tree, as illustrated in Fig. 
3 .  This is the first point a t  which we differ from tool 
collections like The  Programmer’s  Workbench [ 3 ] .  The 
parse tree embodies  more  information about  the  program 
than  the  text  string for that  program.  Thus,  many  tasks  are 
much easier for our components. Another  thing  that is 
shared by all components is the display  routine.  All informa- 
tion about a program is printed  through  the  same  interface. 
A  common  read loop (a minor  tool) is also shared. 

A piece of the  parse  tree is assumed  to be the user’s focus 
of attention, corresponding to  the bold subtree in Fig. 3 .  The 
display algorithm  brightens  the  material in this subtree,  and 
attempts  to display the  subtree itself and its surrounding 
context in more detail  than  other pieces of the  program. 
Other pieces are replaced with ellipses. 

Before going into  more  detail, we describe  one  sequence of 
interactions  to  illustrate our concept of a focus of attention. 
When  editing, a programmer  can, for example, move the 
entire focus to a different  place in the  program, without 
counting how many lines need to be moved. When executing, 
the focus is the  current “location counter” indication. If  the 
program is being  executed and  the  programmer wishes to see 
only the execution of some  sub-part which will not be 
executed  until much  later, he can use ordinary  edit com- 
mands  to move the focus of attention  from  the  current 
location to  the location he wishes to see  in more  detail.  He 
may  then  execute a command which means  “execute until 
this new focus is the location counter  contents.”  Thus, 
commands normally  associated  with the  editing of a program 
are  valuable in a quite different context. Effects  like  this 
pervade our system. 

The  graceful incorporation of a tool such as an interpreter 
necessarily introduces  language  dependence  into  the system. 
However, the language-sensitive parts of our system can be 
isolated. Our first implementation of a PDE was LISPEDIT, 
an environment  for the  LISP  programmer.  LISPEDIT  has 
been in use for several  years;  it has been used to  maintain 
itself and  to build several substantial application programs. 

Typical systems 

ICRT 
Editor 1-c 

Listing 
Input 
tile 

c 
t Compiler Machine language 

program 

language 4 Loader and 
executer 

Figure 1 A typical environment provides  tools  like the ones  above, 
which take an input file  and  produce  one or more output files. 
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Figure 2 The  programmer works by stringing  together these uses 
of tools. 
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Figure 3 System  configuration,  showing the processing of an  edit 
command. 61 
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In LISPEDIT,  the display  rules for LISP  are built into  the 
screen handler,  and  interactive execution is performed by a 
special interpreter.  The second implementation is PL8EDIT, 
an environment for the  PL.8  programmer.  (PL.8 is a 
language derived from  PL/I.) In PL8EDJT,  many  language 
dependencies are stored in tables,  and  during execution the 
editor interacts  directly with  special tables  generated by the 
compiler. 

By way  of contrast, consider Interlisp [4], very likely the 
most highly developed program development  environment 
widely available for  a  high level language. In Section 2.2  of 
[4], an  example is presented of the development of a factorial 
program. In this scenario the  programmer  encounters  three 
distinct user interfaces in the  course of developing his 
program:  the basic  read-eval-print loop (for  program  cre- 
ation), a debugger (which catches  program  errors),  and  an 
editor  (for modifying and saving the  program).  Interlisp is  a 
traditionally  structured  program development  environment 
wherein the tools are independent entities  able  to provide 
different  kinds of information in their individual  contexts. 
Consequently, an  Interlisp  programmer is said to  be in the 
break  package (debugging system) or in the  editor or in 
masterscope (analysis  subsystem).  We believe that having 
different interfaces for different tools focuses the user’s 
attention on the tool rather  than  the  program being devel- 
oped. 

To sharpen  this  last point we remark  that  the  PDE user 
brings the tool to  the  program  rather  than  the  other way 
around.  The  program  (actually a collection of programs) is 
an object about which a wide variety of information is always 
available as  part of its status: the  program  text,  the  program 
status in long term (file) memory, the values of variables  that 
are  currently (in the  dynamic sense)  defined, the point of 
execution that  has been reached  within the  program,  the  call 
stack, a variety of static flow information about  the  program, 
etc. 

There  are a number of other PDE’s (see [ 5 ]  for  a list of 
them  and  also [6-1 I]) ,  but  none to  our knowledge has 1) as 
high a level  of integration of their components and 2) been 
used to build large systems. We discuss  several programming 
tools, some of which are not new when considered in isola- 
tion;  it is when their  interaction is considered that  they 
become interesting. 

The  remainder of this  paper  has five sections. Section 2 
discusses the individual components  from a user’s point of 
view, demonstrating  the display and some of the  commands 
available. Section 3 shows how a  simple program  might be 
built and  the way in which parts of the system interact with 
each  other.  Section 4 gives some  examples of how the user 
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Section 5 discusses the  implementation of the system and 
some of the  important components. Section 6 presents some 
data  gathered which provide insight into  the relative  utility 
of a number of commands. 

2. System  components 
We observed in the preceding  section that  our system  concep- 
tually is comprised of  five components. We  do not  discuss the 
compiler further,  but we describe the  four  remaining compo- 
nents in detail. By overlaying this  structure on the system for 
pedagogical  reasons, we do not mean to imply that  the 
components are not interrelated. In fact,  the ability to use 
code from  other components simplifies many tasks. 

The  display  component 
One of the goals of our system is to keep the user from feeling 
that  he is constantly  changing environments while developing 
one  program.  While  changing  the  text displayed is obviously 
necessary,  it is important not to  change  the overall appear- 
ance of the display. The display format we describe allows us 
to display all  the information  a  user  needs,  without giving 
that user the feeling that  the environment has  changed.  (See 
Fig. 4.) 

There  are two critical objectives that we think a  display 
must meet.  It must show that information in which the user is 
interested,  and it must show such  information in an easy to 
use form.  We  presume a  display with at  least the  capabilities 
of an IBM 3277, which can brighten fields and refresh the 
screen very rapidly. 

