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A Program Development Tool

In this paper we describe how we have combined a number of tools (most of which are tailored to a particular programming
language) into a single system to aid in the reading, writing, and running of programs. We discuss the efficacy and the structure
of two such systems, one of which has been used to build several large application programs. We report some of the experience
we have gained in evolving these systems. We first describe the system components which users have found most important;
some of the facilities described here are new in the literature. Second, we attempt to show how these tools form a synergistic
union, and we illustrate this point with a number of examples. Third, we illustrate the use of various system commands in the
development of a simple program. Fourth, we discuss the implementation of the system components and indicate how some of

them have been generalized.

1. Introduction

High level languages are often used to improve programmer
productivity and program quality. The actual writing of
programs is a small portion of the entire task. Yet the tools
which support the rest of the programming effort are rela-
tively primitive and unrelated to one another. By allowing the
various tools that the programmer deals with to know about
the language (and about each other), the gains in using a
high level language can be amplified. For example, a
programmer should never have to look at the assembly
language listing to debug a program not written in assembly
language. This paper discusses the design goals that led to
such a system and tries to justify the authors’ belief that it
has productivity advantages.

A major drawback with current methodology is that the
programmer is forced to deal with several differing environ-
ments to accomplish his task, as illustrated in Figs. 1 and 2.
For example, the source code is frequently created and
modified with the help of an editor which merely manipu-
lates strings of text. The editor may or may not provide some
formatting, which usually amounts to the indentation of lines
to emphasize various programming language structures. The

programmer then typically leaves the editing environment
and compiles the program. If syntax errors are encountered,
he must return to the editor to make the desired changes. At
some point the compilation succeeds, and the program is then
loaded. This step may uncover additional errors. If so, the
programmer must return to the editing environment, then
the command environment, to repeat the preceding steps.
Finally, the program runs successfully but often gives unsat-
isfactory results. There may be a debugging environment,
but frequently its use requires another compilation.

We attempt in this paper to demonstrate that it is both
simpler and more productive for the programmer to have a
single, unified interface through which to accomplish his
task. With advanced formatting techniques he can envision
his program in the conceptual levels of detail in which he
creates it. He can uncover syntax errors immediately. He can
make changes to the source code and see the effects at once.
Finally, he can monitor the execution of the program in
varying amounts of detail. With the goal of making programs
casier to write we have investigated the combining of a
number of powerful tools so that the combination would be

© Copyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of

royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on

the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by

computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
60 Editor,

C. N. ALBERGA ET AL. IBM J. RES. DEVELOP. e VOL. 28 e NO.1 e JANUARY 1984




casy to use [1]. The tools we have integrated are sensitive to
the source language of the programs being written.

The collection of tools has been so highly integrated that
they may be thought of as a single tool. This tool has five
major components: a display system for programs and data
(much like a pretty printer [2] except that it is designed for a
CRT), an editor (for modifying program text), an interpreter
(which allows dynamic program analysis), a compiler, and a
file system. We call such a tool a Program Development
Environment (PDE).

All of the tools we discuss share a common representation
of a program, the program’s parse tree, as illustrated in Fig.
3. This is the first point at which we differ from tool
collections like The Programmer’s Workbench [3]. The
parse tree embodies more information about the program
than the text string for that program. Thus, many tasks are
much easier for our components. Another thing that is
shared by all components is the display routine. All informa-
tion about a program is printed through the same interface.
A common read loop (a minor tool) is also shared.

A piece of the parse tree is assumed to be the user’s focus
of attention, corresponding to the bold subtree in Fig. 3. The
display algorithm brightens the material in this subtree, and
attempts to display the subtree itself and its surrounding
context in more detail than other pieces of the program.
Other pieces are replaced with ellipses.

Before going into more detail, we describe one sequence of
interactions to illustrate our concept of a focus of attention.
When editing, a programmer can, for example, move the
entire focus to a different place in the program, without
counting how many lines need to be moved. When executing,
the focus is the current “location counter” indication. If the
program is being executed and the programmer wishes to see
only the execution of some sub-part which will not be
executed until much later, he can use ordinary edit com-
mands to move the focus of attention from the current
location to the location he wishes to see in more detail. He
may then execute a command which means “execute until
this new focus is the location counter contents.” Thus,
commands normally associated with the editing of a program
are valuable in a quite different context. Effects like this
pervade our system.

The graceful incorporation of a tool such as an interpreter
necessarily introduces language dependence into the system.
However, the language-sensitive parts of our system can be
isolated. Our first implementation of a PDE was LISPEDIT,
an environment for the LISP programmer. LISPEDIT has
been in use for several years; it has been used to maintain
itself and to build several substantial application programs.
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Figure 1 A typical environment provides tools like the ones above,
which take an input file and produce one or more output files.
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Figure 2 The programmer works by stringing together these uses
of tools.
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Figure 3 System configuration, showing the processing of an edit
command.
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In LISPEDIT, the display rules for LISP are built into the
screen handler, and interactive execution is performed by a
special interpreter. The second implementation is PLSEDIT,
an environment for the PL.8 programmer. (PL.8 is a
language derived from PL/1.) In PL8EDIT, many language
dependencies are stored in tables, and during execution the
editor interacts directly with special tables generated by the
compiler.

