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Optimizing Preventive Service of Software Products

The implementer of a large, complex software system cannot make it completely defect free, so he must normally provide fixes

for defects found after the code is put into service. A system user may do preventive service by installing these fixes before the
defects cause him problems. Preventive service can benefit both the software developer and the software user to the extent that
it reduces the number of operational problems caused by software errors, but it requires the expenditure of the resources
required to prepare, disseminate, and install fixes; and it can be the cause of additional software problems caused by design
errors introduced into the code by fixes. The benefit from removing a given defect depends on how many problems it would
otherwise cause. Benefits may be estimated by modeling problem occurrence as a random process in execution time governed by
a distribution of characteristic rates. It is found that most of the benefit to be realized by preventive service comes from
removing a relatively small number of high-rate defects that are found early in the service life of the code. For the typical user
corrective service would seem preferable to preventive service as a way of dealing with most defects found after code has had
some hundreds of months of usage.

Introduction
It is difficult to create a very large software product that is
completely free of design errors (DEs). Accordingly, the

and higher quality of software and in terms of a reduction in
costs due to unscheduled interruptions of service caused by

software producer must provide means to correct user code
for DEs not eliminated during product development. We
term the process of correcting a user’s code to eliminate a DE
that is causing him a problem Corrective Service (CS) and
the process of correcting his code to eliminate a DE that has
not yet caused him a problem Preventive Service (PS).

Where a software system has many hundreds or thousands
of users it is commonly the case that for every user problem
caused by a previously unknown DE (a “discovery”), there
will be several problems caused by already known DEs
(“rediscoveries”). In such a situation, if all users would
perform the PS to remove a DE soon after it is discovered, it
would be possible to avert most of the user problems requir-
ing CS to DEs in the product software. A program of
thorough PS could be of considerable value to the software
producer, since to the extent that it reduced his software
product costs, it would permit him to realize higher effective
product quality and to offer service at a lower price; and it
could benefit the software user both in terms of lower cost

product software DEs.

However, PS like CS has its costs. It consumes the
developer resources needed to prepare and distribute media
for mass dissemination of the fixes, and it consumes user
resources of operational time and staff to install fixes preven-
tively. Moreover, PS is to some extent an original source of
problems, since the code fixes themselves occasionally inject
new DE:s into the code.

The studies reported here were done over the period
1975-80 with the objective of developing means to estimate
whether and under what circumstances PS is worthwhile to
do. We report on

e The model we used to project the occurrence of user
software problems;

e The results of fitting the model to historical error data;

® Our conclusions about how to carry out an optimum
program of PS.
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The scenario for software service

Software service of the products we studied involved this
series of events: The user of an IBM software product
reported to an IBM Customer Engineer (CE) that he had a
problem believed to be caused by a DE in the product. The
CE diagnosed the source of the problem; if it was a DE in
IBM code, he reported it to an IBM change team in a form
called an APAR. The change team studied the APAR and, if
the DE proved valid, prepared and sent to the user a code
change that would avert the user’s immediate problem.

Next the change team refined and tested the code change
more comprehensively, and incorporated the finished version
into a Program Temporary Fix (PTF), which is a vehicle for
transmitting the changed module(s) of the product code. The
change team transferred the PTF to another IBM group,
which assembled PTFs on tapes for periodic distribution to
users. Later an IBM development group might further
process the PTFs and incorporate them into an updated
version of the product. An IBM library facility distributed
PTF tapes at frequent intervals, approximately monthly in
the first months after First Customer Shipment (FCS) of the
product. A PTF tape typically incorporated fixes for all
significant errors found in the product up to a time one or two
months before the tape was put in the library, and it took
about a month to get the tapes from the distribution center to
the average user. Accordingly, a user having the most recent
PTF tape could assume that he had fixes for most errors
discovered more than three months earlier.

Some users installed all PTFs preventively, some installed
only selected PTFs, some just kept PTFs as an immediate
source for fixes if need arose. Some users would install the
PTFs only after waiting to see whether other users who had
installed them had encountered new DEs caused by the fixes
in the PTFs.

More often than not when a DE caused a user problem the
problem proved to be a rediscovery. A rediscovery of a DE
was somewhat easier to deal with than an original discovery,
since much was already known about the DE and fixes for it
were available. Even so a rediscovery was costly both to IBM
and to the user.

For many products having large usership, problems caused
by rediscoveries were more numerous than problems caused
by original discoveries, even to the extent that they were the
dominant factor in service cost. For such products the IBM
service organization encouraged users to do prompt PS for all
DEs. However, the users seemed more aware of the costs and
risks of PS than they were persuaded of the benefits. (It is
difficult to demonstrate the benefits realized from PS, since
they must be quantified in terms of hypothetical events that
PS is believed to have averted.) For whatever reason most
users were unwilling to preventively install PTFs en masse.
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Modeling the occurrence of errors

How to evaluate the benefits from PS is simple in principle.
Some interval of time is required after a DE is discovered to
prepare a change to the base code and install it in the users’
versions of the code. Rediscoveries that occur in this time
interval cannot be avoided; rediscoveries that would have
occurred after this interval will be averted. One must deter-
mine the time interval between discovery and fix for the
system arrangements in use and project what problems
would have occurred after this interval. One then reckons
what it is worth to avert these problems.

To carry through such an evaluation one needs means to
project the numbers and times of the rediscoveries that would
have followed each discovery. When we began our work little
was known about the statistics of occurrence of rediscoveries,
since no records were kept that summarized for a given DE
the rediscoveries that followed it.

However, we had one piece of qualitative information that
provided the key to understanding the time patterns of
rediscovery. Persons familiar with the service scene reported
that particular DEs were quite “virulent,” causing problems
to many users, but that many DEs were rather innocuous.
We realized that if the “virulence” of a DE were a manifesta-
tion of the average rate at which the DE caused problems
under operational circumstances, the times of rediscovery of
a DE could be projected from its quantified virulence.