We discuss two ways in which the programmer’s interests 
may be determined.  First, in most editors  there is a notion of 
a  focus of interest. In line  editors this  can be a particular line 
in the display,  often brightened. In full screen  editors  it may 
be a cursor, such as  an underscore or a  blinking box. The 
focus acts  as a  reference point for commands, including (but 
hardly confined to)  those which change or replace the  data 
represented by the focus,  those which insert new data in the 
vicinity of the focus, and those which shift  the focus to  other 
data. In short,  the system  assumes that  the user is interested 
in that piece of data which he has  last  acted upon (via the 
editor’s command  language),  and it reflects that historical 
fact via some form of highlighting on the screen. The  PDE 
display routine shows the focus and  parts of the  data  related 
to  the focus. We  attempt  to  determine  automatically  what 
related  parts of the  program  the user is interested in viewing. 
Many  other systems only show the user  some fixed number of 
lines above and below the focus. 

Second, a  user frequently  has occasion to  direct his 
attention  to multiple foci. For example,  the user might 
request to  be shown all  instances of the  variable x. The 
display for [2, 121 can  brighten all such instances and show 
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their  interrelationships. All the points in multiple foci are 
placed in an object  called  a tag list. Just  as  the single focus 
acts  as a reference point for commands,  tag lists can  act  as 
ways of passing information  to  commands. For example, one 
might want execution to  continue until  a variable was used. 
One could  locate  all  instances  of the  variable,  putting those 
points in a tag list, and  then  resume execution  until  a  point in 
the  tag list was reached.  (We do  not currently  support 
execution to a point in a tag list.) 

On  the  one  hand, it must be possible to display  a large 
program or a large  data  structure. However, the display  must 
be small  enough to be comprehensible and  to fit on a CRT 
device. Since  the  syntactic  structure of the  program is 
available to  the display program, by assigning  priorities to 
the  parts of the  program, those parts with  higher  priorities 
can be displayed and  others replaced  with ellipses. If short 
representations of the  syntactic units are  available,  they  may 
be used instead of ellipses. 

If we are  interested in one specific syntactic  structure in a 
particular  program, say  a loop, we give high  priority to  the 
subsections of that loop, the  surrounding  statements,  and  the 
enclosing control structure, which shows how the loop is 
reached in the  program. If the loop is too large  to show on one 
screen or the  part of the screen  allocated to  the description of 
the loop itself, then some of the leaves of the  parse  tree for the 
loop, such  as  the  “then”  and “else” clauses of an  “if. . . then 
. . . else” statement  may be elided. 

By modifying the assignment of priorities we can focus 
simultaneously on several  subsections of a program  and  the 
syntactic  structure which unites them.  This facility is a 
natural  replacement for the voluminous  cross  reference 
listings  produced by compilers. The display can  instantly 
highlight all  occurrences of a  variable, assignment  state- 
ment, or procedure call. There  are more  complex uses: For 
example, if B must always be done after A in a program, one 
use of the display  system would be to display all instances of 
A and B to  ensure  that  the proper order  has been preserved. 

The display is recomputed  dynamically.  With every termi- 
nal interaction,  the  data or program being  displayed is 
traversed and  the  structure  again  pretty  printed.  Thus,  the 
programmer need not worry about  the  indentation of a  line 
being entered,  and if a group of expressions that is three 
syntactic levels of nesting down is moved to a  location four 
levels down, the  programmer need make no adjustment of 
margins. Because the  dynamic redisplay is done  automati- 
cally and  correctly,  errors  caused by reading indentation 
rather  than  parentheses (or semicolons in other  languages) 
do not occur.  The  format of the  program on the screen is a 
reliable  guide  to  the  structure of the  program. 

The  ability  to distinguish  various  regions of the displayed 
text is useful. The  example of the  matching A and B  actions 
above provides an  opportunity for  making  such  a  distinction. 
Several  kinds of display hardware  assistance (generically 
called “highlighting”)  can be imagined:  multiple  fonts, 
underscoring,  reverse video, and brightening.  Presently we 
use  brightening to distinguish the  current focus of attention. 

When a standard  text  editor  cannot fit an  entire  entity 
(usually  a “file”) on a  single  screen, the user is normally 
presented with a fixed-size rectangular window, centered on 
the  current  cursor. Movement through  the item being edited 
is accomplished by sliding this fixed window over a static 
field representing the  item. In many cases, the  data shown by 
such  a  display consist of a number of unrelated  parts of the 
item, while parts which are closely related  to  the  data 
designated by the  cursor  are  outside  the displayed area. Our 
dynamic display, through  the  use of a number of heuristics, is 
much  more likely to display the right  items. To  the best of 
our knowledge, our algorithm is a new and  general  approach 
to  the problem of displaying information. 

Both Mentor [9] and  Interlisp [4] can display  a program 
(or program  fragment)  to a fixed, user-specified level of 
detail.  To achieve the first display with the Cornell Synthe- 
sizer [ 1 11 would require  one  command for each object that 
was  elided. In LISPEDIT  and in PLSEDIT  the  depth of 
detail is automatically  adjusted  to produce  a syntactically 
coherent  picture of the  program while attempting  to  make 
optimal use of the available  display area. In our approach, 
the user  points to  the  interesting  parts of the  program by 
choosing a  focus; in the  other systems, the user  must  explic- 
itly  suppress uninteresting sections of the  program. 

The read loop 
In addition  to  the display  component that we have already 
discussed, the system has a  minor  component  called  a 
command-read loop that  supports positioning and  updating 
commands.  The read loop recognizes commands, invokes the 
appropriate routines, and calls the display routine  to show 
the results. It is important  that  the  command execution 
routines  not  call the display routine directly. Doing so would 
preclude one  command  from calling another  to perform  some 
simple function.  The  read loop also performs  service func- 
tions,  such as  remembering  the last  ten commands.  Para- 
phrasing traditional  LISP  parlance, we might  characterize 
the  command-read loop as a READ-EVAL-DISPLAY 
loop. 

