
Augustin A. Dubrulle 

A Class of Numerical  Methods  for the  Computation of 
Pythagorean  Sums 

Moler and Morrison have described an iterative  algorithm for  the computation of the  Pythagorean  sum (a' + b2)"' of two real 
numbers a and b. This  algorithm is immune to unwarrantedfloating-point overjows, has  a  cubic rate of convergence, and is 
easily  transportable.  This  paper, which  shows that  the  algorithm  is  essentially Harley's method  applied  to the computation of 
square roots.  provides a generalization to any  order of convergence. Formulas of orders 2 through 9 are illustrated  with 
numerical examples.  The  generalization  keeps the  number of floating-point divisions  constant  and should be particularly 
useful for  computation in high-precision floating-point  arithmetic. 

1. Introduction 
As in [ 1 1 ,  the  Pythagorean  sum h of two real  numbers a and b 
is defined by 

h = (a' + b*)'/'. 

Pythagorean  sums  are a frequent  occurrence in numerical 
computations,  and  their evaluation  in  floating-point arith- 
metic  requires  some  precautions, often overlooked, to prevent 
unwarranted overflows or underflows. In their  paper, Moler 
and Morrison [ I ]  describe  an  elegant  iterative  algorithm for 
the  computation of Pythagorean  sums  that is immune  to 
unwarranted overflows, has a cubic  rate of convergence, and 
is easily transportable  to  any  machine. 

This  paper presents a summary  description of the  Moler- 
Morrison algorithm  and shows that it is essentially the 
application of Halley's  method [2] to  the  computation of 
square roots.  A generalization  to  any convergence order 
higher  than  linear is then proposed that preserves the  main 
properties of the  Moler-Morrison  algorithm.  Algorithms  for 
orders 2 through 9 are  illustrated with numerical examples. 
Since  the  general  algorithm is based on  a rational  iteration, 
the  number of divisions required per iteration is constant 
(two), while the  number of multiplications  is proportional  to 
the  order of convergence. High-order  algorithms should thus 
be  particularly  interesting for  multiple-precision  floating- 
point computations. 

2. The Moler-Morrison algorithm 
In a rectangular  coordinate  system { x ,   y }  of origin 0, we 
consider  a sequence of points {A,; n = 0, 1,2, . . .], A, being  in 
the first quadrant,  at a distance h from  the origin. A,,, is 
derived from A,  as follows. Let H,  be  the projection of A, on 
the x axis and M,, the midpoint of A,H,. A,+, is defined as  the 
reflection of A, in OM, (Fig. 1) .  Elementary  geometric 
considerations show that A,,, and A,, are  in  the  same 
quadrant,  at  the  same  distance  from  the origin, and  that 
A,,, is closer than An to  the x axis. Thus,  from  the definition 
of A,, the set {An}  is on the  quarter circle of radius h in  the 
first quadrant, with A,,, between An and A, the point of 
abscissa h on the x axis. The  sequence {An] converges 
monotonically towards A. 

Let x,, and y ,  be  the  coordinates of A,. From  the above 
considerations, the sequence { x n }  converges  monotonically to 
h from below, with 

h = (x: + y:)'/', n = 0, 1,2, ..., (1) 

while the  sequence { y , ]  converges  monotonically to  zero  from 
above. Thus, {xn]  can be considered as a sequence of approxi- 
mants  to  the  Pythagorean  sum of two  arbitrary  numbers x, 
and yo. From  the  relationship between A, and A,+,, we  now 
derive the  iteration  formulas providing the  pair (x , ,+, ,   y , , , )  
from ( x n ,  Y, , ) .  
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Without loss of generality, we henceforth  assume  that 

Xg Yo > 0, 

considering that  the  Pythagorean  addition is commutative 
and  that  the  case yo = 0 is trivial. This  assumption  guaran- 
tees that 

X" L y, > 0 (2) 

for any finite  value of n. 

From  Eq. ( I ) ,  we have 

X" + Y" = X,+I + YZ+l . 

Y,(Y,+, - Y.) + 2X,(X,+I - X") = 0. (4) 

2 2 2  (3) 

Since A,+,A, is perpendicular  to OMn, 

Combining Eqs. (3) and (4), we obtain 

under  the  assumptions in the inequalities (2). 

