
52

ROBERT STROM AND NACUI H A L l M IBM J. RES. DEVELOP. VOL. 28 NO. 1 JANUARY 1984

Robert Strom
Nagui Halim

A New Programming Methodology for
Long-Lived Software Systems

A new software development methodology based on the language NIL is presented. The methodology emphasizes (I) the
separation of program development into functional specification and tuning phases, (2) the use of a fully compilable and
executable design, (3) an interface definition and verification mechanism. This approach reduces life-cycle costs and improves
software quality because (a) errors are detected earlier, and (b) a single functional design can be re-used to produce many
implementations.

1. Introduction
NIL is a programming language and development methodol-
ogy designed to support large and complex systems which are
intended to be re-implemented in many product environ-
ments and which can be expected to last through several
generations of hardware and several functional releases.

The NIL language is described more fully in [1, 21. The
application of N I L constructs to distributed software sys-
tems is discussed in [31. This paper discusses the relevance of
the NIL language and methodology to the software develop-
ment process.

Our methodology distinguishes two kinds of change to
software: (1) changes for which function is preserved but
performance objectives or hardware technology is required to
be different, and (2) changes which alter function.

The ability to support the first kind of change is called
portability, and is achieved by (1) defining a high level of
abstraction for the primitives of the programming language,
and (2) permitting multiple realization mappings [3] to map
these abstract primitives into an implementation. The ability
to support the second kind of change is called extensibility
and is supported by enforcing modularity within the lan-
guage.

The features we require to permit extensibility include
information hiding, module interchangeability (“plug-
replacement”), and dynamic reconfigurability.

Section 2, “Separation of architecture and implementa-
tion levels,” discusses the level of abstraction of NIL and how
NIL programs serve as an interface between the phases of
functional design and implementation. We include a discus-
sion of how NIL can be used to support portability of a
design. Section 3, “Support for modular architecture,”
explains how a NIL compiler can enforce well-known princi-
ples of good modular design which are normally left to
human management. Finally, in Section 4, “Experience with
NIL,” we discuss some of the consequences of our design
decisions and our experience in using NIL to construct a
prototype of a portable SNA communications subsystem.

2. Separation of architecture and implementa-
tion levels
Our development methodology factors the implementation of
complex system software into two activities-(1) architec-
ture: the production of a functionally correct, machine-
independent specification of the system, and (2) tuning: the
generation of an implementation of this specification tailored

0 Copyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (I) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

to the cost, performance, and physical hardware constraints
of a particular product environment.

Since the same design may be re-implemented several
times-either across the members of a family of products or
over time-we call the machine-independent design a soft-
ware architecture.

Central to our methodology is a very high-level language,
NIL, which is a t a level of abstraction appropriate to the
boundary between architecture and implementation. The
result of the architecture phase is a set of NIL modules
representing the algorithms of the system.

On the one hand, NIL is an algorithmic language, rather
than a pure specification language. On the other hand, the
primitive data types and operations of NIL do not refer to the
particular machine structures which are needed to imple-
ment these algorithms. Using NIL, the following sorts of
implementation decisions, which affect only performance,
are not visible in the architecture, but are decided by the
compiler and modified during the tuning phase:

Use of registers, main storage, and secondary storage for

The order of scheduling of logically independent activities,
and the degree of actual concurrent overlap of operations.
Whether memory resources are pre-allocated or allocated
on demand.

0 Whether data structures are packed, unpacked, contigu-
ous, discontiguous, linked, or whether common data are
shared.

holding program states.

How many regions or address spaces are used, and whether
communication between these address spaces uses data
copying or shared buffers.

An architecture design specified in NIL is compilable and
executable. Because the design is executable, it may be tested
for conformity with functional and human factors require-
ments. Errors in the design of the system or of individual
algorithms can be detected and corrected at this point.
Corrections at this stage may be much cheaper than correc-
tions occurring later in the product development cycle.

