40

FREDERIC N. RIS

Frederic N. Ris

Experience with Access Functions in an
Experimental Compiler

This paper describes an access function subsystem embedded in portions of an experimental microcode compiler which was
built and used during 19736 using the IBM PL/I optimizing compiler under VM/370 and CMS. The use of the access function
subsystem in this context was itself an experiment, performed by a group for all of whom PL/I was a new language and
VM/370 a new operating system. The implementation of the subsystem was done strictly within the confines of the PL/I
language. The basic objectives were ease of use, provision of a focal point for global storage management, extensive run-time
validity checking with appropriate diagnostics, and data protection. Beyond satisfying these objectives, the subsystem proved
more valuable than anticipated due to positive contributions made to debugging code in the VM/370 interactive development

environment.

Introduction

An access function is a stylized procedure that provides
random-access data to an application program which
requires them for purposes other than storage management.
Transparently to the calling application program, access
function programs manage the storage of data and determine
validity and authorization of data requests. [n general, two
procedures are applicable to a particular datum: one which
stores it and one which retrieves it.

This paper describes experiences in the design and use of
access functions in a PL/I programming environment by a
group implementing an experimental compiler whose aim
was to produce highly optimized code for a variety of
vertically microprogrammed machines. The prototype
microcode compiler contained many interconnected data
structures naturally representable in tabular form. Particu-
lar table columns might contain arithmetic or string values,
references to rows in the same or another table, and lists or
sets of these elements.

We consider here a data base consisting of a number of
two-dimensional tables having logical interconnections
within tables as well as among them. Each table has
associated with it a fixed number of statically named
columns with predefined data attributes, and a dynamically

varying number of rows, each with a uniquely generated
name, an instance of which is an entry in its particular table.
A particular access functional reference consists of the
function name (explicitly identifying which column) and the
table entry parameter (explicitly identifying the row for
which the value in the named column is desired, and thus
implicitly identifying the table as well).

In terms of the programming language in which the
application is written, the access functions are external
procedures. Each table entry (row identifier) is represented
by some data type in the language (POINTER in the present
case), and the table columns and functional values will be
drawn from the basic data types in the language (FIXED
BINARY (31), CHARACTER (32), .. .), including the one
used to represent table entries.

By contrast, an “access method” is a collection of pro-
grams which manage the transfer of strings of bits from one
storage medium to another, often dealing with a physical
organization on one side of the interface and a logical
organization on the other. With an access method it is still up
to the application program to interpret fields within the
logical record. In most practical situations storage hierar-
chies cannot be ignored, and they must deal with strings of

© Copyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

IBM J. RES. DEVELOP. ¢ VOL. 28 ¢ NO. 1 ¢ JANUARY 1984

bits representing programs as well as data. The subsystem
described here was operated in a virtual store and dealt only
with relatively simple data forms.

If a large proportion of data is representable conveniently
in a tabular form such as that described above, it is possible
to make all accesses solely through a regular procedural
interface. The code can then be separated into two pieces:
that part above the interface, which performs the intended
services for the application, and that part beneath, which
manages the storage of data and implements the services
provided at the interface. This latter ensemble of code we
refer to as the access function subsystem.

In developing the prototype microcode compiler we used
the access function subsystem interface to separate organiza-
tional questions of storage management and data structure
representation from the compiler algorithms of interest.
Functional code above this interface could create, destroy,
order, and access all global data through some two dozen
generic procedures and several hundred item-specific opera-
tions. The structure of the code which implemented the
access functions beneath the interface was extremely regular
so that its generation could easily be mechanized. Binding of
compiler algorithms to data structures was thereby done at
program load time, avoiding both (1) recompilation of
functional code as tables expanded, and (2) heavy execution-
time penalties which would have arisen from a dynamic
associative storage organization. Thus the structured code in
the functional half of the ensemble was complemented by a
structured data management supported by the access func-
tions. All code on both sides of the interface was written in
PL/IL

When we set out to do this experiment in early 1973, PL/I
was the implementation language of choice due to its broad
functional flexibility. We had no desire to do language
development and were curious to see how far we could get
PL/I to carry us, given that the language was not designed
with this sort of use explicitly in mind. Much programming
language research activity in the 1970s centered around
design issues for the support of “data abstraction,” “struc-
ture hiding,” “data type encapsulation,” and “‘packages with
controlled export” in languages such as CLU [1], Euclid [2],
and Modula [3], and culminating in the Ada language [4],
for which one of the procurement requirements was precisely
this capability [5-9].

Basic objectives of access functions

& Structured data management

If the logical data organization defined by such an interface
is appropriate to the application, this division can make a
substantial contribution to reducing the design complexity of

IBM J. RES. DEVELOP. ¢ VOL. 28 o NO. 1 ¢ JANUARY 1984

the system as a whole. In parallel with a well-structured
program design above the interface, a well-structured data
management subsystem can be used beneath to implement it,
and the execution overhead induced by the presence of the
interface itself will exact a reasonable efficiency penalty in
return for a faster, cleaner development and more easily
maintained code. The division allows the data structures
viewed from above to be drawn as tables in which entries can
be created, destroyed, and moved around with ease. The
implementation decisions, many of which are irrelevant to
the application, can then be isolated and concentrated in the
access function subsystem.

In particular, storage management for the tables can be
completely subsumed in the subsystem. Allocation strategy
can range from fixed partitions established when the func-
tions are compiled to a completely dynamic allocation trans-
parent above the interface and limited only by the total size
of storage available at execution time. Spilling of excess data
to lower levels of a storage hierarchy is also possible,
although we did not require this and therefore did not
attempt it.

