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Experience with Access  Functions in an 
Experimental Compiler 

This  paper describes  an access function  subsystem embedded in  portions of an experimental microcode  compiler  which was 
built and used during 1973-6 using the IBM PLIIoptimizing compiler  under VM/370 and CMS. The use of the access function 
subsystem  in  this  context was itself an experiment,  performed  by a  group for  all of whom PLII  was  a new language and 
VMI370 a new operating system.  The  implementation of the  subsystem was done strictly  within  the confines of the PL/I 
language. The basic  objectives were ease of use, provision of a focal  point  for global  storage management, extensive run-time 
validity checking with appropriate  diagnostics,  and data  protection. Beyond satisfying  these objectives, the  subsystem proved 
more valuable than anticipated due  to  positive contributions made  to debugging code in  the VM1370 interactive  development 
environment. 

Introduction 
An access function is a  stylized procedure  that provides 
random-access data  to  an  application  program which 
requires  them  for purposes other  than  storage  management. 
Transparently  to  the calling application  program, access 
function programs  manage  the  storage of data  and  determine 
validity and  authorization of data requests. In  general, two 
procedures are  applicable  to a particular  datum:  one which 
stores  it  and  one which retrieves  it. 

This  paper describes  experiences in the design and use of 
access functions in a PL/I  programming environment by a 
group implementing an  experimental compiler whose aim 
was to produce  highly  optimized  code  for  a  variety of 
vertically  microprogrammed  machines.  The  prototype 
microcode  compiler contained  many interconnected data 
structures  naturally  representable in tabular  form.  Particu- 
lar  table  columns  might  contain  arithmetic or string values, 
references to rows in the  same  or  another  table,  and lists or 
sets of these  elements. 

We consider here a data base  consisting of a number of 
two-dimensional  tables having  logical interconnections 
within tables  as well as  among  them.  Each  table  has 
associated  with it a fixed number of statically  named 
columns with predefined data  attributes,  and a dynamically 

varying number of rows, each with  a  uniquely generated 
name,  an  instance of which is an entry in its  particular  table. 
A particular access functional  reference consists of the 
function name (explicitly  identifying which column)  and  the 
table  entry  parameter (explicitly  identifying the row for 
which the value in the  named column is desired, and  thus 
implicitly  identifying the  table  as well). 

In  terms of the  programming  language in which the 
application is written,  the access  functions are  external 
procedures. Each  table  entry (row identifier) is represented 
by some  data  type in the  language  (POINTER in the present 
case),  and  the  table  columns  and  functional values will be 
drawn  from  the basic data types  in the  language  (FIXED 
BINARY (31) ,  CHARACTER (32), . . .), including the  one 
used to represent table  entries. 

By contrast,  an “access method” is a collection of pro- 
grams which manage  the  transfer of strings of bits from  one 
storage  medium  to  another, often dealing with  a  physical 
organization on one  side of the  interface  and a logical 
organization on the  other.  With  an access  method it is  still up 
to  the application program  to  interpret fields within the 
logical record. In most practical  situations  storage  hierar- 
chies cannot be ignored, and they must  deal with strings of 
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bits representing  programs  as well as  data.  The subsystem 
described here was operated in a virtual  store  and  dealt only 
with relatively  simple data  forms. 

If a large proportion of data is representable conveniently 
in a tabular  form such as  that described  above,  it is possible 
to  make all  accesses solely through a regular procedural 
interface.  The code can  then be separated  into two pieces: 
that  part above the  interface, which performs  the intended 
services for the  application,  and  that  part  beneath, which 
manages  the  storage of data  and  implements  the services 
provided at  the  interface.  This  latter ensemble of code we 
refer to  as  the access function  subsystem. 

In developing the prototype  microcode  compiler we used 
the access  function  subsystem interface  to  separate  organiza- 
tional  questions of storage  management  and  data  structure 
representation from  the compiler algorithms of interest. 
Functional code  above  this interface could create, destroy, 
order,  and access all global data  through some two dozen 
generic procedures and several hundred item-specific  opera- 
tions. The  structure of the code which implemented  the 
access functions  beneath  the  interface was extremely  regular 
so that its generation could  easily be mechanized. Binding of 
compiler algorithms  to  data  structures was thereby done at  
program load time, avoiding  both (1) recompilation of 
functional code as  tables  expanded,  and (2) heavy execution- 
time penalties which would have arisen  from a dynamic 
associative storage  organization.  Thus  the  structured code in 
the  functional half of the ensemble was complemented by a 
structured  data  management  supported by the access  func- 
tions. All  code on both sides of the  interface was written in 
PL/I. 

When we set  out  to  do  this  experiment in early 1973, PL/I 
was the  implementation  language of choice due  to its  broad 
functional flexibility. We  had no desire  to  do  language 
development and were curious  to see how far we could get 
PL/I to  carry us, given that  the  language was not designed 
with this  sort of use  explicitly in mind.  Much  programming 
language research  activity in the 1970s centered  around 
design issues for the  support of “data  abstraction,”  “struc- 
ture hiding,” “data  type  encapsulation,”  and  “packages with 
controlled export” in languages such as CLU [ 11, Euclid [ 2 ] ,  
and  Modula [3], and  culminating in the  Ada  language [4], 
for which one of the  procurement  requirements was precisely 
this capability [5-91. 

Basic objectives of access functions 

Structured  data management 
If the logical data  organization defined by such  an  interface 
is appropriate  to  the  application,  this division can  make a 
substantial  contribution  to reducing the design  complexity of 

the system as a whole. In parallel  with  a  well-structured 
program design  above the  interface, a  well-structured data 
management subsystem can be used beneath  to implement it, 
and  the execution  overhead  induced by the presence of the 
interface itself will exact a reasonable efficiency penalty in 
return for  a faster,  cleaner development and more  easily 
maintained code. The division allows the  data  structures 
viewed from  above to  be  drawn  as  tables in which entries  can 
be created, destroyed, and moved around with ease. The 
implementation decisions, many of which are irrelevant to 
the  application,  can  then be isolated and  concentrated in the 
access  function  subsystem. 

In particular,  storage  management for the  tables  can  be 
completely  subsumed in the subsystem.  Allocation strategy 
can  range from fixed partitions established when the  func- 
tions are compiled to a  completely dynamic allocation trans- 
parent above the  interface  and limited only by the  total size 
of storage available a t  execution  time.  Spilling of excess data 
to lower levels of a storage  hierarchy is also possible, 
although we did  not require  this  and  therefore did not 
attempt  it. 