By way of contrast, consider Interlisp [4], very likely the
most highly developed program development environment
widely available for a high level language. In Section 2.2 of
[4], an example is presented of the development of a factorial
program. In this scenario the programmer encounters three
distinct user interfaces in the course of developing his
program: the basic read-eval-print loop (for program cre-
ation), a debugger (which catches program errors), and an
editor (for modifying and saving the program). Interlisp is a
traditionally structured program development environment
wherein the tools are independent entities able to provide
different kinds of information in their individual contexts.
Consequently, an Interlisp programmer is said to be in the
break package (debugging system) or in the editor or in
masterscope (analysis subsystem). We believe that having
different interfaces for different tools focuses the user’s
attention on the tool rather than the program being devel-
oped.

To sharpen this last point we remark that the PDE user
brings the tool to the program rather than the other way
around. The program (actually a collection of programs) is
an object about which a wide variety of information is always
available as part of its status: the program text, the program
status in long term (file) memory, the values of variables that
are currently (in the dynamic sense) defined, the point of
execution that has been reached within the program, the call
stack, a variety of static flow information about the program,
etc.

There are a number of other PDE’s (see [5] for a list of
them and also [6—11]), but none to our knowledge has 1) as
high a level of integration of their components and 2) been
used to build large systems. We discuss several programming
tools, some of which are not new when considered in isola-
tion; it is when their interaction is considered that they
become interesting.

The remainder of this paper has five sections. Section 2
discusses the individual components from a user’s point of
view, demonstrating the display and some of the commands
available. Section 3 shows how a simple program might be
built and the way in which parts of the system interact with
each other. Section 4 gives some examples of how the user
might benefit from the integration of the system facilities.
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Section 5 discusses the implementation of the system and
some of the important components. Section 6 presents some
data gathered which provide insight into the relative utility
of a number of commands.

2. System components

We observed in the preceding section that our system concep-
tually is comprised of five components. We do not discuss the
compiler further, but we describe the four remaining compo-
nents in detail. By overlaying this structure on the system for
pedagogical reasons, we do not mean to imply that the
components are not interrelated. In fact, the ability to use
code from other components simplifies many tasks.

® The display component

One of the goals of our system is to keep the user from feeling
that he is constantly changing environments while developing
one program. While changing the text displayed is obviously
necessary, it is important not to change the overall appear-
ance of the display. The display format we describe allows us
to display all the information a user needs, without giving
that user the feeling that the environment has changed. (See
Fig. 4.)

There are two critical objectives that we think a display
must meet. It must show that information in which the user is
interested, and it must show such information in an easy to
use form. We presume a display with at least the capabilities
of an IBM 3277, which can brighten fields and refresh the
screen very rapidly.

We discuss two ways in which the programmer’s interests
may be determined. First, in most editors there is a notion of
a focus of interest. In line editors this can be a particular line
in the display, often brightened. In full screen editors it may
be a cursor, such as an underscore or a blinking box. The
focus acts as a reference point for commands, including (but
hardly confined to) those which change or replace the data
represented by the focus, those which insert new data in the
vicinity of the focus, and those which shift the focus to other
data. In short, the system assumes that the user is interested
in that piece of data which he has last acted upon (via the
editor’s command language), and it reflects that historical
fact via some form of highlighting on the screen. The PDE
display routine shows the focus and parts of the data related
to the focus. We attempt to determine automatically what
related parts of the program the user is interested in viewing.
Many other systems only show the user some fixed number of
lines above and below the focus.

Second, a user frequently has occasion to direct his
attention to multiple foci. For example, the user might
request to be shown all instances of the variable x. The
display for [2, 12] can brighten all such instances and show
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their interrelationships. All the points in multiple foci are
placed in an object called a tag list. Just as the single focus
acts as a reference point for commands, tag lists can act as
ways of passing information to commands. For example, one
might want execution to continue until a variable was used.
One could locate all instances of the variable, putting those
points in a tag list, and then resume execution until a point in
the tag list was reached. (We do not currently support
execution to a point in a tag list.)

On the one hand, it must be possible to display a large
program or a large data structure. However, the display must
be small enough to be comprehensible and to fit on a CRT
device. Since the syntactic structure of the program is
available to the display program, by assigning priorities to
the parts of the program, those parts with higher priorities
can be displayed and others replaced with ellipses. If short
representations of the syntactic units are available, they may
be used instead of ellipses.

If we are interested in one specific syntactic structure in a
particular program, say a loop, we give high priority to the
subsections of that loop, the surrounding statements, and the
enclosing control structure, which shows how the loop is
reached in the program. If the loop is too large to show on one
screen or the part of the screen allocated to the description of
the loop itself, then some of the leaves of the parse tree for the
loop, such as the “then” and “else” clauses of an “if . . . then
... else” statement may be elided.

By modifying the assignment of priorities we can focus
simultaneously on several subsections of a program and the
syntactic structure which unites them. This facility is a
natural replacement for the voluminous cross reference
listings produced by compilers. The display can instantly
highlight all occurrences of a variable, assignment state-
ment, or procedure call. There are more complex uses: For
example, if B must always be done after A in a program, one
use of the display system would be to display all instances of
A and B to ensure that the proper order has been preserved.