The editor component 
We have borrowed several features  from typical  text and 
structural  editors.  There  are  commands, in LISPEDIT  and 
PLSEDIT, which move the focus to  parents,  children,  and 
siblings in the  tree.  It is also possible to locate  a string  and 63 
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PLBEDIT:  SORTAOS PL1 A2 Kw=U  Id=L Unit=TOKEN Alt=O Err=O Size=219 
>> sortads: PROC(ad-array,  from, to); 

DCL 1  adparray( 3000), 
2 aa-ad-# FIXED BIN, . . . 

(swap-ad-#, swap-count, i, j) FIXED BIN, 
up FIXED BIN, 
(from,  to) FIXED BIN; 

i=from; 
j=to; 
up=1; 
swap-ad-# = aa-ad-# ( j); 
swap-count = aa-count ( j); 
DO  UNTIL (i>j); 

IF up  THEN IF aa-ad-# (i)>swap-ad-# THEN. . . ELSE . . . 
IF up  THEN i=i+ 1; ELSE j=j-  1; 

END; 
aa-ad-#(j)=swap-ad-#; 
aa-count(j)=swap-count; 
CALL sortads( ad-array, from, j); 
CALL sortads( ad-array, i, to); 
END sortads; < < 

(a) 
PL8EDIT: SORTADS PL1 A2 Kw=U  Id=L Unit=TOKEN Alt=O Err=O Sire=219 
>>sortads:  PROC( ad-array, from, to); 

DCL 1  ad-array( 3000), 2 aa-ad-# FIXED BIN, . . . . . .; 
i=from; 
j=to; 
up= l ;  
swap-ad-# = aa-ad-# ( j); 
swap-count=aa-count (j); 
DO UNTIL(i>j); 

IF up 
THEN IF aa-ad-#(i)>swap-ad-# 

THEN DO; aa-ad-#(j)=aa-ad-#(i);. . . 

ELSE IF swap-ad-#>aa-ad-#(j) THEN DO; . . . END; 
END; 

IF up THEN i=i+ 1;  ELSE j=j-  1; 
END; 

aa-ad-# (j)=swap-ad-#; 
aa-count (j)=swap-count; 
CALL sortads (ad-array, from, i); 
CALL sortads( ad-array, i, to); 

END sortads; << 
(b) 

~ ~ 

Figure 4 (a) Example of display of a program from top level-some details are elided. (b) View of program when user is interested in a loop 
and its surrounding text. 

have the focus move to  the first complete  subexpression of EDIT  changes  to  the  structure  must leave a valid structure, 
that  string. In PL8EDIT  it is possible to point to a  token on and  there  are  commands which facilitate doing  this. 

64 the screen and have the token  become the focus. In LISP- PL8EDIT  has no such restriction. An incremental  parser is 
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PL8EDIT: SORTADS PL1 A2 Kw=U  Id=L  Unit=TOKEN Alt=O Err=O Size=219 
. . . DCL 1 ad-array( 3000), 2 aa-ad-# FIXED BIN, 2 aa-count FIXED BIN, 

(swap-ad-#,  swap-count, i , j) FIXED BIN, 
up FIXED BIN, . . .; 

i =from; 
j=to; . . 
DO UNTIL( i >j); 

IF up 
THEN IF aa-ad-# (i )>swap-ad-# 

THEN DO; aa-ad-# (j)= aa-ad-# ( i ); 
aa-count ( j)=aa-count ( i ); 
up=o; 

END; 

THEN DO; aa-ad-# ( i )=aa-ad-# (j); 
ELSE IF swap-ad-#>aa-ad-# (j) 

aa-count(  i)=aa-count(j); . . . 
END; 

IF up THEN i = i + l;ELSEj=j- 1; 
END; 

aa-ad-#(j)=swap-ad-#; . . . 
CALL sortads(  ad-array, i ,to); 

(c) 

Figure 4 (c) Display of program  when  user wants to  see all places  where variable i is used. 

used to allow syntactically invalid changes  to be made 
temporarily [ 131. The  errors  are always the newly changed 
material. As soon as  the  structure becomes  valid, all  the 
errors  are removed;  sometimes  a few errors  can be removed 
while others  remain.  It is possible to  insert a do and have the 
do be in error. If the  matching  end is inserted, both errors  go 
away. Now, if the  end is deleted, the missing end will be  the 
error,  despite  the  fact  that  the  program is textually  the  same 
as when the  extra do was flagged as  the  error. 

We have  kept the  number of primitive updating  functions 
small.  This is necessitated by the  fact  that  changes  to  the 
program  text  result in the  incremental modification of cer- 
tain “look-aside” data  structures  that  describe various 
aspects of the  program being edited.  Included  among such 
structures  are  data  that describe how the  program is to be 
pretty printed and  data  that  describe  the findings of static 
program analysis. In order  to  keep  the look-aside data 
structures synchronized with the  program  as  it is developed, 
the  parts of the system  concerned  with maintaining those 
structures must be informed of changes. By keeping the 
number of primitive  functions small we can isolate  in a few 
places interfaces with the look-aside updating functions. 
Hence, instead of providing a  primitive  function to  change 
one expression somewhere in a program  to  another,  this  is 
done  in terms of locate  and replace, which are primitive. 

The  dynamic  analysis  package 
One of the most important  things  to know about a program is 
how it runs on examples of input  data.  We  can run a program 
on one or many different  instances of data  and use the 
display routine  to display  results of the execution. One of the 
more  interesting tools we have in this line is a hierarchical, 
single-stepping interpreter  (the  command  heval  stands  for 
hierarchical  evaluator).  This  interpreter allows single step- 
ping much like console debugging.  However,  since the  lan- 
guage  has a fair  amount of structure, a step  might be the 
evaluation of an expression or might  be  to  start  the  evalua- 
tion of a  subexpression of that expression. We allow the size 
of a step  to be changed interactively. Before an expression is 
to  be  evaluated,  the user has  the option of simply evaluating 
that expression or  evaluating  each of the subexpressions. In 
either case, the value of the expression evaluated is shown. 