In accordance with this idea we adopted the following
model for dealing with problem occurrence: In operational
circumstances each DE in a product manifests a characteris-
tic problem rate R. The occurrence of each problem caused
by the DE, whether the original discovery or a rediscovery, is
an event in a Poisson process, in which problem events occur
at random times with an average rate R. The cumulative
running time of all users plays the role of time in the Poisson
process. The error rate of a product is the sum of the error
rates associated with the individual DEs. The rates asso-
ciated with different DEs may range over a wide spectrum of
values, but the rate associated with a given DE remains
unchanged until it is removed from the code by installation of
a fix.

On this model the pattern in real time of the occurrence of
software problems for a product is primarily a function of

® The rate of usership vs time,

e The number of DEs originally present in the product,

e The distribution of problem rates over the original DEs,
and

® The schedule of installing fixes for DEs after they are
discovered.
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We sought historical error data for some older products in
order to test whether we could estimate virulences and
correlate them to patterns of rediscoveries. We soon learned
of the work of Richard W. Phillips of IBM Poughkeepsie,
who had collected and analyzed data on both product usage
and times of original discovery for a number of products of
interest to us. Phillips had determined the distribution of
original discoveries against cumulative usage for these prod-
ucts and had found that the distribution was similar from one
product to another. He had even determined an empirical
formula for this distribution.

We found that Phillips’ formula for the distribution of
discoveries vs usage could be reproduced using our model if
we assumed that the rate distribution, i.e., the relative
numbers of DEs having each possible rate, was proportional
to a particular inverse power of the rates. This finding
confirmed the apparent usefulness of our model, so we used it
in all our subsequent work.

Phillips was kind enough to make all of his data available
to us so we began by studying them in detail. As we did so we
saw that we would need a great deal of other data before we
could establish whether discoveries and rediscoveries could
be successfully projected.

Methods of data analysis and model calibration
We collected or created the following error statistics to use in
applying our model to the analysis of error data for a number
of software products:

® The average monthly product usage beginning with FCS,

® The number of original discoveries each month,

® The number of rediscoveries each month of each known
DE.

The products we studied were all products such as operating
systems comprised of hundreds of thousands of lines of code
and used by many hundreds of users.

® Creating usage statistics

We needed to accurately determine the relation between
usage and time for our products. The rate of usage by a user
is his machine speed, and the total rate of usage at any time is
the number of user machine speeds, so the cumulative usage
U is the integral of

dU = N(T) - F - dT,

where N(T) is the number of users at time T and F is the
average machine speed.

Conceptually the machine speed value for determining
usage would depend on the size of a user machine and the
average number of shifts per day of usage. In practice we had
no direct access to such detailed information about usage; the
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most we could hope to do was determine what user machines
were running in a given month. The usage statistics available
to us initially were indirectly arrived at estimates of the
numbers of user machines at the end of each calendar
quarter. These statistics proved to be insufficiently accurate
for our purposes, so we developed our own usage estimates by
analyzing records of service to software installed in IBM
machines that were under contract for software service. The
machines for which detailed records of software service were
available to us were those in the United States inventory, so
we limited our detailed study of error phenomena to users of
these machines who bought software service from IBM. The
U.S. inventory of machines accounted for about half of the
total usage of our products. We reckoned usage in usage-
months, a usage month being a chronological month multi-
plied by a machine speed.

To formulate usage month statistics we created for each
machine a month by month record of which software prod-
ucts were serviced during a given month. We assumed that a
product was in use for any month in which it required service,
and during all months between two months in which it
required service. When competing products such as different
operating systems or different versions of the same operating
system were in use during the same month—a common
situation—we allocated the usage for that month among the
pieces of competing software on the basis of the apparent
level of service currently being required for each, and where
successive versions of a product were in overlapping use, we
phased out the older one in a timely fashion. In this manner
we built for every machine in the U.S. inventory a putative
month-by-month history of product use in which each
machine contributed just one month of usage per month to
the total usage statistics for all functionally similar prod-
ucts.

Some survey data were available from which we could
determine for some products what the total usage had been at
particular months. Our estimates checked well at times both
early and late in product life.

® Taking account of machine size

We assumed originally that the machine size factor F in the
usage reckoning should be the machine speed, and we
adopted as a measure of machine speed a composite of cycle
speed and memory size that had been developed in IBM.
However, when we examined machine by machine error data
for any single product, we found that problem rates for the
same sized machines differed greatly and showed no ten-
dency to distribute about a mean; typically a few machines
had many problems, many machines had only a few prob-
lems. One obvious source of variation was that a machine on
three-shift operation got credit for the same usage as a
machine on one-shift operation, but the variations were much
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greater than this mechanism could account for. When we
learned that some of our users rented many machines, used
the same software on each, and assigned to a single machine
the task of reporting service problems for all, so that that one
machine might be reporting the usage from dozens or
hundreds of shifts a day, we realized that we were too far
removed from actual operations to understand the error
statistics for individual machines.

However, we needed a machine speed calibration. Phillips’
discovery that product discovery curves were similar had led
to a desire for a planning tool that could forecast the
distribution in time of future problem occurrences for a
product while it was still in development. For this purpose we
determined a relation of the F factor in usage to machine
speed that would make the rate distributions determined
from different products as similar as possible. Assuming that
F varied as a simple power of machine speed, we did a linear
regression of data from a number of products to determine
the best fit of that power. The resulting power was close to
0.5. We do not assign much meaning to the 0.5, but in our
subsequent fittings of product data we used it so that our
results were consistent with those of others.

® Creating discovery statistics

The problem rates associated with known DEs can only be
known approximately and were estimated by statistical infer-
ence from the statistics of DE discovery and problem occur-
rence. For determining discovery times we had available
APAR records, which contained the actual date of discovery
of each DE. However, many of the APARs were submitted
by users not in our user set, either users in other countries or
users in internal IBM development groups. Since such
APARs did not result from usage included in our usage
statistics, it would be incorrect to count them as discoveries
in our rate inference calculations. Accordingly we took as the
date of DE discovery for our purposes the date of the first
discovery by one of our users and created a statistical series
“Discoveries by U.S. field users under service contract.”

