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Optimizing Preventive Service of Software Products 

The  implementer  of a  large, complex  software  system cannot make it completely defect free, so he must  normally  providejixes 
for  defects  found  after  the code is  put  into service. A system user may  do preventive service by installing  these  fixes before the 
defects cause him  problems. Preventive service can benefit both  the  software developer and the  software user to  the  extent  that 
it reduces the  number  of operational problems caused  by  software  errors, but  it requires the  expenditure  of  the resources 
required to  prepare, disseminate, and installjixes; and it can be the cause of  additional software problems caused by design 
errors  introduced into  the code by  jixes.  The benefit f rom removing  a given defect  depends on how many  problems  it would 
otherwise  cause.  Benefits may be estimated  by  modeling  problem occurrence as  a random process  in execution  time governed by 
a distribution  of characteristic rates.  It  is  found  that  most  of  the benejit to be realized  by  preventive service comes f rom 
removing  a  relatively small  number  of high-rate defects  that are found  early  in  the service life  of  the code. For the  typical user 
corrective service would seem  preferable  to preventive service as  a way of dealing  with most  defects  found  after code  has had 
some  hundreds  of  months  of usage. 

Introduction 
It is difficult to  create a very large  software  product  that is 
completely free of design errors (DES). Accordingly, the 
software  producer  must provide means  to  correct user  code 
for DES not eliminated  during product  development. We 
term  the process of correcting a user’s code to  eliminate a DE 
that is causing him  a  problem Corrective  Service  (CS)  and 
the process of correcting his code to  eliminate a DE that  has 
not  yet caused him  a  problem  Preventive Service (PS). 

Where a software system has  many  hundreds or thousands 
of  users it is commonly the  case  that for every user  problem 
caused by a previously unknown DE (a “discovery”), there 
will be several  problems  caused by already known DES 
(“rediscoveries”). In  such  a situation, if all  users would 
perform the PS to remove  a DE soon after  it is discovered,  it 
would be possible to  avert most of the user  problems requir- 
ing CS  to DES in the  product  software. A program of 
thorough PS could be of considerable value to  the  software 
producer,  since  to  the  extent  that it  reduced his software 
product costs,  it would permit  him  to realize higher effective 
product  quality  and  to offer service at  a lower price; and it 
could benefit the  software user both in terms of lower cost 

and higher quality of software  and in terms of a  reduction in 
costs due  to unscheduled interruptions of service  caused by 
product software DES. 

However, PS like CS has  its costs. It consumes the 
developer resources  needed to  prepare  and  distribute media 
for mass dissemination of the fixes, and it consumes  user 
resources of operational time  and staff to install fixes preven- 
tively. Moreover, PS is to some extent  an original  source of 
problems,  since the code fixes themselves occasionally inject 
new DES into  the code. 

The  studies reported here were done over the period 
1975-80 with the objective of developing means  to  estimate 
whether  and  under  what  circumstances PS is worthwhile to 
do. We  report on 

The model we used to project the  occurrence of user 

The results of fitting the model to historical error  data; 
0 Our conclusions about how to  carry  out  an  optimum 

software problems; 

program of PS. 
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The scenario  for software service 
Software service of the products we studied involved this 
series of events: The user of an  IBM  software product 
reported to  an  IBM  Customer Engineer (CE)  that he had a 
problem believed to  be  caused by a DE in the  product.  The 
CE diagnosed the  source of the problem; if it  was  a DE in 
IBM code,  he reported it to  an  IBM  change  team in a form 
called an  APAR.  The  change  team  studied  the  APAR  and, if 
the  DE proved valid, prepared  and  sent  to  the user  a  code 
change  that would avert  the user’s immediate problem. 

Next  the  change  team refined and tested the code change 
more  comprehensively, and incorporated the finished version 
into a Program  Temporary Fix (PTF), which is a  vehicle for 
transmitting  the  changed module(s) of the  product code. The 
change  team  transferred  the PTF  to  another  IBM  group, 
which assembled PTFs on tapes for  periodic distribution  to 
users. Later  an  IBM development group  might  further 
process the  PTFs  and  incorporate  them  into  an  updated 
version of the product. An IBM  library facility distributed 
PTF  tapes  at  frequent intervals, approximately monthly in 
the first months  after  First  Customer  Shipment  (FCS) of the 
product.  A PTF  tape typically  incorporated fixes for  all 
significant errors found in the product up  to a time  one or two 
months  before the  tape was put in the  library,  and it took 
about a  month to  get  the  tapes  from  the  distribution  center  to 
the  average user. Accordingly,  a  user  having the most  recent 
PTF  tape could assume  that  he  had fixes for  most errors 
discovered more than  three  months  earlier. 

Some users  installed all  PTFs preventively, some installed 
only selected PTFs, some just kept PTFs  as  an  immediate 
source for fixes if need arose. Some users would install the 
PTFs only after waiting to see whether other users who had 
installed them  had encountered new DES  caused by the fixes 
in the  PTFs. 

More often than not when a DE  caused a  user  problem the 
problem proved to be a rediscovery. A rediscovery of a DE 
was somewhat  easier to  deal with than  an original discovery, 
since much was already known about  the  DE  and fixes for it 
were  available. Even so a rediscovery was  costly  both to  IBM 
and  to  the user. 

For many  products having large usership,  problems  caused 
by rediscoveries were  more  numerous than problems  caused 
by original discoveries, even to  the  extent  that they  were the 
dominant  factor in service  cost. For such products  the  IBM 
service organization encouraged  users to  do  prompt  PS for  all 
DES.  However, the users  seemed  more aware of the costs and 
risks of PS than  they were  persuaded of the benefits. (It is 
difficult to  demonstrate  the benefits realized from  PS, since 
they must be quantified in terms of hypothetical  events that 
PS is believed to have  averted.) For whatever  reason most 
users were unwilling to preventively install PTFs en masse. 

Modeling th le occurre mc :e of  errors 
How to  evaluate  the benefits from  PS is simple in principle. 
Some interval of time is required  after a DE is discovered to 
prepare a change  to  the base  code and install it in the users’ 
versions of the code.  Rediscoveries that occur  in this  time 
interval cannot be avoided;  rediscoveries that would have 
occurred after  this interval will be  averted.  One must deter- 
mine the  time interval  between discovery and fix for the 
system arrangements in use and project what problems 
would have  occurred after  this interval. One  then reckons 
what it is worth to  avert these  problems. 

To carry  through such an evaluation  one needs means to 
project the  numbers  and times of the rediscoveries that would 
have followed each discovery. When we began our work little 
was known about  the  statistics of occurrence of rediscoveries, 
since no records  were  kept that  summarized for  a given DE 
the rediscoveries that followed it. 

However, we had one piece of qualitative information that 
provided the key to  understanding  the  time  patterns of 
rediscovery. Persons familiar with the service  scene  reported 
that  particular  DES were quite “virulent,” causing problems 
to many  users,  but that many DES were rather innocuous. 
We realized that if the “virulence” of a DE were  a manifesta- 
tion of the  average  rate  at which the  DE  caused problems 
under  operational  circumstances,  the  times of rediscovery of 
a DE could be projected  from  its  quantified  virulence. 