The  hierarchical  evaluator is a  recursive descent  interpret- 
er.  It uses the  fact  that in LISP/370 one can  create  states  and 
evaluate inside of them.  It  has a number of important user 
features, some of which are  illustrated in the  example in 
Section 3.  We discuss the  commands  run,  step, come, 
runfast, trap,  check,  and value. The  command  trap  takes  as 
arguments  procedure names. It  changes those  procedures so 
that when they  are invoked they  are  hierarchically  evaluated 
(hevaled).  When a procedure is being hevalcd,  all normal 65 
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editing  commands  are legal, although  changes  to  the pro- 
gram  may  be impossible to  execute  directly because of macro 
expansion. The focus ordinarily identifies the object to  be 
evaluated  next. 

If run is typed, the focus is evaluated,  and  the next  object 
to  be  evaluated is displayed. The value of the  object  that was 
just  evaluated is displayed in the message area.  (Values  put 
in the message area  can always be edited  recursively, if they 
are too big to fit. A partially elided  form is displayed then.) 

If step is typed, evaluation of the object is started,  but is 
halted when the first displayable  part of that  object (e.g., the 
conditional  portion of a  cond, part of a LISP  ifstatement) is 
about  to be executed. Evaluation then proceeds to  the second 
displayable  part reached  in  execution. In the  case of a 
function  call, when all  the  arguments have been evaluated, 
the message line shows that  that  function is about  to be 
applied to those arguments. 

The  step  and  run  commands allow the user to  traverse  the 
execution tree.  This is easy to  grasp in a  system  like ours 
where the  entire focus (to be executed by the  run  command) 
is highlighted. In a  system like the  Synthesizer [ 111, which 
denotes  the  current execution  pointer by a  single  point, the 
user must infer the scope of the run command.  The  Synthe- 
sizer  does not allow execution of subexpressions of arithmetic 
expressions. Subexpression  evaluation is particularly useful 
to  the user who has  made a mistake in understanding  the 
precedence rules of the  language.  But a  user  who  does  not 
understand  the precedence rules will not be able  to  under- 
stand  the scope of the  run  command  from a  display which 
identifies  a  subexpression from a  single  point. 

The  value  command causes any LISP expression following 
it  to  be  evaluated in the  context of the  procedure being 
evaluated.  This allows the user  to, for example,  change  the 
value of a variable by evaluating  an  assignment  to  that 
variable.  One  can also edit, recursively, the  value of that 
variable  and  change its  value  before returning  to  the  edit 
session in which the evaluation is taking place. 

Typing check causes  an expression to be evaluated  each 
time  the system  displays the  program. If a procedure is called 
which has been trapped, while hevaling  another procedure, 
the editor  switches its  attention  to  the  trapped  procedure 
until it  has finished its execution. This  can, of course, happen 
to  the new program,  causing  many levels of stack. 

Typing runfast causes  running  and also temporarily 
causes procedures which had been trapped merely to be 
executed, not evaled.  This allows careful  examination of 
certain  calls  to  some procedures,  without  forcing it in all 
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The user of the  command come positions himself at  the 
point where  the code  in  which  he is interested  starts; by his 
then  saying come, execution  continues  with no intermediate 
displays until  the focal expression (i.e., the expression that 
has  just been focused on) is about  to be executed. For more 
details, see [ 141. 

3. An example of program creation and  debug- 
ging 
In this section we attempt  to  acquaint  readers with the 
Program Development Environment by showing some 
instances  in which our system is useful. We  do  this by tracing 
the building and debugging of a program. So that  the  reader 
may easily follow this process, the  program built is a  simple 
one. Unfortunately,  this  blunts  many of the points we are 
trying  to  make.  We wish to show that our system makes it 
easier to  understand  programs.  But, in the  interests of 
brevity, the  program we are forced to consider may  be easily 
understood  without any of the tools we are building. 

As the example  progresses, the  programmer  changes his 
principal  activity. First  the basic program is entered. A few 
changes  are  made,  and  then  the  program is debugged. This is 
realistic only for  small programs. In a larger  program  there 
are  many  iterations of this process. A programmer does not 
often  spend large  amounts of time doing primarily one kind 
of activity. The  fact  that  the  interface presented by LISP- 
EDIT does  not change  substantially becomes important in 
the  context of many  iterations of the  programming process. 

In the following we first show what  the user would type  as 
a command line, followed by a summary of the information 
that would be displayed on the screen thereafter.  The  CRT 
we ordinarily use has twenty-two lines of text.  Here, we 
ordinarily  assume  something more like six. 

Command: GH Quicksort 
Display: 
0 
Explanation:  We  want  to  create a  quicksort program  to  sort 
elements in descending order. So, we get  the value of 
quicksort from  the file system.  It is initially NIL, and  that is 
what is displayed. 

When applied to a list a with initial  element y, the 
quicksort program Q creates two  lists p and u whose elements 
are those in the  tail of a which are > y  and l y ,  respectively. 
The value Q(a) is then obtained by appending  together  the 
three lists Q ( p ) ,  (y),  and Q(v) .  

Command: i 
Display: 
0 

C. N.  ALBERGA ET AL. IBM J .  RES.  DEVELOP. VOL. 28 NO. 1 JANUARY 1984 



Explanation:  The display  indicates that we are in input mode 
and  are  about  to  replace  the  current focus by changing one of 
the headings on the  screen. 

Command: (lambda  (sortme) 
Display: 
(lambda 

(sortme)) 

Explanation: (sortme) is now the focus and  anything which 
is input will be inserted  after  it.  The focus is the last 
completed  expression;  balancing closing parentheses  are 
added by the  read loop. 