& Ease of use

For this strategy to be effective, the functions themselves
must be easy to use. The source language from which they
are deployed must allow such data access via a natural,
functional notation. Name qualification requirements must
be flexible enough to permit minimal qualifications consis-
tent with reliability. The entry cost to the programmer must
be low. There will be a mass of detail in the interface, but he
need know only a small fraction of it at any one time. That
fraction which is required at the outset must be necessary for
his needs, and it should also be sufficient. Since the table
structures are being conceptually manipulated analogously
to the way in which pictures drawn during design are
manually manipulated, these operations should be naturally
reflected in the basic functional structure of the interface.
Finally, since quéstions of storage management are handled
in the subsystem, the programmer above the interface need
not deal in imponderable parameters of storage strategies
which require raw information not otherwise available or
useful to his application.

& Error prevention and checking

Another motivation for an access function interface is that
erroneous patterns of data usage above it can be checked and
prevented by the code beneath much more easily. Function
requests can be validated against properties of the entry (is
the function appropriate to the particular table?) or against
other fields present in the entry (does it ask for the fifth
element in a three-element list?). A uniform error-handling
protocol within the access function subsystem can provide
maximum information and control flexibility because the

41

FREDERIC N. RIS

42

overhead is widely distributed over the function of the entire
subsystem.

Data protection can be extended even further by a passive
authorization check of whether a particular process is
allowed to access or update particular fields or entries. More
importantly, unused tables and functions are completely
transparent to the application program, so the wrong field in
a structure cannot be accessed by mistake unless explicitly
named. Further, if tables grow by adding columns, recompi-
lation will not be necessary for those programs which do not
require the information they contain. Version synchroniza-
tion is thus less of a problem.

Motivations and environment

The access function subsystem described in the next section
played a role in four phases of an experimental compiler. Its
object was the generation, from a subset of PL/I (representa-
tive of systems programming), of microcode for the IBM
3145 Processor, on which the System/370 Model 145 is
implemented. Source language translation, dictionary con-
struction, semantic interpretation, consistency checks, and
diagnostic message generation were performed by the PL/I
Checkout Compiler. The text produced (normally destined
for interpretation) was transformed into our starting text
level by conventional code generation techniques, assuming
an infinite number of registers. The areas of principal
interest in our experimental model were then (1) preliminary
optimizations of incoming text, (2) transformation of this
abstract text into equivalent sequences which reflect the data
flow paths available on the target machine, (3) allocation
and assignment of machine registers to the resulting text,
and (4) generation of microcode, taking into account the
register assignments, maintaining machine state consistency
with respect to register addressability, and the like.

We wished to develop each of these phases independently
of the others to the greatest extent possible and so we defined
external representations of the text levels connecting them.
Each phase became a single program which read its input in
the external form, did its work, and output the resulting text
for the next phase. This method of operation allowed easy
generation of test data for each phase and provided a means
of simulating incompletely implemented functions by hand,
through the use of a text editor on the intermediate external
forms.

The same access function subsystem was made equally
available to all phases, and those tables common to more
than one phase were accessed in the same way in each phase.
While this helped document the communications between
phases, extensive programming was required to produce the
input and output routines for each phase which transform the
external texts into the internal tables and vice versa.

FREDERIC N. RIS

This division of compiler function into completely separate
programs was a conscious trade-off of ultimate program effi-
ciency for design and implementation independence at the
highest level of compiler structure. Since the prime objective
was to establish feasibility of proposed techniques for generat-
ing microcode rather than to achieve fast compile time, broad
experiments were attempted with the implementation, of which
the access function subsystem was the most pervasive.

We provided for a large amount of global data. In addition
to the tables containing text and its dictionary of operands
and labels in each phase, other tables would describe the
properties of text operators in object machine terms to enable
one to select potential code generation patterns. The entire
register space of the object machine was represented in one of
the tables. Finally, the register allocation and assignment
process required a great deal of control and data flow
information, and this was provided using the same tabular
formulation.

We felt that our outlook on the logical relationships among
target machine characteristics, software convention require-
ments, and actual program text would coordinate well with
our proposed algorithms for microcode generation. Nonethe-
less, we desired a straightforward representation of this large
amount of data, not all the details of which were known ab
initio, to facilitate coherent expression of our algorithms,
assisting both the initial design and subsequent experimental
modifications we knew we would want to make. Because we
were concentrating on the object code generation aspects of
compilation rather than the better-understood translation
and optimization components, we wished to focus on the
algorithms which provided the function rather than represen-
tation which provided efficiency.

Performance was critical insofar as our own programming
and testing time was concerned, but never so critical as to
necessitate major design efforts whose sole purpose was to
enhance performance at the expense of complicating the way
in which the function of the compiler was carried out.
Because the work was being done in a virtual store, it was
decided early that no conventional program text spill mecha-
nism would be installed. Rather, text would be accessed
directly and the virtual machine size would be used to control
the amount of storage available. Thus, small programs could
be compiled in small virtual machines while large programs
would require larger virtual machines.

® Expected benefits

We anticipated benefits in the design, coding, and testing of
the compiler code. At the design level the structural complex-
ity of the algorithms would be commensurate with the
functions performed by and the requirements of individual
programs.

IBM J. RES. DEVELOP. VOL. 28 ¢ NO. | ¢ JANUARY 1984

At the time of coding, we expected to enlist the PL/I
compiler’s help in providing syntactic safeguards against
inadvertent errors and to maximize the probability of getting
a diagnostic message when a misuse occurred.

During testing, we hoped to reduce debugging time with
early and comprehensive diagnostics when the data were
misused. The transparency of unneeded table information
would keep recompilation costs to a minimum and would
prevent many errors from occurring in the first place.

Insofar as representation of particular table items was
concerned, we attempted to keep explicit encodings as much
in the background as possible. This was expected to facilitate
program debugging and algorithm experimentation by mak-
ing output of forms intermediate to a phase easier to produce,
as well as giving the access function diagnostic messages a
better chance of being meaningful. Here we were trading
storage for function to keep the implementation process
running smoothly.

® Practical requirements

Several practical requirements arose from these consider-
ations. First, because we would be dealing with program text
which must be expanded, contracted, and moved around, one
had to be able to insert, delete, and rearrange the order of
table entries (rows in the tables) with language which was
direct and which could be implemented with complete reli-
ability.