Ease  of use 
For this strategy  to be effective, the  functions themselves 
must be easy to use. The source language  from which they 
are deployed must allow such data access via a natural, 
functional  notation. Name qualification requirements  must 
be flexible enough to  permit minimal  qualifications consis- 
tent with reliability. The  entry cost to  the  programmer must 
be low. There will be a mass of detail in the  interface, but he 
need know only a  small fraction of it at  any  one  time.  That 
fraction which is required at  the outset must be necessary  for 
his needs, and  it should  also be sufficient. Since  the  table 
structures  are being  conceptually manipulated analogously 
to  the way in which pictures  drawn  during design are 
manually  manipulated, these operations should be naturally 
reflected in the basic functional  structure of the  interface. 
Finally,  since  questions of storage  management  are handled 
in the  subsystem,  the  programmer above the  interface need 
not deal in imponderable  parameters of storage  strategies 
which require raw  information not otherwise  available or 
useful to his application. 

Error  prevention and checking 
Another motivation  for an access  function interface is that 
erroneous patterns of data  usage above  it can be checked and 
prevented by the code beneath much  more easily. Function 
requests can be validated against properties of the  entry  (is 
the function appropriate  to  the  particular  table?) or against 
other fields present in the  entry (does  it ask for the fifth 
element in a three-element  list?). A uniform error-handling 
protocol within the access  function  subsystem can provide 
maximum information and control flexibility because the 41 
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overhead is widely distributed over the  function of the  entire 
subsystem. 

Data protection can  be extended even further by a passive 
authorization  check of whether a particular process is 
allowed to access or update  particular fields or entries.  More 
importantly, unused tables  and  functions  are completely 
transparent  to  the  application  program, so the wrong field in 
a structure  cannot  be accessed by mistake unless  explicitly 
named.  Further, if tables grow by adding columns,  recompi- 
lation will not be necessary  for  those programs which do  not 
require  the  information  they  contain. Version synchroniza- 
tion is thus less of a  problem. 

Motivations and environment 
The access function subsystem  described in the next  section 
played a role in four phases of an  experimental compiler. Its 
object  was the  generation,  from a subset of PL/1 (representa- 
tive of systems programming), of microcode  for the  IBM 
3145  Processor, on which the  System/370 Model  145 is 
implemented. Source  language  translation,  dictionary con- 
struction,  semantic  interpretation, consistency checks,  and 
diagnostic message generation were  performed by the PL/I 
Checkout Compiler. The  text produced (normally destined 
for interpretation) was transformed  into our starting  text 
level by conventional  code generation  techniques,  assuming 
an infinite number of registers. The  areas of principal 
interest in our experimental model were then ( 1 )  preliminary 
optimizations of incoming text, (2) transformation of this 
abstract  text  into equivalent sequences which reflect the  data 
flow paths  available on the  target  machine,  (3) allocation 
and assignment of machine registers to  the  resulting  text, 
and  (4)  generation of microcode, taking  into  account  the 
register assignments,  maintaining  machine  state consistency 
with  respect to register addressability,  and  the like. 

We wished to develop each of these  phases independently 
of the  others  to  the  greatest  extent possible and so we defined 
external  representations of the  text levels connecting them. 
Each  phase  became a  single program which read  its  input in 
the  external  form,  did its work, and  output  the resulting text 
for the next  phase. This method of operation allowed  easy 
generation of test  data for each  phase  and provided a means 
of simulating incompletely implemented  functions by hand, 
through  the  use of a text  editor on the  intermediate  external 
forms. 

The  same access  function  subsystem  was made equally 
available  to  all phases, and those tables common to more 
than  one  phase were  accessed  in the  same way in each phase. 
While  this helped document  the  communications between 
phases,  extensive programming was  required to produce the 
input  and  output routines  for each  phase which transform  the 
external  texts  into  the  internal  tables  and vice versa. 42 
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This division of compiler  function into completely separate 
programs was a conscious trade-off of ultimate program effi- 
ciency for design and implementation independence at  the 
highest level  of compiler structure.  Since the prime objective 
was to establish feasibility of proposed techniques for generat- 
ing microcode rather than to achieve fast compile time, broad 
experiments were attempted with the implementation, of which 
the access function subsystem was the most pervasive. 

We provided for  a large  amount of global data.  In  addition 
to  the  tables containing text  and  its  dictionary of operands 
and labels in each phase, other  tables would describe the 
properties of text  operators in object machine  terms to enable 
one  to select potential code generation  patterns.  The  entire 
register space of the object machine was  represented in one of 
the tables.  Finally, the register  allocation and assignment 
process required  a great  deal of control and  data flow 
information,  and this  was provided using the  same  tabular 
formulation. 

We felt that our outlook on the logical  relationships among 
target  machine  characteristics,  software convention require- 
ments,  and  actual  program  text would coordinate well with 
our proposed algorithms for  microcode generation.  Nonethe- 
less, we desired  a straightforward  representation of this  large 
amount of data, not all the  details of which were known ab 
inirio, to  facilitate  coherent expression of our algorithms, 
assisting  both the  initial design and  subsequent  experimental 
modifications we knew we would want  to  make. Because we 
were concentrating on the  object code generation  aspects of 
compilation rather  than  the  better-understood  translation 
and  optimization components, we wished to focus  on the 
algorithms which provided the function rather  than represen- 
tation which provided efficiency. 

Performance was critical insofar as our own programming 
and  testing  time was concerned,  but never so critical  as to 
necessitate major design  efforts whose sole purpose  was to 
enhance  performance at  the expense of complicating the way 
in which the function of the compiler was carried  out. 
Because the work was  being done in  a virtual  store,  it was 
decided early  that no conventional program  text spill mecha- 
nism would be installed. Rather,  text would be accessed 
directly  and  the  virtual  machine  size would be used to control 
the  amount of storage  available.  Thus, small programs could 
be compiled  in  small virtual machines while large  programs 
would require  larger  virtual machines. 

Expected benefits 
We  anticipated benefits in the design,  coding, and  testing of 
the compiler code. At  the design level the  structural complex- 
ity of the  algorithms would be  commensurate with the 
functions performed by and  the  requirements of individual 
programs. 
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At  the  time of coding, we expected to enlist the  PL/I 
compiler’s help in providing syntactic  safeguards  against 
inadvertent  errors  and  to maximize the probability of getting 
a diagnostic message when a  misuse occurred. 

