
N. R. Hall
S. Preiser

Combined Network Complexity Measures

Most of the considerable work that has been done in the measurement of software complexity during thepast several years has
addressed complexity measurement of source code or design languages. Here we describe techniques to measure the
complexity of large (>lo0 000 source lines of code) systems during the software architecture phase, before major design
decisions have been made. The techniques to measure and reduce complexity are intuitively reasonable, easy to apply, and
produce consistent results. Methods developed include (1) an extension of the graph-theoretic measure developed by McCabe to
software architecture, as represented by networks of communicating modules, (2) a general technique that allows the
complexity associated with allocation of resources (CPU. tape, disk, etc.) to be measured, and (3) a method that combines
module complexity and network complexity, so that design trade-offs can be studied to determine whether it is advantageous to
have separate modules for service functions, such as mathematical subroutines, data management routines, etc.

1. Introduction
In recent years, software complexity measurement has been
the subject of considerable research. Intuitively, high soft-
ware complexity contributes to difficulty in development,
testing, and maintenance, as well as adding to reliability
problems. The problems resulting from complexity are par-
ticularly acute in large (> 100 000 source lines of code),
complex software systems.

Much of the research in software complexity has been
aimed at existing programs or, more recently, at structured
design languages. We are interested in the software architec-
ture phase of software development, since it is our view that
complexity measurement techniques, if applied earlier in the
life cycle, can aid in identifying areas in software systems
that are unnecessarily complex. Methods for reducing com-
plexity can then be applied to such areas before major design
decisions have been made.

The system representation that we have chosen to study is
that of networks of modules. It is felt that this representation
is simple, direct, and in particular allows the modeling of
systems with concurrent processing or real time consider-
ations. It is our goal to develop techniques that would allow
comparison of the design alternatives which abound in such
systems and to provide assistance in choosing among them.

In the next section of this paper, we consider the factors
that led to our selection of a model for concurrent systems
and to our choice of a measure of complexity for such
systems. In the following section, the application of
McCabe’s complexity measure to concurrent systems repre-
sented as networks of modules is described, and a generalized
complexity measure is developed that can account for the
effects of such resources as channels, disk drives, CPUs, etc.
The final section describes a technique for combining the
measurement of complexity of networks of modules with
conventional measures of complexity to provide an overall
indication of system complexity that can aid in making
design trade-offs.

2. Model and complexity measure selection

Choice of a concurrent systems model
A model for concurrent systems should be able to accommo-
date

1 . Synchronization and communication,
2. Deadlock avoidance and/or detection,
3. Rigorous methodologies for software architecture/

4. Resource allocation.
design,

0 Copyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

IBM J . RES. DEVELOP. VOL. 28 NO. I JANUARY 1984

15

N . R. HALL A N D S. PREISER

Application
design view

Module A Module B

pr0gA.a 1

I
I

pr0gB.a

-
link progB . a

"""""""""""""""""""""""""""""""""""-
ilodule A

Comm. services -m
I

I

:ontrol services view

Figure 1 Applications and control services.

Many of the models for concurrent systems reported in the
literature provide these attributes. Some of the more tradi-
tional models available include those described by
Mattheyses and Conry [11, Hoare [2], and Owicki and Gries
[3]. However, they do not in general provide a unified,
internally consistent model for design that can model existing
complex systems.

Witt's model [4] provides a unified approach to the design
of systems capable of concurrency. It allows stepwise refine-
ment, with the state machine as the underlying model. Witt's
communicating-modules model addresses the issues of
synchronization, deadlock, and resource allocation. There-
fore, it was decided to use this model to represent concurrent
processes. More important, if we are able to develop com-
plexity measures for this model, we will be able to apply
complexity measurement techniques to the software archi-
tecture and design process. This would be a great advantage,
since complexity measurement techniques are currently used
primarily for code, as described by Woodward et al. [5] , and
in some experimental situations, for process design languages
and clusters of programs. The work on clusters was done by
Belady and Evangelisti [6] .

Some of the terminology of Witt is used throughout the
remainder of this paper, including the following definitions.

Definition I [4/ Procedures are formed from declarations
of data combined with structured programs, i.e., control 16

N . R. HALL A N D S. PREISER

"

, I I I I
Comm. services

I

I ' I 4

structures whose "do" parts describe data transformations.
One procedure may invoke others. Hence, "programs" are
seen as hierarchies of procedures.

Definition 2 [4] A module, represented by a state
machine, is an aggregate of programs sharing a common
perspective and common data objects. The common data are
shared by all programs in the aggregate, are inaccessible to
any other program, and are retained between successive
invocations of the module.

In the communicating-modules model, the components of
a software system are partitioned into one of three classes:
applications, control services, and hardware services. Appli-
cation programs compute the information required by the
client without regard to the potential interference of other
programs being executed. They map client-oriented input
into client-oriented output, and they modify client-oriented
state data. Control services, which include run-time services
such as creation of address space, intermodule communica-
tion, and noninterfering access to common data, are depen-
dent on neither specific hardware nor specific client pro-
grams. Control services intercept program invocations,
embed parameters into messages, and send messages to the
addressed module. In a similar way control services return
output parameters to the invoker. The applications programs
appear to control services as a network of modules. Hard-
ware services are concerned with presenting a "friendly"

IBM J. RES. DEVELOP. . VOL. 28 NO. I JANUARY 1984

representation of the physical hardware being used. They are
not concerned with the network of programs communicating
between different memories; they are only concerned with
the execution of one or more processors in a single memory.

We examine applications programs as viewed by control
services, i.e., as a network of communicating modules, with
each module possibly in a different memory. An illustration
of this model can be seen in Fig. 1.