Many of our algorithms were couched in terms of opera-
tions on sets: for example, requiring the enumeration of all
variables used in a statement, the set of statements from
which a branch to a labeled statement might be made, or the
set of machine registers conformable with the storage
requirements of a particular variable at a particular state-
ment. An early consideration was therefore that we should
provide a means of dealing with sets from an arbitrary
universe.

As the rest of the compiler was to be written in PL/I, we
wished to implement the access function subsystem in strictly
legal PL/I, because it was recognized that a great deal of
code would have to function correctly and with little mainte-
nance for long periods of time, during which there might be
changes in the compiler. We thus had consciously to avoid
surreptitious use of “variant records,” as described below.

Augmentation of the subsystem had to be efficient. It had
to be possible to add new entries to existing tables quickly
and to generate entirely new table formats almost as easily.
We did not want to have to recompile any but those programs
directly concerned when such routine table modifications
were made.

(BM J. RES. DEVELOP. e VOL. 28 » NO. 1 @ JANUARY 1984

Finally, it was clear that access was rather more important
than update, so the chief emphasis was placed on information
retrieval rather than storage.

Implementation

® The basic structure

Although a common repertoire of functions was in principle
made available to each compiler phase, any given phase used
but a fraction of them, and single programs substantially
fewer still. The only communication between compiler
phases was through the external forms of tables, so a fresh
environment had to be established for each phase. It was not
desirable to provide the full set of functions for every phase
because the space such code and data would occupy would be
substantial. Balanced against this desire for modularity was
an ease-of-use requirement which precluded having to do
explicit initializations of empty tabular structures. These are
undesirable because they are error-prone if unchecked,
redundant if dynamically checked, and difficuit to maintain,
particularly to remove previously required but no longer
needed function whose presence costs space and time.

These considerations led rather naturally to having many
linked list structures in dynamically managed storage (PL/I
BASED storage class). There was strong incentive to chain
independently allocated table entries into a list in order to
facilitate the insertion, deletion, and rearrangement func-
tions required. Additionally, it was found useful to control
these lists with a master list of existing tables, so that storage
for table control is allocated only when a table is created and
just those tables necessary are present.

The minimal initialization problem was thereby solved,
since at the start of execution the list of tables is empty. Of
course, this list must have some anchor in a fixed place, and a
STATIC EXTERNAL variable whose name began with a
reserved prefix was used for this purpose. This anchor was a
POINTER, initialized to NULL, and was used only by those
access function service routines (hidden from the application
code) which locate, create, and destroy tables.

Each table was identified by a character string constant
whose validity was checked at execution time. Those few
functions which must identify a table (e.g., *“IN-
SERT_FIRST?”) typically used a character string constant
parameter in the access function call. At program initializa-
tion all defined tables logically existed (with no entries), and
inquiries about empty tables were legitimate, although the
answers were inferred internally by the lack of a control
block for that table. A table containing one or more entries
had a control block, created by an attempt to insert an entry
into an empty table. If a table name was not recognized,
either because the access function subsystem implementation

43

FREDERIC N. RIS

44

had lagged or the name had been misspelled, a diagnostic
was issued to the effect, “I don’t know anything about this
table.” Table control blocks contained identification and
status information such as the name of the table, the number
of entries, and pointers to the first and last entries. Pointers
to the table control blocks were not given out above the access
function boundary; all functions supported on tables were
done using the character-string name of the table.

Each entry within a table was chained to its immediate
neighbors and to the control block for the table, so that the
table to which any entry belonged could be quickly estab-
lished. Each table entry had an “internal name,” the value by
which it was identified when an access function parameter
was required. The most desirable state of affairs would have
been to have a data type called “INTERNAL_NAME”
whose use would be restricted solely to assignment, compari-
son for equality, and use as a parameter to the access
functions. The data type POINTER has almost exactly these
attributes when the access function entries are fully declared,
and since when access functions are fully supported there is
little need for pointers for other purposes, the safety is almost
complete, by convention rather than by construction.

We made it a firm rule that POINTERSs used as access
function internal names could never be used as locators above
the access function boundary, and descriptions of the internal
list structures were never made available. As an informal
coding standard, we agreed on the character @ (a letter in
the PL/I lexical alphabet) to be the initial character of the
identifiers for such pointers and not to use similar identifiers
for other purposes. While this rule was not invariably fol-
lowed, it turned out to be useful as a documentation conven-
tion.

We could have used the DEFAULT statement in PL/I to
type identifiers beginning with @ as POINTER and thereby
catch those we failed to declare; these otherwise defaulted to
FLOAT data type and led to compiler diagnostics. However,
we had agreed that all variables should be declared, and the
language default almost inevitably guaranteed that the pres-
ence of such undeclared variables would not go long unde-
tected. Similarly, we could have used the preprocessor to
change the string “INTERNAL_NAME” to “POINTER,”
but there seemed little point to that, since we were not using
pointers for any other purpose in our source code.

Because of the requirement that the implementation be in
legal PL/I, it was not safe to provide a pointer directly to the
specific structure for each table. This is because the structure
mapping rules of PL/I are designed to ensure the integrity of
substructures passed as parameters and not to define a
storage mapping. As a result, slack bytes may be inserted in
not easily predictable ways, and the language implies that

FREDERIC N. RIS

the compiler may map structures in any way which permits
substructures to be referenced as parameters. Thus, a struc-
ture containing at its head a descriptor identifying the format
of the remainder of the structure is not entirely safe, for the
descriptor itself might be assigned different offsets depend-
ing on the details of the remainder of the structure. What is
indeed safe is to have a descriptor of a common format,
which contains a pointer to a specifically formatted block,
whose layout can be inferred from the descriptor block so
that a correct access can be made.

The only pointers given out by the access functions and
used above the access function interface were thus pointers to
simple descriptor blocks, each of which contained four
pointers: forward and backward chains to adjacent descrip-
tor blocks within the table, a link to the control block for the
table, and a link to the structure containing the specific data
for that table entry. Because the interface to the access
functions dealt with pointers to one type of structure only,
checking could be much more thorough and the more error-
prone pointer chaining operations were confined to small,
regular sections of code.