During  testing, we hoped to  reduce  debugging  time with 
early  and comprehensive  diagnostics when the  data were 
misused. The  transparency of unneeded table information 
would keep  recompilation  costs to a minimum  and would 
prevent many  errors  from  occurring in the first  place. 

Insofar as  representation of particular  table  items was 
concerned, we attempted  to  keep explicit  encodings as  much 
in the background as possible. This was  expected to  facilitate 
program debugging and  algorithm  experimentation by mak- 
ing output of forms intermediate  to a  phase easier  to produce, 
as well as giving the access  function diagnostic messages  a 
better  chance of being meaningful.  Here we were trading 
storage for  function to keep the  implementation process 
running smoothly. 

Practical  requirements 
Several practical  requirements  arose from  these  consider- 
ations. First, because we would be dealing with program  text 
which must be expanded,  contracted,  and moved around, one 
had to be able  to insert,  delete, and  rearrange  the  order of 
table  entries (rows  in the  tables) with language which was 
direct  and which could be implemented with complete reli- 
ability. 

Many of our algorithms were  couched in terms of opera- 
tions on sets:  for example,  requiring  the  enumeration of all 
variables used in a statement,  the  set of statements  from 
which a branch  to a  labeled statement  might  be  made, or the 
set of machine registers conformable with the  storage 
requirements of a particular  variable  at a particular  state- 
ment. An early consideration  was therefore  that we should 
provide a means of dealing with sets from an  arbitrary 
universe. 

As the rest of the compiler  was to  be  written in PL/I, we 
wished to implement the access  function  subsystem in strictly 
legal PL/I, because  it  was  recognized that a great  deal of 
code would have to function correctly  and with little  mainte- 
nance for long periods of time, during which there  might be 
changes in the compiler. We  thus  had consciously to avoid 
surreptitious use of “variant records,” as described below. 

Augmentation of the subsystem had  to be efficient. It  had 
to be possible to  add new entries  to existing tables quickly 
and  to  generate  entirely new table  formats  almost  as easily. 
We  did not want to have to recompile any but  those programs 
directly concerned when such routine  table modifications 
were made. 

Finally,  it was clear that access was rather more important 
than  update, so the chief emphasis was placed on information 
retrieval rather  than  storage. 

Implementation 

The basic  structure 
Although a  common repertoire of functions  was in principle 
made  available  to  each compiler  phase, any given phase used 
but a fraction of them,  and single programs  substantially 
fewer still. The only communication between compiler 
phases was through  the  external forms of tables, so a  fresh 
environment had  to  be established  for each phase. It was not 
desirable  to provide the full  set of functions  for every phase 
because the  space such  code and  data would occupy would be 
substantial. Balanced against  this desire for modularity was 
an ease-of-use requirement which precluded having to  do 
explicit  initializations of empty  tabular  structures.  These  are 
undesirable  because  they are  error-prone if unchecked, 
redundant if dynamically  checked, and difficult to  maintain, 
particularly  to remove previously required  but no longer 
needed function whose presence  costs space  and time. 

These considerations led rather  naturally  to having many 
linked list structures in dynamically managed  storage  (PL/I 
BASED  storage class). There was strong incentive to chain 
independently  allocated table  entries  into a  list in order  to 
facilitate  the insertion,  deletion, and  rearrangement func- 
tions required. Additionally,  it was found useful to control 
these  lists with a master list of existing tables, so that  storage 
for table control is allocated only when a table is created  and 
just those tables necessary are present. 

The minimal  initialization  problem was thereby solved, 
since at  the  start of execution the list of tables is empty. Of 
course,  this list must have  some anchor in a fixed place, and a 
STATIC  EXTERNAL  variable whose name began  with  a 
reserved prefix was used for this purpose. This  anchor was a 
POINTER, initialized to  NULL,  and was used only by those 
access  function  service  routines  (hidden  from the application 
code) which locate, create,  and destroy tables. 

Each  table was identified by a character  string  constant 
whose validity  was  checked at  execution time.  Those few 
functions  which  must  identify a table  (e.g.,  “IN- 
SERT-FIRST”) typically used a character  string  constant 
parameter in the access  function  call. At  program  initializa- 
tion all defined tables logically existed  (with no entries),  and 
inquiries about  empty  tables were legitimate,  although  the 
answers were  inferred internally by the lack of a  control 
block for that  table. A table  containing  one or more  entries 
had a  control block, created by an  attempt  to insert an  entry 
into  an  empty  table. If a table  name was not recognized, 
either because the access  function  subsystem  implementation 43 

“REDERIC N .  RIS IBM J .  RES. DEVELOP. VOL. 28 NO. I JANUARY 1984 I 



had lagged or the  name  had been misspelled,  a diagnostic 
was issued to  the effect, “I don’t know anything  about  this 
table.” Table  control blocks contained identification and 
status  information  such  as  the  name of the  table,  the  number 
of entries,  and pointers to  the first and  last entries. Pointers 
to  the  table  control blocks were not given out above the access 
function boundary;  all functions supported on tables were 
done using the  character-string  name of the  table. 

Each  entry within  a table was chained  to its immediate 
neighbors and  to  the control block for the  table, so that  the 
table  to which any  entry belonged could be quickly estab- 
lished. Each  table  entry  had  an  “internal  name,”  the value by 
which it  was  identified when an access  function parameter 
was required. The most desirable  state of affairs would have 
been to have  a data  type called “INTERNALLNAME’ 
whose use would be restricted solely to  assignment,  compari- 
son for equality,  and use as a parameter  to  the access 
functions. The  data  type  POINTER  has  almost  exactly these 
attributes when the access function  entries  are fully declared, 
and since when access functions  are fully supported  there is 
little need for  pointers  for other purposes, the  safety is almost 
complete, by convention rather  than by construction. 

We  made  it a firm rule  that  POINTERS used as access 
function internal  names could never be used as  locators above 
the access function  boundary,  and descriptions of the  internal 
list structures were never made  available. As an  informal 
coding standard, we agreed on the  character @ (a  letter in 
the  PL/I lexical alphabet)  to  be  the initial character of the 
identifiers for such pointers and not to use similar identifiers 
for other purposes. While  this  rule was  not  invariably fol- 
lowed, it turned  out  to be useful as a documentation conven- 
tion. 