0 Selection of a complexity measurement model
The initial step in developing a suitable complexity measure
for networks of modules, particularly those that allow con-
currency, was to examine existing software complexity mea-
sures for sequential processing. As noted before, most of the
existing measurement techniques were developed to measure
complexity of the code or design associated with an individ-
ual module.

Complexity measurement is ill-defined in software engi-
neering. There are many measures of complexity, such as
algebraic complexity, computational complexity, etc., with
considerable overlap among them. Belady [7] believes that
program complexity is perceived in a t least two different
ways: It is a measure of uncertainty or surprise, or it is
deterministically defined as a count of magnitude (such as
amount of storage, number of instructions, etc.). The deter-
ministic approach, which we are interested in here, consists
of selecting a countable property of the program, which is
then asserted to be related to complexity. This definition is
also used by Ruston [8]. Storm and Preiser [9] compare a
complexity measure to a norm, with a nonnegative number
being assigned to a complex object in order to assess its
‘‘length.’’ This is also analogous to the deterministic
approach.

Evaluation criteria
The existing software complexity measures were evaluated to
determine which technique provided the best model for
measuring the complexity of networks of modules. Identifi-
cation of this method would provide a starting point for
dealing with some of the concurrency issues discussed later.

Some more definitions are needed.

Definition 3 Network complexity is a function based on
some countable properties of the modules and inter-module
connections in the network that are believed to be related to
complexity.

Definition 4 A subnet S of a network N is a network
consisting only of modules and intermodule connections of N .
If S is not identical to N , then we say that S is a proper subnet
of N , written

S C N .

Dejinition 5 A network complexity measure C is called
consistent if for S C N ,

C (S) 5 C (N) .

The criteria used for our evaluation are as follows:

The measure should be easy to apply to concurrent
systems.
It should agree with intuitive ideas about system complex-
ity.
The results obtained using the measure should be consis-
tent.
The measure should be suitable for application to a
network representation.

Measurement techniques
Several of the existing complexity measurement techniques
were selected for more careful examination. These included
McCabe’s complexity measure (cyclomatic number) [lo] ,
Halstead’s software science measure [111, source lines of
code (SLOCs) as described by Walston and Felix [121,
Storm and Preiser’s index of complexity for structured
programs [9], Laemmel and Shooman’s complexity measure
using Zipf‘s Law [131, and Ruston’s polynomial measure of
complexity [8]. An overview of these techniques is presented
here.

Halstead’s (software science) complexity measure
Halstead states that the complexity of any algorithm can be
measured directly from a static expression of that algorithm
in any language. Given an implementation of the algorithm
in any language, it is possible to identify all the operators and
operands. It is then possible to define a number of measur-
able characteristics from which Halstead’s software science
measures are derived. The following definitions are used.

Definition 6 / I I] An operand is a variable or constant that
is used in the implementation.

Definition 7 / I I] An operator is a symbol or combination
of symbols that affects the value or ordering of operands.

Halstead shows that estimated effort, or programmer
time, can be expressed as a function of operator count,
operand count, or usage count. It is thus possible to predict
how much programmer time will be required by analyzing
the program. Halstead conducted some experiments to show
that predicted and actual programmer times have coeffi-
cients of correlation which are on the order of 0.9.

Halstead’s method has been used by many organizations,
including IBM at its Santa Teresa Laboratory [141, General
Electric Company [151, and General Motors Corporation
[161, primarily in software measurement experiments. It has
also been used by several organizations on actual projects.
Although the use of Halstead’s method may allow the 17

’REISER IBM J. RES. DEVELOP. VOL. 28 NO. I J A N U A R Y I 984 N . R. HALL A N D S. F

18

N . R. I

reviewer to determine the complexity of a particular pro-
gram, techniques for reducing complexity are not discussed.

The Halstead measure provides a very concise technique
for assessing program complexity, by computing the number
of operators and operands. But this technique is difficult to
apply to networks of modules, because operators and oper-
ands are not easily identified in that context.

Source lines of code
The source lines of code (SLOC) measurement of program
size has been used for years in software cost estimation, and
also as a complexity factor. Estimated and actual source lines
are used for productivity estimates, as described by Walston
and Felix [121, during the proposal and performance phases
of software contracts. The way that source lines are counted
varies among organizations. For example, source lines can be
viewed as 80-column cards, lines of source code, lines of
executable code, etc. Variations in complexity are estimated
by assigning a difficulty factor (e.g., easy, average, difficult).
SLOCs have provided a straightforward method of cost
estimation and complexity measurement for some time and
will probably continue to do so in the future. This measure is
both elementary and easy to calculate, and remains a useful
“quick and dirty” estimate of complexity.

In examining the use of source lines as a complexity
measure, it,became clear that this technique did not take into
account concurrency problems, such as allocation of
resources, and the more general problem of control flow
complexity. It could only account for the number of lines of
code needed, and not for the added complexity inherent in
such networks.

Storm and Preiser’s index of complexity
The index of complexity was developed especially for struc-
tured programs. It provides an a priori measure of program
complexity, so that the programmer can be given an indi-
cator when the program is likely to exceed the limit of easy
comprehension. Since this limit can easily be computed
before compilation, if the index is “too large,” reduction in
the complexity is strongly suggested. The primary result of
Storm and Preiser’s study [9] is the following theorem.

Theorem I /9] The index of complexity for structured
programs is less than or equal to the index of complexity for
unstructured programs.

Storm and Preiser’s technique provides a good way of
assessing program structures, but these are not comparable
to the kinds of structures that one would find in a network of
modules, unless one assumed at the ouset that all networks
were structured.

Storm and Preiser’s index is discussed in more detail
later.