In order to separate the maintenance activities of the
access functions from the code which they serviced, the
linkage was effected through external procedure calls. For a
typical function, one would simply provide the name and give
a single internal name parameter. For example, to obtain the
@LABEL field of a particular text item whose internal name
is held in the variable @ TEXT, one would write

@LABEL (@QTEXT)
where the access function entry is declared

DECLARE @LABEL ENTRY (POINTER)
RETURNS (POINTER);

(What is returned is the internal name of an entry in the
“LABEL” table or the NULL pointer in case the field is
empty.)

® Name translation

Although variables of internal scope in PL/I can be as long
as 32 characters, external variables are limited to seven
characters. This restriction is contrary to the spirit desired
for the access function approach, and so this problem was
circumvented by using the PL/I preprocessor to translate the
names of access functions from ordinary-appearing PL/I
identifiers to seven-character identifiers consisting of a
reserved prefix and an identification number for the func-
tion. The above function call as seen by the compiler would
thus be

$S_0701 (@TEXT)

IBM J. RES. DEVELOP. @ VOL. 28 « NO. 1 » JANUARY 1984

The name translation served two additional functions.
First, it provided a convenient cataloging mechanism. Of the
four-digit identification number, the first two designated the
table and the last two the function within the table. Table-
independent functions had the form “00xx” and in general
the access functions for a particular table started with
“yy01” and went up. The update functions for the corre-
sponding fields started with “yy51.” The designations
“yy00” and “yy50” were useful in field maintenance when
functions related to the same table were collected in the same
file. The other useful function of external name translation is
that a misspelled external name would not be translated, and
if in excess of seven characters (as most were), would
immediately give rise to a compiler diagnostic.

This style of translation suffered some disadvantages.
Chief among them was that compiler diagnostics are phrased
in terms of the tokens presented to the compiler after the
name translation has taken place, and so diagnostics involv-
ing access functions appear in a foreign language. Second,
the preprocessor declaration and assignment which effects
the transformation requires one or two lines of listing, and
thus several pages of irrelevant output per compilation. (We
eventually post-processed the listings to remove this when the
number of entry points and thus translations became in
excess of seven pages of output per compilation.) Finally, the
translation process is not selective and may translate internal
variable names indiscriminately in cases in which a name
coincides with an access function which is not used in a
particular program—even when a particular table is not in
use. Selective translation could alleviate these last two prob-
lems, but would require more overhead at the point at which
we are trying to reduce it.

® General subsystem functions

General operations on all legal tables included a function
telling how many entries were in the table, functions giving
the internal names of the first and last entries, and proce-
dures to insert a new row at either the front or the end of the
table, returning the internal name of the new entry so
created. In the case of empty tables, the @FIRST_ENTRY
and @LAST_ENTRY functions returned NULL, and the
INSERT_FIRST and INSERT_LAST procedures caused
creation of the table control block and its chaining to the list
of active tables as well as the creation of the entry itself.

General operations applicable to all table entries included
functions giving the internal names of the next and previous
entries, the character-string name of the table to which the
entry belongs, procedures to insert a new entry either before
or after a specified entry and return the internal name of the
new entry so created, procedures to move a fixed number of
entries starting at a particular point either before or after
another specified point (with checking to ensure semantic

IBM J. RES. DEVELOP. ¢ VOL. 28 ¢ NO. | o JANUARY 1984

correctness of the request—e.g., the target point must not be
within the block to be moved), a procedure to delete a table
entry, and a function to determine whether an alleged
internal name in fact points to a legitimate (and undeleted)
table entry.

The entries in many of our tables could be usefully
identified with a string of characters, and so an “EXTER-
NAL_NAME” function was provided that was valid for
most table types. This function proved particularly useful in
the error diagnostic routines. In building some tables from
their external representations, a cross-reference between
external names was often used to indicate the corresponding
internal cross-reference between internal names. A diction-
ary mechanism was therefore provided which enabled quick
searches to be made within a specified table for a specified
external name. This dictionary mechanism was also used to
locate the table control blocks for those functions which
needed to deal with them.

A common error handling and instrumentation mecha-
nism was built into the core routines. Here the power of PL/1
came most into play. Error messages were easy to formulate,
format, and write both to output data sets and the virtual
machine console. A trace back facility provided by the
built-in procedure “PLIDUMP” was also used at the point of
each error to give a dynamic trace of how the particular
statement in which it occurred was reached.

® Sets

At an early stage of the design it was recognized that a
provision for sets would greatly facilitate experimentation
with proposed algorithms for register allocation. Elements
were to be drawn broadly from table entries, but the nature
of the domains might shift as the compiler development
progressed. In any case, the size of the universe would in
some instances be known only dynamically. We thus chose a
linked list structure for set representation rather than a bit
string. The flexibility this provided well repaid any ineffi-
ciencies which might have arisen. The sets implemented are
actually sets of pointers, but in practice one thinks of them as
sets of the objects pointed to. A set is then an unordered
collection of objects, no two of which have the same pointer
values. Set elements could thus be any internal name (or
indeed any pointer, whether of access function origin or not),
and an effort was made to obtain some speed in searching for
a particular element in a set by keeping sublists and hashing
the value sought to determine in which sublist it should
appear.

However, the value sought was the address of a block of
BASED storage allocated by the run-time environment of
PL/I, and the hashed value had no logical connection
whatever with anything else. It was indeed not even repeat-

45

FREDERIC N. RIS

46

able from one execution to the next in the same CMS virtual
machine due to shifting boundaries of free storage as disk file
directory entries came and went. This non-repeatability
caused considerable consternation in debugging those proce-
dures which operated on set elements in arbitrary order (i.e.,
the order provided by a particular access function on such
sets). In the end, two versions of access functions on sets had
to be provided: a fast, hashed implementation, and a slower
but more regularly behaving version.