In accordance with this  idea we adopted  the following 
model for dealing  with  problem  occurrence: In operational 
circumstances  each  DE in  a  product  manifests  a characteris- 
tic problem rate R. The  occurrence of each problem caused 
by the  DE, whether the original discovery or a rediscovery, is 
an event in a Poisson process, in which problem  events  occur 
at  random  times with an  average  rate R. The  cumulative 
running  time of all  users plays the role of time in the Poisson 
process. The  error  rate of a  product is the  sum of the  error 
rates associated with the individual DES.  The  rates asso- 
ciated with  different DES  may  range over a wide spectrum of 
values, but  the  rate associated with a given DE  remains 
unchanged  until  it is removed from  the code by installation of 
a fix. 

On this model the  pattern in real time of the  occurrence of 
software problems for a  product is primarily  a  function of 

The  rate of usership vs time, 
The  number of DES originally  present in the  product, 
The  distribution of problem rates over the original DES, 
and 
The  schedule of installing fixes for DES  after  they  are 
discovered. 3 
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We sought  historical error  data for some older  products in 
order  to  test  whether we could estimate virulences and 
correlate  them  to  patterns of rediscoveries. We soon learned 
of the work of Richard  W. Phillips of IBM Poughkeepsie, 
who had collected and  analyzed  data on both product  usage 
and  times of original discovery for  a number of products of 
interest  to us. Phillips had  determined  the  distribution of 
original discoveries against  cumulative  usage for  these  prod- 
ucts  and  had found that  the  distribution was similar  from  one 
product  to  another.  He  had even determined  an  empirical 
formula for this  distribution. 

We found that Phillips’ formula for the  distribution of 
discoveries vs usage could be reproduced  using our model i f  
we assumed that  the  rate  distribution, Le., the relative 
numbers of DES having each possible rate, was proportional 
to a particular inverse power of the  rates.  This finding 
confirmed the  apparent usefulness of our model, so we used it 
in all our subsequent work. 

Phillips was kind enough to  make  all of his data available 
to us so we began by studying  them in detail. As we did so we 
saw that we would need a great  deal of other  data before we 
could  establish whether discoveries and rediscoveries could 
be successfully  projected. 

Methods of data analysis and model calibration 
We collected or created  the following error  statistics  to use in 
applying our model to  the analysis of error  data for a number 
of software products: 

The  average monthly  product usage beginning  with FCS, 
The  number of original discoveries each  month, 
The  number of rediscoveries each  month of each known 
DE. 
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The products we studied were all products  such as  operating 
systems  comprised of hundreds of thousands of lines of code 
and used by many  hundreds of users. 

Creating usage statistics 
We needed to  accurately  determine  the relation between 
usage and  time for our products. The  rate of usage by a  user 
is his machine speed, and  the  total  rate of usage at  any  time is 
the  number of user machine speeds, so the  cumulative usage 
U is the  integral of 

d U =  N ( T )  * F .  d T ,  

where N (  T )  is the  number of users at  time T and F is the 
average  machine speed. 

Conceptually  the  machine speed  value  for determining 
usage would depend on the size of a  user machine  and  the 
average  number of shifts per day of usage. In practice we had 
no direct access to  such  detailed  information  about usage; the 

most we could hope to  do was determine what  user  machines 
were running in a given month.  The usage statistics available 
to us initially  were  indirectly arrived at  estimates of the 
numbers of user  machines at  the  end of each  calendar 
quarter.  These  statistics proved to be insufficiently accurate 
for our purposes, so we developed our own usage estimates by 
analyzing records of service to  software installed in IBM 
machines that were under  contract  for  software service. The 
machines for which detailed records of software service  were 
available to us were  those in the  United  States inventory, so 
we limited our detailed study of error phenomena to users of 
these  machines who bought software service from  IBM.  The 
U S .  inventory of machines accounted for about half of the 
total usage of our products. We reckoned  usage in usage- 
months,  a  usage month being a  chronological  month multi- 
plied by a machine speed. 

To formulate  usage month statistics we created for each 
machine a  month by month record of which software prod- 
ucts were serviced during a given month.  We assumed that a 
product was in use for any month in which it required service, 
and  during all months between two months in which it 
required service. When competing  products  such as different 
operating systems or different versions of the  same  operating 
system  were in use during  the  same month-a common 
situation-we allocated the  usage for that  month  among  the 
pieces of competing software on the basis of the  apparent 
level of service currently being  required for each,  and  where 
successive versions of a  product  were in overlapping  use, we 
phased out  the older one in a  timely  fashion. In this  manner 
we built  for every machine in the US. inventory  a putative 
month-by-month history of product  use in which each 
machine contributed  just  one month of usage per month  to 
the  total  usage  statistics for all functionally  similar  prod- 
ucts. 

Some survey data were available from which we could 
determine for  some  products what  the  total usage had been at 
particular months. Our estimates checked well a t  times both 
early  and  late in product life. 

Taking account of machine size 
We assumed  originally that  the  machine size factor F i n  the 
usage  reckoning  should be the  machine speed, and we 
adopted as a measure of machine speed  a  composite of cycle 
speed and memory  size that  had been developed in IBM. 
However, when we examined machine by machine  error  data 
for any single product, we found that problem rates for the 
same sized machines  differed greatly  and showed no ten- 
dency to  distribute  about a mean; typically  a few machines 
had  many problems, many machines had only a few prob- 
lems. One obvious source of variation was that a machine on 
three-shift operation  got credit for the  same usage as a 
machine on one-shift operation,  but  the variations  were  much 
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greater  than  this mechanism could account  for.  When we 
learned that some of our users rented  many  machines, used 
the  same  software on each,  and assigned to a  single machine 
the  task of reporting service  problems  for all, so that  that  one 
machine  might be reporting  the usage from dozens or 
hundreds of shifts a day, we realized that we were  too far 
removed from actual operations to  understand  the  error 
statistics for  individual  machines. 

However, we needed  a machine speed calibration. Phillips’ 
discovery that  product discovery curves  were similar  had led 
to a desire for  a  planning tool that could forecast  the 
distribution in time of future problem occurrences for a 
product while it was still in development.  For this purpose we 
determined a  relation of the F factor in usage  to  machine 
speed that would make  the  rate  distributions  determined 
from different products  as  similar  as possible. Assuming that 
F varied as a  simple power of machine speed, we did a linear 
regression of data from  a number of products  to  determine 
the best fit of that power. The resulting power was close to 
0.5. We  do not assign  much meaning  to  the 0.5, but in our 
subsequent fittings of product data we used it so that our 
results  were  consistent with those of others. 