We could have used the  DEFAULT  statement in PL/I  to 
type identifiers  beginning  with @ as  POINTER  and  thereby 
catch those we failed to  declare; these  otherwise defaulted  to 
FLOAT  data  type  and led to compiler  diagnostics.  However, 
we had  agreed  that  all  variables should be declared,  and  the 
language  default  almost inevitably guaranteed  that  the pres- 
ence of such undeclared variables would not go long unde- 
tected.  Similarly, we could  have used the preprocessor to 
change  the  string  “INTERNAL-NAME’  to  “POINTER,” 
but there seemed little point to  that,  since we were not using 
pointers  for any  other purpose  in our source  code. 

Because of the  requirement  that  the  implementation be in 
legal PL/I,  it was  not safe  to provide a  pointer directly  to  the 
specific structure for each  table.  This is because the  structure 
mapping rules of PL/I  are designed to  ensure  the  integrity of 
substructures passed as  parameters  and not to define a 
storage  mapping.  As a result,  slack bytes may be inserted in 
not easily predictable ways, and  the  language implies that 44 
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the compiler may  map  structures in any way which permits 
substructures  to be referenced as  parameters.  Thus, a struc- 
ture  containing  at its  head  a descriptor identifying the  format 
of the  remainder of the  structure is not entirely  safe, for the 
descriptor itself might  be assigned  different offsets depend- 
ing on the  details of the  remainder of the  structure.  What is 
indeed safe is to have  a descriptor of a  common format, 
which contains a  pointer to a specifically formatted block, 
whose layout  can be inferred  from  the  descriptor block so 
that a correct access can be made. 

The only pointers given out by the access  functions and 
used above the access  function interface were thus pointers to 
simple descriptor blocks, each of which contained  four 
pointers: forward  and  backward  chains  to  adjacent descrip- 
tor blocks within the  table, a  link to  the control block for the 
table,  and a  link to  the  structure  containing  the specific data 
for that  table  entry. Because the  interface  to  the access 
functions dealt with pointers to  one  type of structure only, 
checking  could be much  more thorough  and  the more error- 
prone  pointer chaining  operations were confined to  small, 
regular sections of code. 

In order  to  separate  the  maintenance activities of the 
access  functions  from the code which they  serviced, the 
linkage was effected through  external  procedure calls.  For  a 
typical function,  one would simply provide the  name  and give 
a  single internal  name  parameter. For example,  to  obtain  the 
@LABEL field of a particular  text item whose internal  name 
is held in the  variable  @TEXT, one would write 

@LABEL  (@TEXT) 

where the access  function entry is declared 

DECLARE  @LABEL  ENTRY  (POINTER) 
RETURNS  (POINTER); 

(What is returned is the  internal  name of an  entry in the 
“LABEL”  table or the  NULL pointer in case  the field  is 
empty.) 

Name translation 
Although variables of internal scope in PL/I  can  be  as long 
as 32 characters,  external variables are limited to seven 
characters.  This restriction is contrary  to  the  spirit desired 
for the access  function approach,  and so this problem was 
circumvented by using the  PL/I preprocessor to  translate  the 
names of access functions  from  ordinary-appearing  PL/I 
identifiers to  seven-character identifiers  consisting of a 
reserved prefix and  an identification number for the func- 
tion. The above  function call as seen by the compiler would 
thus be 

$S-0701 (@TEXT) 
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The  name  translation served two additional functions. 
First,  it provided a  convenient cataloging mechanism.  Of the 
four-digit  identification number,  the first two designated  the 
table  and  the  last two the function  within the  table.  Table- 
independent functions  had  the  form “OOxx” and in general 
the access functions for  a particular  table  started with 
“yyO1” and went  up. The  update functions  for the  corre- 
sponding fields started with “yy51.” The designations 
‘‘yy00” and “yy50” were useful in field maintenance when 
functions  related  to  the  same  table were  collected in the  same 
file. The  other useful  function of external  name  translation is 
that a misspelled external  name would not be translated,  and 
if  in excess of seven characters  (as most  were), would 
immediately give rise to a  compiler  diagnostic. 

This style of translation suffered some  disadvantages. 
Chief among  them was that compiler  diagnostics are phrased 
in terms of the tokens  presented to  the compiler after the 
name  translation has taken place, and so diagnostics involv- 
ing access functions  appear in a  foreign language. Second, 
the preprocessor declaration  and assignment which effects 
the  transformation  requires  one or two lines of listing, and 
thus several  pages of irrelevant output per compilation. (We 
eventually  post-processed the listings to remove this when the 
number of entry points and  thus  translations became in 
excess of seven pages of output per compilation.) Finally, the 
translation process is not  selective and  may  translate  internal 
variable  names indiscriminately in cases in which a name 
coincides with an access  function which is not used in a 
particular program-even when a particular  table is not in 
use. Selective translation could alleviate  these  last two prob- 
lems, but would require  more overhead at  the point a t  which 
we are  trying  to  reduce  it. 

General subsystem functions 
General  operations on all legal tables included  a  function 
telling how many entries were in the  table,  functions giving 
the  internal  names of the first and  last  entries,  and proce- 
dures  to  insert a new row at  either  the  front  or  the end of the 
table,  returning  the  internal  name of the new entry so 
created. In the  case of empty tables, the  @FIRST-ENTRY 
and  @LAST-ENTRY functions returned  NULL,  and  the 
INSERT-FIRST  and  INSERT-LAST procedures  caused 
creation of the  table  control block and its chaining  to  the list 
of active  tables as well as  the  creation of the  entry itself. 

General  operations  applicable  to  all  table  entries included 
functions giving the  internal  names of the next and previous 
entries,  the  character-string  name of the  table  to which the 
entry belongs, procedures to insert  a new entry  either before 
or after a specified entry  and  return  the  internal  name of the 
new entry so created, procedures to move a fixed number of 
entries  starting  at a particular point either before or after 
another specified point (with checking to  ensure  semantic 

correctness of the request-e.g., the  target point must not be 
within the block to be moved),  a procedure to delete a table 
entry,  and a  function to  determine  whether  an alleged 
internal  name in fact points to a legitimate  (and  undeleted) 
table  entry. 

The  entries in many of our tables could be usefully 
identified with a string of characters,  and so an  “EXTER- 
NAL-NAME” function was provided that was valid for 
most table types. This function proved particularly useful in 
the  error diagnostic  routines. In building some  tables  from 
their  external  representations, a  cross-reference  between 
external  names was often used to  indicate  the corresponding 
internal cross-reference between internal  names. A diction- 
ary mechanism was therefore provided which enabled  quick 
searches  to  be  made within  a specified table for  a specified 
external  name.  This  dictionary mechanism  was  also used to 
locate  the  table control blocks for those functions which 
needed to  deal with them. 

