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A New  Programming  Methodology  for 
Long-Lived Software Systems 

A new software development methodology based on the language NIL  is  presented.  The  methodology  emphasizes ( I )  the 
separation  of  program development into  functional specification and tuning phases, (2) the use of  a fully compilable and 
executable  design, (3) an interface  definition and verification mechanism.  This approach  reduces  life-cycle costs and improves 
software  quality because (a) errors  are detected  earlier, and (b)  a single functional design can be re-used to  produce many 
implementations. 

1. Introduction 
NIL is a programming  language  and development  methodol- 
ogy designed to  support  large  and complex  systems which are 
intended to be re-implemented in many  product  environ- 
ments and which can be expected to  last  through several 
generations of hardware  and several functional releases. 

The  NIL  language is described  more  fully in [ 1, 21. The 
application of N I L  constructs  to  distributed  software sys- 
tems is discussed in [ 31. This  paper discusses the relevance of 
the  NIL  language  and methodology to  the  software develop- 
ment process. 

Our methodology distinguishes two kinds of change  to 
software: (1)  changes for which function is preserved but 
performance objectives or hardware technology is required to 
be different, and (2) changes which alter  function. 

The  ability  to  support  the first kind of change is called 
portability, and is achieved by (1) defining  a  high level of 
abstraction for the primitives of the  programming  language, 
and  (2)  permitting multiple realization  mappings [3] to  map 
these abstract primitives into  an  implementation.  The  ability 
to  support  the second kind of change is called extensibility 
and is supported by enforcing modularity within the  lan- 
guage. 

The  features we require  to  permit extensibility  include 
information  hiding,  module  interchangeability  (“plug- 
replacement”),  and  dynamic reconfigurability. 

Section 2, “Separation of architecture  and  implementa- 
tion levels,” discusses the level of abstraction of NIL  and how 
NIL programs serve as  an  interface between the phases of 
functional design and  implementation. We include  a  discus- 
sion of  how NIL  can be used to  support portability of a 
design. Section 3, “Support for modular  architecture,” 
explains how a NIL compiler can enforce well-known princi- 
ples of good modular design which are normally left  to 
human  management. Finally, in Section 4, “Experience with 
NIL,” we discuss some of the consequences of our design 
decisions and our experience in using NIL to  construct a 
prototype of a portable SNA communications subsystem. 

2. Separation of architecture  and  implementa- 
tion levels 
Our development  methodology factors  the implementation of 
complex  system software  into two activities-( 1) architec- 
ture: the production of a  functionally correct,  machine- 
independent specification of the  system,  and  (2) tuning: the 
generation of an implementation of this specification tailored 
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to  the cost, performance,  and physical hardware  constraints 
of a particular product  environment. 

Since  the  same design  may be re-implemented several 
times-either  across the  members of a  family of products or 
over time-we call  the machine-independent  design  a soft- 
ware architecture. 

Central  to  our methodology is a very high-level language, 
NIL, which is a t  a level of abstraction  appropriate  to  the 
boundary between architecture  and  implementation.  The 
result of the  architecture  phase is a  set of NIL modules 
representing the  algorithms of the  system. 

On the one hand, NIL is an  algorithmic  language,  rather 
than a pure specification  language. On  the  other  hand,  the 
primitive data types and operations of NIL  do not refer to  the 
particular  machine  structures which are needed to imple- 
ment these algorithms. Using NIL,  the following sorts of 
implementation  decisions, which affect only performance, 
are not visible in the  architecture, but are decided by the 
compiler and modified during  the  tuning phase: 

Use of registers,  main storage,  and  secondary  storage for 

The  order of scheduling of logically independent activities, 
and  the  degree of actual  concurrent overlap of operations. 
Whether memory  resources are pre-allocated or allocated 
on demand. 

0 Whether  data  structures  are packed, unpacked, contigu- 
ous,  discontiguous,  linked, or whether  common data  are 
shared. 

holding program  states. 

How many regions or  address spaces are used, and whether 
communication  between  these address  spaces uses data 
copying or shared buffers. 

An architecture design specified in NIL is compilable  and 
executable. Because the design is executable, it may be tested 
for conformity  with functional  and  human  factors require- 
ments. Errors in the design of the system or of individual 
algorithms  can be detected  and  corrected  at this  point. 
Corrections  at this stage may be much cheaper  than correc- 
tions occurring  later in the product  development  cycle. 

