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Combined  Network  Complexity  Measures 

Most of the considerable work that  has been done in  the  measurement of software  complexity  during  thepast several years  has 
addressed complexity  measurement of source code or design  languages.  Here we describe techniques to measure the 
complexity of large (>lo0 000 source  lines of code)  systems  during  the  software architecture phase, before major design 
decisions have been made.  The techniques to  measure and reduce complexity are intuitively reasonable, easy to  apply, and 
produce consistent results.  Methods developed include (1)  an  extension of the graph-theoretic measure developed by McCabe to  
software  architecture, as represented by networks of communicating  modules, (2) a general technique that allows the 
complexity associated  with allocation of resources  (CPU. tape,  disk, etc.) to be measured, and (3) a method  that combines 
module  complexity and network complexity, so that design  trade-offs can be studied  to  determine whether it  is advantageous to 
have separate modules  for service functions,  such as mathematical  subroutines,  data  management routines,  etc. 

1. Introduction 
In recent  years, software complexity measurement  has been 
the  subject of considerable research.  Intuitively, high soft- 
ware  complexity contributes  to difficulty in development, 
testing,  and  maintenance,  as well as  adding  to reliability 
problems. The problems  resulting from complexity are  par- 
ticularly  acute in large (> 100 000 source lines of code), 
complex software systems. 

Much of the  research in software complexity has been 
aimed at  existing programs or, more recently, at  structured 
design  languages. We  are interested in the  software  architec- 
ture  phase of software development,  since  it is our view that 
complexity measurement techniques, if applied earlier in the 
life cycle, can  aid in identifying areas in software systems 
that  are unnecessarily  complex. Methods for reducing com- 
plexity can  then be applied  to  such  areas before major design 
decisions  have been made. 

The system representation  that we have  chosen to  study is 
that of networks of modules. It is felt that  this  representation 
is simple, direct,  and in particular allows the modeling of 
systems with concurrent processing or real time consider- 
ations.  It is our goal to develop techniques that would allow 
comparison of the design alternatives which abound in such 
systems and  to provide assistance in choosing among  them. 

In the next  section of this paper, we consider the  factors 
that led to our selection of a model for concurrent systems 
and  to our choice of a measure of complexity  for such 
systems. In  the following  section, the  application of 
McCabe’s  complexity measure to concurrent systems  repre- 
sented as networks of modules is described, and a  generalized 
complexity measure is developed that  can  account for the 
effects of such resources as  channels, disk  drives, CPUs, etc. 
The final section  describes  a technique for  combining the 
measurement of complexity of networks of modules with 
conventional  measures of complexity to provide an overall 
indication of system  complexity that  can  aid in making 
design  trade-offs. 

2. Model and complexity measure selection 

Choice of a concurrent systems  model 
A model for concurrent systems  should be able  to accommo- 
date 

1 .  Synchronization  and  communication, 
2. Deadlock  avoidance and/or  detection, 
3. Rigorous  methodologies  for  software  architecture/ 

4. Resource allocation. 
design, 
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Figure 1 Applications  and  control  services. 

Many of the models  for concurrent systems  reported in the 
literature provide these attributes.  Some of the  more  tradi- 
tional  models  available  include  those  described by 
Mattheyses  and  Conry [ 11, Hoare [2], and Owicki and  Gries 
[3]. However, they  do not in general provide a unified, 
internally consistent model for  design that  can model existing 
complex  systems. 

Witt's model [4] provides a unified approach  to  the design 
of systems capable of concurrency. It allows stepwise refine- 
ment, with the  state  machine  as  the underlying  model. Witt's 
communicating-modules model addresses  the issues of 
synchronization, deadlock,  and resource  allocation. There- 
fore, it was  decided to use this model to  represent  concurrent 
processes. More  important, if we are  able  to develop  com- 
plexity measures for this model, we  will be  able  to  apply 
complexity measurement  techniques  to  the  software  archi- 
tecture  and design process. This would be a great  advantage, 
since  complexity measurement techniques are  currently used 
primarily  for  code, as described by Woodward  et  al. [ 5 ] ,  and 
in some  experimental  situations, for process design languages 
and  clusters of programs.  The work on clusters was done by 
Belady and Evangelisti [ 6 ] .  

Some of the terminology of Witt is used throughout  the 
remainder of this  paper, including the following definitions. 

Definition I [4/ Procedures  are  formed  from  declarations 
of data combined  with structured  programs, i.e., control 16 
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structures whose "do" parts describe data  transformations. 
One  procedure may invoke others. Hence,  "programs" are 
seen as hierarchies of procedures. 

Definition 2 [4] A module,  represented by a state 
machine, is an  aggregate of programs  sharing a  common 
perspective and common data objects. The common data  are 
shared by all programs in the  aggregate,  are inaccessible to 
any  other  program,  and  are  retained between successive 
invocations of the module. 

In  the communicating-modules  model, the components of 
a software system are partitioned into  one of three classes: 
applications,  control services, and  hardware services. Appli- 
cation  programs  compute  the information  required by the 
client  without regard  to  the  potential  interference of other 
programs being executed.  They  map client-oriented input 
into client-oriented output,  and  they modify client-oriented 
state  data.  Control services, which include run-time services 
such as  creation of address space, intermodule  communica- 
tion, and noninterfering  access to common data,  are depen- 
dent on neither specific hardware nor specific client  pro- 
grams.  Control services intercept  program invocations, 
embed  parameters  into messages, and send  messages to  the 
addressed  module. In a similar way control services return 
output  parameters  to  the invoker. The applications programs 
appear  to control services as a  network of modules. Hard- 
ware services are concerned  with  presenting  a "friendly" 
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representation of the physical hardware being  used. They  are 
not concerned with the network of programs  communicating 
between different  memories;  they are only concerned with 
the execution of one or more processors in a  single  memory. 