Creating  discovery statistics 
The problem rates associated with known DES  can only be 
known approximately  and were estimated by statistical  infer- 
ence from the  statistics of DE discovery and problem  occur- 
rence.  For determining discovery times we had  available 
APAR records, which contained the  actual  date of discovery 
of each  DE. However, many of the  APARs were submitted 
by users  not in our user set,  either users in other  countries or 
users in internal  IBM development  groups. Since such 
APARs  did not result from usage included in our usage 
statistics, it would be incorrect to  count  them  as discoveries 
in our rate inference  calculations.  Accordingly we took as  the 
date of DE discovery for our purposes the  date of the first 
discovery by one of our users and  created a statistical series 
“Discoveries by U.S. field users under service contract.” 

We also made minor adjustments  to  the discovery statis- 
tics of products  for which there were successive releases in 
which a  successor  release contained essentially all of the code 
of the previous release. The  adjustments in such  cases  were to 
count a few DES found in successor  releases as original in the 
earlier release, even though not found there before the 
release of the new code. We  do not discuss the  procedure for 
making  these  adjustments, which in any  case affected only 
DES having  problem rates so low that they  could remain 
undetected until  release of successor software. 

Creatingproblem  statistics 
Our most accurate  means of estimating  the problem rates 
associated with a DE requires us to know the  total  number of 

problems,  both  original discovery and rediscoveries of the  DE 
in a known period of usage. Such  statistics  had not been 
collected before our work, but fortunately  there was a  set of 
records from which the information to  construct  them could 
be extracted, viz., the weekly effort reports of the persons 
who  service the products, the individual IBM  Customer 
Engineers  (CEs).  Each C E  prepared a weekly report about 
problems worked on that week. Each problem worked on was 
assigned  a unique code number, which it kept  for as long as 
the problem was open. The weekly report  recorded the code 
number of each problem worked on during  the week, what 
was done in regard  to  it,  and, if the  cause of a  problem was 
finally diagnosed as  an  IBM  DE,  the  APAR  number of the 
DE causing the problem. 

Gordon Jones  and his associates in the  IBM  group 
involved in our task saw the possibility to  determine rediscov- 
ery  times by analyzing  the C E  effort  reports. They developed 
a  set of programs  that  searched  the  archival file of activity 
reports, pieced together all  references to  each problem 
number worked on, determined when each problem was 
closed for the  last  time, identified the  APAR  number of the 
DE  that caused the problem, and  determined whether the 
problem involved an original discovery or a rediscovery. 
Their  programs built  problem files from which we could 
determine for each  DE in our products the  date of the 
original discovery and  the  dates of each  subsequent rediscov- 
ery. 

Estimatingproblem  rates associated with  a DE 
We used two methods for estimating  the  rate associated  with 
a DE.  Each method  gave  a distribution of probabilities that 
the  DE  had  each possible rate R. 

Method 1: estimation  from usage at time of  discovery 
On our model the probability that a given DE will cause a 
problem in usage  interval dU is 

R dU,  

where R is the problem rate associated  with the  DE.  The 
probability that a DE present in the code at  FCS would 
remain  there  undetected  after usage U is 
- RU e ,  

and  the probability that a DE having rate R would survive 
usage U without  causing  a  user problem and be discovered 
for the first time in usage  interval dU is 

R - e-RudU.  

By Bayes’ Theorem  the probability that a given DE 
discovered for the first time  at U has  rate R is 

P(R, 0 )  R e-RUdU 

x P( R’, 0 )  R’ dU 
R’ 5 
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in which P ( R ,  0) is the probability  for  a DE to have rate R if 
we had no information  about it. 

The derivation of this  formula  may be seen as follows: The 
DE that caused the problem at U in dU must have  some one 
of the possible rates.  The  numerator is the  probability  that 
the DE had  the  rate R and  that  it  caused a  problem at  U in 
dU. The  denominator is the  sum of the  independent probabil- 
ities that  the DE had  one of the possible rates  and  caused a 
problem at  U in dU. The  denominator, since it includes all 
possible ways for the event to  occur, is the probability that 
the DE would be found at  U in dU, so the  fraction is the 
probability that  the discovery came  about in dU at  U through 
the  case in which DE has rate R .  

If we set the  factor P( R ,  0 )  equal  to 1 ,  as  though  all values 
of R are equally  probable a  priori, we get  the probability 
density that  the  rate is in d R  at  R :  

U 2  R K R U .  

This function of R has a maximum at  R = 1/U. The  rate 
estimated  from  the  maximum is just  the reciprocal accumu- 
lated usage at  the  time  the DE is discovered. The expected 
value of R is 2/17, twice the value at  maximum, which 
indicates that  the  distribution is skewed far  toward higher 
values. 

Method 2: estimation  from usage at time of Nproblems 
The probability that a DE having rate R will cause exactly N 
problems during  cumulative usage U is 

( c Y R ) ~  e-RU 
N !  

By the  same kind of reasoning as for  method 1 ,  the 
probability that a DE found  exactly N times  during usage U 
has associated rate R is 

( R W N  e-RU P ( R ,  0 )  dU 

x ( R ' U ) N  e-Ru P(R' ,  0) dU 
R 

If we take  all R values as equally likely a  priori, we find 
the probability  density that  the  rate is in d R  at  R to be 

U ( R C I ) ~  e-Ru 
N !  

This function of R has  its maximum a t  R = N / U  and 
expected  value ( N  + l)/U, which is ( N  + 1)/N times  the 
value at  maximum. If N is large,  the skew toward  large 
values is much smaller percentagewise than in the  distribu- 
tion obtained by method 1 .  

Comparison  of the two methods 
When many discoveries of a DE have occurred,  the  estimate 
of method 2 will have  a  much lower variance  than  that of 

method 1 and is quite insensitive to  the initial  probability 
factors in the  statistical formulas. For DES having  multiple 
discoveries it is presumably the more accurate  estimate 
provided that  the  usage  interval of analysis is one in which a 
negligible amount of PS was done. 

If many users  have removed a DE from  their code, method 
2 will give values of R that  are too small in  proportion as  the 
usage by users who actually  had  the DE in their code is 
smaller than  the  total usage,  since it  counts  the  usage of those 
users who have actually stopped  having the problems asso- 
ciated with these DES. The  uncertainty of estimate because 
of possible PS begins to be significant when the problem data 
are based on a period ending  more  than a few months  after 
the  time of discovery, and grows progressively greater  the 
longer the  time  from discovery to  the  time of estimate.  We 
show below data  that provide evidence of the effect of PS on 
rates  estimated by method 2. 