The initial executable design will not always meet the
performance objectives of the product or products which are
to be implemented. The evolution of a functionally correct
design with inadequate performance into an efficient imple-
mentation is achieved by modifying the realization mapping,
which converts NIL’S high-level abstract primitives into
low-level instructions and data structures. The realization
mapping is embedded in a NIL compiler and a run-time
environment specialized for the target design.

IBM J. RES. DEVELOP. VOL. 28 NO. I JANUARY 1984

53

ROBERT STROM A N D NAGUl HALlM

Our model for performance tuning involves the following
steps:

Instrumentation of the code to detect (1) which primitive
operations are executed most frequently on which objects,
(2) what are the optimum values for parameters such as
buffer sizes, number of buffers, and scheduling priorities,
(3) which modules of the program are candidates for hand
tuning.
Use of the results of instrumentation to select pragmas
(compiler directives) which override the default imple-
mentation of NIL primitives either globally or for selected
objects or selected modules.
Modification of the compiler code templates for particular
operations whenever the existing compiler lacks an ade-
quate pragma option.
Hand optimization of a few selected critical modules.

The tuning phase and the architecture design phase can be
handled by separate organizations, since both the objectives
and the required skills are very different. The emphasis of the
architecture group should be on the details of the algorithms
and protocols of the system, and on appropriate modularity
to achieve extensibility. The emphasis of the tuning group
should be on making most effective use of the underlying
hardware. The tuning group need have only enough knowl-
edge of the system functions to construct appropriate perfor-
mance benchmarks.

The tuning phase must be repeated for each product or
design point for which the architecture will be re-imple-
mented, whereas the architecture design is performed once
and is modified only as the function changes. When a design
point changes due to technological improvements, new
pragma options may be added to compilers to re-implement
the NIL primitives to make appropriate use of new hard-
ware. Because the primitive abstractions of NIL are applica-
tion-independent, these new options may eventually be used
in re-implementing many different functional architectures.

We believe our methodology to be cost-effective for soft-
ware projects of sufficient magnitude that

0 The function will be required on a family of products with
distinct design points (e.g., IBM’s Systems Network
Architecture), or
The function will be required to migrate over time to either
different design points (e.g., fail-soft operation) or new
hardware technologies, or
The function is large and complex enough so that (1) it is
advantageous to assign separate groups the responsibilities
of understanding the functions and understanding the
machine implementation, and (2) the cost of modifying a
compiler to tune performance is less than the cost of
redesigning the function.

54

3. Support for modular architecture
The second thrust of NIL methodology is facilitating func-
tional modifications to large long-lived systems. These
changes may occur (1) across the lifetime of a system, (2)
across members of a product family, or even (3) from one
installed system to another.

Although the impact of design-point changes tends to be
greater in that the entire global system structure may
change, the frequency of changes in functionality is much
higher. Furthermore, certain kinds of changes can be more
appropriately designed and installed by the user of the
system than by the developer. In such cases, the ability of the
system to be modified in particular ways becomes as much a
part of the system specification as its functional and per-
formance requirements.

The following widely accepted principles of structuring
systems facilitate functional change.

Information hiding The state of a system should be
partitioned in such a way that each module is aware of only
a small fraction of the state-its secret [4]-and that no
module can depend on another module’s secret.

0 Narrow, explicit interfaces A system should be divided
into modules with minimum coupling. Modules should
know about other modules only via an interface speci3ca-
tion which defines how the effects of one module are visible
at another module.
Plug compatibility A module should be replaceable by
another module with a different algorithm which preserves
identical interfaces to adjacent modules. In a so-called
“open” system, the replacement can be made even by the
users of the system.

0 Dynamic reconfgurability Because systems can be
reconfigured at run time as well as statically configured at
system generation time, system configuration logic must
be embodied in modules of the system, rather than in
external binders and linkers.

Applying the above criteria ensures that (1) when a
change is contemplated, it is easy to determine the relevant
modules to change without having to inspect or even under-
stand the whole system, (2) the number of modules needing
to be changed is small, and (3) internal changes to a module
do not require propagation of changes to other modules.