From Eqs. ( 5 ) ,  the  Moler-Morrison  algorithm for the 
Pythagorean  sum of two  real numbers a and b, 

h = (a2 + b 2 p 2 ,  

can  be expressed as follows: 

x,, = m a x ( l a l , I b l ) ,  

Y,, = m i n ( l a l , I b l ) ,  

Equations (6) represent  the  formulation in [ 11. For com- 
putations in floating-point arithmetic,  the  iteration is stopped 
when 

4 = r,, + 4, 
where = denotes  equality of machine floating-point repre- 
sentations.  The monotonic  convergence of x, to h from below 
and  the  formulation in terms of rn exclude  the possibility of 
unwarranted overflows. The  asymptotic  rate of convergence 
is cubic,  and very few iterations  are  required  to  obtain results 
accurate  to  the working precisions of current  computers.  The 
simplicity, compactness,  and  accuracy of the  algorithm  make 
it an  attractive choice  for inclusion in mathematical  software 
libraries. 

I A 

Figure 1 Geometric  interpretation of the Moler-Morrison algo- 
rithm. 

3. Relationship with Halley's method 
Let f(x) be a  real  function twice differentiable of the real 
variable x. Halley's  method (1 694) is an  iterative  scheme for 
finding an  approximation  to a root of the  equation 

f(x) = 0 

given an initial guess x,, of that root. It is based on the 
iteration  formula 

fi 
f '  

where f,,, f L, and f are  the values of f(x) and its first two 
derivatives a t  x,. The  asymptotic  rate of convergence of the 
method is cubic for  simple  roots and  linear for multiple roots. 
More  details on this iteration  can be found in [2]. 

We now apply Halley's method to  the  computation of 
Pythagorean  sums. For  a given pair (x,,, yo) such that 

O < y , ~ x , ,  (8) 

the  Pythagorean  sum 

h = (x; + y y  

is a root of the  equation 

Replacing f(x) by its expression (10) in formula ( 7 ) ,  we 
obtain 

h2 + 3x: 583 
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From Eq. (1 l ) ,  we can derive that 

O r x , r h  (12)  

is a sufficient condition  for the  double  inequality 

X" I x,+I I h (13) 

to hold true.  Since x. satisfies the inequalities (12)  from  the 
definitions (8) and (9), the  inequalities  (13)  guarantee  that 
y,, exists such  that 

x, I x,+I I h 

to hold true; 
0 Stability for positive x iterates:  the coefficients of Fk(x)  

Rational  computability of the x iterates: is  a rational 
are positive (sufficient condition); 

function of h2 and X,,; 

( 1  5 )  and (1 6) coincide when k = 3. 
Compatibility  with  the  Moler-Morrison  algorithm: Eqs. 

y ,  = h -x:. 2 2  

The  combination of Eqs. (1 1)  and (14) finally yields 

and 
3 

Y.+I = ~ 

Y" 
4x5 + y: ' 

which are precisely the  equations ( 5 )  derived  for the  Moler- 
Morrison algorithm. 

4. A generalization 
While  the  Moler-Morrison  algorithm is likely to  be of 
optimal efficiency for the working precision of current com- 
puters,  higher-order algorithms  may be desirable  (under 
certain conditions of computational  cost) for calculations 
requiring  higher levels of precision. In  this section, we 
propose such  algorithms for which the  number of divisions is 
constant  and  the  number of additions  and  multiplications 
varies  linearly  with the  rate of convergence (rational  itera- 
tion formulas). 

The  cubic  rate of convergence of the  Moler-Morrison 
algorithm is revealed by forming 

from  Eq. (1  1). 

An obvious generalization of Eq.  (1 5 )  to  an  asymptotic 
convergence rate k is 

where F J x )  is a  polynomial to be defined. The  requirements 
we choose to impose  upon Fk(x)  relate  to  computational 
considerations and  the  properties of the  Moler-Morrison 
method;  they  are 

Monotonic  convergence to h from below: 

O I X , I h  

584 is a sufficient condition  for 
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The choice 

( h  + + ( h  - X)k 
Fk(X) = 2h 

satisfies the above  conditions and defines the following 
iteration  formulas: 