The display is recomputed dynamically. With every termi-
nal interaction, the data or program being displayed is
traversed and the structure again pretty printed. Thus, the
programmer need not worry about the indentation of a line
being entered, and if a group of expressions that is three
syntactic levels of nesting down is moved to a location four
levels down, the programmer need make no adjustment of
margins. Because the dynamic redisplay is done automati-
cally and correctly, errors caused by reading indentation
rather than parentheses (or semicolons in other languages)
do not occur. The format of the program on the screen is a
reliable guide to the structure of the program.
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The ability to distinguish various regions of the displayed
text is useful. The example of the matching A and B actions
above provides an opportunity for making such a distinction.
Several kinds of display hardware assistance (generically
called ““highlighting”) can be imagined: multiple fonts,
underscoring, reverse video, and brightening. Presently we
use brightening to distinguish the current focus of attention.

When a standard text editor cannot fit an entire entity
(usually a “file””) on a single screen, the user is normally
presented with a fixed-size rectangular window, centered on
the current cursor. Movement through the item being edited
is accomplished by sliding this fixed window over a static
field representing the item. In many cases, the data shown by
such a display consist of a number of unrelated parts of the
item, while parts which are closely related to the data
designated by the cursor are outside the displayed area. Our
dynamic display, through the use of a number of heuristics, is
much more likely to display the right items. To the best of
our knowledge, our algorithm is a new and general approach
to the problem of displaying information.

Both Mentor [9] and Interlisp [4] can display a program
(or program fragment) to a fixed, user-specified level of
detail. To achieve the first display with the Cornell Synthe-
sizer [11] would require one command for each object that
was elided. In LISPEDIT and in PLSEDIT the depth of
detail is automatically adjusted to produce a syntactically
coherent picture of the program while attempting to make
optimal use of the available display area. In our approach,
the user points to the interesting parts of the program by
choosing a focus; in the other systems, the user must explic-
itly suppress uninteresting sections of the program.

& The read loop

In addition to the display component that we have already
discussed, the system has a minor component called a
command-read loop that supports positioning and updating
commands. The read loop recognizes commands, invokes the
appropriate routines, and calls the display routine to show
the results. It is important that the command execution
routines not call the display routine directly. Doing so would
preclude one command from calling another to perform some
simple function. The read loop also performs service func-
tions, such as remembering the last ten commands. Para-
phrasing traditional LISP parlance, we might characterize
the command-read loop as a READ-EVAL-DISPLAY
loop.

& The editor component

We have borrowed several features from typical text and
structural editors. There are commands, in LISPEDIT and
PL8EDIT, which move the focus to parents, children, and
siblings in the tree. It is also possible to locate a string and
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PLBEDIT: SORTADS PL1 A2 Kw=U ld=L Unit=TOKEN Ait=0 Err=0 Size=219
>> sortads: PROC (ad_array, from, to);
DCL 1 ad_array(3000),
2 aa_ad_# FIXEDBIN, . ..
(swap_ad_#, swap_count, i, j) FIXED BIN,
up FIXED BIN,
(from, to) FIXED BIN;
i=from;
j=to;
up="1,;
swap_ad_¥# =aa_ad_# (j);
swap_count=aa_count(j);
DO UNTIL (i>});
IF up THEN IF aa_ad_# (i)>swap_ad_# THEN . . . ELSE . . .
IF up THEN i=i+1; ELSE j=j—1;
END;
aa_ad_# (j)=swap_ad_#;
aa_count{j)=swap_count;
CALL sortads(ad_array, from, j);
CALL sortads(ad_array, i, to);
END sortads; <<<
(a)
PLS8EDIT: SORTADS PL1 A2 Kw=UId=L Unit=TOKEN Alt=0 Err=0 Size=219
>>sortads: PROC (ad_array, from, to);
DCL 1 ad_array(3000), 2 aa_ad_# FIXEDBIN, ... ... ;
i=from;
i=to;
up=1;
swap_ad_# —aa_ad_# (j);
swap_count=aa_count(j);
DO UNTIL(i>>j);
IF up
THEN IF aa_ad_# (i)>swap_ad_#
THEN DO; aa_ad_#(j)=aa_ad_#(i); . - .
END;
ELSE IF swap_ad_#>>aa_ad_#(j) THEN DO; . . . END;
IF up THEN i=i+1; ELSE j=j-1;
END;
aa_ad_# (j)=swap_ad_#;
aa_count(j)=swap_count;
CALL sortads(ad_array, from, j);
CALL sortads(ad_array, i, to);
END sortads; <<<

(b)

Figure 4 (a) Example of display of a program from top level—some details are elided. (b) View of program when user is interested in a loop
and its surrounding text.

have the focus move to the first complete subexpression of EDIT changes to the structure must leave a valid structure,
that string. In PL8EDIT it is possible to point to a token on and there are commands which facilitate doing this.
the screen and have the token become the focus. In LISP- PL8EDIT has no such restriction. An incremental parser is
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up FIXED BIN, . . .;
i =from;
i=to; ..
DO UNTIL( i >j);

IF up

up=0;
END;

IFup THEN i = i + 1,ELSEj=|—1;
END;
aa_ad_# (j)=swap_ad_#; ...
CALL sortads(ad_array, i ,to);