All the sets in use at a particular point were contained in a
table much like any other; the general table-handling proce-
dures were applicable to these table entries. The structure of
cach entry, rather than being tabular as in the other tables,
was modified and examined by special primitives which gave
the cardinality of the set, added an element to a set (if not
already in it), told whether a particular element was in the
set or not, and enumerated the set elements in an arbitrary
but self-consistent way. Simple-minded intersection, union,
and set difference operations were built from these primitives
with a view to coding the functions directly if their perfor-
mance became critical, which it never did.

Once the set access functions were available they were
found highly useful in many situations other than the ones for
which they were originally envisioned. The ability to repre-
sent an essentially arbitrary universe played a large part in
this utility. Instrumentation within the access functions
eventually revealed that while the size of the total available
universe of internal names could be in the thousands, the
average cardinality of sets actually used was somewhat less
than two. It appears that in case of doubt sets were selected
when table structures were specified in lieu of elementary
data items, in anticipation of future algorithmic generaliza-
tions which never materialized. Hashing thus turned out to
be neither necessary nor helpful.

® Operational procedures

We had an almost consistent pattern of naming conventions
for access function entry points. “Almost” was simply due to
an early failure to appreciate the value of establishing
systematic procedures in completely defining external inter-
faces, and by the time the desirability of this became
apparent it was not worth applying retroactively. We thus
had several variants of a function meaning “number of
operands” in different spellings and abbreviations. For
obvious and short-named functions such as “@OPERA-
TOR” and “@LABEL” this problem never arose. For
functions with identical semantics and attributes in more
than one table arising in the later stages of development, the
problem was avoided by having general agreement on names
when tables or table columns were first defined and then
monitoring for duplications and near-duplications there-
after.

FREDERIC N. RIS

In PL/1 it is usually necessary to provide rather complete
descriptions of external entry points in programs which call
functions. This was particularly so in the case of the access
functions, which invariably required pointer parameters.
Two patterns of usage emerged. In one, only those functions
used in a particular program were placed in entry declara-
tions. In the other, all the entry points for accessing a
particular table were placed in a source library, and all would
then be included in any program using any element from the
subject table. While the latter method made coding, docu-
mentation, and maintenance easier, the PL /I compiler would
not discard the unused entry points and this made the
resulting text files larger and the linkage process longer. In
extreme cases, single procedures which referenced a few
entries in several tables could contain more than 255 external
names and run afoul of a CMS loader restriction. Such
problems were handled on a case-by-case basis.

Another difficulty with entry declarations included from
source libraries involved function names shared among two
or more tables. The compiler would not permit multiple,
consistent declarations, so commonly occurring names had to
be placed in yet another source library member. While the
problems were not difficult to solve, it is not clear that the
time required to get around them could not have been more
profitably spent in providing more flexible coding tools.

The compiled access function code was placed in an object
text library, and routine manual tools sufficed to maintain
this library. However, a problem arose with the nature of the
individual object files produced by each external PL/I
compilation. An external procedure gives rise to at least three
entries in the external symbol dictionary—a control section
containing the code, a static data control section, and the
entry point to the procedure itself. Procedures having alter-
nate entry points, of course, have additional entries in the
external symbol dictionary. In addition, a standard control
section called PLISTART is included with each external
compilation. It must be entered prior to PL /I compiled code
being executed in order to set up (via library routines) the
run-time environment of PL/I. This control section has two
secondary entry points, making a total of six control section
and entry points for a single external procedure. The CMS
text library mechanism had a limit of 1000 symbols in the
directory, and this would have limited us to a maximum of
166 external procedures. It was thus necessary to post-
process the object decks for the access function procedures to
remove the extraneous PLISTART control section. This
process was made routinely mechanical and served a useful
purpose for the compiler code as well.

® Maintenance
The addition of a new column to an existing table (and thus
an additional field in each entry) was quite straightforward.

IBM J. RES. DEVELOP. e VOL. 28 e NO. 1 « JANUARY 1984

A source library element containing the structure declara-
tion for the prototypical element of the table was augmented,
the appropriate access and update functions were created
from extremely stereotyped forms, and the entire set of
access functions for that table was recompiled against the
new data structure for that table. Certain key routines such
as those which allocate and free storage had also to be
recompiled to reflect the new data requirements for table
entries. After this was done, the object library was com-
pletely recreated, so that internal consistency was always
maintained. Programs not requiring the new fields ran
perfectly well with old libraries, but when reloaded against
the new library required more space for data at execution,
although the behavior was otherwise exactly the same. There
was no way in which an inconsistent set of functions could be
linked together, since no partial link editing was done.

The addition of a new table was only slightly more
complicated. The chief difference was that the structure for
the data element had to be created and placed in the source
library used by the access function code and the name of the
table had to be made known to the routine which deals with
the character string representation of table names. These
global operations having been done, the columns could then
be added in the same way as described above.

One thing we had not anticipated was that functions would
become obsolete. Fortunately, the maintenance mechanism
coped with that problem quite nicely. The first thing to be
done with the function that was to be eliminated was to
change the name translation process so that instead of being
translated to the string “$S_xxyy,” it would be translated to
the string “DEFUNCT_ACCESS_FUNCTION,” ensur-
ing a compiler diagnostic when a program formerly using
that function correctly was recompiled. To protect against
previously compiled programs trying to execute that func-
tion, the serialized names were never reassigned. Rather,
entries into a general diagnostic were made for each of these
functions to deliver a rather rude message to the perpetrator.
In view of the total intertwining of access functions with the
functional code of the experimental compiler, it was some-
what surprising that these messages never had occasion to be
produced.

® Miscellaneous

One of the biggest problems turned out to be how to deal with
table entries which had been deleted, since pointers to them
might still be outstanding. Freeing and re-allocating the
storage would lead to all sorts of anomalies, since a pointer to
an entry in some table could under unfortunate circum-
stances end up being a valid pointer to an entry in some other
table, and diagnosing the faulty logic leading to this circum-
stance could be particularly difficult.