( h  + X")k - ( h  - x,,y 

( h  + X$ + ( h  - X J k  ' X"+] = h 

2hYf: 
( h  + X J k  + ( h  - x")k ' Y"+l = 

An analysis of Eqs. (17) shows that two cases  must be 
considered,  based  on the  parity of k: 

0 k is even; then 
The  numerator of x,,+] is an odd polynomial  in x, and  an 
even polynomial in h.  The  denominator is an even poly- 
nomial in x, and h.  Thus, x,,+I is the  product of x, and a 
rational  function of x5 and h2; using  a similar  approach, we 
find y,+, to  be  the  product of h and a rational  function of xf 
and h2; 

x,+] is again  the  product of x,, and a rational  function of xf 
and h2, while Y , + ~  is the  product of y ,  and a rational 
function of xf and h2. 

k is odd;  then 

From these  considerations, we see that a rational  iteration 
mapping  the  pair (x,,, y,) into  the  pair (x,,+], y n + ] )  exists only 
when k is odd, since h is not  a quantity  available  for 
computation.  Similar  analyses show that 

r n + l  = (Yn+1/Xn+d2 

always has a rational expression  in terms of rn and h2. When 
k is even, an  iteration  can  thus  be derived that  maps  the  pair 
(xn,  rn) into (x,+1, rn+l).  These two  classes of iterations, 
together with  Eqs. (17), constitute  the basis for our general- 
ization of the  Moler-Morrison  algorithm.  We  derive in the 
next  sections the corresponding iteration formulas. As  much 
as possible, the  outline of the  general  algorithms follows that 
of the  cubic  algorithm defined by Eqs. (6). 
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5. Forrnu llas of even order 
For an even rate of convergence, 

k = 2m, 

let us first look at  the  derivation of the x iterate  from  the first 
of Eqs. (17). Using the  formula for  binomial  expansion, we 
have 

( h  + X ) 2 m  + ( h  - X ) 2 m  = 2 x (z) h2i X2m-2r ,  

i = O  

with the convention 

(1) = 0 when u < O .  

As in Section 2, Eq. (6), we define 

r" = ( Y,/X")' 

which with  a transformation of Eq. ( 1  8 )  gives 

h2 = x: ( 1  + rn).  

Combining Eqs. (19), (6), and (20 ) ,  we get 

( h  + X J Z m  + ( h  - X, )Zm = 2xf" 1 2 m  

i=O 

h [ ( h  + X ) 2 m  - ( h  - x)2"] = 2x?+l 2 ( 2m ) ( 1  + r,,)'. 
i=o 2i - 1 

( 2 1 )  

The  replacement of the expressions ( 2 1 )  in the first of Eqs. 
( 1  7) yields 

or 

for  a formula analogous in form  to  that of the  cubic 
algorithm. Expressing the  fraction in Eq. (22 )  as a rational 
function of r,, after  replacement of the binomials by their 
expressions, we finally obtain 

Note  that  the  numerator of this  rational function has a  null 
constant  term  and  that  the  denominator is monic. Similarly, 
starting with the  equation 

[ ( h  + x , ) ~  2yf: - ( h  - I1 
obtained from  Eqs. (17 ) ,  we derive the  iteration  formula 

r 

Assuming that  the coefficients 

and 

are available, the  numerical  algorithm for the  computation 
of (a2 + b2)1'2 can be expressed as follows: 

x. = m a x ( l a l , I b l ) ,  

' 0  = [min (I a I ,  I b I)/xo12, 

The  iteration is stopped when the  equality of machine 
representations 

fl ( 1 )  = fl ( 1  + r") 

is satisfied. 

One  iteration of this  algorithm requires the following 
amount of floating-point arithmetic: 

( 2 m  + 2 )  additions, ( 3 m  + 1 )  multiplications, and 2 divi- 
sions. 585 
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6. Formulas of odd order 
The analysis of Section 4 showed that when k is odd, 

k = 2 m + 1 ,  

we have an  iteration on the pair (x", y,)  that we formulate 
below as a straight  generalization of the  Moler-Morrison 
algorithm. Using an  approach  similar  to  that of the previous 
section, we derive our iteration  formulas  from  Eqs.  (17). 
Defining first the coefficients 

2m + 1 

and 

we express as follows the  algorithm for the  Pythagorean  sum 
(a' + b2)'I2: 

X"+l = x, 9 

from Eqs. (17). 