Command: (prog () 
Display: 
(lambda 

(sortme) 
(prog 

0 )  

Explanation: sortme is the list which is passed in,  and we will 
deal with it in a program-prog-which at  the moment has 
no local variables. 

Command: (cond ((Oor 1 sortme)(return sortme))) 
Display: 
(lambda 

( sortme) 
(prog 
0 
(cond ((Oorl sortme) (return sortme))) )) 

Explanation: Oor 1 is a  user-defined predicate which returns 
true if sortme is a list of 0 or 1 elements. In that  case  the list 
is already  sorted. 

Command: (setq  y  (car sortme)) 
Display: 
(lambda 

(sortme) 
(prog 

0 
(cond ((Oorl sortme)  (return  sortme))) 
(setq y (car sortme)) )) 

Explanation: We will be comparing  elements  to y, which is 
the first element in the list. If we had a color terminal we 
might display  a  section of a program which is wrong in red 
(which is mnemonic  for  stop) as was done in [ 151. Here y 
would be red  because  it is undeclared. 

Command: $declare  y 
Display: 
(lambda 

(sortme) 
(prog 

( Y )  
(cond ( (Oorl  sortme)  (return  sortme))) 
(setq y (car sortme)) )) 

Explanation: declare is a command.  It you are in input 
mode, a $ preceding  a command forces that  command  to  be 
executed. 

Command: (for x in (cdr sortme) do (cond 
Display: 
(lambda  (sortme) 

(prog (Y)  
(cond ( (Oorl  sortme)  (return  sortme))) 
( se tq  y (car sortme)) 
(for x in (cdr  sortme)  do 

(cond)))) 

Explanation: for is a macro which executes the  statement 
after  the do repeatedly  with x assuming  all  the values in (cdr  
sortme). 

Command: ((greaterp x y) (setq bucket 1 (cons x bucket I )  
Display: 
(lambda  (sortme) 

(prog ( Y )  
... 
(for x in (cdr  sortme)  do 

(cond ( (greaterp x y) 

(setq bucketl (cons x bucketl)) ))))) 

Explanation:  Note  the ellipsis. Remember  that we are 
assuming a  six-line  screen and must  elide  something. The 
setq  to y and  the  test for empty or null list are probably the 
best choices. Since  bucket 1 is undeclared, it is shown in red. 
This does not require us to  do  anything before we proceed; 
however, unless we wish to use  it as a free  variable (which 
may be declared  to  eliminate  the redness),  it is a mistake  and 
must be fixed eventually. We now pretend  that  the  current 
focus is a large expression and  that we wish to avoid retyping 
it. 

Command: $copy 
Display: the  same  as above. 

Explanation: copy, which is executed as a command, stores  a 
copy of the focus so that it may be inserted  elsewhere. 

C. N .  P 
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(lambda  (sortme) 

I +  (prog (y bucketl  bucket2) 

2- (cond  ((Oorl  sortme) (return sortme))) 

3---1 

5 ,  
4-"c 

" 

6 e (cond ( (greaterp x y) 
(setq bucketl  (cons x bucketl))) 

("t (setq bucket2 (cons x bucket2))) ) ) - 
7" (return 

(append (quicksort  bucketl) (list y) (quicksort  bucket2))) )) 

Figure 5 Final program. 

Command: )("t 
Display: 
( prog ( Y) 

(for x in (cdr sortme)  do 
(cond ( (greaterp x y) 

(setq bucket 1 (cons x bucket 1))) 

( "t))))) 

Command: $to 
Display: 
(prog ( Y )  

.. 
(for x in (cdr sortme)  do 

(cond ( (greaterp x y) 
(setq bucket 1 (cons x bucket 1))) 

( '3 (setq bucketl (cons x bucketl)) ))))) 

Explanation: to inserts  the  value  that was stored by copy. 
The  command to may  be reused later  to  insert  the  same 
thing. 

Command: cng bucket 1 bucket2 * 
Display: 
(pros (Y)  

(for x in (cdr sortme) do 
(cond ( (greaterp x y) 

(setq bucket 1 (cons x bucket 1))) 
( Nt (setq  bucket2 (cons x bucket2)) ))))) 

Explanation:  The change command works in the scope of the 
current focus. The * that is the  third  argument  to cng causes 
bucket 1 to  be  changed in all those  instances. 

We eventually finish the  program,  and  the final version 
appears in  Fig. 5. We have drawn in boxes which indicate 
various  values of the focus in what follows. 68 
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We wish to  run  this  program.  We  can  do so simply by 
typing  the  LISP expression which invokes the  sort  routine. 
Alternatively, we can  run  it,  examining  the  program  as  it is 
being  executed. In order  to observe the  running  program, we 
type in the  command heval, invoking the  hierarchical  inter- 
preter.  The heval command allows the user to  step  through 
parts of his program  and display intermediate results  on the 
screen. 

Command: heVal"( 1 2 3 4) 
Display: the (elided) program  with Box 1 as the focus. 

Explanation:  This  command  starts  the evaluation of the 
quicksort  program with sortme bound to  the list ( 1 2 3 4). 

Command: step 
Display: Box 2 is the focus. 

Explanation: step causes the evaluation of each of the 
subexpressions of the focus to  be shown. 

Command: run 
Display: Box 3 is the focus. 

Explanation: run causes  the evaluation of the focus, without 
showing the evaluation of the  subparts. 

Command: run 
Display: Box 4 is the focus, LAST VALUE = 1 

Explanation:  The value of y is now 1, and  this is the value  of 
the  last focus  displayed and  evaluated. 

Command: display data bucket 1 bucket2 
Display: Box 4 is the focus on the top  half of the screen, 
bucketl = (), and bucket2 = ( )  on the bottom of the 
screen. 