Laemmel and Shooman’s complexity measure
Laemmel and Shooman [131 have examined Zipf‘s Law,
which was developed for natural languages, and extended the
theory to apply the technique to programming languages.
Analogies between natural language and computer program-
ming languages are drawn to show that there is overall
agreement in the buildup of the language from basic con-
structs.

Zipf‘s Law is applied to operators, operands, and the
combinations of operators and operands in computer pro-
grams. The results show that Zipf‘s Law holds for computer
programming languages, and complexity measures can be
derived which are similar to those of Halstead. This method
provides the precision associated with the Halstead method
but is somewhat easier to apply.

Although Laemmel and Shooman’s method provides a
concise technique for measuring program complexity, it is
more suitable for application to programs or modules than to
networks. In this respect, it is similar to the Halstead
measure.

Ruston’s polynomial measure of complexity
Ruston’s measure [8] describes a program flowchart by
means of a polynomial. The measure takes into account both
the elements of the flowchart and its structure. Rules are
given for obtaining the polynomials for various flowcharts,
such as structured, unstructured, etc. The measure allows the
comparison of alternative designs, and gives bounds on
cyclomatic (McCabe’s) complexity. Ruston also makes a
comparison of this measure with several other complexity
measures. Ruston’s method appears to be suitable for net-
work measurement, but has not been used as widely as
McCabe’s method (to be described), and it results in a more
complex expression.

McCabe’s complexity measure
McCabe [101 developed a mathematical technique, based on
program control flow, which provides a quantitative basis for
modularization of software and for identification of software
modules that will be difficult to test or maintain. McCabe’s
measure is based on a graph-theoretic approach, and
McCabe shows that complexity is independent of physical
size and depends only on the decision structure of a program.
A bound on complexity is identified, and techniques are
described for reducing complexity. This technique has been
further extended and used in conjunction with a testing
methodology.

Evaluation of results
The overall results of this evaluation are summarized in
Table 1. Based on our evaluation of these techniques, it was
decided to experiment with the McCabe model for measure-
ment of complexity in networks of modules. It satisfied the

-IALL P rND S. I ’REISER IBM J . RES. DEVELOP. \ ‘OL. 28 NO. I JANUARY 1984

criteria above and provided a starting point for measuring
network complexity. Other graph models have been devel-
oped for networks, such as Petri nets described by Baer [171
and could also have been used.

McCabe’s measure for programs
McCabe’s measure is based on a graph-theoretic approach
and uses some basic definitions and theorems from graph
theory, which are repeated here.

Definition 8 / I S] The cyclomatic number V (G) of a graph
G with n nodes, e edges, and p connected components is

V (G) = e - n + p .

Definition 9 /I91 A linear graph is said to be strongly
connected if for any two edges r a n d s, there exist paths from
r to s and from s to r .

Theorem 2 /18/ In a strongly connected graph G, the
cyclomatic number is equal to the maximum number of
linearly independent circuits.

The basis for McCabe’s approach is as follows: Given a
computer program, associate with it a directed graph that
has unique entry and exit nodes. Each node in the graph
corresponds to a block of code in the program where the flow
is sequential, and the edges correspond to the branches taken
in the program. It is assumed that each node can be reached
by the entry node and each node can reach the exit node.

The resultant graph is known as the program control
graph, and the cyclomatic number is then a complexity
measure for the program. This approach suggests that com-
plexity is increased by branches and can be reduced by
removing unnecessary branches. The complexity computa-
tion is

u = e - n + 2 p .

McCabe observes that the cyclomatic complexity is equiv-
alent to the number of predicates plus one.

Alternatively, if G is a connected graph with n vertices and
e edges, then the cyclomatic complexity is equivalent to the
number of regions:

u = e - n + 2 .

For a strongly connected graph the cyclomatic complexity
is

u = e - n + 1.

3. Basic method
Based on the choices of Witt’s model and McCabe’s mea-
sure, simple applications of McCabe’s measure to some of

Table 1 Characteristics of software complexity measures.

Easy to Intuitively Consistent Suitable for
apply obvious networks

McCabe Yes Yes Yes Yes
Source lines Yes Yes No No
Halstead No Yes Yes No
Storm/Preiser Yes Yes Yes No
Laemmel/ Yes Yes Yes No
Shooman
Ruston No Yes Yes Yes

the networks of Witt’s model are made. Recognition of some
shortcomings in this approach leads to definition of a new
generalized measure, and similar application of it.

0 McCabe’s model applied to networks
In order to apply McCabe’s technique to networks, the
interpretation of the program control graph must be
changed. Our interpretation is that each node in the network
represents a module, and each edge represents an intermod-
ule connection (invocation of or return of control from a
program in another module). We call this the network
control graph. The network control graph constructed in this
manner represents the software system structure, as devel-
oped during the software architecture phase. McCabe’s
technique can then be applied to the network control graph in
the same manner as it is applied to the program control
graph.

Let us make this more formal.

Definition IO A network control graph G is a directed
graph with each node corresponding to a unique module and
each edge corresponding to an intermodule connection. The
edges are directed from the module using a network message
to the receiving module.

Dejinition 11 A network control graph S is a subgraph of
G if S is a network control graph which consists only of nodes
and edges of G. If S is not identical to G, S is called a proper
subgraph of G, written

S C G.

0 Simple applications of McCabe’s measure

Hierarchy and pipeline networks
We need the following definitions.

Definition 12 /4] A hierarchy is a network of modules in
which output parameters and control are always returned to
the invoking module.