We also made minor adjustments to the discovery statis-
tics of products for which there were successive releases in
which a successor release contained essentially all of the code
of the previous release. The adjustments in such cases were to
count a few DEs found in successor releases as original in the
earlier release, even though not found there before the
release of the new code. We do not discuss the procedure for
making these adjustments, which in any case affected only
DEs having problem rates so low that they could remain
undetected until release of successor software.

o Creating problem statistics
Our most accurate means of estimating the problem rates
associated with a DE requires us to know the total number of
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problems, both original discovery and rediscoveries of the DE
in a known period of usage. Such statistics had not been
collected before our work, but fortunately there was a set of
records from which the information to construct them could
be extracted, viz., the weekly effort reports of the persons
who service the products, the individual IBM Customer
Engineers (CEs). Each CE prepared a weekly report about
problems worked on that week. Each problem worked on was
assigned a unique code number, which it kept for as long as
the problem was open. The weekly report recorded the code
number of each problem worked on during the week, what
was done in regard to it, and, if the cause of a problem was
finally diagnosed as an IBM DE, the APAR number of the
DE causing the problem.

Gordon Jones and his associates in the IBM group
involved in our task saw the possibility to determine rediscov-
ery times by analyzing the CE effort reports. They developed
a set of programs that searched the archival file of activity
reports, pieced together all references to each problem
number worked on, determined when each problem was
closed for the last time, identified the APAR number of the
DE that caused the problem, and determined whether the
problem involved an original discovery or a rediscovery.
Their programs built problem files from which we could
determine for each DE in our products the date of the
original discovery and the dates of each subsequent rediscov-
ery.

® Estimating problem rates associated with a DE

We used two methods for estimating the rate associated with
a DE. Each method gave a distribution of probabilities that
the DE had each possible rate R.

Method 1: estimation from usage at time of discovery
On our model the probability that a given DE will cause a
problem in usage interval dU is

R4U,

where R is the problem rate associated with the DE. The
probability that a DE present in the code at FCS would
remain there undetected after usage U is

- RU
€ s

and the probability that a DE having rate R would survive
usage U without causing a user problem and be discovered
for the first time in usage interval dU is

R.e™qu.

By Bayes’ Theorem the probability that a given DE
discovered for the first time at U has rate R is

P(R,0)Re™ ™ du
> P(R,O)R e ®VaUu
p

’
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in which P(R, 0) is the probability for a DE to have rate R if
we had no information about it.

The derivation of this formula may be seen as follows: The
DE that caused the problem at U in dU must have some one
of the possible rates. The numerator is the probability that
the DE had the rate R and that it caused a problem at U in
dU. The denominator is the sum of the independent probabil-
ities that the DE had one of the possible rates and caused a
problem at U in dU. The denominator, since it includes all
possible ways for the event to occur, is the probability that
the DE would be found at U in dU; so the fraction is the
probability that the discovery came about in U at U through
the case in which DE has rate R.

If we set the factor P(R, 0) equal to 1, as though all values
of R are equally probable a priori, we get the probability
density that the rate is in dR at R:

U2 R e—RU

This function of R has a maximum at R = 1/U. The rate
estimated from the maximum is just the reciprocal accumu-
lated usage at the time the DE is discovered. The expected
value of R is 2/U, twice the value at maximum, which

indicates that the distribution is skewed far toward higher
values.

Method 2: estimation from usage at time of N problems
The probability that a DE having rate R will cause exactly IV
problems during cumulative usage U is

(UR)N e—RU
N

By the same kind of reasoning as for method 1, the
probability that a DE found exactly /V times during usage U
has associated rate R is

(RO e ® P(R, 0) dU

> (R'UY e P(R,0)dU

Ir'a

If we take all R values as equally likely a priori, we find
the probability density that the rate is in 4R at R to be

URU) e *
N!

This function of R has its maximum at R = N/U and
expected value (V + 1)/U, which is (N + 1)/N times the
value at maximum. If NV is large, the skew toward large
values is much smaller percentagewise than in the distribu-
tion obtained by method 1.

o Comparison of the two methods
When many discoveries of a DE have occurred, the estimate
of method 2 will have a much lower variance than that of

EDWARD N. ADAMS

method 1 and is quite insensitive to the initial probability
factors in the statistical formulas. For DEs having multiple
discoveries it is presumably the more accurate estimate
provided that the usage interval of analysis is one in which a
negligible amount of PS was done.

If many users have removed a DE from their code, method
2 will give values of R that are too small in proportion as the
usage by users who actually had the DE in their code is
smaller than the total usage, since it counts the usage of those
users who have actually stopped having the problems asso-
ciated with these DEs. The uncertainty of estimate because
of possible PS begins to be significant when the problem data
are based on a period ending more than a few months after
the time of discovery, and grows progressively greater the
longer the time from discovery to the time of estimate. We
show below data that provide evidence of the effect of PS on
rates estimated by method 2.

The estimate by method 1 is not affected directly by the
amount of PS done, but it is affected indirectly. If the
estimate is made after much PS has been done, some of the
discovered DEs will actually be DEs introduced by fixes.
These secondary DEs will be assigned rates that are too low,
and sometimes very much too low; and they will be used to
impute low-rate DEs to the original distribution that were
not actually there. To estimate the significance of this cffect
we need an estimate of how many secondary DEs are present.
We report below a study we did with such a model, in which
we found that the total number of originally present latent
DEs estimated from late life data were about 15 percent
higher when we did not take account of the creation of
secondary DEs than when we did. We may take this as an
estimate of the extent to which the original number of DEs of
low rate is overestimated by method 1. Method 1 should not
systematically overestimate or underestimate the number of
DEs of high problem rate; however, its estimates of these
numbers is quite sensitive to the initial probability factors
P(R, 0) in the formulas of statistical inference, so its results
are subject to the uncertainties involved in assigning these
factors.