A common error  handling  and  instrumentation  mecha- 
nism was built into  the  core routines. Here  the power of PL/I 
came most into play. Error messages  were  easy to  formulate, 
format,  and  write both to  output  data  sets  and  the  virtual 
machine console. A trace  back facility provided by the 
built-in procedure  “PLIDUMP’ was also used at  the point of 
each  error  to give a dynamic  trace of how the  particular 
statement in which it  occurred was reached. 

Sets 
At  an  early  stage of the design  it was recognized that a 
provision for sets would greatly  facilitate  experimentation 
with proposed algorithms for register  allocation. Elements 
were to be drawn broadly from  table  entries,  but  the  nature 
of the  domains  might  shift  as  the compiler  development 
progressed. In  any case, the size of the universe would in 
some instances be known only dynamically.  We  thus chose  a 
linked list structure for set  representation  rather  than a  bit 
string.  The flexibility this provided well repaid  any ineffi- 
ciencies which might have arisen.  The  sets  implemented  are 
actually  sets of pointers, but in practice  one  thinks of them  as 
sets of the objects  pointed to. A  set is then  an  unordered 
collection of objects, no two of which have the  same pointer 
values. Set  elements could thus be any  internal  name (or 
indeed any  pointer,  whether of access function origin or not), 
and  an effort  was made  to  obtain some  speed in searching  for 
a particular  element in a  set by keeping sublists and hashing 
the value  sought to  determine in which sublist  it  should 
appear. 

However, the value sought was the  address of a block of 
BASED  storage allocated by the  run-time environment of 
PL/I, and  the hashed  value had no logical  connection 
whatever with anything else. It was indeed not even repeat- 45 
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able  from  one execution to  the next in  the  same CMS virtual 
machine  due  to  shifting  boundaries of free  storage as disk file 
directory entries  came  and went. This non-repeatability 
caused considerable consternation in debugging those proce- 
dures which operated on set elements in arbitrary  order (i.e., 
the  order provided by a particular access function on such 
sets). In the  end, two versions of access  functions on sets  had 
to be provided: a fast, hashed implementation,  and a slower 
but  more  regularly behaving  version. 

All the  sets in use at  a particular point were contained in a 
table much  like any  other;  the  general  table-handling proce- 
dures were applicable  to these table  entries.  The  structure of 
each  entry,  rather  than being tabular as in the  other  tables, 
was modified and  examined by special  primitives which gave 
the  cardinality of the  set,  added an element  to a set (if not 
already in it), told whether a particular  element was in the 
set or not, and  enumerated  the set elements in an arbitrary 
but  self-consistent way. Simple-minded intersection,  union, 
and  set difference operations were  built from these  primitives 
with a view to coding the functions directly if their perfor- 
mance became critical, which it never did. 

Once  the set  access  functions  were available  they were 
found  highly  useful in many  situations  other  than  the ones for 
which they  were  originally envisioned. The ability to repre- 
sent an essentially arbitrary universe  played  a large  part in 
this utility. Instrumentation within the access  functions 
eventually revealed that while the size of the  total  available 
universe of internal  names could be in the  thousands,  the 
average  cardinality of sets  actually used was somewhat less 
than two. It appears  that in case of doubt  sets were  selected 
when table  structures were specified in lieu of elementary 
data  items, in anticipation of future  algorithmic  generaliza- 
tions which never materialized.  Hashing  thus  turned  out  to 
be neither necessary  nor  helpful. 

0 Operational  procedures 
We  had an almost consistent pattern of naming conventions 
for access  function entry points. “Almost” was  simply due  to 
an early  failure  to  appreciate  the value of establishing 
systematic  procedures in  completely defining external  inter- 
faces, and by the  time  the  desirability of this became 
apparent it  was  not  worth  applying  retroactively. We  thus 
had  several variants of a function meaning  “number of 
operands” in different  spellings and abbreviations.  For 
obvious and  short-named functions  such as “@OPERA- 
TOR”  and  ‘‘@LABEL”  this problem never arose.  For 
functions with identical  semantics  and  attributes in more 
than  one  table  arising in the  later  stages of development, the 
problem was avoided by having general  agreement on names 
when tables or table  columns were  first defined and  then 
monitoring  for duplications  and near-duplications there- 
after. 46 
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In PL/I  it is usually  necessary to provide rather complete 
descriptions of external  entry points in programs which call 
functions. This was particularly so in the  case of the access 
functions, which invariably required  pointer parameters. 
Two patterns of usage emerged. In one, only those  functions 
used in a particular  program were placed in entry  declara- 
tions. In the  other, all the  entry points for accessing a 
particular  table were placed in a  source library,  and all would 
then be included in any  program using any  element  from  the 
subject  table.  While  the  latter method made coding,  docu- 
mentation,  and  maintenance easier, the  PL/I compiler would 
not discard  the unused entry points and this made  the 
resulting text files larger  and  the  linkage process longer. In 
extreme cases,  single  procedures which referenced a few 
entries in several tables could contain  more  than 255 external 
names  and  run afoul of a CMS loader  restriction. Such 
problems  were  handled on a  case-by-case basis. 

Another difficulty with entry  declarations included from 
source libraries involved function names  shared  among two 
or more tables.  The compiler would not permit multiple, 
consistent declarations, so commonly occurring names had  to 
be placed in yet another source library  member.  While  the 
problems  were not difficult to solve, it is not  clear that  the 
time required to get around  them could  not  have been more 
profitably spent in providing more flexible coding tools. 

The compiled  access  function  code was placed in an object 
text  library,  and  routine  manual tools sufficed to  maintain 
this  library. However, a problem arose with the  nature of the 
individual  object files produced by each  external  PL/I 
compilation. An  external  procedure gives rise to  at least three 
entries in the  external symbol dictionary-a control  section 
containing the code, a static  data control  section, and  the 
entry point to  the  procedure itself. Procedures having alter- 
nate  entry points, of course,  have additional  entries in the 
external symbol dictionary. In addition, a standard control 
section  called PLISTART is included with each  external 
compilation. It must be entered prior to  PL/I compiled  code 
being  executed in order  to set up (via library routines) the 
run-time environment of PL/I.  This control  section has two 
secondary entry points,  making a total of six control  section 
and  entry points  for a single external procedure. The CMS 
text  library mechanism had a limit of 1000 symbols in the 
directory,  and  this would have  limited us to a maximum of 
166 external procedures. It was thus necessary to post- 
process the object  decks  for the access  function  procedures to 
remove the  extraneous  PLISTART control  section. This 
process was made routinely  mechanical and served a useful 
purpose for the compiler  code as well. 