Explanation:  This allows us to observe the value of certain 
variables  as execution  continues. The  implementation  sets  up 
another  edit session on the bottom of the screen. Thus, if the 
data  are too large we can use edit  commands  to look a t  
specific portions of the  data. 

Command: step 
Display: Box 5 is  the  focus,  bucket 1 = (), bucket2 = ( )  

Command: run 
Display: Box 6 is the focus, LAST VALUE = 2, bucket 1 = 

(), bucket2 = ( )  

Explanation:  The value of x is now 2, and  this is the value of 
the  last focus displayed and  evaluated. 

Command: run 
Display: Box 5 is the focus, LAST VALUE = (2), bucket 1 
= (2), bucket2 = ( )  
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We  may become tired of running  around in the loop. Using 
edit  commands we position the focus at  Box 7. 

Command: come 
Display: Box 7 is the focus, LAST VALUE = 3, bucketl = 

( 4  3 2), bucket 2 = ( )  

Explanation: The  program  has been  executed until Box 7 is 
about  to  be executed. The value of the  last focus  displayed 
was 3; x on that  iteration of the loop was 3. Bucket2 has 
become  a larger list in subsequent executions of the loop. 

Command: run 
Display: top level display of quicksort, value = (4  3 2 1) 

Explanation:  We have finished the execution of the  quick- 
sort,  and it has  returned  the  right value. We have now exited 
heval. 

In LISP/370 all variables bound in a prog are initialized 
to nil. Were  they not, the first  use of bucket 1 and bucket2 
would have been highlighted  with red, because they were  not 
initialized. If we were  confused about  the  function which 
bucketl was performing, we would have all instances of 
bucket 1 highlighted,  with other  statements being  elided. We 
could do  this  highlighting to a procedure  call which used or 
stored into bucketl even if the  procedure  call  did not  have 
bucket 1 mentioned in its argument, or only used it by calling 
another  routine which used it. 

This concludes our example. It is unfortunate  that for 
obvious pedagogic  reasons we cannot  illustrate  the utility of 
our system in developing large  programs. However, we point 
out  that  LISPEDIT  has been used in its own development, as 
well as  other  unrelated  large  programs. 

4. Examples of integration of facilities 
In this section we describe  some of the ways  users  have 
utilized the  fact  that all of the tools we provide interact well 
with one  another. 

One  example is the way the  command come is used. 
Execution is begun in heval. At  some point the user wishes to 
skip seeing at a detailed level anything  but  the execution of a 
certain piece of code. Using ordinary positioning commands 
the focus is moved to  that section, the  command come is 
executed,  and execution  continues until  that point is reached, 
after which the user  sees the execution in detail  again.  This 
example points out  the need to  integrate  the positioning and 
execute  commands. 

Another two examples  are  illustrated by the  command e 
=. When  an expression is typed by the user,  it is evaluated 
and  the value  displayed on one  line in the message area.  That 
line starts with value =. If the  value does not fit on one line, 

parts of the value are elided  (using the  same elision strategy 
as in the display). The value is also put in the global variable 
=. That value may be examined by editing  that global 
variable  (just  as  any  other  variable  may  be  edited).  While 
editing a  global variable,  all of the positioning commands 
which work while editing  programs still work. This saves  a lot 
of relearning.  Commands  also  put values in the global 
variable =. If the  command run is given, in heval, the 
brightened  expression is evaluated,  and  its  value is placed in 
= . The focus moves to  the next  location. The message area 
holds the message Last value = and  one line of the value. 
Thus,  it  must be possible to integrate  the  ability  to  edit 
objects and  data in the  same  editor.  It is also important  to 
allow the evaluation of expressions  inside of the editor. 

The  command trap is also useful. This flags a certain 
procedure  to be hierarchically  evaluated.  It is important  that 
it work both when the user is editing  and when evaluating a 
potentially  calling  procedure. Since only the source may  be 
hierarchically  evaluated,  there is a  problem when trap is 
applied to a  compiled routine. If the compiled routine stored 
the location in the file system  where the source would be 
found, the problem could be alleviated. We  do not currently 
do this. Thus, it is important  to  integrate  the file system, 
which keeps track of where the source for a program is, with 
the debugging  system. 

When we first implemented trap, we made a mistake  and 
copied the  object before  it was evaluated.  Users, knowing 
that  the system  was  highly integrated, would find an  error 
while stepping  through  the  program,  and  they would fix the 
error.  They would then  stop  the monitoring of the  program; 
since the original program was  restored, so was their bug.  If 
compiled  code is to  be accessible to  the trap command, 
updating  must be stopped and  the formerly  compiled pro- 
gram  run interpretively, or the  program recompiled. The 
latter is better.  This would be particularly  true in a  system 
for a  different language,  where when the  change  made was to 
a declaration,  that  change  might  cause  other  programs  to be 
recompiled. It is possible that  the best situation would utilize 
an  incremental compiler, which would help the user to avoid 
the decision of whether to compile or interpret his code. 

Often  one  wants  to be able  to  edit  one of a collection of 
functions without  affecting the  others.  When  one does this 
the  date  stamp should  not change for the  others, even if the 
other  routines need to be recompiled.  Occasionally, however, 
one  wants  to  edit  the whole collection (for  example,  to find all 
instances of a free  variable).  Thus, it is desirable  to  integrate 
the file system with the  editing system. 

5. Implementation and other  system facilities 
In this  section we describe some of the facilities which we 
have  found  useful in implementing the system. These facili- 69 
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ties are also available  to  the user as  part of the  system.  We 
also  go into  somewhat more detail on the  algorithms used and 
the precise features offered to  the user. 