We  examine  applications  programs  as viewed by control 
services, i.e., as a  network of communicating modules, with 
each module possibly in a  different  memory. An illustration 
of this model can  be seen in Fig. 1. 

0 Selection of a  complexity  measurement  model 
The initial step in developing a suitable complexity measure 
for networks of modules, particularly those that allow con- 
currency, was to  examine existing software complexity  mea- 
sures for sequential processing. As noted before,  most of the 
existing measurement techniques  were developed to  measure 
complexity of the code or design  associated with an individ- 
ual  module. 

Complexity measurement is ill-defined in software engi- 
neering. There  are  many  measures of complexity,  such as 
algebraic complexity, computational complexity, etc., with 
considerable overlap  among  them. Belady [7] believes that 
program complexity is perceived in a t  least  two  different 
ways: It is a measure of uncertainty or surprise, or it is 
deterministically defined as a count of magnitude  (such  as 
amount of storage,  number of instructions,  etc.).  The  deter- 
ministic approach, which we are  interested in here, consists 
of selecting  a countable property of the  program, which is 
then  asserted  to be related  to complexity. This definition is 
also used by Ruston  [8].  Storm  and Preiser [9]  compare a 
complexity measure  to a  norm,  with  a  nonnegative number 
being  assigned to a  complex  object in order  to assess its 
‘‘length.’’ This is also analogous  to  the  deterministic 
approach. 

Evaluation  criteria 
The existing software complexity measures were evaluated  to 
determine which technique provided the best model for 
measuring  the complexity of networks of modules.  Identifi- 
cation of this  method would provide a starting point  for 
dealing with some of the  concurrency issues discussed later. 

Some more  definitions are needed. 

Definition 3 Network complexity is a function based on 
some  countable properties of the modules and  inter-module 
connections in the network that  are believed to be related  to 
complexity. 

Definition 4 A subnet S of a  network N is a  network 
consisting only of modules and  intermodule connections of N .  
If S is not  identical to N ,  then we say  that S is a  proper subnet 
of N ,  written 

S C N .  

Dejinition 5 A  network  complexity measure C is called 
consistent if for S C N ,  

C ( S )  5 C ( N ) .  

The  criteria used for our evaluation are  as follows: 

The  measure should be easy to apply to  concurrent 
systems. 
It should agree with intuitive  ideas about system complex- 
ity. 
The results obtained using the  measure should be consis- 
tent. 
The  measure should be suitable for application to a 
network representation. 

Measurement  techniques 
Several of the existing  complexity measurement techniques 
were  selected  for  more careful examination. These included 
McCabe’s  complexity measure (cyclomatic number) [ lo] ,  
Halstead’s software science measure [ 111, source lines of 
code (SLOCs) as described by Walston  and Felix [ 121, 
Storm  and Preiser’s  index of complexity for structured 
programs [9], Laemmel  and Shooman’s  complexity measure 
using Zipf‘s Law [ 131, and Ruston’s polynomial measure of 
complexity [8]. An overview of these  techniques is presented 
here. 

Halstead’s  (software science) complexity  measure 
Halstead  states  that  the complexity of any  algorithm  can be 
measured directly  from  a static expression of that  algorithm 
in any  language. Given an  implementation of the  algorithm 
in any  language, it is possible to identify  all the  operators  and 
operands.  It is then possible to define  a number of measur- 
able  characteristics  from which Halstead’s software science 
measures are derived. The following definitions are used. 

Definition 6 / I   I ]  An operand is a variable or constant  that 
is used in the  implementation. 

Definition 7 / I  I ]  An  operator is a symbol or combination 
of symbols that affects the value or ordering of operands. 

Halstead shows that  estimated effort, or programmer 
time,  can be expressed as a  function of operator  count, 
operand  count, or usage count.  It is thus possible to  predict 
how much programmer  time will be required by analyzing 
the  program.  Halstead  conducted some experiments  to show 
that predicted and  actual  programmer  times have coeffi- 
cients of correlation which are on the  order of 0.9. 

Halstead’s  method has been used by many  organizations, 
including IBM at  its  Santa  Teresa  Laboratory [ 141, General 
Electric  Company [ 151, and  General Motors Corporation 
[ 161, primarily in software  measurement experiments. It  has 
also been used by several organizations on actual projects. 
Although  the use of Halstead’s  method may allow the 17 
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reviewer to  determine  the complexity of a particular pro- 
gram, techniques  for  reducing  complexity are not discussed. 

The  Halstead  measure provides a very concise technique 
for assessing program complexity, by computing  the  number 
of operators  and operands. But  this  technique is difficult to 
apply to networks of modules,  because operators  and oper- 
ands  are not easily identified in that  context. 

Source lines of code 
The source  lines of code (SLOC)  measurement of program 
size has been used for years in software cost estimation,  and 
also as a  complexity factor.  Estimated  and  actual source  lines 
are used for productivity estimates,  as described by Walston 
and Felix [ 121, during  the proposal and  performance phases 
of software  contracts.  The way that source  lines are  counted 
varies among  organizations. For example,  source lines can  be 
viewed as 80-column cards, lines of source code,  lines of 
executable code,  etc. Variations in complexity are  estimated 
by assigning  a difficulty factor (e.g.,  easy, average, difficult). 
SLOCs have provided a straightforward method of cost 
estimation  and complexity measurement for some  time  and 
will probably continue  to  do so in the  future.  This  measure is 
both elementary  and easy to  calculate,  and  remains a  useful 
“quick and  dirty”  estimate of complexity. 