Maintenance 
The  addition of a new column to  an existing table  (and  thus 
an additional field in each  entry) was quite  straightforward. 
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A  source library  element  containing  the  structure  declara- 
tion for the prototypical element of the  table was augmented, 
the  appropriate access and  update functions  were created 
from  extremely stereotyped forms, and  the  entire set of 
access  functions  for that  table was recompiled against  the 
new data  structure for that  table.  Certain key routines  such 
as those which allocate  and  free  storage  had  also  to be 
recompiled to reflect the new data  requirements for table 
entries. After  this was  done, the object library was  com- 
pletely recreated, so that  internal consistency was always 
maintained.  Programs not requiring  the new fields ran 
perfectly well with old libraries,  but when reloaded against 
the new library required  more space for data  at execution, 
although  the behavior  was  otherwise  exactly the  same.  There 
was no way in which an inconsistent  set of functions could be 
linked together, since no partial link editing was  done. 

The  addition of a new table was only slightly  more 
complicated.  The chief  difference was that  the  structure for 
the  data  element  had  to be created  and placed in the source 
library used by the access  function  code and  the  name of the 
table  had  to be made known to  the  routine which deals with 
the  character  string  representation of table names. These 
global operations having been done, the  columns could then 
be added in the  same way as described  above. 

One  thing we had not anticipated was that  functions would 
become  obsolete. Fortunately,  the  maintenance  mechanism 
coped with that problem quite nicely. The first thing  to be 
done with the  function  that was to be eliminated was to 
change  the  name  translation process so that instead of being 
translated  to  the  string “$S-xxyy,” it would be translated  to 
the  string  “DEFUNCT-ACCESS-FUNCTION,”  ensur- 
ing a  compiler diagnostic when a program  formerly using 
that function correctly was recompiled. To  protect  against 
previously compiled programs  trying  to  execute  that  func- 
tion, the serialized  names  were never reassigned. Rather, 
entries  into a general diagnostic  were made for each of these 
functions to deliver  a rather  rude message to  the  perpetrator. 
In view of the  total  intertwining of access functions with the 
functional code of the  experimental compiler,  it was some- 
what  surprising  that these  messages never had occasion to be 
produced. 

Miscellaneous 
One of the biggest problems turned  out  to be how to  deal with 
table  entries which had been deleted, since  pointers to  them 
might  still be outstanding.  Freeing  and re-allocating the 
storage would lead to  all  sorts of anomalies, since  a  pointer to 
an  entry in some  table could under  unfortunate  circum- 
stances  end  up being  a valid pointer to  an  entry in some  other 
table,  and diagnosing the  faulty logic leading to  this  circum- 
stance could be particularly difficult. 

In the end,  a safe  approach on both  sides of the access 
function interface  emerged. On the compiler  side,  deletion of 
table  entries was required  generally in two circumstances. 
One was where the  ordering of table  entries was irrelevant, 
the set table being the best example of this. If a table  entry 
were  needed  for working storage  during some process and 
could then be freed,  this was no problem. The  other  case 
involved tables  such  as  the  intermediate  text, in which order 
was very important  and in which cross-references  existed, 
making logical deletion (as opposed to telling the access 
functions  to reclaim  a particular  entry) a tricky process. In 
this case, the only procedure reliable in the long run involved 
marking  text  to be deleted  during  the complicated optimiza- 
tion processes and  then passing over the  text  later  to remove 
the unneeded items, keeping intact  the logical relationships 
established  above the access  function interface. 

Beneath the access function  interface we finally settled on 
the  “tombstone”  approach [lo], and  although not  imple- 
mented  terribly  elegantly,  this  certainly  turned  out  to be the 
function  required. 

The access  function  subsystem had no way of knowing 
which pointers  were  still available above the  interface,  and in 
principle  every element in  every table was accessible anyway. 
Under-the-covers garbage collection was thus not possible, 
and  the  experimental compiler  code  was not always as 
scrupulous  as it might have been about helping the  storage 
management process. The  other difficulty was that  the  entire 
space was managed by the  PL/I-based  storage allocation 
mechanism,  and  the  storage seemed to be quite  fragmented 
in some  cases,  leading to  large working sets in our virtual 
machines. 

Operational  characteristics 

0 Performance 
Work began on the  fundamental subsystem  routines  several 
weeks in advance of coding the  initial compiler  components. 
The  tables most fundamental  to  the compiler  were thus 
implemented in time for the  initial  stages of program testing. 
The subsystem proved quite useful throughout a fairly 
lengthy development process which proceeded  approxi- 
mately top-down, and  during  this  time  performance issues 
did not arise. 

Once  the basic  compiler functions were in place,  experi- 
mentation began on alternative processing algorithms which 
required more  tabular information and more  accesses to  the 
data generally, and  ultimately overall performance  became 
of some  concern.  Using  various program  measurement tools 
available  to us, we found that  around  one  third of the 
execution time was spent in the access function code. In order 
to assess how much  this might be reduced, timing experi- 47 
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ments were undertaken on a  typical function exemplified by 
the  PL/I  statement 

@ Q  = @LABEL  (@P); 

This  statement was  executed  in  a tight loop with  various 
recipients of control on the called  side of the  interface in 
order  to  determine where the  time was spent.  The  times listed 
below represent  virtual  CPU  times  as  measured  from C M S  
on an unloaded IBM  System/370 Model  168. The  times  are 
optimistic  compared  to those to  be expected in practice,  as 
the  cache  and  translation lookaside buffer hit ratios will be 
unusually high in the tests. 

Setting  up  parameters on calling  side 3.0 
Linkage overhead in called procedure 1 1.3 

Function in called procedure 8.9 
Total  time 23.2 ws 

In the  case of such a  simple  function the  linkage overhead 
is a substantial portion of the execution time  required. A very 
few registers are  required,  but  the  contents of all  are saved 
and restored, and unnecessary storage allocation operations 
are performed. To see the  extent of these inefficiencies, this 
routine was very carefully coded in assembly language,  and 
the following results obtained: 

Setting  up  parameters on calling  side 3.0 
Linkage overhead in called procedure 0.8 

Function in called procedure 2.2 
Total  time  6.0 us 

At best, then,  one  third of the execution time could be 
quartered,  leading  to  an overall  improvement of 25%. It is 
not likely that  this figure  could be  attained in practice  due  to 
the difficulties in maintaining such large  amounts of 
assembly language code. 