The  estimate by method 1 is not affected directly by the 
amount of PS done, but it is affected  indirectly. If the 
estimate is made  after much PS has been done, some of the 
discovered DES will actually be DES introduced by fixes. 
These secondary DES will be assigned rates  that  are too low, 
and sometimes very much too low; and  they will be used to 
impute low-rate DES to  the original distribution  that were 
not actually  there. To estimate  the significance of this 1:ffect 
we need an  estimate of how many secondary DES are  prcsent. 
We  report below a study we did with  such  a model, in which 
we found that  the  total  number of originally  present latent 
DES estimated  from  late life data were about 15 percent 
higher when we did  not take  account of the  creation of 
secondary DES than when we did. We  may  take  this as an 
estimate of the  extent  to which the original number of DIES of 
low rate is overestimated by method 1. Method 1 should  not 
systematically overestimate or underestimate  the  number of 
DES of high problem rate; however, its  estimates of these 
numbers is quite sensitive to  the  initial probability factors 
P(R,  0) in the  formulas of statistical inference, so its  results 
are  subject  to  the  uncertainties involved in assigning  these 
factors. 

Creating an empirical rate  distribution 
We  created  an  empirical  rate  distribution by adding  together 
the  rate  distributions from the individual DES found.  For 
most purposes we estimated original rate  distributions using 
method 2 and usage  periods less than a  year. We could 
estimate a rate  distribution  from  the set of problems  found  in 
any continuous  usage  interval  beginning with FCS. To do so 
we went through  the following steps: 

We  constructed a  one-rowed table giving the  numbers of 
DES for which there were 1, 2, 3, - . problems in that 
interval. 
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0 We  determined for each DE in the  table  the probability  for 
its  rate  to  take  each value R of the  distribution  and 
assigned to  each  rate of the  distribution a fractional 
number of DES equal  to  that probdbility. 
We  totaled  up  the  contributions of fractional DES for each 
value of R to  get  the  estimated  rate  distribution for the 
DES that  had been found. 

0 We  adjusted  this  distribution by dividing by 

1 - e-Ru, 

which is the  fraction of DES of rate R originally  present 
that would have been expected to be found in usage U. The 
adjusted  distribution is our estimate of the  rate  distribu- 
tion of DES in the code as originally  shipped. 

A  basic practical question was how to represent the 
distribution we were to fit. Given a known theoretical  form 
for the  distribution, we might  have parameterized  that  form 
and chosen the  parameters  to  attain a best fit. Having no 
established  theory to provide such  a form, we chose to derive 
a  purely empirical  distribution. A  completely arbitrary dis- 
tribution would have  required an infinite number of parame- 
ters of fit, so we made  the  assumption  that  the  distribution 
was  smooth, so that if fitted at  a number of points it could be 
inferred in between. 

The  empirical  distribution we used was a set of discrete 
points, spaced at  logarithmic  intervals so that  each  rate 
above the lowest was larger  than  the one below it by a factor 
square root of 10. This  distribution provided a  point fairly 
close (within about a half of a Naperian  interval)  to  any 
possible rate value in the  range of values. 

We  experimented with a number of different  choices of 
the  discrete  rate values and also studied fitting  with  different 
numbers of discrete values. We found that in general we 
required  a range of several orders of magnitude in problem 
rates  to represent the  error  patterns a t  all well; a minimum 
number of six rate values  seemed needed and seven or eight 
seemed  slightly better in some  cases. 

In practice we chose to  parameterize  the  rate  distribution 
in terms of percentages of DES associated  with each  rate 
value plus the  estimated total number of DES present a t  
FCS, hoping to  be  able  to  correlate  the  total  number with the 
number of lines of new code. 

Choosing the prior  probability factors 
The  rate  distributions derived in the  manner described are 
sensitive in part  to  the choice of the  initial  probability  factors 
P(R,  0). Unfortunately,  there is no uniquely correct way to 
assign  these factors.  The results that  are sensitive to these 
factors  are  rates assigned to a DE for which the problem 

count is low; the  rates assigned to a DE having only one 
problem are essentially determined by the prior  probability 
factors. 

When we began our work we chose these  factors by 
assuming  that all rates for  a DE were  equally likely a priori. 
To  get a  feeling about  the underlying distribution we then 
performed this process: 

0 Determine a distribution  from  the  data, 
Use  the  distribution  arrived at  as a new trial  distribution  to 
provide values  for the P(R, 0), 
Repeat until the  distribution converges. 

We would expect this  procedure  to converge to a distribu- 
tion for which the  actual  data  are  more probable than  any 
other  data.  While  there is no reason to expect that  the  actual 
rate  distribution would have that property, we expected  it to 
be one  for which the  data  are probable, so hoped the  one 
converged on might be similar. Later, when we had  distribu- 
tions from a number of products and verified from Phillips’ 
finding that  they were similar, we felt it reasonable to use the 
average of several distributions  to  estimate  the  factors 
P(R,  0). 

In most of our work we used rates  estimated by method 2 
with  problem data  from  the  early field use of the code. These 
data include few discoveries of DES having very low problem 
rates  and no rediscoveries of them, so could give little 
empirical  information about  the  true  rates for  these DES. 
Since these  DES are by far  the most numerous in the code, 
the total number of original latent DES may be estimated 
very wrongly. Accordingly, we also made  some  determina- 
tions of the  rate  distribution using method 1 with discoveries 
over most of the usage life of the code. This analysis is known 
to overestimate the  number of low-rate DES, but  because of 
our study of secondary DES we felt that  its value for the  total 
number of latent DES originally  present might not be in error 
by a large  factor. 

Finally, by choosing our prior  probability factors so that 
the two kinds of estimate of the  rate  distribution were fairly 
consistent, we sought  to  protect ourselves against  getting 
these  factors grossly wrong. 

A study of secondary DES 
All attempts  to fit our simple model rate  distribution  to 
empirical  problem data over the life of the code showed a 
systematic  error of fit: The model with the best fitted 
parameters would give more early discoveries and fewer late 
discoveries than were actually observed. We  thought  that 
this failure of the modeling was  probably caused at  least in 
part by the  fact  that some of the  later-found DES had been 
injected into  the code via the fixes for earlier-found DES, as 
we could see from  direct evidence. 7 
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Figure 1 Monthly  discoveries  for  products of Table 1. The actual 
and projected plots of discoveries vs time  for  three successive releases 
of a product.  The  discoveries are projected  from  the  fitted  numbers 
of original DES for  each  release (not shown) and the mean of the 
three rate distributions. 

We wanted to  estimate  approximately how much  error  the 
presence of secondary DES would cause in estimating  the 
parameters of the original rate  distribution using an analysis 
that ignored these DES. To this  end we made a modified 
model that  incorporated a representation of the  introduction 
of secondary DES as PS is done. This modified model was 
based on a number of overly simple assumptions, e.g., that a 
constant  fraction of fixes introduced new DES, that  the new 
DES had  the  same  distribution of rates  as newly shipped 
code, that  the  same  constant  fraction of users did PS at  all 
times in the life of the code, that PS was done with  a constant 
time lag after  initial discovery, etc. 

Since  the  treatment of PS was so artificial, we were  not 
concerned to improve the fitting of empirical  data in general, 
but only to  determine  whether we could find plausible  values 
of  fit parameters  that would eliminate  the  systematic  imbal- 
ance between early-  and  late-found DES. We found that we 
could roughly account for the excess of long term discoveries 

if  we assumed that for each fix installed  a new DE was 
generated with  probability of the  order of fifteen percent. 
Unfortunately  the modified model involves so much  that is 
arbitrary  and overly simple that a detailed report on it would 
involve more  explanation  than  the results justify.  Apart  from 
its value to give us an indication of how important  secondary 
DES were, it was of no greater value than  the unmodified 
model. 