In  examining  the use of source lines as a  complexity 
measure, it,became  clear  that  this  technique did  not take  into 
account  concurrency  problems,  such  as  allocation of 
resources, and  the more general problem of control flow 
complexity. It could only account for the  number of lines of 
code  needed, and not for the  added complexity inherent in 
such  networks. 

Storm and Preiser’s index of complexity 
The index of complexity  was developed especially  for struc- 
tured programs. It provides an a priori  measure of program 
complexity, so that  the  programmer  can be given an indi- 
cator when the  program is likely to exceed the limit of easy 
comprehension. Since  this limit can easily be  computed 
before  compilation, if the index is “too  large,” reduction  in 
the complexity is strongly  suggested. The  primary result of 
Storm  and Preiser’s study [9] is the following theorem. 

Theorem I /9 ]  The index of complexity  for structured 
programs is less than or equal  to  the index of complexity  for 
unstructured  programs. 

Storm  and Preiser’s technique provides a good way of 
assessing program  structures,  but  these  are not comparable 
to  the kinds of structures  that  one would find in  a  network of 
modules,  unless one assumed at  the ouset that  all networks 
were structured. 

Storm  and Preiser’s  index is discussed  in more  detail 
later. 

Laemmel and Shooman’s complexity measure 
Laemmel  and  Shooman [ 131 have examined Zipf‘s Law, 
which was developed for natural languages, and extended the 
theory to apply the  technique  to  programming languages. 
Analogies between natural  language  and  computer  program- 
ming languages  are  drawn  to show that  there is overall 
agreement in the  buildup of the  language from basic con- 
structs. 

Zipf‘s Law is applied to  operators,  operands,  and  the 
combinations of operators  and  operands in computer pro- 
grams.  The results show that Zipf‘s Law holds for computer 
programming languages, and complexity  measures can be 
derived which are similar to those of Halstead.  This method 
provides the precision associated with the  Halstead method 
but is somewhat  easier to apply. 

Although  Laemmel  and Shooman’s  method provides a 
concise technique for measuring  program complexity,  it is 
more suitable for  application to  programs or modules than  to 
networks. In this respect, it is similar  to  the  Halstead 
measure. 

Ruston’s polynomial measure of complexity 
Ruston’s measure  [8] describes  a program flowchart by 
means of a  polynomial. The  measure  takes  into  account both 
the  elements of the flowchart and its structure.  Rules  are 
given for obtaining  the polynomials for  various  flowcharts, 
such  as  structured,  unstructured,  etc.  The  measure allows the 
comparison of alternative designs, and gives bounds on 
cyclomatic  (McCabe’s) complexity. Ruston also  makes  a 
comparison of this measure with several other complexity 
measures. Ruston’s method appears  to  be  suitable for  net- 
work measurement,  but  has not been used as widely as 
McCabe’s  method (to be described),  and  it results  in  a more 
complex expression. 

McCabe’s complexity measure 
McCabe [ 101 developed a mathematical technique,  based on 
program  control flow, which provides a quantitative basis for 
modularization of software  and for  identification of software 
modules that will be difficult to  test or maintain. McCabe’s 
measure is based on a graph-theoretic  approach,  and 
McCabe shows that complexity is independent of physical 
size and  depends only on the decision structure of a program. 
A bound on complexity is identified, and techniques are 
described  for  reducing  complexity. This  technique  has been 
further extended and used in conjunction with a testing 
methodology. 

Evaluation of results 
The overall  results of this evaluation are  summarized in 
Table 1. Based on our evaluation of these techniques, it was 
decided to  experiment with the  McCabe model for measure- 
ment of complexity in networks of modules. It satisfied the 
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criteria above and provided a starting point for measuring 
network  complexity. Other  graph models have been devel- 
oped for networks, such  as  Petri  nets described by Baer [ 171 
and could also have been used. 

McCabe’s  measure for  programs 
McCabe’s measure is based on a graph-theoretic  approach 
and uses some  basic  definitions and  theorems from graph 
theory, which are repeated  here. 

Definition 8 / I S ]  The  cyclomatic  number V ( G )  of a graph 
G with n nodes, e edges, and p connected  components is 

V ( G )  = e - n + p .  

Definition 9 /I91 A  linear graph is said to be strongly 
connected if for any two  edges r a n d  s, there exist paths from 
r to s and  from s to r .  

Theorem 2 /18/ In a  strongly  connected graph G, the 
cyclomatic  number is equal  to  the  maximum  number of 
linearly independent  circuits. 

The basis for  McCabe’s approach is as follows: Given a 
computer  program, associate  with  it  a directed  graph  that 
has unique  entry  and exit nodes. Each node in the  graph 
corresponds to a block of code in the  program  where  the flow 
is sequential,  and  the edges  correspond to  the  branches  taken 
in the  program.  It is assumed that  each node can be reached 
by the  entry node and  each node can  reach  the exit node. 

The  resultant  graph is known as  the  program control 
graph,  and  the cyclomatic number is then a  complexity 
measure for the  program.  This  approach suggests that com- 
plexity is increased by branches  and  can be reduced by 
removing unnecessary  branches. The complexity computa- 
tion is 

u = e - n + 2 p .  

McCabe observes that  the  cyclomatic complexity is equiv- 
alent  to  the  number of predicates plus one. 

Alternatively, if G is a  connected graph with n vertices and 
e edges,  then the  cyclomatic complexity is equivalent to  the 
number of regions: 

u = e - n + 2 .  