® Creating an empirical rate distribution

We created an empirical rate distribution by adding together
the rate distributions from the individual DEs found. For
most purposes we estimated original rate distributions using
method 2 and usage periods less than a year. We could
estimate a rate distribution from the set of problems found in
any continuous usage interval beginning with FCS. To do so
we went through the following steps:

® We constructed a one-rowed table giving the numbers of
DEs for which there were 1, 2, 3, - - . problems in that
interval.
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® We determined for each DE in the table the probability for
its rate to take each value R of the distribution and
assigned to each rate of the distribution a fractional
number of DEs equal to that probdbility.

® We totaled up the contributions of fractional DEs for each
value of R to get the estimated rate distribution for the
DEs that had been found.

® We adjusted this distribution by dividing by

which is the fraction of DEs of rate R originally present
that would have been expected to be found in usage U. The
adjusted distribution is our estimate of the rate distribu-
tion of DEs in the code as originally shipped.

A basic practical question was how to represent the
distribution we were to fit. Given a known theoretical form
for the distribution, we might have parameterized that form
and chosen the parameters to attain a best fit. Having no
established theory to provide such a form, we chose to derive
a purely empirical distribution. A completely arbitrary dis-
tribution would have required an infinite number of parame-
ters of fit, so we made the assumption that the distribution
was smooth, so that if fitted at a number of points it could be
inferred in between.

The empirical distribution we used was a set of discrete
points, spaced at logarithmic intervals so that each rate
above the lowest was larger than the one below it by a factor
square root of 10. This distribution provided a point fairly
close (within about a half of a Naperian interval) to any
possible rate value in the range of values.

We experimented with a number of different choices of
the discrete rate values and also studied fitting with different
numbers of discrete values. We found that in general we
required a range of several orders of magnitude in problem
rates to represent the error patterns at all well; a minimum
number of six rate values seemed needed and seven or eight
seemed slightly better in some cases.

In practice we chose to parameterize the rate distribution
in terms of percentages of DEs associated with each rate
value plus the estimated total number of DEs present at
FCS, hoping to be able to correlate the total number with the
number of lines of new code.

® Choosing the prior probability factors

The rate distributions derived in the manner described are
sensitive in part to the choice of the initial probability factors
P(R, 0). Unfortunately, there is no uniquely correct way to
assign these factors. The results that are sensitive to these
factors are rates assigned to a DE for which the problem
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count is low; the rates assigned to a DE having only one
problem are essentially determined by the prior probability
factors.

When we began our work we chose these factors by
assuming that all rates for a DE were equally likely a priori.
To get a feeling about the underlying distribution we then
performed this process:

® Determine a distribution from the data,

® Use the distribution arrived at as a new trial distribution to
provide values for the P(R, 0),

® Repeat until the distribution converges.

We would expect this procedure to converge to a distribu-
tion for which the actual data are more probable than any
other data. While there is no reason to expect that the actual
rate distribution would have that property, we expected it to
be one for which the data are probable, so hoped the one
converged on might be similar. Later, when we had distribu-
tions from a number of products and verified from Phillips’
finding that they were similar, we felt it reasonable to use the
average of several distributions to estimate the factors
P(R,0).

In most of our work we used rates estimated by method 2
with problem data from the early field use of the code. These
data include few discoveries of DEs having very low problem
rates and no rediscoveries of them, so could give little
empirical information about the true rates for these DEs.
Since these DEs are by far the most numerous in the code,
the total number of original latent DEs may be estimated
very wrongly. Accordingly, we also made some determina-
tions of the rate distribution using method 1 with discoveries
over most of the usage life of the code. This analysis is known
to overestimate the number of low-rate DEs, but because of
our study of secondary DEs we felt that its value for the total
number of latent DEs originally present might not be in error
by a large factor.

Finally, by choosing our prior probability factors so that
the two kinds of estimate of the rate distribution were fairly
consistent, we sought to protect ourselves against getting
these factors grossly wrong.

® A study of secondary DEs

All attempts to fit our simple model rate distribution to
empirical problem data over the life of the code showed a
systematic error of fit: The model with the best fitted
parameters would give more early discoveries and fewer late
discoveries than were actually observed. We thought that
this failure of the modeling was probably caused at least in
part by the fact that some of the later-found DEs had been
injected into the code via the fixes for earlier-found DEs, as
we could see from direct evidence.
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Figure 1 Monthly discoveries for products of Table 1. The actual
and projected plots of discoveries vs time for three successive releases
of a product. The discoveries are projected from the fitted numbers
of original DEs for each release (not shown) and the mean of the
three rate distributions.

We wanted to estimate approximately how much error the
presence of secondary DEs would cause in estimating the
parameters of the original rate distribution using an analysis
that ignored these DEs. To this end we made a modified
model that incorporated a representation of the introduction
of secondary DEs as PS is done. This modified model was
based on a number of overly simple assumptions, e.g., that a
constant fraction of fixes introduced new DEs, that the new
DEs had the same distribution of rates as newly shipped
code, that the same constant fraction of users did PS at all
times in the life of the code, that PS was done with a constant
time lag after initial discovery, etc.

Since the treatment of PS was so artificial, we were not
concerned to improve the fitting of empirical data in general,
but only to determine whether we could find plausible values
of fit parameters that would eliminate the systematic imbal-
ance between early- and late-found DEs. We found that we
could roughly account for the excess of long term discoveries
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if we assumed that for each fix installed a new DE was
generated with probability of the order of fifteen percent.
Unfortunately the modified model involves so much that is
arbitrary and overly simple that a detailed report on it would
involve more explanation than the results justify. Apart from
its value to give us an indication of how important secondary
DEs were, it was of no greater value than the unmodified
model.

Fitting the model parameters to some service
histories

Having developed the sources of data and methods of analy-
sis described above, we analyzed service data for a number of
IBM products. Because of the commercial significance of the
data and other sensitivities, we do not present original data
nor identify individual products. We can characterize the
products: Each was a release of an operating system, a large
component of such a release, or a product of similar charac-
ter in size and manner of use.

® Fitted rate distributions

Table 1 shows the fitted rate distribution for three successive
releases of a single operating system. The reciprocal rate
values, i.e., the mean times between user problems, are
shown vs the percentage of DEs having this value. Here, as in
all the data we present, we show only relative distributions.