Fitting  the  model  parameters to some  service 
histories 
Having developed the sources of data  and methods of analy- 
sis described above, we analyzed service data for  a number of 
IBM  products. Because of the  commercial significance of the 
data  and  other sensitivities, we do not  present  original data 
nor identify  individual  products. We  can  characterize  the 
products: Each was a  release of an  operating system,  a large 
component of such  a  release, or a product of similar charac- 
ter in size and  manner of use. 

Fitted  rate  distributions 
Table 1 shows the fitted rate  distribution for three successive 
releases of a  single operating system. The reciprocal rate 
values,  i.e., the mean times between user  problems, are 
shown vs the  percentage of DES having this value. Here,  as in 
all  the  data we present, we show only relative  distributions. 

8 
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Fitted  total numbers of DEs present 
We  do not  present data on the  estimated  number of latent 
DES present,  since we did not find a  way to  get consistent and 
meaningful figures for  this number.  The difficulty we had is 
related  to  our inability to  accurately  determine  the  rates of 
DES having very low problem rates. By varying the  range of 
rates assumed possibly to be present and by varying the 
choice of the initial  probability factors P(R,  0), we could 
produce sets of fitting parameters  that  had widely different 
numbers of latent DES but fit the problem data  about equally 
well. These various  fitted distributions varied  almost entirely 
in the  large  numbers of DES having very low problem rates; 
they all  had  about  the  same  numbers of latent DES present 
having high  problem rates, these  being the ones that 
accounted for the observed problem  activity. 

We  had originally  chosen to use the  total  number of latent 
DES as a parameter, hoping to  correlate it to  the  number of 
lines of new code in the product. Indeed, for a given set of 
rate  parameters we did find that  the  number of latent DES 
was crudely proportional to  the  number of lines of new code, 
but  with  deviations from proportionality of a factor of 2. 
However,  it is clear  that most of the fitted latent DES did  not 
correspond to real DES of which our  data could give knowl- 
edge. So the fitted total  number of latent DES is merely  a 
fitting parameter whose values are  to be understood only in 
connection with all other  parameters used in a particular fit. 



Fitted  discovery  distributions 
Figure 1 compares  actual discoveries to fitted discoveries vs 
real time for each of the  three releases of Table 1 .  Each fitted 
curve  was  projected from  the model using as  input  data  the 
monthly usage  data for the release, the inferred total  number 
of original latent  DES for the release, and  the  average of the 
three fitted rate  distributions  as given in the  table.  Since  each 
of the  three different distributions of discoveries vs real time 
is obtained  from  the  same  average  rate  distribution,  it is clear 
that  the main  differences of shape derive  from  differences in 
the  time  pattern of usership. That  the  shapes  are rendered 
fairly well in such a plot was Phillips’ discovery. 

Figure 1 shows that our model can  capture  the principal 
information  needed to  understand  the smoothed trend of 
discoveries in real time.  Although  the  time  trends of  fit are 
perhaps a little  better  than typical in this  particular  case,  one 
can see that  at  some points there  are  errors of fit of the  order 
of 30-50 percent, which is what  one  must expect when 
modeling in terms of such gross aggregates. 

Fitting  rediscovery  distributions 
We did  several studies of detailed rediscovery distributions. 
The  format of such  studies was to seek any plausible assump- 
tions about  what  PS  might have been done  that would permit 
the model to  reproduce  the  general  trend of the rediscovery 
data. By using the model with secondary DES we could 
almost always do such  a fit within the  accuracy  that is to  be 
expected for this kind of model.  However, we do not  present 
data showing these fits, since they  are based on such 
arbitrary  assumptions  about  PS  that they are persuasive of 
little. 

Similarity of rate  distributions of diflerent  products 
Table 2 tabulates  the  distributions  obtained from  fitting 
problem data for the nine large  products for which we had 
full life data  at  the  time of the analysis.  Among these were 
products used on both large  and  small machines. (It  may  be 
noted that  the  rate values used here  are  somewhat different 
from those used in Table 1 .  The differences are not  impor- 
tant:  Either set of values gives about  as good a fit of the 
data.) 

Examining  the fitted rate  data  one  can see that  the 
numbers in the leftmost columns-the percentage of DES in 
the lowest rate values-are very similar from product  to 
product. These  similarities  are not meaningful,  but merely 
reflect similarities of the initial  probabilities used in the 
fitting as discussed  above. 

One  can see that in the  rightmost columns the variations 
along each  column,  from  column  to  column,  and  from 
product to product  also show similarities,  although with 
much  more variability of the  data.  These  similarities  are 

Table 1 Problem  rates  for  three  releases of a  product. The fitted 
distribution of problem  rates is shown as a  mean  time between 
problem occurrences vs the percent of DES in the corresponding rate 
class. 

Rate class 

1 2 3 4 5 6 7 8  

Mean time to  problem occurrence in kmonths 
for rate class 

95 30 9  3  0.9  0.3  0.09  0.03 

Fitted percentage defects in rate class by release 

Release 
1 24.1 26.4 28.8 13.5 3.0 2.9 1.1 0.2 
2 21.3 23.2 25.5 13.8 5.0 7.4 3.3 0.5 
3 21.9 24.1 27.5 16.2 3.9 4.0 2.1 0.2 

Average 22.4  24.6  27.3  14.5  4.0  4.8  2.2 0.3 

Table 2 Rate  distributions for nine  software  products.  These  rate 
distributions  were  fitted  using  the  same fit program  and  the same 
prior  probability  factors. The  square root of machine speed rather 
than  machine speed itself was used for reckoning  usage of 
machines. 

Rate class 

1 2 3 4 5 6 7 8  

Mean time  to  problem occurrence in kmonths 
for rate class 

60 19 6  1.9  0.6 0.19 0.06 0.019 

Fitted percentage defects in rate  class by release 

Product 
1  34.2  28.8  17.8  10.3 5.0 2.1  1.2  0.7 
2  34.3  28.0 18.2 9.7 4.5 3.2 1.5 0.7 
3 
4 

33.7 28.5 18.0 8.7 6.5 2.8 1.4 0.4 
34.2 28.5 18.7 11.9 4.4 2.0 0.3 0.1 

5 34.2 28.5 18.4 9.4 4.4 2.9 1.4 0.7 
6 32.0 28.2 20.1 11.5 5.0 2.1 0.8 0.3 
7  34.0 28.5 18.5 9.9 4.5 2.7 1.4 0.6 
8  31.9 27.1 18.4 11.1 6.5 2.7 1.4 1.1 
9  31.2 27.6 20.4 12.8 5.6 1.9 0.5 0.0 

meaningful, and  the discrepancies  between  corresponding 
numbers in these  columns are probably  indicative of the 
actual variability of the  rate  distributions  from product to 
product.  Noisy these  data  are,  but  they suggest that  rate 
distributions have  considerable similarity of form from prod- 
uct to product. 