For a  strongly  connected graph  the  cyclomatic complexity 
is 

u = e - n +  1. 

3. Basic method 
Based on the choices of Witt’s model and McCabe’s mea- 
sure, simple applications of McCabe’s measure  to some of 

Table 1 Characteristics of software  complexity  measures. 

Easy  to  Intuitively Consistent Suitable for  
apply  obvious  networks 

McCabe Yes Yes Yes  Yes 
Source lines Yes Yes No No 
Halstead No Yes  Yes No 
Storm/Preiser Yes Yes Yes No 
Laemmel/  Yes  Yes Yes No 
Shooman 
Ruston No Yes Yes  Yes 

the networks of Witt’s model are made.  Recognition of some 
shortcomings in this approach leads to definition of a new 
generalized measure,  and  similar application of it. 

0 McCabe’s model  applied  to  networks 
In  order  to apply  McCabe’s technique  to networks, the 
interpretation of the  program control graph  must be 
changed. Our interpretation is that  each node in the network 
represents  a  module, and  each  edge represents an intermod- 
ule connection  (invocation of or return of control from a 
program in another  module).  We  call this the network 
control graph.  The network  control graph constructed in this 
manner represents the  software system structure,  as devel- 
oped during  the  software  architecture phase.  McCabe’s 
technique  can  then be applied to  the network  control graph in 
the  same  manner  as it is applied to  the  program control 
graph. 

Let us make  this more formal. 

Definition IO A  network  control graph G is a directed 
graph with each node corresponding to a unique module and 
each  edge corresponding to  an  intermodule connection. The 
edges are directed from  the module using a  network  message 
to  the receiving module. 

Dejinition 11 A  network  control graph S is a subgraph of 
G if S is a  network  control graph which consists only of nodes 
and edges of G. If S is not  identical to G, S is called  a  proper 
subgraph of G, written 

S C G. 

0 Simple  applications  of  McCabe’s measure 

Hierarchy and pipeline  networks 
We need the following definitions. 

Definition 12 /4]  A hierarchy is a  network of modules in 
which output  parameters  and control are always returned  to 
the invoking module. 

Definition 13 /4]  A pipeline is a  network of modules in 
which output  parameters  and control are  transmitted 19 

N .   R .  HALL A N D  S. PREISER IBM J. RES. DEVELOP. VOL. 28 NO. 1 J A N U A R Y  1984 



A A B 

GI 

Figure 2 Hierarchy networks. 

directly  to successor  modules, rather  than being returned  to 
the invoking module. 

The  hierarchy provides limited concurrency, by requiring 
that  control be returned  to  the invoking module after  each 
application program execution. The pipeline provides more 
potential for concurrency, insofar as  many  stages in the 
pipeline can be in execution concurrently. 

The hierarchies examined have  a  monitor  module M 
which controls the  other modules in the network. In this 
context  the monitor plays a supervisory role in the network. 
It is responsible  for program invocation in the  applications 
modules when they have work to  do  and for receiving control 
back when the work is complete.  Consider the simple case 
where  a  monitor invokes a program in a  module, and in turn 
has  control returned  to it. Figure 2 depicts two such cases. 

First is a hierarchy with a  monitor and two applications 
modules. The second is a hierarchy with  a  monitor and  three 
applications modules. The  cyclomatic  numbers for the net- 
works are, respectively, 

V ( G I ) = 4 - 3 + 1 = 2 ,  

V(C2)  = 6 - 4 + 1 = 3.  

This suggests that complexity  increases as a  function of the 
number of modules  in the  hierarchy.  This result  corresponds 
with our intuitive  ideas about complexity. 20 
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The pipelines to  be examined  have  a  controlling program, 
which initiates  program invocation in successor  modules, and 
is executed at  the control services level in Witt's model. At 
the  end of the pipeline, for our purposes,  control is returned 
to  the  initiating module. Figure 3 depicts two such cases. 

The first is a  pipeline with three modules, A,  B, and C. The 
second pipeline has  four modules, A ,  B, C, and D. The 
cyclomatic  numbers for these networks are, respectively, 

V ( C I )  = 3 - 3 + 1 = 1, 

V(G2)  = 4 - 4 + 1 = 1 

This suggests that all pipelines have the  same complexity. 
This  result is not altogether  satisfactory,  as intuition  suggests 
that complexity  increases  with the  number of modules. This 
problem is addressed  in the section on the generalized 
measure. 

The results of applying the  McCabe  measure  can be 
generalized as follows. 

Theorem 3 In a hierarchy of n modules  (including the 
monitor),  the  McCabe network  complexity is n - 1. 

Proof Suppose  there  are n modules in the network. Then 
there  are 2 x ( n  - 1) paths connecting the modules, so that 

V ( C )  = 2 x ( n  - 1 )  - n + 1 

= n - I. 

Theorem 4 In a  pipeline of n modules, the  McCabe 
network  complexity is always 1. 

Proof Given a pipeline G of n modules,  observe that  there 
are n paths connecting them, so that 

V ( C )  = n - n + 1 

= 1. 

Definition and application on generalized  measure 
The method  described in the section on McCabe's measure is 
readily used for  evaluation of methods of transfer of control, 
static networks, and  data acquisition. It was felt, however, 
that  there were other resources of interest in complexity 
measurement, such as  channels,  tape drives,  disk  drives, 
CPUs,  etc. In fact,  resource  allocation is commonly 
addressed in operating system  designs by various  scheduling 
algorithms,  queueing techniques, interrupt  handlers,  etc. 
Proposed operating systems are routinely modeled and  exam- 
ined to  ensure  that  they  contain simple, low-overhead 
designs. The methods used in simulating  operating system 
designs are somewhat  different from  the  methods we discuss 
here. In order  to  address  other resources of interest, a  more 
general  measure was developed which is also  based on path 
expressions. It should be pointed out  that  this  measure is 
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not a  generalization of the  McCabe  measure,  although 
certain  elements of it are  similar. 