The initial executable design will not always  meet the 
performance objectives of the product or products which are 
to be implemented.  The evolution of a  functionally correct 
design with inadequate  performance  into  an efficient imple- 
mentation is achieved by modifying the realization  mapping, 
which converts NIL’S high-level abstract primitives  into 
low-level instructions and  data  structures.  The realization 
mapping is embedded in a NIL compiler and a run-time 
environment  specialized  for the  target design. 
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Our model for performance  tuning involves the following 
steps: 

Instrumentation of the code to  detect (1 )  which primitive 
operations are executed most frequently on which objects, 
(2) what  are  the  optimum values  for parameters such as 
buffer sizes, number of buffers, and scheduling  priorities, 
(3)  which modules of the  program  are  candidates for hand 
tuning. 
Use of the results of instrumentation  to select pragmas 
(compiler  directives) which override the  default imple- 
mentation of NIL primitives either globally or for selected 
objects or selected modules. 
Modification of the compiler  code templates for particular 
operations whenever the existing  compiler  lacks an  ade- 
quate  pragma option. 
Hand optimization of a few selected critical modules. 

The  tuning phase and  the  architecture design  phase can be 
handled by separate  organizations, since  both the objectives 
and  the required skills are very different. The emphasis of the 
architecture  group should be on the  details of the  algorithms 
and protocols of the system, and on appropriate  modularity 
to achieve  extensibility. The emphasis of the  tuning  group 
should be on making  most effective use of the underlying 
hardware.  The  tuning  group need have only enough knowl- 
edge of the system  functions to  construct  appropriate perfor- 
mance benchmarks. 

The  tuning phase  must be repeated for each product or 
design point for which the  architecture will be re-imple- 
mented, whereas the  architecture design is performed  once 
and is modified only as the function  changes.  When  a  design 
point changes  due  to technological  improvements, new 
pragma options may be added  to compilers to re-implement 
the  NIL primitives to  make  appropriate use of  new hard- 
ware. Because the primitive abstractions of NIL  are  applica- 
tion-independent,  these new options may eventually be used 
in re-implementing  many  different  functional architectures. 

We believe our methodology to be cost-effective for  soft- 
ware projects of sufficient magnitude  that 

0 The function will be required on a  family of products with 
distinct design  points (e.g., IBM’s Systems  Network 
Architecture), or 
The function will be required to  migrate over time  to  either 
different  design  points (e.g., fail-soft operation) or new 
hardware technologies, or 
The function is large  and complex  enough so that (1) it is 
advantageous  to assign separate groups the responsibilities 
of understanding  the functions and  understanding  the 
machine  implementation,  and (2) the cost of modifying a 
compiler to  tune  performance is less than  the cost of 
redesigning the function. 
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3. Support  for modular architecture 
The second thrust of NIL methodology is facilitating func- 
tional modifications to  large long-lived systems. These 
changes  may  occur ( 1 )  across the  lifetime of a  system, (2) 
across members of a  product family, or even (3) from one 
installed  system to  another. 

Although the  impact of design-point changes  tends  to be 
greater in  that  the  entire global  system structure  may 
change,  the frequency of changes in functionality is much 
higher. Furthermore,  certain kinds of changes  can  be more 
appropriately designed and installed by the user of the 
system than by the developer. In such  cases, the  ability of the 
system to be modified in particular ways becomes as much  a 
part of the system  specification as  its  functional  and per- 
formance  requirements. 

The following widely accepted principles of structuring 
systems facilitate  functional  change. 

Information  hiding The  state of a  system  should be 
partitioned in such a way that  each module is aware of only 
a  small fraction of the state-its secret [4]-and that no 
module can depend on another module’s secret. 

0 Narrow,  explicit interfaces A  system  should be divided 
into modules with minimum  coupling. Modules should 
know about  other modules only via an interface speci3ca- 
tion which defines how the effects of one  module are visible 
at  another module. 
Plug  compatibility A  module  should be replaceable by 
another module  with  a  different algorithm which preserves 
identical interfaces  to  adjacent modules. In a so-called 
“open” system,  the  replacement  can be made even by the 
users of the system. 

0 Dynamic  reconfgurability Because  systems can be 
reconfigured at  run time  as well as  statically configured at  
system generation time,  system  configuration logic must 
be embodied in modules of the system, rather  than in 
external binders and linkers. 