IBM I. RES. DEVELQP. @ VOL. 28 @ NO. | » JANUARY 1984

In the end, a safe approach on both sides of the access
function interface emerged. On the compiler side, deletion of
table entries was required generally in two circumstances.
One was where the ordering of table entries was irrelevant,
the set table being the best example of this. If a table entry
were needed for working storage during some process and
could then be freed, this was no problem. The other case
involved tables such as the intermediate text, in which order
was very important and in which cross-references existed,
making logical deletion (as opposed to telling the access
functions to reclaim a particular entry) a tricky process. In
this case, the only procedure reliable in the long run involved
marking text to be deleted during the complicated optimiza-
tion processes and then passing over the text later to remove
the unneeded items, keeping intact the logical relationships
established above the access function interface.

Beneath the access function interface we finally settled on
the “tombstone” approach [10], and although not imple-
mented terribly elegantly, this certainly turned out to be the
function required.

The access function subsystem had no way of knowing
which pointers were still available above the interface, and in
principle every element in every table was accessible anyway.
Under-the-covers garbage collection was thus not possible,
and the experimental compiler code was not always as
scrupulous as it might have been about helping the storage
management process. The other difficulty was that the entire
space was managed by the PL/I-based storage allocation
mechanism, and the storage seemed to be quite fragmented
in some cases, leading to large working sets in our virtual
machines.

Operational characteristics

® Performance

Work began on the fundamental subsystem routines several
weeks in advance of coding the initial compiler components.
The tables most fundamental to the compiler were thus
implemented in time for the initial stages of program testing.
The subsystem proved quite useful throughout a fairly
lengthy development process which proceeded approxi-
mately top-down, and during this time performance issues
did not arise.

Once the basic compiler functions were in place, experi-
mentation began on alternative processing algorithms which
required more tabular information and more accesses to the
data generally, and ultimately overall performance became
of some concern. Using various program measurement tools
available to us, we found that around one third of the
execution time was spent in the access function code. In order
to assess how much this might be reduced, timing experi-

47

FREDERIC N. RIS

48

ments were undertaken on a typical function exemplified by
the PL/I statement

@Q = @QLABEL (@P);

This statement was executed in a tight loop with various
recipients of control on the called side of the interface in
order to determine where the time was spent. The times listed
below represent virtual CPU times as measured from CMS
on an unloaded IBM System/370 Mode! 168. The times are
optimistic compared to those to be expected in practice, as
the cache and translation lookaside buffer hit ratios will be
unusually high in the tests.

Setting up parameters on calling side 3.0
Linkage overhead in called procedure 11.3
Function in called procedure 8.9

Total time 23.2 us

In the case of such a simple function the linkage overhead
is a substantial portion of the execution time required. A very
few registers are required, but the contents of all are saved
and restored, and unnecessary storage allocation operations
are performed. To see the extent of these inefficiencies, this
routine was very carefully coded in assembly language, and
the following results obtained:

Setting up parameters on calling side 30
Linkage overhead in called procedure 0.8
Function in called procedure 2.2

Total time 6.0 us

At best, then, one third of the execution time could be
quartered, leading to an overall improvement of 25%. It is
not likely that this figure could be attained in practice due to
the difficulties in maintaining such large amounts of
assembly language code.

The performance of the access functions was also
restricted by the fact that the functions were always external
procedures to the compiler programs. As a result, the code
surrounding the calls to them was generated quite conserva-
tively by the PL/I compiler and potential optimizations
could not be realized. In particular, the retrieval function
entries could be given the attribute REDUCIBLE, which
means that successive calls with the same arguments produce
the same results. (In the case of these procedures, calls with
improper arguments also produced side effects, but insofar as
the calling procedure is concerned these are not noticeable.)
Because many of the functions represented cross-references
among tables, access functional composition occurred rather
frequently. If a subexpression within such a composition
were subsequently required, this could not be achieved with a
single call unless that were done into an explicitly declared
temporary variable to be reused, as the compiler ignored the
REDUCIBLE attribute, even in the simplest of cases.

FREDERIC N. RIS

Ultimately the biggest difficulty arising from the use of
this implementation was the working set size in the virtual
machine. The access functions themselves were fairly large
(typically several hundred bytes each), and the nature of the
development process made infeasible the physical separation
of the few instructions which performed the function in the
normal case and the larger amount of diagnostic code which
was only called into play infrequently. So a fragmentation of
functional code existed from the outset.

However, we eventually found that the working set size of
the entire program was substantially larger than the number
of pages occupied by all code, and it was therefore clear that
logically related data areas were quite fragmented. On the
one hand, this cannot be regarded as surprising since one of
our strongest motivations for the access function subsystem
was the freedom from this sort of consideration. On the other
hand, this is a source of some concern because the basic
design did not anticipate this difficulty and could not easily
address it.

® Diagnostic help

Substantial design and coding effort had gone into the
diagnostic facilities with the intention of providing a uniform
framework for error reporting and recovery so that the
incremental work involved in column and table augmenta-
tion would consist solely of adding function. This large effort
was to be justified by spreading its cost over a very large
number of low-probability events. This strategy was quite
successful. The name translation mechanism discussed ear-
lier was an unexpected part of this function, albeit not an
entirely desirable one when it came to examining compiler
listings. Table type checking was done on all functional
references for two reasons. One was to ensure that the
function requested was valid for the particular table in which
the argument of the function appeared. The other was to
discriminate between tables having identically named fields,
since the actual storage offsets might vary. A violation
produced a message of the broad form

YOU HAVE REQUESTED FUNCTION x OF ENTRY
y IN THE z TABLE; THIS FUNCTION IS NOT
DEFINED.

In the case of retrieval functions, arbitrary values were
returned; for example, NULL for pointers, zero for integers,
a string of asterisks for character strings, and the like. When
an improper update was requested (which happened consid-
erably less frequently), no change in the tables was made.