7. An estimate of the maximum  number of itera- 
tions 
Let E,, denote  the  relative  distance of the  nth  iterate  to  the 
Pythagorean  sum for the  formula of order k:  

& = I - "  
h 
X 

n 

Defining 

un = -, 
L 

E 1 - 2  
2 

we obtain, from  Eqs. (17 )  and (27 ) ,  

U"+l = UIt, 

that is, 

k 

k" 
k" 

un = uo and 3 = - UO 

2 1 + u ,  kn 

p=O 

The  iteration is stopped when the  equality of machine 
representations 

fl ( 1 )  = f l (1  + rn) 

is satisfied,  except for the  case of the  cubic  iteration ( m  = l ) ,  
where the  criterion 

fl (4) = fl (4 + r )  

is more  economical and  as effective. 

One  iteration of this  algorithm  requires  the following 
amount of floating-point arithmetic: 

(2m + 1)  additions, (3m + 1) multiplications, and 2 divi- 
sions. 

(with one less addition for the  cubic  iteration).  We  can see 
that  the  odd-order  iterations  are more efficient than  their 
even-order counterparts. 

The  formula of order 1 is of no interest a t  all.  It is a  limit 
586 case of linear convergence for which 
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We now assume  that  the  algorithm is used with  a machine 
where  the floating-point number  representation  has t digits 
in base 0, and for which the relative error in number 
representation is bounded by machine precision, 

E = y p ,  (30) 

where y is a  rounding parameter  taking  the values 1 
(chopped representation) or '/2 (rounded  representation). 
Ignoring  rounding errors,  the  iteration of order k ceases to  be 
effective as soon as 

En < E 

or, from Eq. ( 2 9 ) ,  
k" 

UO E 
k" < - 

l + u o  2 

This condition is satisfied afortiori when 

uo < - .  k" E 

2 

The use of this simpler criterion finds its  justification in 
the consideration that 

f l ( l  + ug, = fl(1) 

when 

uo E, 

where fl (.) denotes  number floating-point representation in 
our machine. 

k" 
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We  can now derive the  least upper  bound N of the  number 
of effective iterations of order k .  

in the course of the  computation, underflows can have an 
undesirable effect as  illustrated below in the  case of the  cubic 
formula. 

The  maximum  value of E ~ ,  obtained  for  the  Pythagorean 
sum of two equal  numbers, Assume that  the  Pythagorean  sum 

Jz 
E o =  1 --, 

2 

defines the  maximum of uo as 

J z - I  

Jz+ 1 
uo = - 

from Eq. (28). 

Combining Eqs. (30),  (31),  and (32), N is the smallest 
value of n for which 

that is, 

(33) 

where  ceiling (w) denotes  the  smallest  integer not less than 
W .  

We now give two  examples  based on IBM System/370 
arithmetic,  short  and long precision. 

In short precision, 

p = 16, t = 6, y = I ,  

and we obtain,  from Eq. (33), 

N = 4  for k = 2, 

N = 2 for 3 I k 5 8, and 

N = 1 for k = 9. 

In long precision, 

p = 16, t = 14, y = 1, 

we get 

N = 5 for k = 2, 

N = 3  for 3 I k I 4, and 

N = 2  for 5 I k c 9 .  

These  estimates were verified by numerical  experiments. 

8. Robustness and transportability 
While  the monotonic  convergence of these  algorithms  guar- 
antees  that no unwarranted floating-point overflow can  occur 

h = (u' + u 2 p 2  = u a  

is computed with the  cubic  iteration (6), u being the  machine 
underflow threshold,  that is, the smallest positive machine 
floating-point number. 

We have 

ro = 1 and so = 1/5.  

The  computation of the first iterate reduces to 

X I  = u + 2s0u. 