Definition 13 /4] A pipeline is a network of modules in
which output parameters and control are transmitted 19

N . R . HALL A N D S. PREISER IBM J. RES. DEVELOP. VOL. 28 NO. 1 J A N U A R Y 1984

A A B

GI

Figure 2 Hierarchy networks.

directly to successor modules, rather than being returned to
the invoking module.

The hierarchy provides limited concurrency, by requiring
that control be returned to the invoking module after each
application program execution. The pipeline provides more
potential for concurrency, insofar as many stages in the
pipeline can be in execution concurrently.

The hierarchies examined have a monitor module M
which controls the other modules in the network. In this
context the monitor plays a supervisory role in the network.
It is responsible for program invocation in the applications
modules when they have work to do and for receiving control
back when the work is complete. Consider the simple case
where a monitor invokes a program in a module, and in turn
has control returned to it. Figure 2 depicts two such cases.

First is a hierarchy with a monitor and two applications
modules. The second is a hierarchy with a monitor and three
applications modules. The cyclomatic numbers for the net-
works are, respectively,

V (G I) = 4 - 3 + 1 = 2 ,

V(C2) = 6 - 4 + 1 = 3.

This suggests that complexity increases as a function of the
number of modules in the hierarchy. This result corresponds
with our intuitive ideas about complexity. 20

N . R. HALL A N D S . PREISER

The pipelines to be examined have a controlling program,
which initiates program invocation in successor modules, and
is executed at the control services level in Witt's model. At
the end of the pipeline, for our purposes, control is returned
to the initiating module. Figure 3 depicts two such cases.

The first is a pipeline with three modules, A, B, and C. The
second pipeline has four modules, A , B, C, and D. The
cyclomatic numbers for these networks are, respectively,

V (C I) = 3 - 3 + 1 = 1,

V(G2) = 4 - 4 + 1 = 1

This suggests that all pipelines have the same complexity.
This result is not altogether satisfactory, as intuition suggests
that complexity increases with the number of modules. This
problem is addressed in the section on the generalized
measure.

The results of applying the McCabe measure can be
generalized as follows.

Theorem 3 In a hierarchy of n modules (including the
monitor), the McCabe network complexity is n - 1.

Proof Suppose there are n modules in the network. Then
there are 2 x (n - 1) paths connecting the modules, so that

V (C) = 2 x (n - 1) - n + 1

= n - I.

Theorem 4 In a pipeline of n modules, the McCabe
network complexity is always 1.

Proof Given a pipeline G of n modules, observe that there
are n paths connecting them, so that

V (C) = n - n + 1

= 1.

Definition and application on generalized measure
The method described in the section on McCabe's measure is
readily used for evaluation of methods of transfer of control,
static networks, and data acquisition. It was felt, however,
that there were other resources of interest in complexity
measurement, such as channels, tape drives, disk drives,
CPUs, etc. In fact, resource allocation is commonly
addressed in operating system designs by various scheduling
algorithms, queueing techniques, interrupt handlers, etc.
Proposed operating systems are routinely modeled and exam-
ined to ensure that they contain simple, low-overhead
designs. The methods used in simulating operating system
designs are somewhat different from the methods we discuss
here. In order to address other resources of interest, a more
general measure was developed which is also based on path
expressions. It should be pointed out that this measure is

I BM J. RES. DEVELOP. VOL. 28 NO. I JANUARY 1 984

not a generalization of the McCabe measure, although
certain elements of it are similar.

Definition
Here we define a network N consisting of nodes and edges, as
follows: Each node represents a module, as before, which
may or may not be executed concurrently with another
module. Each edge represents program invocation and return
between modules (in this case the edges are called single
paths). Resources are allocated when programs are invoked
in other modules, and we wish to measure complexity asso-
ciated with allocation of such resources.

Given a network N of n single paths, define complexity as

where

1. k is the total number of resources to be controlled in the
network,

2. r l i , ..., rki represent those resources which must be con-
trolled for a given path p i ,

3 . rji = 0 if the resource is not required by the node,
rji = 1 if the resource is required,

4. dj is the complexity for allocation of each resource (e.g.,
the complexity associated with a procedure used to gain
exclusive access to common data),

5 . ei is the complexity of program invocation and return
along each path pi (such as operating system complex-
ity).

Simple applications of general measure
Let us apply this technique to the simple kinds of hierarchy
and pipeline networks that we did for the McCabe model.
For the purpose of these applications, let us assume that only
program invocation and return are of interest, and that there
are no resources to be controlled.

This means that rJ, = 0 in all cases. If we assume only one
means of invocation, then e, = constant, say, e, = 1 for all i.

Then for the hierarchies depicted in Fig. 2,

C (G I) = 4and C(G2) = 6.

Similarly, for the pipelines depicted in Fig. 3 ,

C (G I) = 3 and C(G2) = 4.

In addition the following general results are obtained.

Theorem 5 If e is the complexity associated with program
invocation between modules and if no other resources are
needed, then for a hierarchy N of n modules the generalized
complexity is 2e x (n - 1).

Proof Note that for a hierarchy of n modules there are 2
x (n - 1) paths connecting them. Since there are no other
resources required, the generalized complexity is

GI

Figure 3 Pipeline networks.

C (N) = 2e x (n - 1).

Theorem 6 If e is the complexity associated with program
invocation between modules and if no other resources are
needed, then for a pipeline N of n modules the generalized
complexity is ne.

Proof Note that for a pipeline of n modules there are n
paths connecting them. Since there are no other resources
required, the generalized complexity is

C (N) = ne.

To compare these results with McCabe’s results, let e = 1.
Then C (N) = 2 x (n - 1) for the hierarchy versus V (G)
= n - 1, and C (N) = n for the pipeline versus V (C) = 1.