The  performance of the access functions was also 
restricted by the  fact  that  the  functions were  always external 
procedures to  the compiler programs. As a  result, the code 
surrounding  the  calls  to  them was generated  quite conserva- 
tively by the  PL/I compiler and  potential  optimizations 
could not be realized. In particular,  the retrieval  function 
entries could be given the  attribute  REDUCIBLE, which 
means  that successive calls with the  same  arguments produce 
the  same results. (In  the  case of these procedures,  calls with 
improper  arguments  also produced side effects, but insofar as 
the calling procedure is  concerned these  are not  noticeable.) 
Because many of the  functions represented  cross-references 
among  tables, access functional composition occurred  rather 
frequently. If a  subexpression  within such a  composition 
were subsequently  required,  this could  not be achieved  with  a 
single call unless that were  done into  an explicitly declared 
temporary  variable  to  be reused, as  the compiler  ignored the 
REDUCIBLE  attribute, even in the simplest of cases. 48 
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Ultimately  the biggest difficulty arising  from  the use of 
this  implementation was the working  set  size in the  virtual 
machine. The access  functions  themselves  were  fairly large 
(typically  several hundred bytes each),  and  the  nature of the 
development process made infeasible the physical separation 
of the few instructions which performed the function in the 
normal case  and  the  larger  amount of diagnostic  code which 
was only called into play infrequently. So a fragmentation of 
functional  code  existed from  the  outset. 

However, we eventually  found that  the working set  size of 
the  entire program was substantially  larger  than  the  number 
of pages  occupied by all code, and  it was therefore  clear  that 
logically related  data  areas were quite  fragmented. On the 
one  hand,  this  cannot be regarded  as  surprising since one of 
our  strongest motivations for the access  function  subsystem 
was the  freedom  from  this  sort of consideration. On the  other 
hand,  this is a  source of some  concern  because the basic 
design did not anticipate  this difficulty and could not  easily 
address  it. 

Diagnostic help 
Substantial design and coding  effort had gone into  the 
diagnostic facilities  with the intention of providing a  uniform 
framework for error  reporting  and recovery so that  the 
incremental work involved in  column and  table  augmenta- 
tion would consist solely of adding function. This  large effort 
was to  be justified by spreading  its cost over a very large 
number of low-probability  events. This  strategy was quite 
successful. The  name  translation  mechanism discussed ear- 
lier  was an unexpected part of this function, albeit not an 
entirely  desirable  one when it  came  to examining  compiler 
listings. Table  type checking was done on all  functional 
references for two reasons. One was to  ensure  that  the 
function  requested  was valid for the  particular  table in which 
the  argument of the function appeared.  The  other was to 
discriminate between tables having  identically named fields, 
since the  actual  storage offsets might  vary. A violation 
produced  a  message of the  broad  form 

YOU  HAVE  REQUESTED  FUNCTION x OF ENTRY 
y I N   T H E  z TABLE;  THIS  FUNCTION  IS  NOT 
DEFINED. 

In the  case of retrieval  functions, arbitrary values  were 
returned; for example, NULL for  pointers,  zero  for  integers, 
a string of asterisks for character  strings,  and  the like. When 
an  improper  update was  requested  (which  happened consid- 
erably less frequently), no change in the  tables was made. 

Within  table  entries  it was possible to check internal 
consistency. For  example, in our text  tables we had a field 
indicating  the  number of operands in the  particular  text  unit. 
The  update  and retrieval  functions for the  operands  them- 
selves had two  arguments-the internal  name of the  entry 
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and  the  ordinal  number of the  operand.  Attempts  to  update 
or retrieve operands  numbered between one  and  the  current 
value of the  number field were  legal; all  others were  reported 
as  errors.  We  did not check consistency among  entries in the 
same  table, nor among  entries in different tables,  this being 
the  job of the compiler  code  proper. 

Reliability 
The subsystem turned  out  to be extremely  reliable. The head 
start  it enjoyed in the  implementation  schedule helped 
considerably in this. There was enough time  to  make a very 
careful design which placed the  critical  functions in a few 
key modules which could then  be produced  with great  care. 
All list linking operations fell into  this  category, for example, 
as  did  the  storage  management for the  entire collection of 
tables. These  core routines  were extensively checked by 
walkthrough-like  techniques at  both  a  pictorial level and 
with the code  itself, and these routines never misbehaved. 
Furthermore,  they were support routines  for the access 
functions and  many of them could only be called from a  small 
number of places. There were thus  many layers of protection 
for those functions which were critical  to  the smooth opera- 
tion of the subsystem. 

Since in the compiler  code  pointers  were  not  required  for 
any purpose  except the access  function interfaces, we 
obtained a large  amount of protection from  the  PL/I 
language. Pointers can only be used to point, as  parameters 
to  subroutines, in simple assignments of the  form  “A = B;”, 
in comparisons  for equality,  and with the  BUILTIN pointer- 
valued  function NULL.  We did not need to use them  to 
point, and  the  other legal uses of pointers covered exactly  the 
amount of function  required to  make  the access functions 
useful. A misuse  typically  arose  from the  failure  to  declare a 
variable  as a  pointer. Since we agreed  that most  pointers 
should begin with the symbol “a,” such  undeclared vari- 
ables would default  to floating-point and  some  rather 
anguished diagnostics would ensue from  the compiler,  since 
pointer to floating-point data-type  and vice versa are two of 
the few conversion combinations  not automatically coerced 
in PL/I. 

The prototypes  for the access functions were very carefully 
designed to  make  the production of new functions  and  tables 
as  fast  as possible. After  some  trial  and  error,  this led to a set 
of prototypes  which  were used for all  but  the very special  set 
functions. When complete, the older functions were  retrofit- 
ted to  the prototypes as requests came in to  add  columns  to 
the respective tables,  and eventually all  functions were 
implemented  from  the  same set of prototypes. This kept the 
number of logical interfaces  constant while the  number of 
actual  interfaces was expanding,  and reliability of the ensem- 
ble was further  enhanced. 

A few misleading error diagnostics  were  produced in the 
early  stages before that mechanism was also unified, and 
feedback from  early  usage soon helped correct these situa- 
tions. 