Communications architectures, such as IS0 [5] and
SNA [6], apply the above principles in a very disciplined
way:

The system is partitioned into layers, each having a certain
generic function.

0 At each layer, there can exist a number of alternative
algorithms. Alternative algorithms may include installa-

tion-specific or even user-specific programs, depending
upon the layer. For example, the data link control layer
may include protocols such as Binary Synchronous and
X.25.
The system architecture defines a fixed manager process
at each layer whose job it is to dynamically bring up and
take down new instances of programs at that layer (the
control processes) and to choose which of the alternative
control process algorithms is to be executed.
The architecture fixes the interface between any control
process and the control processes and manager processes a t
that layer and at the adjacent layers.

While all these are widely recognized as good design method-
ology, enforcement of this methodology in actual implemen-
tations is difficult, particularly after a product has gone
through a number of releases. We believe that modular
design principles should be used to constrain the design while
it is being produced, not merely to evaluate an existing
design.

The core of the NIL approach is a methodology which (1)
forces interfaces and private data to be made apparent prior
to compilation, (2) enforces the consistency of a program
with its interface, and (3) enforces the privacy of data. Every
syntactically correct N I L design automatically has narrow,
explicit interfaces and information hiding; furthermore, the
description of the interfaces and the partitioning of the state
space can be discovered statically without following program
logic. To be sure, N I L designs may contain errors, and NIL
designs may make too few module cuts or may make cuts in
inappropriate places. However, NIL designs will not contain
“pseudo-modules’’ (modules which are closely coupled in
undocumented ways).

We believe that the costs associated with functional exten-
sion are reduced due to the fact that the designer can easily
determine with complete confidence which modules of a
system are affected by a change to one of them.

In this section, we show how the NIL semantic model
enforces accepted modular precepts and how the NIL lan-
guage and compiler allow these concepts to be documented
and enforced.

0 Processes and ownership
A major distinguishing feature of NIL is that partitioning of
the system into modules simultaneously separates the data
space and the program space. A N I L system is divided into
program modules calledprocesses. Every data object belongs
to exactly one process. Processes may only operate on data
objects which they own. All objects owned by a process are
declared within the text of that process. Except for explicit
communication over ports (to be discussed later), all data

ROBERT STROM A N D NAGUl HALlM IBM J. RES. DEVELOP. VOL. 28 NO. 1 JANUARY 1984

objects are independent in that operations on one object
cannot affect any other object.

The NIL view of data and processes contrasts both with
conventional programming practices and with other high-
level models of processes and access control.

In many system designs, collections of control blocks are
connected by pointer (reference) variables. Modules are
invoked with an environment containing access to certain
control blocks. In general, examination of program algo-
rithms is needed to determine which pointers are potentially
used to access which other parts of the system.

However, even if it is possible to determine which control
blocks are accessed by a module, it is not possible to
determine which control blocks may not be accessed by a
suitably modified version of the module. No distinction is
made between a module’s potential access and its actual
access. Since in many systems there are paths from almost
every control block to every other one, a change to nearly any
module may entail a change to nearly any other.

Various proposals exist to restrict the potential scope of
access from a module to dynamic data. Data abstraction, as
in SIMULA [7], CLU [8], ADA [9], and ADAPT [lo],
allows some or all of a control block (the private part) to be
made inaccessible except within a collection of modules
associated with the control block‘s type. Guardians, as in
Argus [I 11, are an abstraction of the notion of virtual
memory spaces. Processes within a single guardian can share
access to common data structures, but guardians can affect
one another only via message passing. Domains, or capability
lists [12-141, are used to explicitly enumerate the potential
access rights of all processes being executed within the
domain. In general, a single object may be simultaneously
accessible from several domains.

The NIL model is equally expressive, yet much simpler.
Each process is conceptually a separate data space. Every
object is owned by exactly one process. The set of objects
owned by a process can be determined by examination of the
declaration statements appearing in the process’s source text.
Sharing of objects is impossible, since there are no global
variables, no nested scopes, and no pointers. There is no
ambiguity over which process has responsibility to initialize
or finalize data, since each object has exactly one owner.
Access control in NIL deals not with the right to operate on
objects, but with the right to bind communications ports to
form communications channels.