Note that using this more general approach, we still have
the result that pipelines are less complex than hierarchies
with the same number of modules. However, pipeline com-
plexity increases with the number of modules. This is a
different result from the result obtained in the section on
McCabe’s measure, where all pipelines had the same com-
plexity.

The difference occurs because the general-purpose mea-
sure counts the number of edges and does not subtract the 21

IBM J. RES. DEVELOP. VOL. 28 NO. I JANUARY 1984 N . R. HALL A N D S. PRElSER

GI

n

G2

W

Figure 4 Data locking networks.

number of nodes. Thus with the generalized measure, com-
plexity is a function of the total number of module invoca-
tions.

There is some disagreement as to which of these two
approaches is preferable. On the one hand, one can argue
that only excessive numbers of invocations are of interest,
and conclude that the McCabe approach is preferable. On
the other hand, one can argue that more modules in a
network lead to more complexity, and conclude that the
generalized measure is preferable.

With either technique there is a need to combine the
network complexity with internal module complexity to
obtain an overall complexity measure, called the combined
complexity measure.

4. Combined measure
In examining the complexity of the network only, we are able
to obtain a measure of complexity for one network design
relative to another. There is, however, a danger in using the
network complexity measure exclusively for these types of
decisions. For example, the least complex network would
result if the entire system consisted of a single module. The 22

N . R. HALL A N D S. PREISER

resultant module would then have all the network complexity
embedded in the module, so that it would be hidden from the
network measure, but visible to some of the more conven-
tional complexity measures, such as were examined previous-
ly. One could also consider the situation which would result if
modules to perform service functions, such as exclusive data
access and release, did not exist, but the logic was embedded
in the applications modules. The network would be less
complex, but the applications modules would be more com-
plex. It is therefore desirable to be able to combine the
network and conventional complexity measures in such a way
that a more complete picture is obtained. This combined
complexity is more of an absolute measure, as it is reasonable
to expect the complete system to have an overall complexity
threshold which should not be exceeded.

0 Problem description
Suppose a network consists of a monitor and seven applica-
tions modules, of which three require exclusive access to the
same data. We want to evaluate whether it is preferable to
have a separate lock/unlock module, or whether it is prefer-
able to embed this logic in the three applications modules.
The networks representing these alternatives are shown in
Figure 4. It is assumed that communications modules are not
a factor in the decision process, so these are not shown in this
example. Here module M8 is the monitor, and modules M I to
M , are the applications modules. Module M9 provides the
locking and unlocking capabilities needed by modules M I ,
M,, and M,. Network GI shows the locking/unlocking
capability embedded in the applications modules, and net-
work G2 shows the locking/unlocking capability in a distinct
module.

In order to develop a combined complexity measure, the
following definition is used.

Dejnition 14 Let CN be the network complexity and
C, , ..., C, be the individual module complexities. Then the
combined complexity is

k

C , = W, X CN + w2 1 C, ,
,=I

where w1 and w2 are weighting factors assigned by the user,
which may differ for different measurement techniques.

Applications of McCabe/generalized measures
For this example we apply both the McCabe and the
generalized measures to the networks shown in Fig. 4. The
results for the McCabe measure are

V (G 1) = 14 - 8 + 1 = 7.

For this network the combined complexity is
8

c,, = 8 x WI + w2 x c,, .
i= I

IBM J . RES. DEVELOP. \ iOL. 28 N O 1 JANUARY 1984

Using the McCabe measure,

V (G 2) 1 26 - 9 + 1 = 18.

For this network the combined complexity is
9

C,, = 19 X W , + W , x Ci, .
i= I

At this point some observations are made to simplify
computations. We need to determine which of networks G1
or C2 provides a less complex design. Therefore, we want to
compare C,, and C,,. Observe, however, that many elements
are the same for both GI and G2. For example, modules M4
through M8 in Fig. 4 are identical in GI and G2. Therefore,
to examine the differences between C,, and C,,, it is not
necessary to compute the complexity of M4 through M,. In
addition, those sections of MI through M3 which do not relate
to data acquisition or locking can also be disregarded.
Therefore, only the difference will be examined:

c,, - c,, = - 11 x w, + w, (Ci1 - C,,) - c,,
i= I

Observe that C,, = Ci, except for the three applications
modules M I , M,, M, and the lock module M9. Therefore,

c,, - c, = - 11 x w, + W,((C,, - CI2)

+ (c2] - c22) + cc3l - ‘32) - ‘92)’

Further observe that

c,l - cj2 = ccj2 + c91) - ‘j2

for j = 1, ..., 3, where C,, is the average added complexity
when locking/unlocking is done in the applications module;
then,

c,, - c,, = - 11 x w, + w,(3 x c,, - C9,)

Note that in applying this technique to an actual design
problem, the user might make a different set of assumptions
than we have made, based on the design problem.

Alternatively, apply the generalized measure to the net-
works of Fig. 4 using the following algorithm:

C (N) = 2 (ei + 2 dj x r j ,) .

For this example let the cost of branching ei = 1, and note
that rji = 0, except for locking and unlocking, which have
complexities dl and d,. Then

, = I j = 1

n

C (N) = 1 1 + dl + d,
i= I

and

C,, = 14 X W, + W, x Cil ,
8

i= I

IBM J. RES. DEVELOP. VOL. 28 N O . I JANUARY 1984

9

C,, = 26 X wI + w2 x C,, .
i = l

Thus

c,, - c,, = -12 x w , + w,(3 x c,, - C,),).

Having obtained these results for the two measurement
techniques, we must measure the complexity of the locking/
unlocking function, both in a separate module and embedded
in the applications modules. We must also assign an appro-
priate weighting factor in order to complete the trade-off
analysis.