Definition 
Here we define  a  network N consisting of nodes and edges, as 
follows: Each node represents a  module, as before, which 
may or may  not be executed concurrently with another 
module. Each  edge represents program invocation and  return 
between modules  (in this  case  the edges are called  single 
paths). Resources are allocated when programs  are invoked 
in other modules, and we wish to  measure complexity asso- 
ciated with allocation of such  resources. 

Given a  network N of n single paths, define  complexity  as 

where 

1. k is the  total  number of resources to be controlled in the 
network, 

2.   r l i ,  ..., rki represent those resources which must be con- 
trolled  for  a given path p i ,  

3 .  rji = 0 if the resource is not required by the node, 
rji = 1 if the resource is required, 

4. dj is the complexity for allocation of each resource (e.g., 
the complexity  associated with a procedure used to  gain 
exclusive access to common data), 

5 .  ei is the complexity of program invocation and  return 
along each  path pi (such as  operating system  complex- 
ity). 

Simple  applications of general measure 
Let us apply this  technique  to  the simple  kinds of hierarchy 
and pipeline  networks that we did for the  McCabe model. 
For the purpose of these applications,  let us assume  that only 
program invocation and  return  are of interest,  and  that  there 
are no resources to be controlled. 

This  means  that rJ, = 0 in all cases. If we assume only one 
means of invocation, then e, = constant, say, e, = 1 for  all i. 

Then for the  hierarchies depicted in Fig. 2, 

C ( G I )  = 4and C(G2)  = 6. 

Similarly, for the pipelines depicted in Fig. 3 ,  

C ( G I )  = 3 and C(G2) = 4. 

In addition  the following general results are  obtained. 

Theorem 5 If e is the complexity  associated with program 
invocation between modules and if no other resources are 
needed, then for  a hierarchy N of n modules the generalized 
complexity is 2e x ( n  - 1). 

Proof Note  that for  a hierarchy of n modules there  are 2 
x (n  - 1)  paths connecting them.  Since  there  are no other 
resources  required, the generalized  complexity is 

GI 

Figure 3 Pipeline networks. 

C ( N )  = 2e x ( n  - 1). 

Theorem 6 If e is the complexity  associated  with program 
invocation between modules and if no other resources are 
needed, then for a  pipeline N of n modules the generalized 
complexity is ne. 

Proof Note  that for a  pipeline of n modules there  are n 
paths connecting them.  Since  there  are no other resources 
required,  the generalized  complexity is 

C ( N )  = ne. 

To compare  these results with McCabe’s  results,  let e = 1. 
Then C ( N )  = 2 x (n  - 1) for the  hierarchy versus V ( G )  
= n - 1, and C ( N )  = n for the pipeline  versus V ( C )  = 1. 

Note  that using this more general  approach, we still  have 
the result that pipelines are less complex than  hierarchies 
with the  same  number of modules.  However, pipeline com- 
plexity increases with the  number of modules. This is a 
different  result  from the result obtained in the section on 
McCabe’s measure, where all pipelines had  the  same com- 
plexity. 

The difference  occurs  because the general-purpose  mea- 
sure  counts  the  number of edges and does not subtract  the 21 
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Figure 4 Data locking networks. 

number of nodes. Thus with the generalized measure, com- 
plexity is a  function of the  total  number of module invoca- 
tions. 

There is some disagreement  as  to which of these two 
approaches is preferable. On the  one  hand,  one  can  argue 
that only excessive numbers of invocations are of interest, 
and conclude that  the  McCabe  approach is preferable. On 
the  other  hand,  one  can  argue  that more  modules in a 
network  lead to  more complexity, and conclude that  the 
generalized measure is preferable. 

With  either  technique  there is a  need to combine the 
network  complexity  with internal module  complexity to 
obtain  an overall  complexity measure, called the combined 
complexity measure. 

4. Combined  measure 
In examining  the complexity of the network  only, we are  able 
to  obtain a measure of complexity  for one network  design 
relative to  another.  There is, however, a danger in using the 
network  complexity measure exclusively for  these  types of 
decisions. For example,  the least  complex  network would 
result if the  entire system  consisted of a  single  module. The 22 
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resultant module would then have all the network  complexity 
embedded in the module, so that  it would be hidden  from the 
network measure,  but visible to  some of the more conven- 
tional  complexity measures, such as were  examined previous- 
ly. One could also consider the  situation which would result if 
modules to perform  service  functions,  such  as exclusive data 
access and release,  did  not  exist, but  the logic was embedded 
in the applications  modules. The network would be less 
complex, but  the applications  modules would be more com- 
plex. It is therefore  desirable  to  be  able  to combine the 
network and conventional  complexity  measures in such  a way 
that a  more  complete picture is obtained.  This combined 
complexity is more of an  absolute  measure,  as it is reasonable 
to expect the complete  system to have an overall complexity 
threshold which should  not be exceeded. 