PL8S8EDIT: SORTADSPL1 A2 Kw=UId=L Unit=TOKEN AIt=0Err=0 Size=219
... DCL 1 ad_array(3000), 2 aa_ad_# FIXED BIN, 2 aa_count FIXED BIN,
(swap_ad_#, swap_count, i ,j) FIXED BIN,

THEN IF aa_ad_# (i )>swap_ad_#
THEN DO; aa_ad_# (j)=aa_ad_# (i);
aa_count(j)=aa_count( i);

ELSE IF swap_ad_#>aa_ad_# (j)
THEN DO; aa_ad_# ( i)=aa_ad_# (j);
aa_count( i)=aa_count(j);...
END;

Figure 4 (c) Display of program when user wants to see all places where variable i is used.

used to allow syntactically invalid changes to be made
temporarily [13]. The errors are always the newly changed
material. As soon as the structure becomes valid, all the
errors are removed; sometimes a few errors can be removed
while others remain. It is possible to insert a do and have the
do be in error. If the matching end is inserted, both errors go
away. Now, if the end is deleted, the missing end will be the
error, despite the fact that the program is textually the same
as when the extra do was flagged as the error.

We have kept the number of primitive updating functions
small. This is necessitated by the fact that changes to the
program text result in the incremental modification of cer-
tain “look-aside” data structures that describe various
aspects of the program being edited. Included among such
structures are data that describe how the program is to be
pretty printed and data that describe the findings of static
program analysis. In order to keep the look-aside data
structures synchronized with the program as it is developed,
the parts of the system concerned with maintaining those
structures must be informed of changes. By keeping the
number of primitive functions small we can isolate in a few
places interfaces with the look-aside updating functions.
Hence, instead of providing a primitive function to change
one expression somewhere in a program to another, this is
done in terms of locate and replace, which are primitive.
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® The dynamic analysis package

One of the most important things to know about a program is
how it runs on examples of input data. We can run a program
on one or many different instances of data and use the
display routine to display results of the execution. One of the
more interesting tools we have in this line is a hierarchical,
single-stepping interpreter (the command heval stands for
hierarchical evaluator). This interpreter allows single step-
ping much like console debugging. However, since the lan-
guage has a fair amount of structure, a step might be the
evaluation of an expression or might be to start the evalua-
tion of a subexpression of that expression. We allow the size
of a step to be changed interactively. Before an expression is
to be evaluated, the user has the option of simply evaluating
that expression or evaluating each of the subexpressions. In
either case, the value of the expression evaluated is shown.

The hierarchical evaluator is a recursive descent interpret-
er. It uses the fact that in LISP/370 one can create states and
evaluate inside of them. It has a number of important user
features, some of which are illustrated in the example in
Section 3. We discuss the commands run, step, come,
runfast, trap, check, and value. The command trap takes as
arguments procedure names. It changes those procedures so
that when they are invoked they are hierarchically evaluated
(hevaled). When a procedure is being hevaled, all normal
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editing commands are legal, although changes to the pro-
gram may be impossible to execute directly because of macro
expansion. The focus ordinarily identifies the object to be
evaluated next.

If run is typed, the focus is evaluated, and the next object
to be evaluated is displayed. The value of the object that was
just evaluated is displayed in the message area. (Values put
in the message area can always be edited recursively, if they
are too big to fit. A partially elided form is displayed then.)

If step is typed, evaluation of the object is started, but is
halted when the first displayable part of that object (e.g., the
conditional portion of a cond, part of a LISP if statement) is
about to be executed. Evaluation then proceeds to the second
displayable part reached in execution. In the case of a
function call, when all the arguments have been evaluated,
the message line shows that that function is about to be
applied to those arguments.

The step and run commands allow the user to traverse the
execution tree. This is easy to grasp in a system like ours
where the entire focus (to be executed by the run command)
is highlighted. In a system like the Synthesizer [11], which
denotes the current execution pointer by a single point, the
user must infer the scope of the run command. The Synthe-
sizer does not allow execution of subexpressions of arithmetic
expressions. Subexpression evaluation is particularly useful
to the user who has made a mistake in understanding the
precedence rules of the language. But a user who does not
understand the precedence rules will not be able to under-
stand the scope of the run command from a display which
identifies a subexpression from a single point.

The value command causes any LISP expression following
it to be evaluated in the context of the procedure being
evaluated. This allows the user to, for example, change the
value of a variable by evaluating an assignment to that
variable. One can also edit, recursively, the value of that
variable and change its value before returning to the edit
session in which the evaluation is taking place.

Typing check causes an expression to be evaluated each
time the system displays the program. If a procedure is called
which has been trapped, while hevaling another procedure,
the editor switches its attention to the zrapped procedure
until it has finished its execution. This can, of course, happen
to the new program, causing many levels of stack.

Typing runfast causes running and also temporarily
causes procedures which had been trapped merely to be
executed, not evaled. This allows careful examination of
certain calls to some procedures, without forcing it in all
cases.
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The user of the command come positions himself at the
point where the code in which he is interested starts; by his
then saying come, execution continues with no intermediate
displays until the focal expression (i.e., the expression that
has just been focused on) is about to be executed. For more
details, see [14].

3. An example of program creation and debug-
ging

In this section we attempt to acquaint readers with the
Program Development Environment by showing some
instances in which our system is useful. We do this by tracing
the building and debugging of a program. So that the reader
may easily follow this process, the program built is a simple
one. Unfortunately, this blunts many of the points we are
trying to make. We wish to show that our system makes it
easier to understand programs. But, in the interests of
brevity, the program we are forced to consider may be easily
understood without any of the tools we are building.