Since 

2s0 < 1 ,  

we have 

fl (2s0u) = 0 

and  the first x iterate is u. For the  same reason, the first y 
iterate is zero, and  the  iteration  terminates with the incorrect 
result u.  The  same phenomenon  occurs for all our formulas 
where  the  iteration  takes  the  form 

xn+1 = x ,  + 4nxn (34) 

because @,, is bounded  above by '/2. This is easily proved by 
considering the first of Eqs. ( 1  7), 

( h  + x y  - ( h  - X"Ik 

( h  + x")k + ( h  - X y  
xn+1 = h 

and  the  identity 

h = (1 + r,,)"?xn , 

which yield the inequalities 

1 
2 

o I - x ,  I [ ( I  + rn)' /*  - 1 1  x" I - rnxn ,  

or 

One obvious approach  to remedy this defect is to perform  a 
systematic scaling of a and b by a power of p, the base of the 
machine  number  representation,  to  bring x .  into  the  range 
(0, p), and  to apply the corresponding inverse scaling to  the 
result. This  requires knowledge of p and  extra  operations in 
all cases. 587 
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Table 1 Formulas of even orders,  iteration (25). 

k P and Q 

2 P = r  
Q = 2 + r  

4 P = 4r + 3r2 
Q = 8 + 8 r + r 2  

6 P = 16r + 20rZ + 5r' 
Q = 32 + 48r + 18r2 + r' 

8 P = 64r + 1 12r2 + 56r' + 7r4 
Q = 128 + 256r + 160r2 + 32r' + r4 

Table 2 Formulas of odd orders, iteration (26). 

k P and S 

3 P = 2  
S = r/(4 + r) 

5 P = 8 + 4 r  
S = r/(16 + 12r + r2) 

7 P = 32 + 32r + 6r2 

9 P = 128 + 192r + 80r2 + 8r' 

S = r/(64 + 80r + 24r2 + r 3 )  

S = r/(256 + 448r + 240r2 + 40r' + r4) 

A preferred  alternative,  requiring knowledge of the  under- 
flow threshold u and  machine precision E, consists of apply- 
ing some scaling to  the  data only when warranted. 

In Eq. (34), we observe that, in the  absence of underflow, 
x"+, is computed  accurately  to  machine precision if 

4" L E. 

Thus,  the  computation  terminates  correctly if 

@"X" L EX" L u, 

that is, when 

X" L U E - l .  

Because x, is an increasing  function of n, it will be sufficient 
to  satisfy  the condition 

x. L UE".  

These considerations  define the following scaling  rule: 

If max ( I a 1, I b I ) < U E - ' ,  multiply a and b by E-'; 

588 Accordingly,  multiply the result by E. 
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Table 3 Pythagorean sum of 119 and 120. 

Order Iterates 

2 120.0000000000000 
159.5549451828402 
168.7209057465608 
168.9997691646582 
168.9999999998423 
169.0000000000000 

3 120.0000000000000 
167.3605440280932 
168.9999608618056 
169.0000000000000 

4 120.0000000000000 
168.7209057465608 
168.9999999998424 
169.0000000000000 

5 120.0000000000000 
168.9526470501203 
169.0000000000000 

6 120.0000000000000 
168.9919703649560 
169.0000000000000 

7 120.0000000000000 
168.9986385471298 
169.0000000000000 

8 120.0000000000000 
168.9997691646582 
169.0000000000000 

9 120.0000000000000 
168.9999608618056 
169.0000000000000 

For  example, long-precision computation with an  IBM Sys- 
tem/370 defines 

E = 16-13 and u = 1665 

and  the scaling  condition 

m a x ( l a l , I b l )  < 16-" 

for  a factor 

E = 16". - 1  

It  must be noted that  any  reasonable integer power of @ not 
less than E-' can  be used as a  scaling factor  and  that values 
higher  than UE" can  replace  the threshold of applicability 
with little loss of efficiency in order  to achieve portability 
across a wide range of computers. 

9. Examples 
The  iteration  formulas of orders 2 through 9 are represented 
in Tables 1 and 2 by the  functions P, Q, and S that  appear in 
iterations  (25)  and  (26)  (the  iteration  subscripts  and  the 
order  superscripts  are dropped  for  simplicity of notation). 
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Two  examples of application of these  formulas  are dis- 
played in Tables 3 and 4, obtained with an  IBM  System/370 
in long-precision arithmetic. 

10. Conclusion 
While  the efficiency of the Moler-Morrison algorithm  may 
be optimum for  most current  computers,  higher-order for- 
mulas  can  be useful  for  systems  with slow division. They find 
an obvious use in computations involving multiple-precision 
software, where division can be particularly expensive. By 
reducing the  number of iterations,  they  are  also  advan- 
tageous for implementation with interpretive high-level lan- 
guages (e.g., APL). 
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