Applying the above criteria ensures that ( 1 )  when a 
change is contemplated, it is easy to  determine  the relevant 
modules to  change without  having to inspect or even under- 
stand  the whole system,  (2)  the  number of modules  needing 
to be changed is small,  and (3) internal  changes  to a  module 
do not require propagation of changes  to  other modules. 

Communications  architectures, such as IS0  [5]  and 
SNA  [6], apply the above  principles in a very disciplined 
way: 

The system is partitioned  into layers, each having  a certain 
generic  function. 

0 At  each  layer,  there  can exist  a number of alternative 
algorithms.  Alternative  algorithms  may  include  installa- 

tion-specific or even user-specific programs,  depending 
upon the  layer. For example,  the  data link  control  layer 
may  include protocols such  as  Binary Synchronous  and 
X.25. 
The system architecture defines a fixed manager process 
at  each  layer whose job  it is to dynamically  bring up  and 
take down new instances of programs  at  that layer (the 
control processes) and  to choose which of the  alternative 
control process algorithms is to  be executed. 
The  architecture fixes the  interface between any  control 
process and  the  control processes and  manager processes a t  
that layer and  at  the  adjacent layers. 

While  all  these  are widely recognized as good design method- 
ology, enforcement of this methodology in actual implemen- 
tations is difficult, particularly  after a  product has gone 
through a number of releases. We believe that  modular 
design  principles  should be used to constrain the design while 
it is being  produced,  not  merely to evaluate an existing 
design. 

The  core of the  NIL  approach is a methodology which (1) 
forces interfaces  and  private  data  to be made  apparent prior 
to compilation, (2) enforces the consistency of a program 
with its  interface,  and (3)  enforces the privacy of data. Every 
syntactically  correct N I L  design automatically  has narrow, 
explicit interfaces  and information  hiding; furthermore,  the 
description of the  interfaces  and  the  partitioning of the  state 
space  can be discovered statically without following program 
logic. To be sure, N I L  designs may  contain  errors,  and NIL 
designs may  make too few module cuts or may  make  cuts in 
inappropriate places. However, NIL designs will not contain 
“pseudo-modules’’ (modules which are closely coupled in 
undocumented  ways). 

We believe that  the costs  associated with functional  exten- 
sion are reduced due  to  the  fact  that  the designer can easily 
determine with  complete confidence which modules of a 
system are affected by a change  to  one of them. 

In  this section, we show how the  NIL  semantic model 
enforces  accepted modular precepts and how the  NIL  lan- 
guage  and compiler allow these  concepts to be documented 
and enforced. 

0 Processes and ownership 
A major distinguishing feature of NIL is that  partitioning of 
the system into modules  simultaneously separates  the  data 
space  and  the  program space.  A N I L  system is divided into 
program modules calledprocesses. Every data object belongs 
to exactly one process. Processes may only operate on data 
objects which they  own.  All  objects owned by a process are 
declared within the  text of that process. Except  for  explicit 
communication over ports (to be discussed later),  all  data 
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objects are  independent in that operations on one object 
cannot affect any  other  object. 

The  NIL view  of data  and processes contrasts both with 
conventional programming practices and with other high- 
level models of processes and access  control. 

In many system  designs,  collections of control blocks are 
connected by pointer (reference) variables.  Modules are 
invoked with an environment containing access to  certain 
control blocks. In  general,  examination of program algo- 
rithms is needed to  determine which pointers are potentially 
used to access which other  parts of the system. 

However, even if it is possible to  determine which control 
blocks are accessed by a  module, it is not possible to 
determine which control blocks may not be accessed by a 
suitably modified version of the module. No distinction is 
made between a module’s potential  access and its actual 
access. Since in many systems there  are  paths  from  almost 
every control block to every other one, a change  to  nearly  any 
module may  entail a change  to nearly any  other. 

Various  proposals  exist to  restrict  the  potential scope of 
access from a  module to  dynamic  data.  Data  abstraction,  as 
in SIMULA  [7],  CLU [8], ADA [9], and  ADAPT [lo], 
allows some or all of a  control block (the private part)  to be 
made inaccessible  except  within  a  collection of modules 
associated with the control block‘s type.  Guardians,  as in 
Argus [ I  11, are  an  abstraction of the notion of virtual 
memory  spaces.  Processes  within  a  single guardian  can  share 
access to common data  structures,  but  guardians  can affect 
one  another only via message  passing.  Domains, or capability 
lists [12-141, are used to explicitly enumerate  the potential 
access rights of all processes being  executed  within the 
domain.  In  general, a  single  object may be simultaneously 
accessible  from  several  domains. 