® Fitted total numbers of DEs present

We do not present data on the estimated number of latent
DE:s present, since we did not find a way to get consistent and
meaningful figures for this number. The difficulty we had is
related to our inability to accurately determine the rates of
DEs having very low problem rates. By varying the range of
rates assumed possibly to be present and by varying the
choice of the initial probability factors P(R, 0), we could
produce sets of fitting parameters that had widely different
numbers of latent DEs but fit the problem data about equally
well. These various fitted distributions varied almost entirely
in the large numbers of DEs having very low problem rates;
they all had about the same numbers of latent DEs present
having high problem rates, these being the ones that
accounted for the observed problem activity.

We had originally chosen to use the total number of latent
DEs as a parameter, hoping to correlate it to the number of
lines of new code in the product. Indeed, for a given set of
rate parameters we did find that the number of latent DEs
was crudely proportional to the number of lines of new code;,
but with deviations from proportionality of a factor of 2.
However, it is clear that most of the fitted latent DEs did not
correspond to real DEs of which our data could give knowl-
edge. So the fitted total number of latent DEs is merely a
fitting parameter whose values are to be understood only in
connection with all other parameters used in a particular fit.
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® Fitted discovery distributions

Figure 1 compares actual discoveries to fitted discoveries vs
real time for each of the three releases of Table 1. Each fitted
curve was projected from the model using as input data the
monthly usage data for the release, the inferred total number
of original latent DEs for the release, and the average of the
three fitted rate distributions as given in the table. Since each
of the three different distributions of discoveries vs real time
is obtained from the same average rate distribution, it is clear
that the main differences of shape derive from differences in
the time pattern of usership. That the shapes are rendered
fairly well in such a plot was Phillips’ discovery.

Figure 1 shows that our model can capture the principal
information needed to understand the smoothed trend of
discoveries in real time. Although the time trends of fit are
perhaps a little better than typical in this particular case, one
can see that at some points there are errors of fit of the order
of 30-50 percent, which is what one must expect when
modeling in terms of such gross aggregates.

o Fitting rediscovery distributions

We did several studies of detailed rediscovery distributions.
The format of such studies was to seek any plausible assump-
tions about what PS might have been done that would permit
the model to reproduce the general trend of the rediscovery
data. By using the model with secondary DEs we could
almost always do such a fit within the accuracy that is to be
expected for this kind of model. However, we do not present
data showing these fits, since they are based on such
arbitrary assumptions about PS that they are persuasive of
little.

o Similarity of rate distributions of different products
Table 2 tabulates the distributions obtained from fitting
problem data for the nine large products for which we had
full life data at the time of the analysis. Among these were
products used on both large and small machines. (It may be
noted that the rate values used here are somewhat different
from those used in Table 1. The differences are not impor-
tant: Either set of values gives about as good a fit of the
data.)

Examining the fitted rate data one can see that the
numbers in the leftmost columns—the percentage of DEs in
the lowest rate values—are very similar from product to
product. These similarities are not meaningful, but merely
reflect similarities of the initial probabilities used in the
fitting as discussed above,

One can see that in the rightmost columns the variations
along each column, from column to column, and from
product to product also show similarities, although with
much more variability of the data. These similarities are
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Table 1 Problem rates for three releases of a product. The fitted
distribution of problem rates is shown as a mean time between
problem occurrences vs the percent of DEs in the corresponding rate
class.

Rate class

1 2 3 4 5 6 7 8

Mean time to problem occurrence in kmonths
for rate class

95 30 9 3 09 03 009 0.03

Firtted percentage defects in rate class by release

Release
1 24.1 264 288 135 3.0 29 1.1 0.2
2 21.3 232 255 138 50 74 33 05
3 219 241 275 162 39 40 21 0.2

Average 224 246 273 145 40 48 22 03

Table 2 Rate distributions for nine software products. These rate
distributions were fitted using the same fit program and the same
prior probability factors. The square root of machine speed rather
than machine speed itself was used for reckoning usage of
machines.

Rate class

1 2 3 4 5 6 7 8

Mean time to problem occurrence in kmonths
for rate class

60 19 6 19 06 019 0.06 0.019

Fitted percentage defects in rate class by release

Product
1 342 288 17.8 103 50 2.1 1.2 07
2 343 28.0 182 97 45 32 1.5 0.7
3 337 285 180 87 6.5 28 1.4 04
4 342 285 187 119 44 20 03 0.1
5 342 285 184 94 44 29 1.4 07
6 32.0 282 201 11.5 50 21 0.8 0.3
7 340 285 185 99 45 27 14 06
8 319 271 184 11.1 65 27 1.4 1.1
9 31.2 276 204 128 5.6 1.9 05 0.0

meaningful, and the discrepancies between corresponding
numbers in these columns are probably indicative of the
actual variability of the rate distributions from product to
product. Noisy these data are, but they suggest that rate
distributions have considerable similarity of form from prod-
uct to product.

Using the mean of these nine distributions, we calculated
the total problem activity contributed by the DEs in each
rate group. The result was that the few DEs in the set having
the highest rate were responsible for more total problem rate

EDWARD N: ADAMS




10

Table 3 Variation of fitted rates with usage interval. The rate
distribution for this product was fitted using the total usage and
cumulative discoveries as of the end of each month for 18 months.
The apparent decreases in the right-hand columns show that the
fraction of users having all of the most virulent- DEs in their code
diminishes after about month 7 or 8.

Percentage of defects by rate class
Class 1 2 3 4 5 6 7 8
Month

231 247 265 146 44 45
231 248 265 146 43 4.4
232 249 266 146 43 43
232 249 266 145 43 43
232 249 266 146 43 43
233 250 268 148 44 40
233 250 268 148 44 40
233 250 270 151 45 38
229 247 268 154 50 39
10 234 251 210 151 47 3.7
11 233 250 269 153 52 34 07 00
12 237 254 271 148 51 32 06 0.1
13 239 256 270 147 54 29 0.5 0.1
14 244 259 269 144 54 26 04 0.1
15 246 261 270 142 53 25 03 0.1
16 249 263 270 140 52 22 03 0.1
17 252 265 268 140 51 20 03 0.1
18 254 267 269 138 50 19 03 0.1

O 00NN AW N —
O =N
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n

than those in the set having the second highest rate, and that
in general the DEs in any set were responsible for more
problem activity than those in the set having the next highest
rate. Thus the small numbers of DEs in the sets having the
very highest rates account for nearly all of the problem
potential of the code.