Within table entries it was possible to check internal
consistency. For example, in our text tables we had a field
indicating the number of operands in the particular text unit.
The update and retrieval functions for the operands them-
selves had two arguments—the internal name of the entry

IBM J. RES. DEVELOP. & VOL. 28 ¢ NO. | & JANUARY 1984

and the ordinal number of the operand. Attempts to update
or retrieve operands numbered between one and the current
value of the number field were legal; all others were reported
as errors. We did not check consistency among entries in the
same table, nor among entries in different tables, this being
the job of the compiler code proper.

® Reliability

The subsystem turned out to be extremely reliable. The head
start it enjoyed in the implementation schedule helped
considerably in this. There was enough time to make a very
careful design which placed the critical functions in a few
key modules which could then be produced with great care.
All list linking operations fell into this category, for example,
as did the storage management for the entire collection of
tables. These core routines were extensively checked by
walkthrough-like techniques at both a pictorial level and
with the code itself, and these routines never misbehaved.
Furthermore, they were support routines for the access
functions and many of them could only be called from a small
number of places. There were thus many layers of protection
for those functions which were critical to the smooth opera-
tion of the subsystem.

Since in the compiler code pointers were not required for
any purpose except the access function interfaces, we
obtained a large amount of protection from the PL/I
language. Pointers can only be used to point, as parameters
to subroutines, in simple assignments of the form “A = B;”,
in comparisons for equality, and with the BUILTIN pointer-
valued function NULL. We did not need to use them to
point, and the other legal uses of pointers covered exactly the
amount of function required to make the access functions
useful. A misuse typically arose from the failure to declare a
variable as a pointer. Since we agreed that most pointers
should begin with the symbol “@,” such undeclared vari-
ables would default to floating-point and some rather
anguished diagnostics would ensue from the compiler, since
pointer to floating-point data-type and vice versa are two of
the few conversion combinations not automatically coerced
in PL/L

The prototypes for the access functions were very carefully
designed to make the production of new functions and tables
as fast as possible. After some trial and error, this led to a set
of prototypes which were used for all but the very special set
functions. When complete, the older functions were retrofit-
ted to the prototypes as requests came in to add columns to
the respective tables, and eventually all functions were
implemented from the same set of prototypes. This kept the
number of logical interfaces constant while the number of
actual interfaces was expanding, and reliability of the ensem-
ble was further enhanced.

IBM J. RES. DEVELOP. » VOL. 28 e« NO. 1 ¢ JANUARY 1984

A few misleading error diagnostics were produced in the
early stages before that mechanism was also unified, and
feedback from early usage soon helped correct these situa-
tions.

The source library by which the names were translated
and the text library containing the access function code were
maintained on a slowly changing, project-owned disk. When
new functions were requested, the name translation entries
were added immediately, enabling compilation of the com-
piler code needing these functions. (The name translation is
also used in compiling the access functions themselves, so this
is a necessary first step in any event.) The functions, when
completely compiled along with any necessary additions to
the core routines, were then placed in a new text library
created afresh. Then the compiler programs requiring the
new functions could be loaded and executed. This turned out
to be a very satisfactory working arrangement.

Influence on the experimental compiler

Because the nature of the experiment was to demonstrate
feasibility of ideas and algorithms, little emphasis was placed
on the logical structure of the data above the access function
interface. Many concerns about representation disappeared
with the introduction of sets, and more effort was spent
ensuring that needed information would be available than to
ask whether it was made available in an efficiently accessed
form.

The nature of the access function implementation discour-
aged experimentation with data structures and organiza-
tions, in some cases unnecessarily. It certainly made any
direct comparisons of alternative data structures difficult,
and this kind of experiment was never attempted. If suffi-
cient thought and experience led to the conclusion that some
information should be differently structured, then such re-
structuring was quite feasible. However, this did not happen
as often as it might, perhaps because the perceived overhead
of doing so was greater than the actual work involved.

As a result, some of the compiler algorithms became
rather clumsy and certainly more convoluted than necessary,
because it was always easier to patch up problems with a few
more lines of code than to request a data organization
change. In retrospect, it seems we should have been more
sensitive to this problem, because the inflexibility which
resulted made the experimental compiler much larger and
slower than we suspect it had to be.

Summary of experience

The experimental compiler was under development for dif-
ferent purposes over a period of four years. The portions
using the access function subsystem grew to four phases and
40 000 lines of PL/I code. The access function subsystem

49

FREDERIC N. RIS

50

comprised 421 entries embodied in about 22 000 lines of
PL/I. During the two years between the time the compiler
first functioned and the time the experiment ended, substan-
tial function was added to support more source language and
to produce better object code for several different machine
targets. The utility of the access functions extended through-
out this period, and we found their help as useful at the end as
at the beginning. Their existence certainly extended the life
of the code, all of which was written by people with no
previous experience in coding such a large system in PL/I.

We had considered authorization checking as passive
protection against the unwanted alteration of data. This
turned out not to be necessary. The validity checking was
quite sufficient for this purpose.

Syntactic errors such as the misspelling of function names
and semantic errors such as requesting a function not defined
on a particular table were quickly caught in a fashion which
enabled speedy diagnosis and correction.

The objectives we had set to justify the labor involved in
this approach were satisfied for the most part. The long-term
drawbacks were the perceived enshrinement of data struc-
tures and the storage fragmentation which arose from lack of
foresight.

The benefits we expected proved more valuable than had
been anticipated. This is because we had not taken sufficient
account of the quick and direct feedback provided by this
subsystem in an interactive development environment. Each
of us was working in a CMS virtual machine under the
VM /370 operating system, and a great deal of this work was
done on video display terminals. As a result, errors could be
corrected almost immediately and the compilation or pro-
gram test run again. (This notion seems routine today, but
was novel to us then.)