As the example progresses, the programmer changes his
principal activity. First the basic program is entered. A few
changes are made, and then the program is debugged. This is
realistic only for small programs. In a larger program there
are many iterations of this process. A programmer does not
often spend large amounts of time doing primarily one kind
of activity. The fact that the interface presented by LISP-
EDIT does not change substantially becomes important in
the context of many iterations of the programming process.

In the following we first show what the user would type as
a command line, followed by a summary of the information
that would be displayed on the screen thereafter. The CRT
we ordinarily use has twenty-two lines of text. Here, we
ordinarily assume something more like six.

Command: GH Quicksort
Display:
0

Explanation: We want to create a quicksort program to sort
elements in descending order. So, we get the value of
quicksort from the file system. It is initially NIL, and that is
what is displayed.

When applied to a list o with initial element y, the
quicksort program Q creates two lists u and » whose elements
are those in the tail of & which are >y and <y, respectively.
The value Q(a) is then obtained by appending together the
three lists Q(u), (y), and Q(»).

Command: i
Display:
0
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Explanation: The display indicates that we are in input mode
and are about to replace the current focus by changing one of
the headings on the screen.

Command: (lambda (sortme)
Display:
(lambda

(sortme))

Explanation: (sortme) is now the focus and anything which
is input will be inserted after it. The focus is the last
completed expression; balancing closing parentheses are
added by the read loop.

Command: (prog ()
Display:
(lambda
(sortme)
(prog
())

Explanation: sortme is the list which is passed in, and we will
deal with it in a program—prog—which at the moment has
no local variables.

Command: (cond ((Oor1 sortme)(return sortme)))
Display:
(tambda
(sortme)
(prog
0

(cond ((Oor1 sortme) (return sortme))) ))

Explanation: Oor1 is a user-defined predicate which returns
true if sortme is a list of 0 or 1 elements. In that case the list
is already sorted.

Command: (setqy (car sortme))
Display:
(lambda
(sortme)
(prog
()
(cond ((Oor1 sortme) (return sortme)))
(setq y (car sortme)) ))

Explanation: We will be comparing elements to y, which is
the first element in the list. If we had a color terminal we
might display a section of a program which is wrong in red
(which is mnemonic for stop) as was done in [15]. Here y
would be red because it is undeclared.
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Command: $declare y
Display:
{lambda
(sortme)
(prog
(y)

(cond ( (Oor1 sortme) (return sortme)))
(setq y (car sortme)) ))

Explanation: declare is a command. It you are in input
mode, a $ preceding a command forces that command to be
executed.

Command: (for x in (cdr sortme) do (cond
Display:
(lambda (sortme)
(prog (y)

(cond ( (Qor1 sortme) (return sortme)))

(setqy (car sortme))

(for x in (cdr sortme) do

(cond))))

Explanation: for is a macro which executes the statement
after the do repeatedly with x assuming all the values in (cdr
sortme).

Command: ( (greaterp x y) (setq bucket1 (cons x bucket1)
Display:
(lambda (sortme)

(prog ()

(for x in (cdr sortme) do
(cond ( (greaterp xy)
(setq bucket1 (cons x bucket1)) )

Explanation: Note the ellipsis. Remember that we are
assuming a six-line screen and must elide something. The
setq to y and the test for empty or null list are probably the
best choices. Since bucket1 is undeclared, it is shown in red.
This does not require us to do anything before we proceed;
however, unless we wish to use it as a free variable (which
may be declared to eliminate the redness), it is a mistake and
must be fixed eventually. We now pretend that the current
focus is a large expression and that we wish to avoid retyping
it.

Command: $copy

Display: the same as above.

Explanation: copy, which is executed as a command, stores a
copy of the focus so that it may be inserted elsewhere. 67
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(lambda (sortme)

|—»] (prog (y bucketl bucket2)
2——»[ (cond ((Oor1 sortme) (return sortme))) ]

3~ (setq y (car sortme))

‘51 > (for|x in (cdr sortme)| do
\\_
6 ‘at (cond ( (greaterp x y)
(setq bucket! (cons x bucketl)))
L ("t (setq bucket2 (cons x bucket2))) )|)
7 (return

(append (quicksort bucketl) (list y) (quicksort bucket2))) | ))

Figure 5 Final program.

Command: )(”t
Display:
{prog (y)

(for x in (cdr sortme) do
(cond ( (greaterp xy)
(setq bucket1 (cons x bucket1)))
("M

Command: $to
Display:
(prog ()

(for x in (cdr sortme) do
(cond ( (greaterp xy)
(setq bucket1 (cons x bucket1)))
( "t (setq bucket1 (cons x bucket1)) ))))

Explanation: to inserts the value that was stored by copy.
The command fo may be reused later to insert the same
thing.

Command: cng bucket1 bucket2 *
Display:
(prog ()

(for x in (cdr sortme) do
(cond ( (greaterp xy)
(setq buckett (cons x bucket1)))
( "t (setq bucket2 (cons x bucket2)) ))))

Explanation: The change command works in the scope of the
current focus. The * that is the third argument to cng causes
bucket1 to be changed in all those instances.