® The effects of PS on fitted rates

Table 3 illustrates how some effects of PS show up when we
analyze data from progressively longer service intervals. The
figure shows a table of the rate distribution obtained by
fitting the cumulative problem data for a single product after
each calendar month for 18 months. The inferred distribu-
tions are rather stable for the first seven or eight months,
with no more than a suggestion of depletion of the percent-
ages in the highest rate values, but after that time the
numbers of DEs assigned to the three highest rate values
diminish markedly.

That the numbers in the right-hand columns are fairly
stable for the early months implies that as the user months
accumulate, the numbers of problems assigned to the most
virulent DEs increase in the same proportion, as though most
of the users continue to have these DEs in their code.

After about seven months a change occurs, so that the
numbers of DEs having high rates diminish markedly. This
implies that the total number of problems reported against
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these DEs no longer increases in the same proportion as the
usage, as though many of the users no longer have those
virulent DEs in their code. Without looking at the raw data
one cannot tell how completely the most virulent DEs had
been eliminated, but it is as though their problem activity
had been eliminated from most of the code.

We interpret these data to mean that during the first half
year after FCS little if any PS was done, since the first DEs
that PS would eliminate continued to be present essentially
unchanged. We used a table such as this to estimate the
amount of PS being done so that we could decide how many
months of data could safely be used to determine an original
rate distribution.

Discussion of the rate distribution

Several features of the distributions are of interest. First, the
rate distributions are generically similar from product to
product, as Phillips had discovered. To the extent that they
are similar, we may conjecture that some process has shaped
them so. If so, it should be a pervasive process, since these
products had been produced at different places and times, by
different people, and with significant differences of program-
ming technology.

Second, the approximately linear slopes of the distribu-
tions at high rates are less steep than the simple model would
suggest. If one considers that during the latter months of
development the code is subjected to considerable usage, one
might expect the numbers of the most virulent DEs to be
reduced far below what is found, in fact that they would be
approximately in the ratios of the exponential attenuation
factors defined by their problem rates.

Reflecting on these matters and being aware that in fact
considerable numbers of DEs are found during the develop-
ment process, we realized that many must also be added
during development. We developed an intuition that the
characteristic shape of these distributions might just reflect
the balancing during the development process between acts
of creation and removal of high-rate DEs. Assume that as
development proceeds new DEs are continually created, but
at the same time existing ones are found and removed, and
imagine that one can represent the evolution of the rate
distribution by a pseudo-differential equation

d P(R)
dt

— G - R, P(R) — RP(R),

where P(R) is the number of DEs per unit interval of rate R
and “t” is a variable representing the passage of development
“time.” The term G represents the effective rate at which
new DEs are created per unit of ¢; the term with R represents
the probable fact that developers find DEs by activities
similar in effect to running the code in the field; the term
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with R, reflects the assumption that developers also find DEs
in ways that are unrelated to running it in the field. (We have
evidence that they do, which need not be reviewed here.)

If development goes on long enough for the process
described to come into balance for those DEs having very
high problem rates, one may set the left-hand side to zero and
solve for P(R):

P(R) = .
(R) R+ R,

Since G itself could be expected to depend on R (it is
plausible that the developer is more likely to create DEs of
low virulence than DEs of high virulence), we cannot con-
clude the exact form by which the distribution should vary
with R. However, these considerations suggest why P(R)
might well vary inversely with R somewhat as observed. So
that we could relate this formula to the actual mean rate
distribution of Table 2, we made a best fit of that distribution
assuming P(R) to be proportional to a power of R + R. To
do this we associated with each discrete value except the
lowest all the rates of the continuous distribution in the
logarithmic interval from a 1/4 root of 10 below to 1/4 root
of 10 above that discrete value. We associated with the
lowest value all the states from rate O up to a factor 1/4 root
of 10 above the lowest value. We obtained a best fit distribu-
tion

G
P(R) = (R + 0.032) 1.69
that fits the mean rate distribution closely. (There is a small
glitch at the lowest rate point, undoubtedly related to the
extra weight given by integrating the function all the way
from Q.)

Optimizing preventive service

The rough level of modeling we have achieved is adequate as
a guide to planning effective PS. We take it as axiomatic that
PS is not to be done unless its benefits justify its cost.
Generally speaking, the service costs that can be profitably
avoided by PS are the result of problems caused by a small
number of highly virulent DEs, most of which are found very
soon after the code is put into service. The main question
about any DE is whether to deal with it by PS or by CS.

The considerations in answering this question are much
the same for the product producer and the product user. The
user who has had no problem does not want to install a PTF if
the risk from possible new DEs plus the costs of doing PS
outweigh the expected gains from avoiding problems from
the known DE. The producer must prepare a fix for the DE in
any case, since he must provide CS to the user who discov-
ered the DE, but he does not want to incur the additional
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Discovery month

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18

1 7 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O

2 29 9 0 0 0 0 0 0 O 0 0 0 0 0 0 0 O O

3 4 26 7 © 0 0 0 0 0 O 0 O 0 0 O O 0 O

4 19 6 0 0 0 0 0 0 0 0 0 0 0 0 O O

5 & 24 15 5§ 0 0 0 0 0 0 O O O O O O0 O

6 88 52(28 17 12 4 0 0 0 0 O ¢ O O O O O O

-‘E 7 103 61(33 20 14 10 4 0 ¢ 0O 0 0 O 0 O O O O
i 8 117 69|38 23 16 11 8 3 0 0 0 0 O 0 O O 0 O
§ 9 132 78(42 26 18 13 9 7 3 0 O O O O O O O O
é 10 147 87147 29 20 14 10 8 6 2 0 0 0 0 O 0 0 ©
E 11 162 95{52 32 22 15 11 9 7 &5 2 0 O O O O O O
12 176 104 |57 3% 24 17 12 9 7 6 5 2 0 0 0 0 0 O