The source library by which the  names were translated 
and  the  text  library  containing  the access  function  code  were 
maintained on a slowly changing, project-owned  disk. When 
new functions  were requested,  the  name  translation  entries 
were added  immediately,  enabling compilation of the com- 
piler code  needing  these  functions. (The  name  translation is 
also used in compiling the access  functions  themselves, so this 
is a  necessary first step in any event.) The functions, when 
completely  compiled  along with any necessary additions  to 
the core  routines, were then placed in a new text  library 
created  afresh.  Then  the compiler programs requiring the 
new functions  could be loaded and executed. This  turned  out 
to be a very satisfactory working arrangement. 

Influence  on the  experimental compiler 
Because the  nature of the  experiment was to  demonstrate 
feasibility of ideas and  algorithms,  little emphasis was placed 
on the logical structure of the  data above the access  function 
interface.  Many concerns about representation disappeared 
with the introduction of sets, and more effort was spent 
ensuring that needed information would be available than  to 
ask whether  it was made  available in an efficiently accessed 
form. 

The  nature of the access  function  implementation  discour- 
aged experimentation with data  structures  and  organiza- 
tions, in some  cases  unnecessarily. It  certainly  made  any 
direct comparisons of alternative  data  structures difficult, 
and  this kind of experiment was never attempted. If suffi- 
cient thought  and experience led to  the conclusion that some 
information  should be differently structured, then  such re- 
structuring was quite feasible.  However, this  did not happen 
as often as it might,  perhaps because the perceived overhead 
of doing so was greater  than  the  actual work involved. 

As  a  result,  some of the compiler algorithms became 
rather clumsy and  certainly more convoluted than necessary, 
because  it was always  easier to  patch  up problems with a few 
more  lines of code than  to  request a data organization 
change. In retrospect,  it seems we should  have been more 
sensitive to  this problem,  because the inflexibility which 
resulted made  the  experimental compiler  much larger  and 
slower than we suspect  it had  to be. 

Summary of experience 
The  experimental compiler  was under development  for dif- 
ferent purposes over a period of four years. The portions 
using the access  function  subsystem  grew to  four phases and 
40 000 lines of PL/I code. The access  function  subsystem 49 
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comprised 421 entries embodied in about 22 000 lines of 
PL/I. During  the two years between the  time  the compiler 
first  functioned and  the  time  the  experiment  ended,  substan- 
tial  function was added  to  support more source  language  and 
to produce better object  code  for  several  different machine 
targets.  The utility of the access functions  extended  through- 
out this  period, and we found their  help  as useful at  the end as 
at  the beginning. Their existence certainly extended the life 
of the code, all of which was written by people with no 
previous experience  in  coding such a large system in PL/I. 

We  had considered authorization checking as passive 
protection against  the  unwanted  alteration of data.  This 
turned  out not to be necessary. The validity  checking  was 
quite sufficient for this purpose. 

Syntactic  errors  such  as  the misspelling of function names 
and  semantic  errors such as  requesting a  function not defined 
on a particular  table were  quickly caught in a  fashion which 
enabled speedy  diagnosis and correction. 

The objectives we had set to  justify  the  labor involved in 
this  approach were satisfied for the most part.  The  long-term 
drawbacks were the perceived enshrinement of data  struc- 
tures  and  the  storage  fragmentation which arose  from lack of 
foresight. 

The benefits we expected proved more valuable  than  had 
been anticipated.  This is because we had not taken sufficient 
account of the  quick  and  direct  feedback provided by this 
subsystem in an  interactive development environment.  Each 
of us was  working  in  a CMS virtual  machine  under  the 
VM/370  operating  system,  and a great  deal of this work  was 
done on video display terminals.  As a result,  errors could be 
corrected  almost  immediately  and  the compilation or pro- 
gram test run  again.  (This notion seems routine today, but 
was novel to us then.) 

The  VM/370 environment  also  obviated the need for an 
automated  maintenance system  for the functions.  A collec- 
tion of simple  procedures and code  prototypes  reduced the 
manual  operation  requirements  to  just those  necessary to 
define the new structures  and functions  being introduced. 
The  CMS  editor used on the video terminal  made  it possible 
to produce the  actual code by filling in a few blanks in the 
carefully composed prototypes. When  the  computer was 
lightly to  moderately loaded,  a new table could be introduced 
into  the system in about  ten  minutes.  This  job comprised 
making  the new PL/I  structure  declarations for table ele- 
ments, inserting  them  into a source  library used by the access 
functions, and  changing  and compiling the  storage  manage- 
ment routines to allow them  to  allocate  and  free instances of 
the new structure.  From  there,  adding  functions  to  the new or 
already existing tables could be  done in about one minute per 
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At  the  end of the  experiment we knew how to  generate  the 
access functions mechanically  from  simple  descriptors of a 
table  entry,  but it was never worth  a complete re-implemen- 
tation  to  do so. Other groups subsequently  made  this  sort of 
refinement to  the methodology for their own purposes 
[ l l ,  121. 

The  major problems over the life of the  experiment were 
all essentially  annoyances. The first concerns the  nature of 
the  PL/I  language.  While extension via functional  notation 
is quite simple  because the notion of function is quite  strong 
in the  language,  updating  the  entries is not as convenient, 
since the “pseudo-variables” of PL/I  are confined to those 
which are  BUILTIN.  Since we were  referencing rather  than 
updating most of the  time,  this was a  minor difficulty, but 
those  procedures which had  to build tables were  found 
cumbersome  to code. This  asymmetry between function and 
pseudo-variable was not  considered  serious  enough to war- 
rant a frontal  attack, e.g., through  the  macro pre-processor. 

The second  problem  was the working set size. While  the 
compiler programs  and access functions were  easy to  instru- 
ment for  execution time  performance,  determination of static 
storage  requirements was rather more difficult, and  dynamic 
determination of storage  usage  patterns was  extremely 
expensive in both human  and  computer time. Since CMS 
must  always run in a virtual  machine,  perhaps  more  sympa- 
thetic help could be expected of it. 

Finally, due  to a  combination of PL/I  and  CMS  restric- 
tions, we were unable  to  read  and  write directly the  internal 
structures  created by the access  function  subsystem. This 
cost us machine  time in our testing in  having to build up  the 
same  tables  from  their  external  representations over and 
over. While  this problem could also  have been circumvented, 
this wasted machine  time  turned  out  to  be less costly than  the 
human  time which would have been required to redesign the 
access  function internals. 
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