The  pretty  print/display  algorithm 
There  are two major reasons why conventional pretty  print- 
ing algorithms fail in our display situation. 1) It is necessary 
to  examine  the  ancestor(s) of a  node in order  to know how to 
pretty  print  that node. For example, a number  might  be 
printed  differently if it were  a  label or a quantity  to  be  added; 
in the  former  case it would be placed at  the beginning of a 
line, in the  latter  it  might be in the middle. Standard  pretty 
print  algorithms usually start  at  the root node. But we have 
the notion of a  focus or foci of interest, which, if sufficiently 
localized, can  cause  the loss of surrounding portions of the 
display,  including the root itself. So we cannot  start  printing 
at  the root; we can  start  some analysis at  the root. 2) 
Standard  algorithms  assume  an infinitely long sheet of 
paper,  rather  than our limited CRT display, and so need 
not  squeeze as  much on a  line; we must elide  sections  intelli- 
gently. 

In our system the  pretty  print  algorithm  and  the display 
algorithm  are two separate  but  interacting components. The 
pretty  print  algorithm converts the  structure of the  parse  tree 
into a structure of nested boxes that reflects the  esthetic 
intentions  inherent in pretty  printing.  The display algorithm 
translates these boxes into a  two-dimensional image  that fits 
on the  output device. We now consider the box which would 
be produced by the  pretty  print  algorithm for aprog. There is 
a particular  type of box, called  a vertical box, which should if 
possible be displayed  with all of its  component boxes lined up 
vertically. All the  statements in the prog are grouped in a 
vertical box. Other boxes are used to allow enough indenta- 
tion of this  vertical box to  enable labels to be shown to  the left 
of the labeled statements.  The bound variables of the prog 
are shown in a box adjacent  to prog. The purpose of the box 
structure is to  map  the  parse  tree  into a structure  that 
indicates  the  preferred two-dimensional layout of program 
text,  to specify the relative  priorities (or importance) of 
phrase components, and  to define  a  minimal  elided form  for 
each  statement. 

The display algorithm  carries  out  the  instructions in the 
box structure  under  the  constraint of one or more foci of 
attention  and within the  limitations of the  available display 
area. In the single  focus  case,  display generation begins at  the 
box that defines the  current focus. The first step in display 
generation is to initialize  a  priority queue with the  current 
focus. The next step is to  attempt  to show the  minimal elided 
form of the first box in the  queue. If the  attempt fails, that 
particular box remains elided and we go  to  the next box in the 
priority queue. If the  attempt succeeds, we add  to  the priority 
queue  any  immediate neighbors of the  current box that have 

not yet been visited. The above steps  are  then  repeated for the 
next entry in the  queue.  The process terminates when the 
display is full or the  queue is empty. 

The  PLSEDIT display algorithm assigns  decreasing  prior- 
ities to new entries in the  queue by dividing the  current 
priority by a constant  that  depends on the  relative position of 
the new entry.  The  constant for  a box that  contains  the 
current box is slightly larger  than  the  constant for  a  compo- 
nent box. The  constant for adjacent boxes is close to one. This 
scheme produces  a  display that favors  expansion of the focus 
over expansion of the  context  surrounding  the focus and 
preserves detail in statements close to  the focus. 

If  several foci are  present,  PL8EDIT places all  the foci on 
the  priority  queue  during initialization and biases the prior- 
ity  allocation scheme  to favor branches in the  structure  that 
connect foci. The result of this  strategy is to  generate a 
display that shows the relative positions of the foci in the  text 
of the  program, with  connecting text shown  mostly  in  elided 
form. 

Incremental update 
If all  the  data  structures associated  with  a program were to 
be  re-created  each  time  the user made a change  to  the 
program,  the  PDE would be unusable. In  the two critical 
areas,  parsing  and display generation, we have devised 
efficient algorithms  that  update  the relevant data  structures 
incrementally. Consequently, the  computing cost of an 
update  operation is normally  not  proportional to  the size of 
the  program. 

The  programs  that  decide on the display format  must 
traverse a program top-down in order  to  make decisions  in 
the  appropriate  context. When changes  are  made  to  the 
program in PL8EDIT, we mark  the  data  structures  near  the 
changes as  invalid or “spoiled,” and  then  propagate  that 
information to  the root. The box-generating programs  then 
begin at  the root, as if trying  to  re-create  the  entire  structure. 
Any  substructure  that  has not been spoiled can be re-used 
without further  descent  and processing, and only the modi- 
fied parts of the  program need be  examined. 

6. Statistics 
Much of what we have  learned in the process of implement- 
ing this system is intuitive and  cannot easily be commu- 
nicated  to someone who has not used the system. In this 
section we try  to convey some of this information by 
describing some of the  usage  statistics  that we have gath- 
ered. 

We would also like to  enter a plea with all  other builders of 
similar systems to  gather similar statistics so that  compari- 
sons might  be  made.  We have  found the  statistics useful  in 
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our development work. They 1 )  show us what components 
are slow and often  used, 2) tell us which portions are most 
important  to improve  since they  are heavily used, 3 )  help  us 
find simple  sets of commands  to show new users, and  4) tell 
us when an experienced  user is unaware of a command  as 
evidenced by the  fact  that he  does  not  use it. 

The  statistics were gathered (when the system  was not in a 
period of change, for example, when we switched from 
nonshared to  shared pages for code) over a period of nine 
months. Three  to  four users  were the  primary  participants in 
this experiment,  and 91 402 interactions with the host  com- 
puter were  recorded. 

A heavy user seems to have about 600 interactions with 
the host computer a day.  These  interactions consist of about 
ten characters.  When in input mode, the  number of charac- 
ters per typed  line approximately doubles. The system main- 
tains seven predefined control keys; these accounted for 
about  one  quarter of the  interactions  (these single  key 
commands were not counted in the  ten-character figure 
above). One  interesting  number, which our data  are not 
presently  precise  enough to  determine, is what  percentage of 
a user’s time  he is  being held back by his typing speed. This 
would suggest how much attention should be paid to having 
commands which allowed abbreviated typing. For example, 
it  has been suggested that  one  can  type a program more 
rapidly in Teitelbaum’s system [ 1 I ]  because with a com- 
mand like “.DW”  one  can insert “do while end;”. 