The  NIL model is equally expressive, yet much simpler. 
Each process is conceptually  a separate  data space. Every 
object is owned by exactly one process. The  set of objects 
owned by a process can be determined by examination of the 
declaration  statements  appearing in the process’s source text. 
Sharing of objects is impossible, since there  are no global 
variables, no nested scopes, and no pointers. There is no 
ambiguity over which process has responsibility to initialize 
or finalize data, since each object has exactly  one owner. 
Access control in NIL deals not with the  right  to  operate on 
objects,  but  with the  right  to bind communications ports to 
form  communications  channels. 

Although NIL processes can be used to implement 
abstract  data types [3], more flexible types of process 

A: process uses(C) 
declare 

AMSG: MTYPE 
APORT: PTYPE sendport 
S: EBCDICSTRING 

begin 

AMSG.DATA = ‘Hello’; 
allocate AMSG; 

send AMSG to APORT; 
. . .  

end A; 

C: definitions uses(D) 
. . .  

MTYPE is message 
(DATA: EBCDICSTRING) 

PTYPE is send 
interface of MTYPE 

end C; 

B: process uses(C) 
declare 

BMSG: MTYPE 
BPOKT: PTYPE receiveport 
B P O R :  PTYPE receiveport 

recei;; BMSG from BPORT; 
if BMSG.DATA = ‘Hello’ 

begin 

then 
. . .  

end B; 

D: definitions 
. . .  

EBCDICSTRING is string 
of EBCDIC-CHAR; 

end D; I 

Figure 1 Example of asynchronous  communication:  Modules A 
and B are  executable  modules which are independently  compiled. 
Module C is a  type definition module used by modules A and B. 
Module D is a  type definition module used by modules A and C. 

interconnections are possible besides the  hierarchical  pattern 
required in the  abstract  data  type model. In such  configura- 
tions, no NIL process is more  “abstract”  than  any  other. 

Communication 
Interaction between processes is provided in NIL, without 
compromising the principle of exclusive ownership, by means 
of operations which transfer  the  ownership of data  from one 
process to  another  either  temporarily or permanently. 

There  are two  forms of communication:  asynchronous 
(message  passing) and synchronous (calling). 

Asynchronous  communication works as follows: Suppose 
process A is going to pass a  message to process B  (see Fig. 1). 
For  this to  occur, A must  declare two  objects: AMSG, a 
message object,  and  APORT,  an  output port. Similarly, B 
must  declare two objects: BMSG, a  message  object, and 
BPORT,  an  input port. Sometime prior to  the  communica- 
tion,  a connection must have been made between APORT 
and  BPORT, forming  a  queued  communications channel. 
Process A issues operations to ( 1 )  allocate AMSG, which 
creates a  message  object  with  nothing in it,  and (2) initialize 
the  contents of AMSG. Process  A then issues the send 
operation  specifying AMSG  and  APORT.  This causes the 
message data  to travel to  the  other  end of the  communica- 
tions channel  and be queued  inside BPORT.  The  variable 
AMSG now no longer denotes an allocated  message object, 
and process A may no longer  read or modify its  contents. 

Process  B  simultaneously (or more precisely, in  its own 
local time, which is unordered with respect to process A) 55 
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issues a receive operation, specifying BPORT  and  BMSG. 
Process  B then waits until  one or more messages appear on 
the  queue,  and  the receive operation is completed  with 
BMSG  denoting  the first  message in the  queue. 

Notice  that  AMSG  (entirely local to process A)  and 
BMSG  (entirely local to process B) a t  different times  denote 
the  same  data,  but never simultaneously denote  the  same 
data.  The  data  are always either owned by process A (as 
AMSG) or owned by process B (as  the value of BPORT prior 
to  the receive and of BMSG  after  the receive) until  they  are 
eventually  explicitly destroyed. 

(Notice  that  the  semantics of message  passing does not 
entail  data copying in an  implementation; between processes 
residing on a  single  machine, send and receive can  be 
implemented  using  pointer chaining.) 