Using the  mean of these nine distributions, we calculated 
the  total problem  activity contributed by the  DES in each 
rate group. The result  was that  the few DES in the set  having 
the highest rate were  responsible  for  more total problem rate 9 
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Table 3 Variation of fitted  rates  with  usage  interval. The  rate 
distribution  for  this  product was fitted using the  total  usage  and 
cumulative discoveries as of the  end of each  month for 18 months. 
The  apparent  decreases in the  right-hand  columns show that  the 
fraction of users having  all of the  most  virulent DES in their  code 
diminishes  after  about  month 7 or 8. 

Percentage of defects by rate  class 

Class 1  2  3  4  5  6  7  8 

Monih 

1 23.1 24.7 26.5 14.6 4.4 4.5 2.0 0.3 
2 23.1 24.8 26.5 14.6 4.3 4.4 1.9 0.3 
3 23.2 24.9 26.6 14.6 4.3 4.3 1.8 0.3 
4 23.2 24.9 26.6 14.5 4.3 4.3 1.9 0.4 
5 23.2 24.9 26.6 14.6 4.3 4.3 1.6 0.5 
6 23.3 25.0 26.8 14.8 4.4 4.0 1.4 0.3 
7 23.3 25.0 26.8 14.8 4.4 4.0 1.3 0.3 
8 23.3 25.0 27.0 15.1 4.5 3.8 1.1 0.3 
9 22.9 24.7 26.8 15.4 5.0 3.9 1.1 0.2 

10 23.4 25.1 27.0 15.1 4.7 3.7 0.9 0.1 
11 23.3 25.0 26.9 15.3 5.2 3.4 0.7 0.0 
12 23.7 25.4 27.1 14.8 5.1 3.2 0.6 0.1 
13 23.9 25.6 27.0 14.7 5.4 2.9 0.5 0.1 
14 24.4 25.9 26.9 14.4 5.4 2.6 0.4 0.1 
15 24.6 26.1 27.0 14.2 5.3 2.5 0.3 0.1 
16 24.9 26.3 27.0 14.0 5.2 2.2 0.3 0.1 
17 25.2 26.5 26.8 14.0 5.1 2.0 0.3 0.1 
18 25.4 26.7 26.9 13.8 5.0 1.9 0.3 0.1 

than those in the set  having the second highest rate,  and  that 
in general  the DES in any set  were  responsible  for more 
problem  activity than those in the  set having the next  highest 
rate.  Thus  the  small  numbers of DES in the  sets having the 
very highest rates  account for nearly  all of the problem 
potential of the code. 

The eflects of PS on fitted rates 
Table 3 illustrates how some effects of PS show up when we 
analyze  data  from progressively longer  service  intervals. The 
figure shows a table of the  rate  distribution  obtained by 
fitting the  cumulative problem data for  a  single product  after 
each  calendar  month for 18 months. The  inferred  distribu- 
tions are  rather  stable for the first seven or eight months, 
with no more than a  suggestion of depletion of the  percent- 
ages in the highest rate values, but  after  that  time  the 
numbers of DES assigned to  the  three highest rate values 
diminish markedly. 

That  the  numbers in the  right-hand  columns  are  fairly 
stable for the  early  months implies that  as  the user months 
accumulate,  the  numbers of problems  assigned to  the most 
virulent DES increase in the  same proportion, as  though most 
of the users continue  to have  these DES in their code. 

After  about seven months a change occurs, so that  the 
numbers of DES having  high rates diminish markedly.  This 
implies that  the  total  number of problems  reported against 

these DES no longer  increases in the  same proportion as  the 
usage, as  though  many of the users no longer  have  those 
virulent DES in  their code. Without looking at  the raw data 
one  cannot tell how completely the most  virulent DES had 
been eliminated,  but it is as  though  their problem  activity 
had been eliminated from most of the code. 

We  interpret these data  to mean that  during  the first half 
year after  FCS  little if any PS was done,  since the first DES 
that PS would eliminate  continued  to be present  essentially 
unchanged.  We used a table such as  this  to  estimate  the 
amount of PS being done so that we could  decide how many 
months of data could safely be used to  determine  an original 
rate  distribution. 

Discussion of the  rate distribution 
Several  features of the  distributions  are of interest.  First,  the 
rate  distributions  are generically similar  from  product  to 
product,  as Phillips had discovered. To  the  extent  that  they 
are  similar, we may  conjecture  that  some process has  shaped 
them so. If so, it should be a pervasive process, since these 
products had been produced at  different  places and times, by 
different people, and with significant  differences of program- 
ming  technology. 

Second,  the  approximately  linear slopes of the  distribu- 
tions a t  high rates  are less steep  than  the simple model would 
suggest. If one considers that  during  the  latter  months of 
development the code is subjected to considerable  usage, one 
might expect the  numbers of the most  virulent DES to be 
reduced far below what is found,  in fact  that they would be 
approximately in the  ratios of the exponential attenuation 
factors defined by their problem rates. 

Reflecting  on  these matters  and being aware  that in fact 
considerable numbers of DES are found during  the develop- 
ment process, we realized that  many  must also be added 
during development. We developed an intuition that  the 
characteristic  shape of these  distributions  might  just reflect 
the balancing during  the development process between acts 
of creation  and removal of high-rate DES. Assume that  as 
development  proceeds new DES are continually created,  but 
at  the  same  time existing  ones are found and removed, and 
imagine  that  one  can  represent  the evolution of the  rate 
distribution by a  pseudo-differential equation 

” d P ( R )  - G - R,  P(R) - RP(R), 
d t  

where P(R) is the  number of DES per unit  interval of rate R 
and “t” is a variable representing the passage of development 
“time.” The  term G represents  the effective rate  at which 
new DES are  created per unit oft;  the  term with R represents 
the  probable  fact  that developers find DES by activities 
similar in effect to  running  the code in the field; the  term 
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with Ro reflects the assumption that developers  also find DES 
in ways that  are  unrelated to running  it in the field. (We have 
evidence that  they  do, which need not be reviewed here.) 

If development goes on long enough for the process 
described to  come  into  balance for those DES having very 
high problem rates,  one  may set the  left-hand side to zero and 
solve for P( R):  

G 
P ( R )  = - 

R + R,' 

Since G itself could be expected to depend on R (it is 
plausible that  the developer is more likely to  create  DES of 
low virulence than  DES of high virulence), we cannot con- 
clude the  exact  form by which the  distribution should  vary 
with R. However,  these  considerations  suggest why P ( R )  
might well vary inversely with R somewhat as observed. So 
that we could relate this formula  to  the  actual mean rate 
distribution of Table 2, we made a  best fit of that  distribution 
assuming P(R) to be proportional to a power of R + Ro. To 
do this we associated with each  discrete value  except the 
lowest all  the  rates of the  continuous  distribution in the 
logarithmic interval from a 1 /4 root of 10 below to 1 /4 root 
of I O  above that  discrete value. We associated with the 
lowest value  all the  states from rate 0 up  to a factor 1/4 root 
of 10 above the lowest value. We  obtained a  best fit distribu- 
tion 

P ( R )  = 1.69 
( R  + 0.032) 

that fits the mean rate  distribution closely. (There is a  small 
glitch at  the lowest rate point, undoubtedly  related  to  the 
extra weight given by integrating  the function all  the way 
from 0.) 