Although NIL processes can be used to implement
abstract data types [3], more flexible types of process

A: process uses(C)
declare

AMSG: MTYPE
APORT: PTYPE sendport
S: EBCDICSTRING

begin

AMSG.DATA = ‘Hello’;
allocate AMSG;

send AMSG to APORT;
. . .

end A;

C: definitions uses(D)
. . .

MTYPE is message
(DATA: EBCDICSTRING)

PTYPE is send
interface of MTYPE

end C;

B: process uses(C)
declare

BMSG: MTYPE
BPOKT: PTYPE receiveport
B P O R : PTYPE receiveport

recei;; BMSG from BPORT;
if BMSG.DATA = ‘Hello’

begin

then
. . .

end B;

D: definitions
. . .

EBCDICSTRING is string
of EBCDIC-CHAR;

end D; I

Figure 1 Example of asynchronous communication: Modules A
and B are executable modules which are independently compiled.
Module C is a type definition module used by modules A and B.
Module D is a type definition module used by modules A and C.

interconnections are possible besides the hierarchical pattern
required in the abstract data type model. In such configura-
tions, no NIL process is more “abstract” than any other.

Communication
Interaction between processes is provided in NIL, without
compromising the principle of exclusive ownership, by means
of operations which transfer the ownership of data from one
process to another either temporarily or permanently.

There are two forms of communication: asynchronous
(message passing) and synchronous (calling).

Asynchronous communication works as follows: Suppose
process A is going to pass a message to process B (see Fig. 1).
For this to occur, A must declare two objects: AMSG, a
message object, and APORT, an output port. Similarly, B
must declare two objects: BMSG, a message object, and
BPORT, an input port. Sometime prior to the communica-
tion, a connection must have been made between APORT
and BPORT, forming a queued communications channel.
Process A issues operations to (1) allocate AMSG, which
creates a message object with nothing in it, and (2) initialize
the contents of AMSG. Process A then issues the send
operation specifying AMSG and APORT. This causes the
message data to travel to the other end of the communica-
tions channel and be queued inside BPORT. The variable
AMSG now no longer denotes an allocated message object,
and process A may no longer read or modify its contents.

Process B simultaneously (or more precisely, in its own
local time, which is unordered with respect to process A) 55

ROBERT STROM A N D NAGUl HALlM IBM J. RES. DEVELOP. VOL. 28 NO I JANUARY 1984

issues a receive operation, specifying BPORT and BMSG.
Process B then waits until one or more messages appear on
the queue, and the receive operation is completed with
BMSG denoting the first message in the queue.

Notice that AMSG (entirely local to process A) and
BMSG (entirely local to process B) a t different times denote
the same data, but never simultaneously denote the same
data. The data are always either owned by process A (as
AMSG) or owned by process B (as the value of BPORT prior
to the receive and of BMSG after the receive) until they are
eventually explicitly destroyed.

(Notice that the semantics of message passing does not
entail data copying in an implementation; between processes
residing on a single machine, send and receive can be
implemented using pointer chaining.)

Synchronous communication (rendezvous call) also
involves ownership transfer, a pair of connected ports, and a
message called a call-message. Process A (the caller) once
again has an output port APORT bound to an input port
BPORT in process B (the acceptor). Process A moves a set of
objects (the actual parameters) into a call-message object,
which is passed from APORT to a queue at BPORT. Process
A then waits. Process B issues an accept operation, specifying
input port BPORT, and a call-message BMSG. The accept
waits until the call-message containing A’s actual parame-
ters arrives, and then this call-message becomes the value of
BMSG, and the fields of BMSG (the formal parameters)
can be used to refer to the call-message data passed from A.
Eventually process B will issue a return operation, causing
the call-message to return to process A, causing A to resume
and B to no longer own the call-message.