We eventually finish the program, and the final version
appears in Fig. 5. We have drawn in boxes which indicate
various values of the focus in what follows.
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We wish to run this program. We can do so simply by
typing the LISP expression which invokes the sort routine.
Alternatively, we can run it, examining the program as it is
being executed. In order to observe the running program, we
type in the command heval, invoking the hierarchical inter-
preter. The heval command allows the user to step through
parts of his program and display intermediate results on the
screen.

Command: heval 7(12 3 4)
Display: the (elided) program with Box 1 as the focus.

Explanation: This command starts the evaluation of the
quicksort program with sortme bound to the list (12 3 4).

Command: step
Display: Box 2 is the focus.

Explanation: step causes the evaluation of each of the
subexpressions of the focus to be shown.

Command: run
Display: Box 3 is the focus.

Explanation: run causes the evaluation of the focus, without
showing the evaluation of the subparts.

Command: run
Display: Box 4 is the focus, LAST VALUE = 1

Explanation: The value of y is now 1, and this is the value of
the last focus displayed and evaluated.

Command: display data bucket 1 bucket2

Display: Box 4 is the focus on the top half of the screen,
bucket1 = (), and bucket2 = () on the bottom of the
screen.

Explanation: This allows us to observe the value of certain
variables as execution continues. The implementation sets up
another edit session on the bottom of the screen. Thus, if the
data are too large we can use edit commands to look at
specific portions of the data.

Command: step
Display: Box 5 is the focus, bucket1 = (), bucket2 = ()

Command: run
Display: Box 6 is the focus, LAST VALUE = 2, bucket1 =
(), bucket2 = ()

Explanation: The value of x is now 2, and this is the value of
the last focus displayed and evaluated.

Command: run
Display: Box 5 is the focus, LAST VALUE = (2), bucket?
= (2), bucket2 = ()
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We may become tired of running around in the loop. Using
edit commands we position the focus at Box 7.

Command: come
Display: Box 7 is the focus, LAST VALUE = 3, bucket1 =
(4 3 2), bucket2 = ()

Explanation: The program has been executed until Box 7 is
about to be executed. The value of the last focus displayed
was 3; x on that iteration of the loop was 3. Bucket2 has
become a larger list in subsequent executions of the loop.

Command: run
Display: top level display of quicksort, value = (432 1)

Explanation: We have finished the execution of the quick-
sort, and it has returned the right value. We have now exited
heval.

In LISP/370 all variables bound in a prog are initialized
to nil. Were they not, the first use of bucket1 and bucket2
would have been highlighted with red, because they were not
initialized. If we were confused about the function which
bucket1 was performing, we would have all instances of
bucket1 highlighted, with other statements being elided. We
could do this highlighting to a procedure call which used or
stored into bucket1 even if the procedure call did not have
bucket1 mentioned in its argument, or only used it by calling
another routine which used it.

This concludes our example. It is unfortunate that for
obvious pedagogic reasons we cannot illustrate the utility of
our system in developing large programs. However, we point
out that LISPEDIT has been used in its own development, as
well as other unrelated large programs.

4. Examples of integration of facilities

In this section we describe some of the ways users have
utilized the fact that all of the tools we provide interact well
with one another.

One example is the way the command come is used.
Execution is begun in heval. At some point the user wishes to
skip seeing at a detailed level anything but the execution of a
certain piece of code. Using ordinary positioning commands
the focus is moved to that section, the command come is
executed, and execution continues until that point is reached,
after which the user sees the execution in detail again. This
example points out the need to integrate the positioning and
execute commands.

Another two examples are illustrated by the command e
=. When an expression is typed by the user, it is evaluated
and the value displayed on one line in the message area. That
line starts with value =. If the value does not fit on one line,
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parts of the value are elided (using the same elision strategy
as in the display). The value is also put in the global variable
=. That value may be examined by editing that global
variable (just as any other variable may be edited). While
editing a global variable, all of the positioning commands
which work while editing programs still work. This saves a lot
of relearning. Commands also put values in the global
variable =. If the command run is given, in heval, the
brightened expression is evaluated, and its value is placed in
=. The focus moves to the next location. The message area
holds the message Last value = and one line of the value.
Thus, it must be possible to integrate the ability to edit
objects and data in the same editor. It is also important to
allow the evaluation of expressions inside of the editor.

The command trap is also useful. This flags a certain
procedure to be hierarchically evaluated. It is important that
it work both when the user is editing and when evaluating a
potentially calling procedure. Since only the source may be
hierarchically evaluated, there is a problem when trap is
applied to a compiled routine. If'the compiled routine stored
the location in the file system where the source would be
found, the problem could be alleviated. We do not currently
do this. Thus, it is important to integrate the file system,
which keeps track of where the source for a program is, with
the debugging system.

When we first implemented trap, we made a mistake and
copied the object before it was evaluated. Users, knowing
that the system was highly integrated, would find an error
while stepping through the program, and they would fix the
error. They would then stop the monitoring of the program;
since the original program was restored, so was their bug. If
compiled code is to be accessible to the trap command,
updating must be stopped and the formerly compiled pro-
gram run interpretively, or the program recompiled. The
latter is better. This would be particularly true in a system
for a different language, where when the change made was to
a declaration, that change might cause other programs to be
recompiled. It is possible that the best situation would utilize
an incremental compiler, which would help the user to avoid
the decision of whether to compile or interpret his code.