0 Problem  description 
Suppose  a  network  consists of a  monitor and seven applica- 
tions  modules, of which three  require exclusive access to  the 
same  data.  We  want  to  evaluate  whether  it is preferable  to 
have  a separate lock/unlock  module, or whether it is prefer- 
able  to  embed this logic in the  three applications modules. 
The networks  representing  these alternatives  are shown in 
Figure 4. It is assumed that  communications modules are not 
a factor in the decision process, so these are not shown in this 
example. Here module M8 is the monitor, and modules M I  to 
M ,  are  the  applications modules. Module M9 provides the 
locking and unlocking  capabilities  needed by modules M I ,  
M,, and M,.  Network GI shows the locking/unlocking 
capability embedded in the applications  modules, and net- 
work G2 shows the locking/unlocking capability in a distinct 
module. 

In order  to develop a  combined  complexity measure,  the 
following definition is used. 

Dejnition 14 Let CN be the network  complexity and 
C,  , ..., C,  be  the individual  module  complexities. Then  the 
combined  complexity is 

k 

C ,  = W, X CN + w2 1 C, , 
,=I 

where w1 and w2 are weighting factors assigned by the user, 
which may differ for different measurement techniques. 

Applications of McCabe/generalized  measures 
For this example we apply both the  McCabe  and  the 
generalized  measures to  the networks shown in Fig. 4. The 
results  for the  McCabe  measure  are 

V ( G 1 )  = 14 - 8 + 1 = 7. 

For  this  network the combined  complexity is 
8 

c,, = 8 x WI + w2 x c,, . 
i= I 
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Using the  McCabe  measure, 

V ( G 2 )  1 26 - 9 + 1 = 18. 

For this network the combined  complexity is 
9 

C,, = 19 X W ,  + W ,  x Ci, . 
i= I 

At  this point some observations are  made  to simplify 
computations.  We need to  determine which of networks G1 
or C2 provides a less complex  design. Therefore, we want  to 
compare C,, and C,,. Observe, however, that  many elements 
are  the  same for both GI and G2. For example, modules M4 
through M8 in Fig. 4 are identical in GI and G2. Therefore, 
to  examine  the differences between C,, and C,,, it is not 
necessary to  compute  the complexity of M4 through M,. In 
addition, those  sections of MI  through M3 which do not relate 
to  data acquisition or locking can also be disregarded. 
Therefore, only the difference will be examined: 

c,, - c,, = - 11 x w, + w, (Ci1 - C,,) - c,, 
i= I 

Observe that C,, = Ci, except  for the  three applications 
modules M I ,  M,, M, and  the lock module M9. Therefore, 

c,, - c, = - 11 x w,  + W,((C,, - CI2) 

+ ( c2]  - c22) + cc3l - ‘32) - ‘92)’ 

Further observe that 

c,l - cj2 = ccj2 + c91) - ‘j2 

for j = 1, ..., 3, where C,, is the  average  added complexity 
when locking/unlocking is done in the  applications module; 
then, 

c,, - c,, = - 11 x w,  + w,(3 x c,, - C9,) 

Note  that in applying  this  technique  to  an  actual design 
problem, the user might  make a  different  set of assumptions 
than we have made, based on the design  problem. 

Alternatively,  apply  the generalized measure  to  the net- 
works of Fig. 4 using the following algorithm: 

C ( N )  = 2 (ei + 2 dj x r j , ) .  

For this  example  let  the cost of branching ei = 1, and note 
that rji = 0, except  for locking and unlocking, which have 
complexities dl and d,. Then 

, = I  j =  1 

n 

C ( N )  = 1 1 + dl + d, 
i= I 

and 

C,, = 14 X W, + W, x Cil , 
8 

i= I 
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C,, = 26 X wI + w2 x C,, . 
i = l  

Thus 

c,, - c,, = -12 x w ,  + w,(3 x c,, - C,),). 

Having  obtained these  results  for the two measurement 
techniques, we must  measure  the complexity of the locking/ 
unlocking function, both in a separate module and  embedded 
in the applications  modules. We must  also  assign an  appro- 
priate weighting factor in order  to  complete  the trade-off 
analysis. 

Combined  measure 

Storm  and  Preiser’s  index of complexity/McCabe’s  mea- 
sures  Let us now turn  to  examine  the logic of a  typical 
locking/unlocking  routine, and apply Storm  and Preiser’s 
measurement  technique. 

This index of complexity  was developed especially for 
structured programs. Given the complexity  index for struc- 
tured  programming  constructs such as sequence (DO- 
THEN),  iteration  (WHILE-DO),  alternation  (IF-THEN- 
ELSE),  and  CASE,  the complexity  index of the  entire 
program is developed. 

Some of Storm  and Preiser’s definitions [9] are used here. 

Dejinition 1.5 /9/ Let  m(si)  be  the  measure of complexity 
of the  program  segment si, which has Pi lines of source  code, 
so that 

m(si) = P i .  

Let m ( c i )  be the  measure of complexity of the  test on 
condition ci, so that 

m(c,) = di , di 2 1 .  

Dejinition 16 (91 For the sequence (Do sI then s2) 

m(s,) + m(s,) = Q, + Q, . 
Definition 17 /9/ For the  iteration  (While c, do s,) 

m(cl) + m(sl)  = dl + P, . 
Dejinition 18 /9/ For the  alternation  (If c, then sI else s,) 

m(c,) + avg(m(s,), m(s2)) = dl + (Q, + Q2)/2. 

Dejinition 19 /9/ For the  case  statement 

m(c,) + avg(m(s,),  m(s,), . . a ,  m(s,)) = dl + x Q i / 2 .  
i= I 

For  example, the simple structure in Fig. 5 has a  complexity 
of 

d c , )  + avg(m(s,),  m(s2)). 23 
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Figure 5 Storm  and  Preiser  measure of complexity. 