Optimizing preventive service 
The rough level  of modeling we have  achieved is adequate  as 
a guide  to planning effective PS.  We  take it as  axiomatic  that 
PS is not to be done unless its benefits justify its  cost. 
Generally speaking, the service  costs that  can be profitably 
avoided by PS  are  the result of problems caused by a  small 
number of highly virulent DES, most of which are found very 
soon after  the code is put into service. The main  question 
about  any  DE is whether  to  deal with it by PS or by CS. 

The considerations in answering this question are much 
the  same for the product  producer and  the  product user. The 
user who has had no problem  does not want  to  install a PTF if 
the risk from possible new DES plus the costs of doing PS 
outweigh the expected gains from  avoiding  problems  from 
the known DE.  The producer must  prepare a fix for the  DE in 
any case,  since he  must provide CS to  the user who discov- 
ered  the  DE,  but  he does not want  to  incur  the  additional 

12 
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15 

16 

17 

18 

Discovery month 

1 2 3 4 5 6 7 8 9 10 11 12  13  14 15 16  17 18 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

2 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

4 4 2 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

1 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

2 4 1 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0  

2 8 1 7 1 2 4 0 0 0 0 0 0 0 0 0 0 0 0  

3 3 2 0 1 4 1 0  4 0 0 0 0 0 0 0 0 0 0 0 

3 8 2 3 1 6 1 1  8 3 0 0 0 0 0 0 0 0 0 0 

4 2 2 6 1 8 1 3  9 7 3 0 0 0 0 0 0 0 0 0 

4 7 2 9 2 0 1 4 1 0  8 6 2 0 0 0 0 0 0 0 0 

5 2 3 2 2 2 1 5 1 1  9 7 5 2 0 0 0 0 0 0 0 

5 7 3 5 2 4 1 7 1 2  9 7 6 5 2 0 0 0 0 0 0 

6 1 3 8 2 5 1 8 1 3 1 0  8 6 5 4 2 0 0 0 0 0 

6 6 4 1 2 7 1 9 1 4 1 1  8 7 5 4 3 1 0  0 0 0 

7 1 4 4 2 9 2 1 1 5 1 2  9 7 6 5 4 3 1 0  0 0 

7 6 4 7 3 1 2 2 1 6 1 2 1 0  8 6 5 4 3 3 1 0  0 

8 0 5 0 3 3 2 4 1 7 1 3 1 0  8 6 5 4 4 3 3 I O  

8 5 5 2 3 5 2 5 1 8 1 4 1 1  9 7 6 4 4 3 3 2 1 

Figure 2 Projected rediscoveries when DE is known. The  number 
in the R row and D column is the  projected  number of rediscoveries 
made in month R caused by DES discovered in month D. The 
numbers  are  projected for a  hypothetical  product  that  has  steady 
month-by-month  growth of usership on the  assumption  that  all  users 
use the  initial version of the  product. 

expense of working up  PTFs  and  distributing  them  to users 
unless the users will judge it  worthwhile to put them in and 
will avert  service  calls by doing so. 

There  are  at least two levels on which to  approach  the 
decision of whether to  do PS. At  the coarsest level, one relies 
on the  statistical  fact  that early-found DES  are  the virulent 
ones, so one does PS for all  DES found up  to a certain value of 
usage, CS for  all  found later.  The considerations as  they 
might be weighed by the developer can be seen by studying a 
rediscovery matrix,  an  example of which is shown in Fig. 2. 
The rows and columns of the  matrix  are labeled by months 
reckoned from  the  time of FCS.  The  entry for row R and 
column D is the  number of rediscoveries in the user  base 
during month R caused by DES discovered in month D. The 
total of the  numbers in row R is the  total  number of 
rediscoveries expected in month R. 

To  construct such  a matrix,  assume a rate  distribution, 
e.g., the one  found  from our work. Assign a number of initial 
latent DES by the following procedure: Estimate  the  number 
of DES  to be found over the  usage period of interest for the 
product of interest,  perhaps on the basis of the  number of 
lines of  new code in the  product;  determine a number of 
initial latent  DES  that will give the expected number of DES 
for that  amount of usage by direct projection from  the model. 
The model is now calibrated  to  make  the  matrix. 11 
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Use the expected  usage buildup for the code to  calculate 
the  number of DES in each  rate  group  that will be discovered 
in each  month  after  the code is released. To get  the column 
entries for  a given month calculate  the problem rate of all 
DES found in that  month  as  the  sum of the  number of DES 
times the  rate per DE. Now, using expected  usages for later 
months,  calculate  entries for each row of the  column  as  the 
problem rate of the column month  times  the  number of 
months’  usage  for the row month. In the  example of Fig. 2 all 
calculations  assume  that  the initial version of the code is 
furnished to all  users, no matter when they begin to use the 
code. 

The significant trends in the rediscovery matrix  are  that 
the  numbers grow steadily down a  column and diminish 
strongly to  the  right across  a row. The  variation down the 
column reflects the  continual  entry of new users who can 
have  problems; the  decrease  to  the  right reflects the dimin- 
ishing virulence of DES found in later  months.  It is easy to see 
that  the  large  numbers all occur in the columns to  the left, so 
that  the  preponderance of benefits of PS will come from 
avoiding  problems in the leftmost  columns. 

The solid line in the figure is drawn with reference  to a 
hypothetical PTF tape,  made  available by the  end of month 3 
and fixing all DES found in months 1 and 2. The line encloses 
all  problems whose occurrence  can be affected by the fixes on 
the  tape.  The  hatched  area  relates  to rediscoveries during  the 
period that users are installing fixes, which in this  example is 
assumed  to be two  months. Some of the problems in the 
hatched  area  and all of those below it can be avoided by 
doing PS to remove the DES on the  tape; no other problems 
can be so avoided. The value of avoiding  these  problems must 
be the justification  for  doing PS with that  tape. 

We  can  construct  the line that  demarcates  the problems 
affected by some other service  vehicle by drawing a similar 
line with a  column determined by the  last  month for which 
known DES will be fixed and  the row determined by the 
month in which the fixes become available  to users. As one 
looks at various cases it becomes clear  that, since one needs to 
eliminate  the problems from only a few columns,  a vehicle to 
do  the most worthwhile PS can  be built only a few months 
after  FCS. 