Combined measure

Storm and Preiser’s index of complexity/McCabe’s mea-
sures Let us now turn to examine the logic of a typical
locking/unlocking routine, and apply Storm and Preiser’s
measurement technique.

This index of complexity was developed especially for
structured programs. Given the complexity index for struc-
tured programming constructs such as sequence (DO-
THEN), iteration (WHILE-DO), alternation (IF-THEN-
ELSE), and CASE, the complexity index of the entire
program is developed.

Some of Storm and Preiser’s definitions [9] are used here.

Dejinition 1.5 /9/ Let m(si) be the measure of complexity
of the program segment si, which has Pi lines of source code,
so that

m(si) = P i .

Let m (c i) be the measure of complexity of the test on
condition ci, so that

m(c,) = di , di 2 1 .

Dejinition 16 (91 For the sequence (Do sI then s2)

m(s,) + m(s,) = Q, + Q, .
Definition 17 /9/ For the iteration (While c, do s,)

m(cl) + m(sl) = dl + P, .
Dejinition 18 /9/ For the alternation (If c, then sI else s,)

m(c,) + avg(m(s,), m(s2)) = dl + (Q, + Q2)/2.

Dejinition 19 /9/ For the case statement

m(c,) + avg(m(s,), m(s,), . . a , m(s,)) = dl + x Q i / 2 .
i= I

For example, the simple structure in Fig. 5 has a complexity
of

d c ,) + avg(m(s,), m(s2)). 23

N . R. HALL AND S. PREISER

24

Q

Figure 5 Storm and Preiser measure of complexity.

Note that each prime structure is assigned an individual
complexity m. These are then combined to give an overall
complexity for the composite program.

Since this is easily computed before compilation, if the
index is “too large,” some care in reducing the complexity is
strongly suggested. In this case, design logic will be exam-
ined.

Apply Storm and Preiser’s index as follows:

“If” constructs have a value of 1.
“Do” constructs have a value of 1.
Each line in a sequence has a value of 1

Then for the exclusive lock design in Table 2,

m(1ock) = 4 x (m(if)) + m(dounti1) + 13 = 18.

The design for exclusive unlock is shown in Table 3.

Now we apply Storm and Preiser’s measure to obtain

m(un1ock) = 5 x (rn(if)) + m(whi1edo)

+ m(dounti1) + 12 = 19.

Alternatively, apply McCabe’s measure to the combination
of designs for the lock and unlock functions and obtain V (C)
= 12. The results for the exclusive lock and unlock designs
can now be used in conjunction with the network complexity
measures to obtain an overall complexity figure, which will
allow the desired trade-off study to be done.

This example can be studied to see if more general
comparisons can be made of the various measures used here.

For the lock design observe that the Storm and Preiser index
is

m(1ock) = 4 x m(if) + m(dounti1) + 13 = 18.

For the McCabe measure V (C) = 5 , and finally the
number of source lines is 26. This suggests the following
relationship:

number of source lines 2 Storm and Preiser
index 2 McCabe measure.

This occurs because the McCabe measure counts only the
design statements, while Storm and Preiser’s index counts
the decision statements plus some of the source lines, and of
course the source line count includes everything.

Combined measure results
In order to combine the results of the last two sections, first
note that the complexity of the lock/unlock design is the
same regardless of whether the design is included within the
module or as a separate module. This suggests that for the
example C,, and C,, are identical. Since only the lock or the
unlock portion of the design is used at any given time, the
indices computed previously can be averaged to obtain

C,, = C,, = (18 + 19)/2 = 18.5.

For the McCabe network measure,

c,, - c,, = -11 x w, + 37 x w 2 .

Let w, = w, = 1 to obtain

C,, -- C,, = 26.

For the generalized measure,

C,, - C,, = -12 X w1 + 37 X W, = 25.

Note that in both cases the network with an independent
locking/unlocking module is less complex. This corresponds
to our intuitive notions for this particular case. It is possible,
however, to get more general results, as will be seen later.

Alternatively, by using the McCabe measure for design in
combination with the McCabe and generalized network
measures a different set of results is obtained.

Combine the McCabe measures for design and network to
obtain

C,, - C,, = -11 X W , + ~ ~ (3 6 - 12)

= -11 X W , + 24 X w 2 .

Let w1 = w2 = 1; then

C,, - C, = 13.

N . R. HALL A N D S. PREISER IBM J . RES. DEVELOP. VOL. 28 . NO. 1 JANUARY 1984

Table 2 Exclusive lock design.

If the user has not made a lock request
or if this module does not have this lock block

Endif
If this module already has this lock block

Endif
Save the return address to the user module
Obtain the lock
Store the time lock was received
Add this lock to the queue of those owned by
this module
Store the return address
Dountil test-and-set is successful

Expect a 0 in the lock
Set the user's module id in the lock
Attempt to set the lock to the user's

If test-and-set is successful

Else

terminate

terminate

module id

The user module has the lock

Add the user module to the queue
of those waiting

Endif
Enddo
Save the return address
Store the time of the lock completion

Table 3 Exclusive uniock design.

If this is not an unlock request
or if this module does not have this lock block

Endif
If the owner of the lock block is not this module

Endif
Get the queue of locks owned by this module
While

Do

Terminate

Terminate

this is not the lock

Get next lock on queue
If this is the end of the queue

Endif
Terminate

Enddo
Remove the lock from this module's lock queue
If no other modules are waiting

Release the lock
Return if test-and-set is successful

Endif
Dountil the end of the queue of modules waiting

Find the end of the queue
Enddo
Give the lock to the module id
Update pointers
Save return address

This indicates that it is advantageous to have a separate
locking/unlocking module when there are three users. If
there are only two users, with control graph G3, then

C,, - C,, = -7 X w1 + ~ ~ (2 4 - 12) = 5 .