Note  that  each  prime  structure is assigned an individual 
complexity  m. These  are  then combined to give an overall 
complexity  for the composite program. 

Since  this is easily computed before  compilation, if the 
index is “too large,” some care in reducing  the complexity is 
strongly  suggested. In  this case,  design logic will be exam- 
ined. 

Apply Storm  and Preiser’s  index as follows: 

“If”  constructs have  a value of 1. 
“Do” constructs have  a value of 1. 
Each line  in  a sequence  has a value of 1 

Then for the exclusive lock design in Table 2, 

m(1ock) = 4 x (m(if)) + m(dounti1) + 13 = 18. 

The design  for exclusive unlock is shown in Table 3. 

Now we apply  Storm  and Preiser’s measure  to  obtain 

m(un1ock) = 5 x (rn(if)) + m(whi1edo) 

+ m(dounti1) + 12 = 19. 

Alternatively,  apply McCabe’s measure  to  the combination 
of designs for the lock and unlock functions  and  obtain V ( C )  
= 12. The results for  the exclusive lock and unlock  designs 
can now be used in conjunction  with the network  complexity 
measures  to  obtain  an overall  complexity  figure, which will 
allow the desired  trade-off study  to be done. 

This  example  can be studied  to see if more  general 
comparisons can be made of the various measures used here. 

For the lock design  observe that  the  Storm  and Preiser  index 
is 

m(1ock) = 4 x m(if) + m(dounti1) + 13 = 18. 

For the  McCabe  measure V ( C )  = 5 ,  and finally the 
number of source  lines is 26. This suggests the following 
relationship: 

number of source lines 2 Storm  and Preiser 
index 2 McCabe  measure. 

This occurs  because the  McCabe  measure counts only the 
design statements, while Storm  and Preiser’s index  counts 
the decision statements plus some of the source  lines, and of 
course the source  line count includes  everything. 

Combined  measure results 
In  order  to combine the results of the  last two  sections, first 
note that  the complexity of the lock/unlock  design is the 
same regardless of whether  the design is included  within the 
module or as a separate module. This suggests that for the 
example C,, and C,, are identical. Since only the lock or the 
unlock portion of the design is used at  any given time,  the 
indices computed previously can be averaged to  obtain 

C,, = C,, = (18 + 19)/2 = 18.5. 

For the  McCabe network measure, 

c,, - c,, = -11 x w, + 37 x w 2 .  

Let w, = w, = 1 to  obtain 

C,, -- C,, = 26. 

For the generalized measure, 

C,, - C,, = -12 X w1 + 37 X W, = 25. 

Note  that in both cases  the network  with an  independent 
locking/unlocking  module is less complex. This corresponds 
to our intuitive notions for this particular case. It is possible, 
however, to  get more general results, as will be seen later. 

Alternatively, by using the  McCabe  measure for design in 
combination with the  McCabe  and generalized  network 
measures a  different  set of results is obtained. 

Combine  the  McCabe measures for design and network to 
obtain 

C,, - C,, = -11 X W ,  + ~ ~ ( 3 6  - 12) 

= -11 X W ,  + 24 X w 2 .  

Let w1 = w2 = 1; then 

C,, - C,  = 13. 
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Table 2 Exclusive lock design. 

If the  user  has not made  a lock request 
or if this  module  does  not  have  this lock block 

Endif 
If this  module  already  has  this lock block 

Endif 
Save  the  return  address  to  the  user  module 
Obtain  the lock 
Store  the  time lock was received 
Add  this lock to  the  queue of those  owned by 
this  module 
Store  the  return  address 
Dountil  test-and-set is successful 

Expect  a 0 in the lock 
Set  the user's module id in the lock 
Attempt  to  set  the lock to  the user's 

If test-and-set is successful 

Else 

terminate 

terminate 

module id 

The user  module  has  the lock 

Add  the  user  module  to  the  queue 
of those  waiting 

Endif 
Enddo 
Save  the  return  address 
Store  the  time of the lock completion 

Table 3 Exclusive uniock design. 

If this is not an unlock request 
or if this  module  does not have  this lock block 

Endif 
If the  owner of the lock block is not  this  module 

Endif 
Get  the  queue of locks owned by this  module 
While 

Do 

Terminate 

Terminate 

this is not the lock 

Get  next lock on queue 
If this is the  end of the  queue 

Endif 
Terminate 

Enddo 
Remove  the lock from  this module's lock queue 
If no other  modules are waiting 

Release  the lock 
Return if test-and-set is successful 

Endif 
Dountil the  end of the  queue of modules  waiting 

Find  the  end of the  queue 
Enddo 
Give  the lock to the  module id 
Update  pointers 
Save  return  address 

This indicates that it is advantageous  to have  a separate 
locking/unlocking  module when there  are  three users. If 
there  are only two  users, with control  graph  G3,  then 

C,, - C,, = -7  X w1 + ~ ~ ( 2 4  - 12) = 5 .  

In  this  case  it is still advantageous,  although less so, to 
have  a distinct locking/unlocking  module.  Finally, if there is 
just  one user, with  control graph G4, then 

CTI - c, = - 3  x w ,  + w,(12 - 12) = -3. 

In  this  case it is clearly  advantageous  to not have  a separate 
module for locking/unlocking. 

By using the generalized measure for  networks and  the 
McCabe  measure  for design,  a similar set of results is 
obtained. For the network  where three modules require  the 
service, 

C,, - C,, = -12 X W, + ~ ~ ( 3 6  - 12) 

= -12 X W, + 24 X W, 

= 12. 