13 191113161 38 25 18 13 10 8 6 5 4 2 0 0 0 O O

14 20612166 41 27 19 14 11 8 7 5 4 3 1 0 0 0 O

16 22013071 44 29 21 15 12 9 7 6 5 4 3 1 0 0 0

16 23513976 47 31 22 16 12 10 8 6 5 4 3 3 1 0 O

17 250147180 50 33 24 17 13 10 8 6 5 4 4 3 1 0

18 264 156 |85 52 35 25 18 14 11 9 7 6 4 4 3 3 2 1

Figure 2 Projected rediscoveries when DE is known. The number
in the R row and D column is the projected number of rediscoveries
made in month R caused by DEs discovered in month D. The
numbers are projected for a hypothetical product that has steady
month-by-month growth of usership on the assumption that all users
use the initial version of the product.

expense of working up PTFs and distributing them to users
unless the users will judge it worthwhile to put them in and
will avert service calls by doing so.

There are at least two levels on which to approach the
decision of whether to do PS. At the coarsest level, one relies
on the statistical fact that early-found DEs are the virulent
ones, so one does PS for all DEs found up to a certain value of
usage, CS for all found later. The considerations as they
might be weighed by the developer can be seen by studying a
rediscovery matrix, an example of which is shown in Fig. 2.
The rows and columns of the matrix are labeled by months
reckoned from the time of FCS. The entry for row R and
column D is the number of rediscoveries in the user base
during month R caused by DEs discovered in month D. The
total of the numbers in row R is the total number of
rediscoveries expected in month R.

To construct such a matrix, assume a rate distribution,
e.g., the one found from our work. Assign a number of initial
latent DEs by the following procedure: Estimate the number
of DEs to be found over the usage period of interest for the
product of interest, perhaps on the basis of the number of
lines of new code in the product; determine a number of
initial latent DEs that will give the expected number of DEs
for that amount of usage by direct projection from the model.
The model is now calibrated to make the matrix.

1
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Use the expected usage buildup for the code to calculate
the number of DEs in each rate group that will be discovered
in each month after the code is released. To get the column
entries for a given month calculate the problem rate of all
DEs found in that month as the sum of the number of DEs
times the rate per DE. Now, using expected usages for later
months, calculate entries for each row of the column as the
problem rate of the column month times the number of
months’ usage for the row month. In the example of Fig. 2 all
calculations assume that the initial version of the code is
furnished to all users, no matter when they begin to use the
code.

The significant trends in the rediscovery matrix are that
the numbers grow steadily down a column and diminish
strongly to the right across a row. The variation down the
column reflects the continual entry of new users who can
have problems; the decrease to the right reflects the dimin-
ishing virulence of DEs found in later months. It is easy to see
that the large numbers all occur in the columns to the left, so
that the preponderance of benefits of PS will come from
avoiding problems in the leftmost columns.

The solid line in the figure is drawn with reference to a
hypothetical PTF tape, made available by the end of month 3
and fixing all DEs found in months | and 2. The line encloses
all problems whose occurrence can be affected by the fixes on
the tape. The hatched area relates to rediscoveries during the
period that users are installing fixes, which in this example is
assumed to be two months. Some of the problems in the
hatched area and all of those below it can be avoided by
doing PS to remove the DEs on the tape; no other problems
can be so avoided. The value of avoiding these problems must
be the justification for doing PS with that tape.

We can construct the line that demarcates the problems
affected by some other service vehicle by drawing a similar
line with a column determined by the last month for which
known DEs will be fixed and the row determined by the
month in which the fixes become available to users. As one
looks at various cases it becomes clear that, since one needs to
eliminate the problems from only a few columns, a vehicle to
do the most worthwhile PS can be built only a few months
after FCS.

The service strategy for a developer is concerned with
deciding what fixes to make available to users with which
they can do PS. The optimum strategy for the developer
depends on the details of his cost structure, but it is easy to
see that he will find it beneficial to support PS to remove only
the problems associated with a few columns on the left.

In making the matrix example, we assumed that all new
users got the original version of the code unmodified to fix
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known DEs. The numbers in the rediscovery matrix would be
different if, e.g., the developer arranged that each new user
get a version of the code in which all available fixes have been
installed. In that case one would modify the calculation so
that the problem rate for the new users in a given month
would be reduced appropriately, and would find that the
numbers would not continue to increase down the columns,
but would become constant past the month in which all new
users have the fixes. For such a service strategy most of the
numbers in the matrix will be smaller.

Calculations such as these charts illustrate may be useful
in developing quantitative measures for the value of a
particular service vehicle in the context of a given planning
framework.

A user might approach the PS vs CS decision in a simpler
way. He will benefit significantly from PS only if there is a
significant chance that a DE he removes preventively would
otherwise cause him a problem. Thus he might ask what is
the mean time between problems for the DEs that a batch of
fixes remove. To determine this one can follow the same
calculation as above up to the point of estimating the total
problem rate due to DEs found in a given month. If one now
divides this quantity by the number of DEs that cause that
rate, one gets the problem rate per DE found in a given
month. In typical cases the user will find that after not many
months the mean time to error for the DEs being fixed by
new PTFs approaches the length of time he expects to run the
code. The prospective benefit of removing such a DE is very
small; and in view of the small chance that the fix will
introduce a much more virulent DE, a prudent user will not
put in the fix. For typical patterns of usership buildup the
average problem rate per DE found in a given month is
always about 0.75-0.8 times the reciprocal of the cumulative
usage at the end of that month, so that, e.g., DEs found in the
month that the cumulative usage reaches 3000 months have
an average problem rate of the order 1 per 4000 months.

While the calculations for user and developer look quite
different, they lead to much the same cutoff for doing PS,
since both calculations are driven by the same underlying
consideration: whether the probability of rediscovery justi-
fies the cost of doing PS.