Synchronous  communication (rendezvous  call) also 
involves ownership transfer, a pair of connected  ports, and a 
message  called  a call-message. Process  A (the caller) once 
again  has  an  output port APORT bound to  an  input port 
BPORT in process B (the acceptor). Process  A moves a  set of 
objects (the actual  parameters) into a  call-message object, 
which is passed from  APORT  to a queue at  BPORT. Process 
A then waits.  Process  B issues an accept operation, specifying 
input port BPORT,  and a  call-message BMSG.  The accept 
waits  until the call-message containing A’s actual  parame- 
ters  arrives,  and  then  this call-message becomes the value of 
BMSG,  and  the fields of BMSG  (the formal  parameters) 
can  be used to refer to  the call-message data passed from  A. 
Eventually process B will issue a return operation, causing 
the call-message to  return  to process A,  causing A to  resume 
and B to no longer own the call-message. 

As with asynchronous communication,  because  there is no 
data  sharing, synchronous communication  can be imple- 
mented by data copying (“value”) or pointer  copying (“ref- 
erence”). 

0 Dynamic configuration 
Ports in separate processes are connected to  form communi- 
cations channels. This connection must  occur before commu- 
nication can  take place.  Because we want  the set of processes 
and  the  set of connections to be decided at  run time, we 
provide run-time  operations for process creation  and access 
control, rather  than  requiring  that  the  identity of the  partner 
be specified in the  program  text. 

Connections are  made in two steps: ( 1 )  The owner of an 
input port publishes an access right  to  that port into a 
capability object;  and (2 )  the  capability is then passed to 
another process which issues a connect operation  that binds  a 
specific output port to  the  input port designated by the 56 
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capability. A process acquires its initial capabilities from  its 
creator via initialization  parameters, which are  exchanged 
at  the  time of process creation.  Thereafter,  it  may  acquire 
and  export  capabilities via normal communication. 

The principal  distinguishing features of NIL’S communi- 
cation mechanism  are  the following: 

There is no communication via shared  data.  In  that 
respect, NIL resembles CSP [ 151 and Gypsy [ 161. 
Unlike the above languages,  the connectiop of output port 
to  input port is made dynamically-the  sender does not 
have to  name  the  identity of the receiver. 
Ownership  transfer is sufficiently abstract  that it  encom- 
passes both  value copying (as in  Argus’s inter-guardian 
communication)  and reference copying. 
Passing an object  does  not entail passing other objects 
reachable by reference from  the passed object.  The  caller 
therefore knows for certain  that, on return  from  the  call, 
only the passed parameters were manipulated. In other 
systems,  a  called program  may  correctly specify that  it 
receives, for example,  a “Data  Control Block” as  parame- 
ter,  and yet this  does not guarantee  that  other  structures 
will not be manipulated. 

Types and interfaces 
The  requirement of plug-compatibility of modules entails 
that when A communicates  to B over APORT, it does not 
know statically  that it is communicating with  module B, 
since  B might  be replaced by some similar module BPRIME. 
The  requirement of dynamic reconfigurability entails  that 
the choice of module might be made  at run time. In fact, A 
may own an  entire  table of objects  like APORT,  each 
connected to a  different  module. 

To  support plug-compatibility, NIL supports  the indepen- 
dent compilation of processes. To  ensure  that A and B are 
connectable despite  having been compiled separately, NIL 
requires that A and B each refer to  an interface definition, 
which is contained in a  module C referred to by A and B. 

Interface definitions are examples of type definitions. 
Every variable in NIL is declared  with  a  type, which has 
previously been separately defined in a definitions module. 
Definitions modules are  separately compiled into definitions 
libraries and  are  time-stamped,  as in MESA [ 171, to  permit 
version checking. 

The  type of a variable is permanent  throughout its 
lifetime, while its value may  change.  In  the  case of a port,  the 
type is its interface  and  the value is its binding, which may  be 
a  connection to  any similarly  typed  port. 

NIL defines a set of classes of types for which type 
constructors exist. These classes are called type  families. The 
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type families of NIL include  integers, booleans, enumera- 
tions, components (collections of processes), relational 
tables, messages, call-messages,  ports (interfaces),  and vari- 
ants. A new type is defined by giving its family name  and 
other information required by the  constructor. 

In Fig. 1, the  type definition C  referred to by modules  A 
and B defines the following types: MTYPE,  the  type of the 
messages AMSG  and  BMSG,  and  PTYPE,  the  type of the 
ports APORT  and  BPORT.  The definition of MTYPE 
itemizes the message fields, specifying  a name  and a  type. 
The definition of PTYPE specifies that  the port  sends and 
receives messages of type  MTYPE. 