When two modules require  the service, 

C,, - C,, = - 8  X W ,  + ~ ~ ( 2 4  - 12) 

= -8  X W, + 12 X W, 

= 4. 

Finally, when one  module  requires  the service, 

c,, " c,, = -4 x w, + w,(12 - 12) 

= - 4  x WI 

= -4. 

These results give an indication of whether it  pays to have 
a distinct service  module  for  locking/unlocking. In  the  case 
of two or more  modules  it is clearly  worthwhile. For one 
module it is definitely  not  worthwhile.  Of  course, for one 
module  a locking service is not  needed, but  the example is 
only used for  illustrative purposes. Therefore, this example 
illustrates how the network measure  can be used early in the 
design phase to help make design  trade-off decisions. 

A more general result can be obtained  for the  McCabe 
network measure  and  McCabe design measure combined. 

Theorem 7 Let GI be the network with service  design 
embedded in the  applications modules. Let G2 be the 
network with service  design in a distinct service  module. 
Then if C,, and C,, are  the combined  complexities  for GI 
and G2, respectively, 

C,, -- C,, = -(number of added edges - 1) 

+ (number of users - 1) 

x design complexity 

= -(e$ - 1) + ( (ua - 1) x de) .  
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Here es is the  number of added edges  needed to access the In general, for hierarchies of n modules  with n - 1 
service, ua is the  number of applications modules  using the applications  modules,  where n > 2, 
service, and dc is the design  complexity of the service. C ( G I )  = 2 x (n - 1) + (n - 1 )  x C ( S ) ,  

I If C(G2) = 4 X (n - 1) + C(S) ,  

C,, - C,, < 0, a separate service  module is desirable, C ( G I )  > C(G2) if C ( S )  > 2 + 2 / ( n  - 2), 

= 0, the service can  be  embedded in the  ap- which can  be rounded up so that  it is worthwhile to have  a 
plications  modules or kept as a separate service  module if C ( S )  > 4. 
separate service, 

< 0, a separate service module is not 
desirable. 

The following general result is obtained. 

Theorem 8 Given  a hierarchy with  two or  more  applica- 
tions  modules  using  a specific service,  it is worthwhile to have 
a separate service  module S if C ( S )  > 3 using the  McCabe 
measure,  or if C ( S )  > 4 using the generalized measure for 
the network measure  (assuming we let the cost of transfer 
= 1 for the generalized measure). 

Proof (McCabe measure) Suppose  graph G1 corresponds 
to  the  hierarchy of three modules with two applications 
modules  having the service embedded.  Then 

V(G1) = 2 + 2 x C(S) .  

5. Conclusions and  future research directions 
In  the previous sections  techniques  have been developed for 
measuring complexity of networks of modules, including 

1. An extension of McCabe’s technique which can be used 

2. The generalized measure, which can be used to  measure 
the complexity  associated with resource  acquisition, as 
well as for  network measurement. 

3. The combined measure, which aids in deciding, whether  to 
develop separate service  modules or whether to keep 
service logic within the  applications modules. 

for  networks. 

A  more  extensive treatment of these topics can  be found in 
Hall’s doctoral  dissertation [20], which is the basis  for this 
paper. 

Then suppose graph G2 corresponds to  the  hierarchy of It is our view that  these techniques are generally  intuitive, 

service module: design alternatives available to  the  architect of a  complex 
three modules with two applications modules and a separate easy to  apply,  and provide assistance in assessing the many 

V(C2)  = 5 + C ( S ) ,  system.  They allow one  to  examine complexity with a consis- 
tent, plausible a priori method,  and  can be used to 

V(G1) > V(G2)  if C ( S )  > 3. 
1. Identify areas which are overly complex  (in  a  relative 

In general, for hierarchies of n modules, with n - 1 sense) so that complexity can  be reduced  before major 
design  decisions  have been made. 

2. Help decide on the  optimal  number of modules in the 
application  modules, 

V(G1) = n - 1 + (n - 1)  x C ( S ) ,  system. 

V(G2)  = 3 x (n - 1 )  - 1 + C ( S ) ,  3. Measure complexity  associated  with  resource  acquisi- 
tion. 

V ( G I )  > V(C2)  if C ( S )  > 2 + l / ( n  - 2), 4. Aid in deciding whether  to have distinct service modules. 

which can  be rounded up so that  it is worthwhile to have  a 
separate service  module if C ( S )  > 3. Methods for reducing  network and overall  complexity 

Proof (generalized measure) Suppose  graph GI corre- 
sponds to  the  hierarchy of three modules  with  two applica- 1. Encapsulation of data  to  define  the  optimum  r~umber of 
tions  modules  having the service embedded.  Then modules and  reduce locking overhead and complexity. 

2. Use of pipelining  where possible to  reduce  transfer com- 

3. Use of service  modules to  reduce combined  complexity. 

include 

C(G1) = 4 + 2 x C(S) .  plexity. 

Then suppose graph G2 corresponds to  the  hierarchy of 
two  modules  with  a separate service  module: 

C(G2) = 8 + C ( S ) ,  

26 C(GI)  > C(G2) if C ( S )  > 4. 

In the  future  the following efforts could be undertaken: 

1 .  Examination/development of tools to  aid in computing 
complexity  for large systems. 
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2. Extension of these  results to  include  other methods of 
modeling parallel processes (e.g., Petri nets, communicat- 
ing sequential processes). 

3. Extension of this  type of measure  to  other phases of the 
software life cycle (e.g., software specifications, testing). 

It is particularly  desirable  to  continue  research in this 
area, so that  software complexity measurement  can become 
more  rigorous. It is our view that  the work described here 
aids in progress towards  this goal. 
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