We now describe our grouping of commands (see Table 1). 
In each  group we have gathered  similar  commands,  and we 
briefly describe the most important  members of the  group. 

Group 1 contains  the selection commands  that move the 
focus through  the  program  tree. Son x y z changes  the 
current focus to be the  zth son of the  yth son of the xth son of 
the  current focus. Next positions the focus on the  largest 
s-expression to  the  right of the  current focus in the  entire 
expression being edited. Right finds the sibling to  the  right. 
A number  command positions to  the  right,  and if it cannot  go 
further  to  the  right, goes down. Some of these  commands 
take  as  arguments  either a number or *, and * goes as  far  as 
possible. 

We have  several searching  commands  that select the next 
focus on the basis of a pattern or predicate.  These  are 
grouped separately  from  the  tree motion commands, since 
their effect is dependent on the  atoms of the  tree,  rather  than 
its shape. 

Group 2  consists of commands  that modify the  text of the 
program.  The most  commonly used update  commands  are 
replace, change, delete, and insert. 

Table 1 Usage patterns. 

1. Motion  commands 
1.1 Son,  Next, Up, Left,  Right, and Number 
1.2 Locate  commands 
2. Update  commands 
2.1 Replace, Change, Delete. and Insert 
2.2 Input mode 
2.3 Declare, Fof 
2.4 Copy,  Move, To 
3. Debugging  commands 
3.1 Run, Step,  Come, and Value 
4. Miscellaneous  commands 
4.1 Expression  evaluation 
4.2 File  system  commands 
4.3 Editing  objects 
4.4 Review  commands 
4.5 User  defined  commands 
4.6 Other 

31% 
26% 

5% 

1 1 %  
4% 
3% 
2% 

20% 

8% 
7% 
4% 
3% 
2% 
5% 

20% 

20% 

29% 
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Input mode was described in the  programming  example in 
Section 3. It is the mode  commonly used to  create new 
programs. 

There  are several language-dependent  commands, such as 
declare, which is described  in the  example,  andfof, which 
takes a list of arguments  and replaces the focus by a  list 
which is the list of arguments with the  current focus appen- 
ded.  The  command fof is very useful in an expression 
language. 

The  commands copy,  move, to were  described in the 
example in Section 3 .  

Group 3 contains run, step,  come, and value. These 
commands  control  the execution of the  hierarchical  evalua- 
tor. 

Group 4 contains  all  the  other interactions,  including the 
evaluation of LISP expressions. 

File  system commands  include reading in functions so they 
may be interpreted or edited,  as well as loading  compiled 
modules and compiling  source code. 

There  are  commands which enable  the user to  edit 
different  objects and  to  change  edit sessions. 

There  are various commands  to  aid reviewing previous 
commands.  The most common of these allows the user to 
modify the previous command  and re-execute  it. 

User-defined commands include continuations of locate 
commands. 

There  remain several  miscellaneous commands.  The most 
common of these is the  command  to pass a command  to  the 
underlying operating system. 



Since  our  editor does not accept full screen  input,  the only 
way to  do  updating is by moving the focus and  making  an 
update  command.  We were  pleased to find that  our  average 
of 1.55 motion commands for each  update  command was 
that low. We belive that  the  ratio would be considerably 
higher in a text  editor. Because many motion commands  may 
be regarded  as only a means  to  an  end, a low number 
indicates that relatively few superfluous commands need be 
executed.  The reasons for such a low number  are probably 
twofold: 1) Our  formatting  algorithm  accurately displays 
what  the user wants  to see. Thus, few motion commands  are 
necessary in order  to  read  the  program; 2) it is relatively  easy 
for the user to  get  to where he  wants  to  make a change. 

Note  that 23% of the  commands  (groups 2.3 and 3) would 
be impossible in a less integrated system; this  fact provides 
convincing  evidence of the  value of combining such tools into 
one  system. 

7 .  Conclusions 
It is our belief that  as  better  hardware becomes available, 
systems  like ours will become  easier to build.  For example, 
the  MENTOR system [9] had  to  be teletype-compatible and 
as a  result does not interact  as well as  it  might with  a CRT. 
Another  example comes from limited address space. In the 
absence of a large  address  space  it becomes natural  to have  a 
tool which is invoked and brings  in only code thought  to  be 
relevant to  the kinds of interactions  encountered when  using 
that tool. With a large  address  space,  these problems can be 
handled by hardware paging rather  than  software overlay- 
ing. The Cornell Program  Synthesizer [ l l ]  has  done a 
wonderful job of providing a unified environment, much  like 
ours, in 56K bytes. Nevertheless,  there is a  noticeable  delay 
when invoking a command involved with either execution or 
editing, when the  last  command was  in the  other set of 
commands. As  a  result of the  larger  address spaces and  faster 
machines, we believe that systems  like ours will become 
increasingly  common and  popular. 

We have tried  to  demonstrate  the  advantage  to a program- 
mer of having  a unified set of programming tools. We believe 
that  the system is superior to a typical combination  including 
a text  editor, compiler, operating  system,  etc.  The capabili- 
ties of the  commands  and  the display  component  have 
enabled users to  create  and modify programs easily. Further- 
more, the  testing  aids such as heval have  speeded and 
simplified the  debugging process. It is clear  that  the notion of 
establishing  a  single  environment for  program development 
via such  a  system is a  significant step  toward increasing 
programmer productivity.  Finally, we believe that  these 
techniques are  language  independent  and will apply to most 
modern structured  languages [ 1 1 ,  16, 171. We hope to  be 
able  to  create a set of tools which can be given a table  and 
then work for the  language described by that  table. As  was 72 

C. N. ALBERGA ET AL. 

the  case with  compiler-compilers, this will probably  not work 
perfectly a t  first and will require a small  amount of special 
casing  for each  particular  language. 
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