As with asynchronous communication, because there is no
data sharing, synchronous communication can be imple-
mented by data copying (“value”) or pointer copying (“ref-
erence”).

0 Dynamic configuration
Ports in separate processes are connected to form communi-
cations channels. This connection must occur before commu-
nication can take place. Because we want the set of processes
and the set of connections to be decided at run time, we
provide run-time operations for process creation and access
control, rather than requiring that the identity of the partner
be specified in the program text.

Connections are made in two steps: (1) The owner of an
input port publishes an access right to that port into a
capability object; and (2) the capability is then passed to
another process which issues a connect operation that binds a
specific output port to the input port designated by the 56

ROBERT STROM AND NAGUI HALlM

capability. A process acquires its initial capabilities from its
creator via initialization parameters, which are exchanged
at the time of process creation. Thereafter, it may acquire
and export capabilities via normal communication.

The principal distinguishing features of NIL’S communi-
cation mechanism are the following:

There is no communication via shared data. In that
respect, NIL resembles CSP [151 and Gypsy [161.
Unlike the above languages, the connectiop of output port
to input port is made dynamically-the sender does not
have to name the identity of the receiver.
Ownership transfer is sufficiently abstract that it encom-
passes both value copying (as in Argus’s inter-guardian
communication) and reference copying.
Passing an object does not entail passing other objects
reachable by reference from the passed object. The caller
therefore knows for certain that, on return from the call,
only the passed parameters were manipulated. In other
systems, a called program may correctly specify that it
receives, for example, a “Data Control Block” as parame-
ter, and yet this does not guarantee that other structures
will not be manipulated.

Types and interfaces
The requirement of plug-compatibility of modules entails
that when A communicates to B over APORT, it does not
know statically that it is communicating with module B,
since B might be replaced by some similar module BPRIME.
The requirement of dynamic reconfigurability entails that
the choice of module might be made at run time. In fact, A
may own an entire table of objects like APORT, each
connected to a different module.

To support plug-compatibility, NIL supports the indepen-
dent compilation of processes. To ensure that A and B are
connectable despite having been compiled separately, NIL
requires that A and B each refer to an interface definition,
which is contained in a module C referred to by A and B.

Interface definitions are examples of type definitions.
Every variable in NIL is declared with a type, which has
previously been separately defined in a definitions module.
Definitions modules are separately compiled into definitions
libraries and are time-stamped, as in MESA [171, to permit
version checking.

The type of a variable is permanent throughout its
lifetime, while its value may change. In the case of a port, the
type is its interface and the value is its binding, which may be
a connection to any similarly typed port.

NIL defines a set of classes of types for which type
constructors exist. These classes are called type families. The

IBM J . RES. DEVELOP. VOL. 28 NO. I JANUARY 1984

type families of NIL include integers, booleans, enumera-
tions, components (collections of processes), relational
tables, messages, call-messages, ports (interfaces), and vari-
ants. A new type is defined by giving its family name and
other information required by the constructor.

In Fig. 1, the type definition C referred to by modules A
and B defines the following types: MTYPE, the type of the
messages AMSG and BMSG, and PTYPE, the type of the
ports APORT and BPORT. The definition of MTYPE
itemizes the message fields, specifying a name and a type.
The definition of PTYPE specifies that the port sends and
receives messages of type MTYPE.

Compile-time type checking guarantees a number of prop-
erties statically, using only the text of the executable module
being compiled and the type definitions it uses:

0 The type of each variable name can be determined statical-
ly, e.g., AMSG.DATA is known to have type EBC-
DICSTRING, since AMSG has type MTYPE, and
MTYPE’s definition specifies that field D A l A has type
EBCDICSTRING.

0 Each operation can be checked to see that its operands are
of appropriate type, e.g., send AMSG to APORT requires
that AMSG be a message type, that APORT be an output
port of send interface type, and that AMSG’s type be
consistent with APORT’S interface.