The service strategy for  a  developer is concerned  with 
deciding what fixes to  make available to users  with which 
they  can  do PS. The  optimum  strategy for the developer 
depends on the  details of his cost structure,  but it is easy to 
see that  he will find it beneficial to  support PS to remove only 
the problems  associated  with  a few columns on the left. 

In making the  matrix  example, we assumed that all new 
users  got the original version of the code unmodified to fix 

known DES. The  numbers in the rediscovery matrix would be 
different if, e.g., the developer arranged  that  each new user 
get a version of the code  in which all available fixes have been 
installed. In that  case  one would modify the calculation so 
that  the problem rate for the new users in a given month 
would be reduced appropriately,  and would find that  the 
numbers would not continue  to  increase down the columns, 
but would become constant  past  the  month in which all new 
users  have the fixes. For  such  a  service strategy most of the 
numbers in the  matrix will be smaller. 

Calculations such as these charts  illustrate  may be useful 
in developing quantitative  measures for the value of a 
particular service vehicle in the  context of a given planning 
framework. 

A user might  approach  the  PS vs CS decision in a  simpler 
way. He will benefit significantly from PS only if there is a 
significant chance  that a DE he removes preventively would 
otherwise cause him a  problem. Thus  he might ask  what is 
the  mean  time between problems  for the DES that a batch of 
fixes remove. To  determine  this  one  can follow the  same 
calculation  as above up  to  the point of estimating  the  total 
problem rate  due  to DES found in a given month. If one now 
divides this  quantity by the  number of DES that  cause  that 
rate,  one  gets  the problem rate per DE found in a given 
month. In typical  cases the user will find that  after not many 
months  the mean time  to  error for the DES being fixed  by 
new PTFs  approaches  the length of time he  expects to  run  the 
code. The prospective benefit of removing such  a DE is very 
small; and in view  of the  small  chance  that  the fix will 
introduce a  much more  virulent DE, a prudent user will not 
put in the fix. For typical patterns of usership buildup  the 
average problem rate per DE found in a given month is 
always about 0.75-0.8 times  the reciprocal of the  cumulative 
usage at  the  end of that  month, so that, e.g., DES found in the 
month  that  the  cumulative usage reaches 3000 months have 
an  average problem rate of the  order 1 per 4000 months. 

While  the  calculations for  user and developer look quite 
different,  they  lead to much the  same cutoff for  doing PS, 
since  both calculations  are driven by the  same underlying 
consideration: whether  the probability of rediscovery justi- 
fies the cost of doing PS. 

A more refined level of decision about PS can be made if 
the service  organization keeps current records of which DES 
caused each problem,  since the decision can  be  made on a DE 
by DE basis rather  than a month  to  month basis. Assume the 
developer records the  times of occurrence of all problems 
associated with a given DE and a  record of month by month 
usage of the  product.  He  can  then easily make a monthly 
estimate of the probable  virulence of each known DE on the 
basis of accumulated  usage  and  number of problems  caused. 
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Given this  estimate it is straightforward for either developer 
or user to  determine for each DE whether  the  hazard it poses 
justifies PS. 

One  attractive  fact  about a DE by DE strategy is that 
application of fixes by all  users can be restricted to  just  the 
small  fraction of DES for which it is profitable. Since most 
DES, even if not fixed by PTF,  are never rediscovered,  one 
would like to avoid the cost of doing PS for them. A  simple 
rule  ensures this: Wait for at least one rediscovery before 
doing any  PS. Everyone can afford this policy; a  highly 
virulent DE will have  its first rediscovery before the fixes 
could be disseminated  anyhow, while a less virulent DE, for 
which a rediscovery comes only after several months, consti- 
tutes a  small  month by month risk to  the users. Another 
attractive  feature of dealing with individual DES on the basis 
of estimated virulence is that  one  deals  as efficiently with the 
(rare) highly virulent secondary DE as with an original DE. 

In our judgment  the fraction of DES worth fixing is very 
small, probably less than ten per cent;  and yet for a few DES 
the payoff from PS is great.  We  are convinced that if one 
determines  what  PS  to do on some  such basis as sketched 
above, one can  realize  substantially  better benefits from  PS 
than  are derived from  either a fix all or a fix none strategy. 

Concluding remarks 
Our work suggests  several useful things about  the  distribu- 
tion of error  rates in product  code. First, most of the DES 
present  have  mean times  to discovery of hundreds  to  thou- 
sands of months when run on a  single  machine. Thus  the 
typical DE requires very unusual circumstances  to manifest 
itself, possibly in many cases the coincidence of very unusual 
circumstances.  One  may  doubt  that a  testing group using  a 
few machines and having only a few months  to work could 
ever detect  and remove all  such DES by purely  empirical 
means. One  may conclude that service will always be 
needed. 

Second, if  we are  correct in our intuition about why the 
rate  distributions in the products we studied were  generically 
similar, we might  expect the  rate  distributions in other  large 
bodies of code to be similar  also, a t  least so long as  the 
methods of code  development  depend on empirical  debug- 
ging. It  may well be that  as  software engineering  techniques 
improve, the population of DES will balance at  a lower level; 
but  absent development  methods that  generate  truly  error- 
free code, the  same  sort of error  rate  distribution  may well 
persist in future  large products. 

Third,  to  the  extent  that one can  assume  that  the  distribu- 
tion of rates  and  the  total  number per thousand lines of code 
are  similar for similar products,  one can forecast the  error 

behavior of a  planned product.  This  can be of some use in 
planning  for  service.  However,  one must not  expect  high 
precision in such  a  forecast: There will be large percentage- 
wise variations in the small number of highly  virulent DES 
that  dominate  the  early  error behavior of the code. These 
variations will be even larger  and less predictable for small 
products or products that  are used sporadically. 

Similarly,  to  the  extent  that  one  can  represent  the  error 
phenomena in the user  population by such  a  simple  model, 
one  can use the model for  several  types of quality control, but 
again one  should do so without  expectation of great precision 
in fitting and  interpreting even after-the-fact  error  data, 
because the  statistics of an  actual product  history will deviate 
from most probable  values,  because the  statistical  quantities 
used to  interpret  the history are  subject  to  large  errors of 
determination,  and because the  actual history  depends on 
detailed  circumstances not  represented in the gross parame- 
ters.  It  may well be that our simple  model, perhaps  as 
modified to  take  account of secondary DES, captures most of 
the significant regularities in the  rate behavior of general 
pieces of code that  can be represented  without  a  lot of 
detailed  information about  the use of the product. 

Relation of our work  to  that of others 
The  mathematical model and  methods we used are simple 
and  familiar.  We based certain  aspects of our work on the 
previous work of Richard  W. Phillips of IBM Poughkeepsie, 
but  did not make significant  use of other work. We did look 
at  some of the  literature of reliability, where we found that 
the  general notion of associating  problem rates with DES was 
a  common  one. Thus we present  this work primarily  for what 
we have  learned about  the  empirical quantification of the 
error behavior of product quality code and for the implica- 
tions that  can  be  drawn  from it about how to  manage 
preventive  service in such  code. 
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