Often one wants to be able to edit one of a collection of
functions without affecting the others. When one does this
the date stamp should not change for the others, even if the
other routines need to be recompiled. Occasionally, however,
one wants to edit the whole collection (for example, to find all
instances of a free variable). Thus, it is desirable to integrate
the file system with the editing system.

5. Implementation and other system facilities
In this section we describe some of the facilities which we
have found useful in implementing the system. These facili-
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ties are also available to the user as part of the system. We
also go into somewhat more detail on the algorithms used and
the precise features offered to the user.

® The pretty print/display algorithm

There are two major reasons why conventional pretty print-
ing algorithms fail in our display situation. 1) It is necessary
to examine the ancestor(s) of a node in order to know how to
pretty print that node. For example, a number might be
printed differently if it were a label or a quantity to be added;
in the former case it would be placed at the beginning of a
line, in the latter it might be in the middle. Standard pretty
print algorithms usually start at the root node. But we have
the notion of a focus or foci of interest, which, if sufficiently
localized, can cause the loss of surrounding portions of the
display, including the root itself. So we cannot start printing
at the root; we can start some analysis at the root. 2)
Standard algorithms assume an infinitely long sheet of
paper, rather than our limited CRT display, and so need
not squeeze as much on a line; we must elide sections intelli-
gently.

In our system the pretty print algorithm and the display
algorithm are two separate but interacting components. The
pretty print algorithm converts the structure of the parse tree
into a structure of nested doxes that reflects the esthetic
intentions inherent in pretty printing. The display algorithm
translates these boxes into a two-dimensional image that fits
on the output device. We now consider the box which would
be produced by the pretty print algorithm for a prog. There is
a particular type of box, called a vertical box, which should if
possible be displayed with all of its component boxes lined up
vertically. All the statements in the prog are grouped in a
vertical box. Other boxes are used to allow enough indenta-
tion of this vertical box to enable labels to be shown to the left
of the labeled statements. The bound variables of the prog
are shown in a box adjacent to prog. The purpose of the box
structure is to map the parse tree into a structure that
indicates the preferred two-dimensional layout of program
text, to specify the relative priorities (or importance) of
phrase components, and to define a minimal elided form for
each statement.

The display algorithm carries out the instructions in the
box structure under the constraint of one or more foci of
attention and within the limitations of the available display
area. In the single focus case, display generation begins at the
box that defines the current focus. The first step in display
generation is to initialize a priority queue with the current
focus. The next step is to attempt to show the minimal elided
form of the first box in the queue. If the attempt fails, that
particular box remains elided and we go to the next box in the
priority queue. If the attempt succeeds, we add to the priority
queue any immediate neighbors of the current box that have
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not yet been visited. The above steps are then repeated for the
next entry in the queue. The process terminates when the
display is full or the queue is empty.

The PLREDIT display algorithm assigns decreasing prior-
ities to new entries in the queue by dividing the current
priority by a constant that depends on the relative position of
the new entry. The constant for a box that contains the
current box is slightly larger than the constant for a compo-
nent box. The constant for adjacent boxes is close to one. This
scheme produces a display that favors expansion of the focus
over expansion of the context surrounding the focus and
preserves detail in statements close to the focus.

If several foci are present, PLSEDIT places all the foci on
the priority queue during initialization and biases the prior-
ity allocation scheme to favor branches in the structure that
connect foci. The result of this strategy is to generate a
display that shows the relative positions of the foci in the text
of the program, with connecting text shown mostly in elided
form.

® Incremental update

If all the data structures associated with a program were to
be re-created each time the user made a change to the
program, the PDE would be unusable. In the two critical
areas, parsing and display generation, we have devised
efficient algorithms that update the relevant data structures
incrementally. Consequently, the computing cost of an
update operation is normally not proportional to the size of
the program.

The programs that decide on the display format must
traverse a program top-down in order to make decisions in
the appropriate context. When changes are made to the
program in PL8EDIT, we mark the data structures near the
changes as invalid or “spoiled,” and then propagate that
information to the root. The box-generating programs then
begin at the root, as if trying to re-create the entire structure.
Any substructure that has not been spoiled can be re-used
without further descent and processing, and only the modi-
fied parts of the program need be examined.

6. Statistics

Much of what we have learned in the process of implement-
ing this system is intuitive and cannot easily be commu-
nicated to someone who has not used the system. In this
section we try to convey some of this information by
describing some of the usage statistics that we have gath-
ered.

We would also like to enter a plea with all other builders of
similar systems to gather similar statistics so that compari-
sons might be made. We have found the statistics useful in
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our development work. They 1) show us what components
are slow and often used, 2) tell us which portions are most
important to improve since they are heavily used, 3) help us
find simple sets of commands to show new users, and 4) tell
us when an experienced user is unaware of a command as
evidenced by the fact that he does not use it.

The statistics were gathered (when the system was notin a
period of change, for example, when we switched from
nonshared to shared pages for code) over a period of nine
months. Three to four users were the primary participants in
this experiment, and 91 402 interactions with the host com-
puter were recorded.