The VM/370 environment also obviated the need for an
automated maintenance system for the functions. A collec-
tion of simple procedures and code prototypes reduced the
manual operation requirements to just those necessary to
define the new structures and functions being introduced.
The CMS editor used on the video terminal made it possible
to produce the actual code by filling in a few blanks in the
carefully composed prototypes. When the computer was
lightly to moderately loaded, a new table could be introduced
into the system in about ten minutes. This job comprised
making the new PL/I structure declarations for table ele-
ments, inserting them into a source library used by the access
functions, and changing and compiling the storage manage-
ment routines to allow them to allocate and free instances of
the new structure. From there, adding functions to the new or
already existing tables could be done in about one minute per
function, including compilation time.

FREDERIC N. RIS

At the end of the experiment we knew how to generate the
access functions mechanically from simple descriptors of a
table entry, but it was never worth a complete re-implemen-
tation to do so. Other groups subsequently made this sort of
refinement to the methodology for their own purposes
[11,12].

The major problems over the life of the experiment were
all essentially annoyances. The first concerns the nature of
the PL/I language. While extension via functional notation
is quite simple because the notion of function is quite strong
in the language, updating the entries is not as convenient,
since the “pseudo-variables” of PL/I are confined to those
which are BUILTIN. Since we were referencing rather than
updating most of the time, this was a minor difficulty, but
those procedures which had to build tables were found
cumbersome to code. This asymmetry between function and
pseudo-variable was not considered serious enough to war-
rant a frontal attack, e.g., through the macro pre-processor.

The second problem was the working set size. While the
compiler programs and access functions were easy to instru-
ment for execution time performance, determination of static
storage requirements was rather more difficult, and dynamic
determination of storage usage patterns was extremely
expensive in both human and computer time. Since CMS
must always run in a virtual machine, perhaps more sympa-
thetic help could be expected of it.

Finally, due to a combination of PL/I and CMS restric-
tions, we were unable to read and write directly the internal
structures created by the access function subsystem. This
cost us machine time in our testing in having to build up the
same tables from their external representations over and
over. While this problem could also have been circumvented,
this wasted machine time turned out to be less costly than the
human time which would have been required to redesign the
access function internals.

Acknowledgments

The notion that access functions with these characteristics
belonged in the experimental compiler was due to Hans
Schlaeppi, the project manager. Aspi Wadia helped with an
early design for the core procedures which turned out to be
invaluable because we made all the list processing mistakes
once and then threw it all away to build the final version. The
subsystem was then given a thorough workout by Joonki
Kim, Hans Schlaeppi, C. J. Tan, Ray Villani, and Aspi
Wadia. Their timely criticisms and comments kept the
design on the path of reasonableness and usefulness. I am
grateful to Ray Villani, Aspi Wadia, and Hank Warren for
helpful comments on early drafts of this paper and to the
anonymous referees for valuable suggestions.

IBM J. RES. DEVELOP. o VOL. 28 e NO. 1 « JANUARY 1984

References

1. B. H. Liskov, A. Snyder, R. R. Atkinson, and J. C. Schaffert,
“Abstraction Mechanisms in CLU,” Commun. ACM 20, 564—
576 (1977).

2. B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell,
and G. L. Popek, “Report on the Programming Language
Euclid,” Sigplan Notices 12 (February 1977).

3. N. Wirth, “Modula: A Language for Modular Multiprogram-
ming,” Software Pract. Exper. 7, 3-35 (1977).

4. J. D. Ichbiah, J. C. Heliard, O. Roubine, J. G. P. Barnes, B.
Krieg-Brueckner, and B. A. Wichmann, “Rationale for the
Design of the Ada Programming Language,” Sigplan Notices
12 (June 1979).

S. Abstract Software Specifications, D. Bjorner, Ed., Springer-
Verlag New York, Inc., New York, 1979.

6. Proceedings of the Workshop on Data Abstraction, Databases,
and Conceptual Modeling, M. L. Brodic and S. N. Zilles, Eds.,
Association for Computing Machinery, New York, 1979.

7. B. Kutzler and F. Lichtenberger, Bibliography on Abstract
Data Types, Springer-Verlag New York, Inc., New York,
1983.

8. M. Shaw, “The Impact of Abstraction Concerns on Modern
Programming Languages,” Proc. IEEE 68, 1119-1130
(1980).

9. W. A. Wulf, “Abstract Data Types: A Retrospective and
Prospective View,” Proceedings of the 9th Symposium on the
Mathematical Foundations of Computer Science, Springer-
Verlag New York, Inc., New York, 1980, pp. 94-112.

10. D. B. Lomet, “Scheme for Invalidating References to Freed
Storage,” IBM J. Res. Develop. 19, 2635 (1975).

IBM J. RES. DEVELOP. e VOL. 28 e NO. 1 ¢ JANUARY 1984

11. F.E. Allen, J. L. Carter, J. Fabri, J. Ferrante, W. H. Harrison,
P. G. Loewner, and L. H. Trevillyan, “The Experimental
Compiling System,” [BM J. Res. Develop. 24, 695-715
(1980).

12. John A. Darringer, William H. Joyner, Jr., C. Leonard Berman,
and Louise Trevillyan, “Logic Synthesis Through Local Trans-
formations,” IBM J. Res. Develop. 25, 272-280 (1981).

Received February 17, 1983; revised September 8, 1983

Frederic N. Ris IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Ris is senior manager of
computation-intensive systems in the Computer Science Department
at the Thomas J. Watson Research Center. Dr. Ris received a B.A.
from Harvard College in chemistry and physics and a Ph.D. in
mathematics from Oxford University, England. He joined the IBM
Research Division in 1972 to participate in a project concerned with
machine-dependent optimization for the generation of microcode
from high-level languages. In 1977 he became manager of a project
to develop system software tools and prototype applications for a
novel digital signal processor architecture which he helped general-
ize and for which he was awarded an IBM Outstanding Innovation
Award. He has served as technical assistant to the director of
computer sciences in Research and has continued work begun at
Oxford on computer arithmetic. In 1980-1981, Dr. Ris served as
technical assistant to the IBM Chief Scientist and executive secre-
tary to the IBM Science Advisory Committee at Corporate Head-
quarters in Armonk, New York.

51

FREDERIC N. RIS