0 Versions are checked for compatibility: e.g., if process A
declares a variable of type EBCDICSTRING, whose type
was defined in module D, then the version of D in effect
while compiling module A must be the same as the version
of D in effect while compiling C, which also uses EBC-
DICSTRING.

Typestate
In the earlier example, communication by message passing
involved creating a single data object which was sometimes
visible to process A under the name AMSG and sometimes to
process B under the name BMSG. The “destructive” seman-
tics of send specifies that fields in AMSG can no longer be
read or written after a send. Similarly, fields in BMSG
cannot be read or written before a receive.

From process A’s viewpoint, variable AMSG has three
“states”: (1) UNINITIALIZED: the state prior to allocate
and subsequent to send, when data may not be written or
read, (2) EMPTY: the state after allocate but before initial-
izing any of the data, when data may be written but not read,
and (3) FULL: the state after the message is fully initial-
ized.

In NIL, an extension to type checking called typestate
checkingensures that the compiler can determine the state of

each variable a t each point in the program and reject
attempts to issue an operation from the wrong state.

For each type, the language defines a set of typestates.
(For example, type MTYPE has three typestates: UNINI-
TIALIZED, EMPTY, and FULL.) The language further
defines which operations are permitted in which typestates
and which operations cause typestate transitions. Typestate
checking rules [181 permit compilers to statically determine
the typestate of each variable a t each point in the program
and to verify that operations are issued only from correct
typestates. Each synchronous interface definition must spec-
ify for each parameter not only its type but also its required
typestate on entry to the service, on return from the service,
and on each possible exception return from the service.
(Certain frequent combinations, e.g., input, output, inout,
can be specified with a single keyword.) As a result, interface
specifications explicitly mention whether the caller owns the
data before and after each call and whether the called
process may update or destroy the data.

Typestate checking has the following benefits:

It preserves the security of the system by rejecting “erro-
neous” programs which may produce unpredictable side
effects in some implementations (e.g., by referencing
de-allocated storage). This mechanism is powerful enough
to replace run-time integrity checking of the sort taking
place in many systems.

0 It lowers maintenance costs by rejecting erroneous pro-
grams before they cause errors in the field. The typestate
algorithms check all possible paths through a program, not
just those taken during the product testing period.
It permits the clean termination of processes, since at any
point in a program where a fatal error might be detected, it
is known statically which variables correspond to owned
data objects which must be finalized.
It forces procedures which change the ownership of data or
which receive uninitialized parameters and initializes
them to declare that fact on the interface. (Conversely, it
forces any procedure using such an interface to fulfill the
obligation expressed on its interface.)

4. Experience with NIL
A full NIL compiler and run-time system have been written
for the IBM VM/370 system (approximately 80 000 lines of
code). Two SNA prototype systems have been written by a
team of five Research Staff Members during a period of
eight months. The prototypes consist of approximately
20 000 lines of executable code and 6000 of interface and
type definitions. The experience to date has been extremely
positive, both in terms of programmer productivity and the
quality of the resultant implementations. 57

IBM J. RES. DEVELOP. VOL. 28 NO. I JANUARY 1984 ROBERT STROM AND NAGUl HALIM

58

ROBERT S

Designing openness and dynamic reconfigurability into
the system from the beginning virtually forced a suitable
process decomposition, because all components with separate
lifetimes were required to be implemented as separate pro-
cesses. As a result, their data were forced to be disjoint, and
explicit interfaces were required to be designed between the
layers. Once the interface definitions were written they
became a fixed point of reference, and it was possible to
assign the programming of adjacent layers to different
individuals.

Typestate considerations, both internally within a module
and a t the module boundaries, forced the careful planning of
data initialization and use. In no case did we find that the
constraints imposed by typestate made it impossible or even
awkward to write an algorithm. We believe that requiring
typestate correctness results in improvements in readability
analogous to those brought about by the use of structured
programming.