Compile-time type checking guarantees a number of prop- 
erties  statically, using only the  text of the  executable module 
being compiled and  the  type definitions it uses: 

0 The  type of each  variable  name  can  be  determined  statical- 
ly, e.g.,  AMSG.DATA is known to have type  EBC- 
DICSTRING, since AMSG  has  type  MTYPE,  and 
MTYPE’s definition specifies that field D A l A  has  type 
EBCDICSTRING. 

0 Each operation can be checked to see that its operands  are 
of appropriate  type, e.g., send AMSG  to  APORT requires 
that  AMSG  be a  message  type, that  APORT be an  output 
port of send interface type, and  that  AMSG’s  type  be 
consistent with APORT’S  interface. 

0 Versions are checked  for compatibility: e.g., if process A 
declares a variable of type  EBCDICSTRING, whose type 
was defined in  module  D, then  the version of D  in effect 
while compiling  module A must be the  same  as  the version 
of D  in effect while compiling C, which also uses EBC- 
DICSTRING. 

Typestate 
In the  earlier example,  communication by message passing 
involved creating a  single data object which was  sometimes 
visible to process A under  the  name  AMSG  and sometimes to 
process B under  the  name  BMSG.  The “destructive” seman- 
tics of send specifies that fields in AMSG  can no  longer be 
read or written  after a send. Similarly, fields in BMSG 
cannot be read or written before  a receive. 

From process A’s viewpoint, variable  AMSG  has  three 
“states”: (1) UNINITIALIZED:  the  state prior to allocate 
and  subsequent  to send, when data  may not be written or 
read, (2) EMPTY:  the  state  after allocate but before  initial- 
izing any of the  data, when data  may be written  but not read, 
and (3) FULL:  the  state  after  the message is fully  initial- 
ized. 

In NIL,  an extension to  type checking  called typestate 
checkingensures  that  the compiler can  determine  the  state of 

each  variable a t  each point in the  program  and reject 
attempts  to issue an  operation  from  the wrong state. 

For each type, the  language defines a  set  of typestates. 
(For example, type  MTYPE  has  three  typestates:  UNINI- 
TIALIZED,  EMPTY,  and  FULL.)  The  language  further 
defines which operations are  permitted in which typestates 
and which operations  cause  typestate  transitions.  Typestate 
checking  rules [ 181 permit compilers to  statically  determine 
the  typestate of each  variable a t  each point in the  program 
and  to verify that  operations  are issued only from  correct 
typestates.  Each synchronous interface definition must spec- 
ify for each  parameter not only its  type but  also  its  required 
typestate on entry  to  the service, on return  from  the service, 
and on each possible exception return  from  the service. 
(Certain  frequent combinations,  e.g., input,  output,  inout, 
can be specified with  a  single  keyword.) As a result,  interface 
specifications  explicitly  mention whether  the  caller owns the 
data before and  after  each  call  and  whether  the called 
process may  update or destroy the  data. 

Typestate checking has  the following benefits: 

It preserves the  security of the system by rejecting  “erro- 
neous” programs which may produce unpredictable side 
effects in some implementations (e.g., by referencing 
de-allocated storage).  This  mechanism is powerful enough 
to  replace  run-time  integrity checking of the  sort  taking 
place in many systems. 

0 It lowers maintenance costs by rejecting  erroneous  pro- 
grams before they  cause  errors in the field. The  typestate 
algorithms check all possible paths  through a program, not 
just those taken  during  the  product  testing period. 
It  permits  the clean termination of processes, since at  any 
point in a program where  a fatal  error  might be detected, it 
is known statically which variables correspond to owned 
data objects which must  be finalized. 
It forces  procedures which change  the ownership of data or 
which receive uninitialized parameters  and initializes 
them  to  declare  that  fact on the  interface. (Conversely,  it 
forces any  procedure using such  an  interface  to fulfill the 
obligation  expressed on its  interface.) 

4. Experience with NIL 
A full NIL compiler and  run-time system  have been written 
for the  IBM  VM/370 system (approximately 80 000 lines of 
code).  Two SNA prototype systems  have been written by a 
team of  five Research  Staff  Members  during a period of 
eight months. The prototypes consist of approximately 
20 000 lines of executable code and 6000 of interface  and 
type definitions. The experience to  date  has been extremely 
positive, both in terms of programmer productivity and  the 
quality of the  resultant implementations. 57 
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Designing  openness and  dynamic reconfigurability into 
the system  from the beginning  virtually  forced  a suitable 
process decomposition,  because  all components with separate 
lifetimes  were  required to be implemented  as  separate pro- 
cesses. As a  result, their  data were forced to be disjoint, and 
explicit interfaces were required  to be designed  between the 
layers.  Once  the  interface definitions  were written  they 
became  a fixed point of reference, and  it was possible to 
assign the  programming of adjacent layers to different 
individuals. 