A more refined level of decision about PS can be made if
the service organization keeps current records of which DEs
caused each problem, since the decision can be made on a DE
by DE basis rather than a month to month basis. Assume the
developer records the times of occurrence of all problems
associated with a given DE and a record of month by month
usage of the product. He can then easily make a monthly
estimate of the probable virulence of each known DE on the
basis of accumulated usage and number of problems caused.

IBM J. RES. DEVELOP. e VOL.28 e NO.1 e JANUARY 1984




Given this estimate it is straightforward for either developer
or user to determine for each DE whether the hazard it poses
justifies PS.

One attractive fact about a DE by DE strategy is that
application of fixes by all users can be restricted to just the
small fraction of DEs for which it is profitable. Since most
DEs, even if not fixed by PTF, are never rediscovered, one
would like to avoid the cost of doing PS for them. A simple
rule ensures this: Wait for at least one rediscovery before
doing any PS. Everyone can afford this policy; a highly
virulent DE will have its first rediscovery before the fixes
could be disseminated anyhow, while a less virulent DE, for
which a rediscovery comes only after several months, consti-
tutes a small month by month risk to the users. Another
attractive feature of dealing with individual DEs on the basis
of estimated virulence is that one deals as efficiently with the
(rare) highly virulent secondary DE as with an original DE.

In our judgment the fraction of DEs worth fixing is very
small, probably less than ten per cent; and yet for a few DEs
the payoff from PS is great. We are convinced that if one
determines what PS to do on some such basis as sketched
above, one can realize substantially better benefits from PS
than are derived from either a fix all or a fix none strategy.

Concluding remarks

Our work suggests several useful things about the distribu-
tion of error rates in product code. First, most of the DEs
present have mean times to discovery of hundreds to thou-
sands of months when run on a single machine. Thus the
typical DE requires very unusual circumstances to manifest
itself, possibly in many cases the coincidence of very unusual
circumstances. One may doubt that a testing group using a
few machines and having only a few months to work could
ever detect and remove all such DEs by purely empirical
means. One may conclude that service will always be
needed.

Second, if we are correct in our intuition about why the
rate distributions in the products we studied were generically
similar, we might expect the rate distributions in other large
bodies of code to be similar also, at least so long as the
methods of code development depend on empirical debug-
ging. It may well be that as software engineering techniques
improve, the population of DEs will balance at a lower level;
but absent development methods that generate truly error-
free code, the same sort of error rate distribution may well
persist in future large products.

Third, to the extent that one can assume that the distribu-
tion of rates and the total number per thousand lines of code
are similar for similar products, one can forecast the error
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behavior of a planned product. This can be of some use in
planning for service. However, one must not expect high
precision in such a forecast: There will be large percentage-
wise variations in the small number of highly virulent DEs
that dominate the early error behavior of the code. These
variations will be even larger and less predictable for small
products or products that are used sporadically.

Similarly, to the extent that one can represent the error
phenomena in the user population by such a simple model,
one can use the model for several types of quality control, but
again one should do so without expectation of great precision
in fitting and interpreting even after-the-fact error data,
because the statistics of an actual product history will deviate
from most probable values, because the statistical quantities
used to interpret the history are subject to large errors of
determination, and because the actual history depends on
detailed circumstances not represented in the gross parame-
ters. It may well be that our simple model, perhaps as
modified to take account of secondary DEs, captures most of
the significant regularities in the rate behavior of general
pieces of code that can be represented without a lot of
detailed information about the use of the product.

Relation of our work to that of others

The mathematical model and methods we used are simple
and familiar. We based certain aspects of our work on the
previous work of Richard W. Phillips of IBM Poughkeepsie,
but did not make significant use of other work. We did look
at some of the literature of reliability, where we found that
the general notion of associating problem rates with DEs was
a common one. Thus we present this work primarily for what
we have learned about the empirical quantification of the
error behavior of product quality code and for the implica-
tions that can be drawn from it about how to manage
preventive service in such code.

Acknowledgments

In order to do this work we needed the assistance of many
people in IBM, who helped us find and get access to the
information we needed. We particularly acknowledge the
generous assistance of Richard W. Phillips, who by sharing
his ideas and the results of his pioneering work on discovery
made our task much easier and enabled us to proceed directly
along the most profitable path. We also acknowledge that
although we present this paper as sole author, all of the work
reported was done in collaboration with or depended directly
on the results of Gordon Jones, Dan Price, Grant Wood,
Alvin Blum, and the other members of their group, whose
skill and perseverance in extracting problem data from a
jungle of tapes, files, and reports made possible the creation
of the problem statistics without which the work could not
have been done.

13

EDWARD N. ADAMS




14

Received June 10, 1983, revised August 25, 1983

Edward N. Adams IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Adams is presently
manager of VLSI symbolic layout tools in the Computer Science
Department at the Thomas J. Watson Research Center. Since
joining IBM in 1959, he has served twice on the staff of the Director
of Research and has served as research director of engineering
science, systems and applications, and computer-aided instruction.
Prior to joining IBM, Dr. Adams was a faculty member of the
University of Chicago’s Department of Physics and the Fermi
Institute and a member of the Physics Department of the Chicago

EDWARD N. ADAMS

Midway Laboratories. He was a manager of the Department of Solid
State Physics and Semiconductors at the Westinghouse Research
Laboratory. Dr. Adams was a visiting faculty member in physics at
the Carnegie Institute of Technology, in physics and engineering at
the State University of New York at Stony Brook, and in computer
science at the California Institute of Technology. Dr. Adams
received a B.S. in chemistry from Southwestern, Memphis, Tennes-
see, in 1943, and an M.S. in physics in 1947 and a Ph.D. in
theoretical physics in 1950, both from the University of Wisconsin at
Madison. He was an Atomic Energy Commission Fellow from 1948
to 1950. Dr. Adams is a fellow of the American Physical Society and
a member of the Association for the Development of Computer-
Based Instruction Systems, the Institute of Electrical and Electron-
ics Engineers, and the International Federation for Information
Processing.

IBM J. RES. DEVELOP. o VOL.28 e NO.1 e JANUARY 1984