Many errors in design and coding were detected at compile
time or at bind time before any execution took place. These
errors include failure to fully initialize data aggregates,
failure of a called procedure to create or discard data as
required by its interface, initializing data on one path to a
program statement and not on another, unmatched inter-
faces between communicating modules, and inconsistent
versions of an interface shared by an executable module and
a type definition which it used. Had these conditions gone
undetected, they would have resulted in over-written storage,
program checks, and other symptoms whose detection and
correction would typically require use of a core dump and
expertise in the underlying implementation.

Debugging proceeded in two steps: (1) individual modules
were exercised with dummy test layers, then, when judged to
be free of errors, (2) integrated with the real adjacent layers.
Once a module was debugged with the test layers it rarely
failed during integration. All debugging was at the “source”
level, with the majority of errors being either (1) dynamic
binding errors, (2) value errors, or (3) deadlocks. Debugging
time was typically very small compared to the length of time
needed to write and successfully compile the module. While
testing the system, we discovered a rather unexpected result:
Once the programs were through the initial testing period,
the error density and error rates dropped to almost zero.

function performed in a comparable IBM product. An
execution-time tracing facility was used to determine where
the problems were, and we discovered that approximately
fifty percent of the execution time was spent in a small subset
of the run-time system. A second implementation is now
nearly complete. The path length of NIL statements has
improved to the point where we believe our implementation
to be nearly competitive with production quality implemen-
tations.

5. Concluding remarks
The NIL language and its methodology provide a means of
writing well-structured functional descriptions at a level of
abstraction that permits true portability. This eliminates the
intertwining of performance decisions, design, and algo-
rithms so typical of systems that exist today. The result is a
system that is easy to maintain and one that does not suffer
from a gradual decay in code quality during the system
life-cycle.

Because NIL is an executable design language which is
tunable to produce production-quality code, it becomes possi-
ble to extend the clean, modular decomposition conceived by
the high-level designers directly through the functional
design coding and maintenance phases.

Furthermore,

0 Identical versions of the system can be made to execute on
a wide variety of machines, reducing the duplication of
coding effort and acceptance testing.
We speculate that more uniform external specifications of
products running on different machines will reduce cus-
tomer migration problems and improve the marketability
of upgraded hardware.
Extensions to the system can be developed and sized with
respect to a single common design. By contrast, within
IBM at present, extensions to SNA routing function
involve sizings by four separate product organizations, and
extensions to session protocols may involve dozens.
By rejecting at compile time programs which attempt to
use unowned data or which are inconsistent with their
interface, we eliminate major classes of errors before the
program goes into execution, including errors which may
only occur in infrequently executed program paths. Errors
detected earlier are less costly to correct.

Any exceptional conditions (e.g., inability to complete a
dynamic binding) automatically interrupted normal control 6- Acknowledgments
flow and invoked exception handlers. Because the system Other members of the group contributing to the design of the
console displayed the site of the exception, it was easy for methodology and language are Wilhelm Burger, Mike
these problems to be pinpointed during debugging. Comer, Francis Parr, John Pershing, and Shaula Yemini.

The NIL implementation team also included Jim McInerny,
Execution-time performance of the first NIL implementa- Dan Milch, Francis Parr, John Pershing, and Wilhelm

tion was about three to four times slower than the same Burger.

;TROM AND NAGUI HALIM IBM J. RES. DEVELOP. VOL. 28 NO. 1 JANUARY 1984

References
1. “Draft NIL Language Reference Manual,” Research Report

RC-9732, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, December 1982.

2. N. Halim and J. Pershing, “A New Language for Writing
Portable and Secure Systems,” Research Report RC-9650,
IBM Thomas J. Watson Research Center, Yorktown Heights,
NY, 1982.

3. R. E. Strom and S. Yemini, “NIL: An Integrated Language and
System for Distributed Programming,” SIGPLAN ’83 Sympo-
sium on Programming Language Issues in Software Systems,
June 1983.

4. D. L. Parnas, “On the Criteria to be Used in Decomposing
Systems into Modules,” Commun. ACM 15,330-336 (1972).

5. H. Zimmermann, “OS1 Reference Model-The IS0 Model of
Architecture for Open Systems Interconnection,” IEEE Trans.
Commun. C-28,425-432 (April 1980).