Typestate considerations, both internally within  a  module 
and a t  the module boundaries, forced the  careful  planning of 
data initialization and use. In no case  did we find that  the 
constraints imposed by typestate  made it  impossible or even 
awkward  to  write  an  algorithm.  We believe that  requiring 
typestate  correctness results in improvements in readability 
analogous to those brought  about by the use of structured 
programming. 

Many  errors in design and coding  were detected at  compile 
time or at bind time before any execution took place. These 
errors  include  failure  to fully  initialize data  aggregates, 
failure of a  called procedure  to  create or discard  data  as 
required by its interface, initializing data on one  path  to a 
program  statement  and not on another,  unmatched  inter- 
faces between communicating modules, and inconsistent 
versions of an  interface  shared by an  executable module and 
a type definition which it used. Had these  conditions  gone 
undetected,  they would have resulted in over-written storage, 
program  checks,  and  other  symptoms whose detection and 
correction would typically require use of a core  dump  and 
expertise in the underlying implementation. 

Debugging  proceeded in two  steps: (1) individual  modules 
were  exercised  with dummy  test layers, then, when judged  to 
be free of errors, (2) integrated with the  real  adjacent layers. 
Once a module was debugged with the  test  layers it rarely 
failed during  integration. All debugging was at  the “source” 
level, with the  majority of errors being either (1) dynamic 
binding errors, (2) value errors,  or (3)  deadlocks.  Debugging 
time was  typically very small compared  to  the  length of time 
needed to  write  and successfully  compile the module. While 
testing  the  system, we discovered a rather unexpected  result: 
Once  the  programs were through  the  initial  testing period, 
the  error density and  error  rates  dropped  to  almost zero. 

function  performed in a comparable  IBM product. An 
execution-time  tracing  facility was used to  determine  where 
the problems were, and we discovered that  approximately 
fifty percent of the execution time was spent in a  small  subset 
of the  run-time system. A second implementation is now 
nearly  complete. The  path length of NIL statements  has 
improved to  the point where we believe our implementation 
to  be  nearly competitive  with  production quality implemen- 
tations. 

5. Concluding remarks 
The NIL language  and its  methodology provide a means of 
writing  well-structured functional descriptions at a level of 
abstraction  that  permits  true  portability.  This eliminates the 
intertwining of performance decisions, design, and algo- 
rithms so typical of systems that exist  today. The result is a 
system that is easy to  maintain  and  one  that does not suffer 
from  a gradual decay in code quality  during  the system 
life-cycle. 

Because NIL is an  executable design language which is 
tunable  to produce  production-quality  code, it becomes possi- 
ble to  extend  the clean, modular decomposition conceived by 
the high-level designers directly  through  the  functional 
design  coding and  maintenance phases. 

Furthermore, 

0 Identical versions of the system can  be  made  to  execute on 
a  wide  variety of machines, reducing  the duplication of 
coding  effort and  acceptance testing. 
We  speculate  that  more uniform external specifications of 
products running on different machines will reduce cus- 
tomer migration  problems and improve the  marketability 
of upgraded  hardware. 
Extensions to  the system can be developed and sized with 
respect to a  single  common  design. By contrast, within 
IBM  at present,  extensions to  SNA routing  function 
involve sizings by four  separate product organizations,  and 
extensions to session protocols may involve dozens. 
By rejecting at  compile time  programs which attempt  to 
use unowned data or which are inconsistent with their 
interface, we eliminate  major classes of errors before the 
program goes into execution,  including errors which may 
only occur  in infrequently executed program  paths. Errors 
detected  earlier  are less costly to  correct. 

Any exceptional  conditions  (e.g.,  inability to complete a 
dynamic  binding)  automatically  interrupted  normal control 6- Acknowledgments 
flow and invoked exception  handlers.  Because the system Other  members of the  group  contributing  to  the design of the 
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these  problems to  be pinpointed during  debugging. Comer,  Francis  Parr,  John  Pershing,  and  Shaula Yemini. 
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