In this case it is still advantageous, although less so, to
have a distinct locking/unlocking module. Finally, if there is
just one user, with control graph G4, then

CTI - c, = - 3 x w , + w,(12 - 12) = -3.

In this case it is clearly advantageous to not have a separate
module for locking/unlocking.

By using the generalized measure for networks and the
McCabe measure for design, a similar set of results is
obtained. For the network where three modules require the
service,

C,, - C,, = -12 X W, + ~ ~ (3 6 - 12)

= -12 X W, + 24 X W,

= 12.

When two modules require the service,

C,, - C,, = - 8 X W , + ~ ~ (2 4 - 12)

= -8 X W, + 12 X W,

= 4.

Finally, when one module requires the service,

c,, " c,, = -4 x w, + w,(12 - 12)

= - 4 x WI

= -4.

These results give an indication of whether it pays to have
a distinct service module for locking/unlocking. In the case
of two or more modules it is clearly worthwhile. For one
module it is definitely not worthwhile. Of course, for one
module a locking service is not needed, but the example is
only used for illustrative purposes. Therefore, this example
illustrates how the network measure can be used early in the
design phase to help make design trade-off decisions.

A more general result can be obtained for the McCabe
network measure and McCabe design measure combined.

Theorem 7 Let GI be the network with service design
embedded in the applications modules. Let G2 be the
network with service design in a distinct service module.
Then if C,, and C,, are the combined complexities for GI
and G2, respectively,

C,, -- C,, = -(number of added edges - 1)

+ (number of users - 1)

x design complexity

= -(e$ - 1) + ((ua - 1) x de) .

N . R . I <ALL A

25

I N D S. PREISER IBM J. RES. DEVELOP. VOL. 28 NO. I JANUARY 1984

Here es is the number of added edges needed to access the In general, for hierarchies of n modules with n - 1
service, ua is the number of applications modules using the applications modules, where n > 2,
service, and dc is the design complexity of the service. C (G I) = 2 x (n - 1) + (n - 1) x C (S) ,

I If C(G2) = 4 X (n - 1) + C(S) ,

C,, - C,, < 0, a separate service module is desirable, C (G I) > C(G2) if C (S) > 2 + 2 / (n - 2),

= 0, the service can be embedded in the ap- which can be rounded up so that it is worthwhile to have a
plications modules or kept as a separate service module if C (S) > 4.
separate service,

< 0, a separate service module is not
desirable.

The following general result is obtained.

Theorem 8 Given a hierarchy with two or more applica-
tions modules using a specific service, it is worthwhile to have
a separate service module S if C (S) > 3 using the McCabe
measure, or if C (S) > 4 using the generalized measure for
the network measure (assuming we let the cost of transfer
= 1 for the generalized measure).

Proof (McCabe measure) Suppose graph G1 corresponds
to the hierarchy of three modules with two applications
modules having the service embedded. Then

V(G1) = 2 + 2 x C(S) .

5. Conclusions and future research directions
In the previous sections techniques have been developed for
measuring complexity of networks of modules, including

1. An extension of McCabe’s technique which can be used

2. The generalized measure, which can be used to measure
the complexity associated with resource acquisition, as
well as for network measurement.

3. The combined measure, which aids in deciding, whether to
develop separate service modules or whether to keep
service logic within the applications modules.

for networks.

A more extensive treatment of these topics can be found in
Hall’s doctoral dissertation [20], which is the basis for this
paper.

Then suppose graph G2 corresponds to the hierarchy of It is our view that these techniques are generally intuitive,

service module: design alternatives available to the architect of a complex
three modules with two applications modules and a separate easy to apply, and provide assistance in assessing the many

V(C2) = 5 + C (S) , system. They allow one to examine complexity with a consis-
tent, plausible a priori method, and can be used to

V(G1) > V(G2) if C (S) > 3.
1. Identify areas which are overly complex (in a relative

In general, for hierarchies of n modules, with n - 1 sense) so that complexity can be reduced before major
design decisions have been made.

2. Help decide on the optimal number of modules in the
application modules,

V(G1) = n - 1 + (n - 1) x C (S) , system.

V(G2) = 3 x (n - 1) - 1 + C (S) , 3. Measure complexity associated with resource acquisi-
tion.

V (G I) > V(C2) if C (S) > 2 + l / (n - 2), 4. Aid in deciding whether to have distinct service modules.

which can be rounded up so that it is worthwhile to have a
separate service module if C (S) > 3. Methods for reducing network and overall complexity

Proof (generalized measure) Suppose graph GI corre-
sponds to the hierarchy of three modules with two applica- 1. Encapsulation of data to define the optimum r~umber of
tions modules having the service embedded. Then modules and reduce locking overhead and complexity.

2. Use of pipelining where possible to reduce transfer com-

3. Use of service modules to reduce combined complexity.

include

C(G1) = 4 + 2 x C(S) . plexity.

Then suppose graph G2 corresponds to the hierarchy of
two modules with a separate service module:

C(G2) = 8 + C (S) ,

26 C(GI) > C(G2) if C (S) > 4.

In the future the following efforts could be undertaken:

1 . Examination/development of tools to aid in computing
complexity for large systems.

N. R. HALL A N D S . PREISER IBM J RES. DEVELOP. VOL. 28 NO. I JANUARY 1984

2. Extension of these results to include other methods of
modeling parallel processes (e.g., Petri nets, communicat-
ing sequential processes).

3. Extension of this type of measure to other phases of the
software life cycle (e.g., software specifications, testing).