A heavy user seems to have about 600 interactions with
the host computer a day. These interactions consist of about
ten characters. When in input mode, the number of charac-
ters per typed line approximately doubles. The system main-
tains seven predefined control keys; these accounted for
about one quarter of the interactions (these single key
commands were not counted in the ten-character figure
above). One interesting number, which our data are not
presently precise enough to determine, is what percentage of
a user’s time he is being held back by his typing speed. This
would suggest how much attention should be paid to having
commands which allowed abbreviated typing. For example,
it has been suggested that one can type a program more
rapidly in Teitelbaum’s system [11] because with a com-
mand like “.DW” one can insert “do while end;”.

We now describe our grouping of commands (see Table 1).
In each group we have gathered similar commands, and we
briefly describe the most important members of the group.

Group 1 contains the selection commands that move the
focus through the program tree. Son x y z changes the
current focus to be the zth son of the yth son of the xth son of
the current focus. Next positions the focus on the largest
s-expression to the right of the current focus in the entire
expression being edited. Right finds the sibling to the right.
A number command positions to the right, and if it cannot go
further to the right, goes down. Some of these commands
take as arguments either a number or *, and * goes as far as
possible.

We have several searching commands that select the next
focus on the basis of a pattern or predicate. These are
grouped separately from the tree motion commands, since
their effect is dependent on the atoms of the tree, rather than
its shape.

Group 2 consists of commands that modify the text of the
program. The most commonly used update commands are
replace, change, delete, and insert.
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Table 1 Usage patterns.

1. Motion commands 31%
1.1 Son, Next, Up, Left, Right, and Number 26%
1.2 Locate commands 5%
2. Update commands 20%
2.1 Replace, Change, Delete, and Insert 11%
2.2 Input mode 4%
2.3 Declare, Fof 3%
2.4 Copy, Move, To 2%
3. Debugging commands 20%
3.1 Run, Step, Come, and Value 20%
4. Miscellaneous commands 29%
4.1 Expression evaluation 8%
4.2 File system commands 7%
4.3 Editing objects 4%
4.4 Review commands 3%
4.5 User defined commands 2%
4.6 Other 5%

Input mode was described in the programming example in
Section 3. It is the mode commonly used to create new
programs.

There are several language-dependent commands, such as
declare, which is described in the example, and fof, which
takes a list of arguments and replaces the focus by a list
which is the list of arguments with the current focus appen-
ded. The command fof is very useful in an expression
language.

The commands copy, move, to were described in the
example in Section 3.

Group 3 contains run, step, come, and value. These
commands control the execution of the hierarchical evalua-
tor.

Group 4 contains all the other interactions, including the
evaluation of LISP expressions.

File system commands include reading in functions so they
may be interpreted or edited, as well as loading compiled
modules and compiling source code.

There are commands which enable the user to edit
different objects and to change edit sessions.

There are various commands to aid reviewing previous
commands. The most common of these allows the user to
modify the previous command and re-execute it.

User-defined commands include continuations of ‘locate
commands.

There remain several miscellaneous commands. The most
common of these is the command to pass a command to the
underlying operating system.
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Since our editor does not accept full screen input, the only
way to do updating is by moving the focus and making an
update command. We were pleased to find that our average
of 1.55 motion commands for each update command was
that low. We belive that the ratio would be considerably
higher in a text editor. Because many motion commands may
be regarded as only a means to an end, a low number
indicates that relatively few superfluous commands need be
executed. The reasons for such a low number are probably
twofold: 1) Our formatting algorithm accurately displays
what the user wants to see. Thus, few motion commands are
necessary in order to read the program; 2) it is relatively easy
for the user to get to where he wants to make a change.

Note that 23% of the commands (groups 2.3 and 3) would
be impossible in a less integrated system; this fact provides
convincing evidence of the value of combining such tools into
one system.

7. Conclusions

It is our belief that as better hardware becomes available,
systems like ours will become easier to build. For example,
the MENTOR system [9] had to be teletype-compatible and
as a result does not interact as well as it might with a CRT.
Another example comes from limited address space. In the
absence of a large address space it becomes natural to have a
tool which is invoked and brings in only code thought to be
relevant to the kinds of interactions encountered when using
that tool. With a large address space, these problems can be
handled by hardware paging rather than software overlay-
ing. The Cornell Program Synthesizer [11] has done a
wonderful job of providing a unified environment, much like
ours, in 56K bytes. Nevertheless, there is a noticeable delay
when invoking a command involved with either execution or
editing, when the last command was in the other set of
commands. As a result of the larger address spaces and faster
machines, we believe that systems like ours will become
increasingly common and popular.

We have tried to demonstrate the advantage to a program-
mer of having a unified set of programming tools. We believe
that the system is superior to a typical combination including
a text editor, compiler, operating system, etc. The capabili-
ties of the commands and the display component have
enabled users to create and modify programs easily. Further-
more, the testing aids such as heval have speeded and
simplified the debugging process. It is clear that the notion of
establishing a single environment for program development
via such a system is a significant step toward increasing
programmer productivity. Finally, we believe that these
techniques are language independent and will apply to most
modern structured languages [11, 16, 17]. We hope to be
able to create a set of tools which can be given a table and
then work for the language described by that table. As was
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the case with compiler-compilers, this will probably not work
perfectly at first and will require a small amount of special
casing for each particular language.
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