6 . Systems Network Architecture Format and Protocol Reference
Manual: Architectural Logic, Order No. SC30-3112, available
through IBM branch offices.

7. 0.-J. Dahl, B. Myhrhaug, and K. Nygaard, “SIMULA-67
Common Base Language,” Norwegian Computing Center,
Oslo, Norway (1970).

8. B. Liskov et al., CLU Reference Manual, Computation Struc-
tures Group Memo 161, MIT Laboratory for Computer
Science, Cambridge, MA, July 1978:

9. “Reference Manual for the Ada Programming Language,”
Draft Proposed ANSI Standard Document, ACM AdaTec
(July 1982).

IO. B. Leavenworth, “ADAPT: A Tool for the Design of Reusable
Software,” Research Report RC-9728, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1981.

1 1 . B. Liskov and R. Scheifler, “Guardians and Actions: Linguistic
Support for Robust, Distributed Programs,” Ninth ACM Sym-
posium on Principles of Programming Languages, Albuquer-
que, NM, 1982.

12. A. K. Jones and B. Liskov, “A Language Extension for Controll-
ing Access to Shared Data,” IEEE Trans. Software Eng. SE-2,
277-285 (October 1976).

13. R. B. Kieburtz and A. Silberschatz, “Capability Managers,”
IEEE Trans. Software Eng. SE-4,467-477 (November 1978).

14. P. Ancilotti and M. Boari, “Language Features for Access
Control.” IEEE Trans. Soflware Eng. SE-9, 16-25 (January
1983).

15. C. A. R. Hoare, “Communicating Sequential Processes,” Com-
mun. ACM21,666-677 (August 1978).

16. A. L. Ambler, D. I . Good, and W. F. Burger, “Report on the
Language Gypsy,” ICSCA-CMP-I, The University of Texas at
Austin, 1976.

IBM J . RES. DEVELOP. VOL. 28 NO. I J ANUARY 1984

17. J. Mitchell, W. Maybury, and R. Sweet, Mesa Language
Manual, Xerox Palo Alto Research Center, Palo Alto, CA,
April 1979.

18. R. E. Strom, “Mechanisms for Compile-Time Enforcement of
Security,” Tenth ACM Symposium on Principles of Program-
ming Languages, Austin, TX, January 1983.

Received May 19, 1983; revised August 3 I , I983

Nagui Halim IBM Research Division, P.O. Box 218, York-
town Heights, New York 10598. Mr. Halim joined IBM in the
Research Division in 1980. He is currently a research staff member
with the distributed systems software technology group, where he is
involved with proving the feasibility of using the NIL methodology
and language in implementing product quality software. His inter-
ests include operating systems, programming languages, and com-
piler code generation techniques. His previous work includes two
major operating system implementations and the design and imple-
mentation of the control software for a communications front end
processor. Mr. Halim completed his undergraduate studies in phys-
ics at Yale University, New Haven, Connecticut, in 1978.

Robert E. Strom IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Strom’s experience in
programming languages dates back to 1958, when as a student
assistant at the old IBM Watson Laboratory at Columbia Universi-
ty, he developed a two-pass version of the three-pass FOR TRAN-
SIT compiler for the IBM 650. As a student, he worked on a number
of large software systems, including a text-processing system for the
translation of machine-readable text to Braille, a system for syntac-
tic analysis of natural language using attribute grammars, and a
real-time system for the control of psychology experiments requiring
guaranteed response latencies. He completed his undergraduate
studies in philosophy and psychology at Harvard University in 1966,
and his doctoral studies in applied mathematics and computer
science at Washington University, St. Louis, in 1972. Since 1977, he
has been a research staff member at the Thomas J . Watson Research
Center, specializing in software methodology and programming
language design, particularly as applied to communications and
distributed systems.

59

ROBERT STROM AND NAGUI H A L l M