It is particularly desirable to continue research in this
area, so that software complexity measurement can become
more rigorous. It is our view that the work described here
aids in progress towards this goal.

6. References
1. R. M. Mattheyses and S. E. Conry, “Models for Specification

and Analysis of Parallel Computing Systems,” 1979 Conference
on Simulation, Measurement and Modeling of Computer Sys-
tems, ACM SIGMETRICS 8,3,215-224 (Fall 1979).

2. C. A. R. Hoare, “Communicating Sequential Processes,” Com-
mun. ACM21,8,666-677 (1978).

3. S. Owicki and D. Gries, “Verifying Properties of Parallel
Programs: An Axiomatic Approach,” Commun. ACM 19, 5 ,

4. B. 1. Witt, “Communicating Modules: A Design Model for
Concurrent Distributed Systems” FSD TR86.0001, IBM Fed-
eral Systems Division, Bethesda, MD, August 13, 1982.

5. M. R. Woodward, M. A. Hennell, and D. Hedley, “A Measure
of Control Flow Complexity in Program Text,” IEEE Trans.
Software EngineeringSE-5, 1.45-50 (January 1979).

6. L. A. Belady and C. J . Evangelisti, Research Report RC-7560,
IBM Thomas J . Watson Research Center, Yorktown Heights,
NY, March 1979.

7. L. A. Belady, “On Software Complexity,” IEEE Proceedings of
the Workshop on Quantitative Software Models, No. TH0067-
9, New York, October 1979, pp. 90-94.

8. H. Ruston, “Software Modeling Studies: The Polynomial Mea-
sure of Complexity,” RADC-TR-81-183, Rome Air Develop-
ment Center, Air Force Systems Command, Griffiss Air Force
Base, Rome, NY, July 198 1.

9. 1. L. Storm and S. Preiser, “An Index of Complexity for
Structured Programming,” IEEE Proceedings of the Workshop
on Quantitative Software Models, New York, 1979, pp. 130-
133.

279-285 (1976).

10. T. J. McCabe, “A Complexity Measure,” IEEE Trans. Soft-
ware EngineeringSE-2,4, 308-320 (December 1976).

1 1. M. H. Halstead, Elements of Software Science, Operating and
Programming Systems Series, P. J. Denning, Ed., Elsevier
North Holland Co., Inc., New York, 1977.

12. C. E. Walston and C. P. Felix, “A Method of Programming
Measurement and Estimation,” IBM Syst. J. 16, 1, 54-73
(1977).

13. A. Laemmel and M. Shooman, “Statistical (Natural) Language
Theory and Computer Program Complexity,’’ POLY/EE/EO-
76-020, Dept. of Electrical Engineering and Electrophysics,
Polytechnic Institute of New York, Brooklyn, NY, August 15,
1977.

14. K. Christensen, G. P. Fitsos, and C. P. Smith, “A Perspective on
Software Science,” IBMSyst. J. 20,4, 372-387 (1981).

~..

27

IBM J . RES. DEVELOP. VOL. 28 NO. I J A N U A R Y 1984 N. R. H A L L A N D S . PREISER

5. A. Fitzsimmons and T. Love, “A Review and Evaluation of
Software Science,” ACM Computing Surv. 10, 1, 3-1 8 (March
1978).

6. M. H. Halstead, R. D. Gordon, and J. L. Elshoff, “On Software
Physics and GM’s PL.1 Programs,” GM Research Publication
GMR-2175, General Motors Research Laboratories, Warren,
MI, 1976.

7. J. L. Baer, “Graph Models in Programming Systems,’’ K. M.
Chandy and R. T. Yeh, Eds., Current Trends in Programming
Methodology, 111, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1978, 168-230.

18. C. Berge, Graphs and Hypergraphs, North-Holland Publishing
Co., Amsterdam, The Netherlands, 1973.

19. W. Mayeda, Graph Theory, Wiley-Interscience, New York,
1972.

20. N. R. Hall, “Complexity Measures for Systems Design,” Doc-
toral Dissertation, Dept. of Mathematics, Polytechnic Institute
of New York, NY, June 1983.

Received May 5, 1983; revised July 7, I983

Nancy R. Hall IBM Federal Systems Division, 6600 Rock-
ledge Drive, Bethesda, Maryland 20817. Dr. Hall received her B.A.
and M S . in mathematics in 1963 and 1967 at New York University
and her Ph.D. in mathematics in 1983 at the Polytechnic Institute of
New York. She joined IBM in 1966 in New York City and has since
worked in the areas of software development, software management,
and software technology. Currently she is an advisory programmer
on the software engineering and technology staff at the Federal
Systems Division headquarters. Her recent activities include devel-
opment of software network measurement techniques, teaching
classes in distributed systems design at the Federal Systems Divi-
sion, and assisting George Mason University, Fairfax, Virginia, in
the development of a computing strategy. Dr. Hall is a member of
the Association for Computing Machinery and the Institute of
Electrical and Electronics Engineers.

Stanley Preiser Polytechnic Institute of New York, 333 Jay
Street, Brooklyn, New York 11201. Dr. Preiser is professor of
mathematics and computer science at the Polytechnic Institute of
New York and formerly Dean of its Westchester Center in White
Plains, New York. He received his B.S. in physics from the City
College of New York in 1949, and his M.S. in 1950 and his Ph.D. in
1958, both in mathematics from the Courant Institute at New York
University. Dr. Preiser has been a consultant to IBM and an invited
lecturer over a period of years. He is a member of the American
Association for the Advancement of Science, American Mathemati-
cal Society, Association for Computing Machinery, and Society for
Industrial and Applied Mathematics.

