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Replacing  Square  Roots  by  Pythagorean  Sums 

An algorithm is presented for  computing  a  “Pythagorean sum” a 0 b = d m  directly  from a and b without  computing 
their  squares or  taking a square root. No destructive  floating  point overflows or underflows are possible. The algorithm can be 
extended to  compute the Euclidean norm of a vector. The  resulting  subroutine is short,  portable,  robust, and accurate, but not 
as  eficient  as some other  possibilities. The algorithm is particularly  attractive for  computers where space and reliability are 
more  important  than speed. 

1. Introduction 
It is generally accepted  that  “square root” is a fundamental 
operation in scientific computing. However, we suspect that 
square root  is actually used most frequently  as  part of an 
even more fundamental  operation which we call  Pythagorean 
addition: 

a 0 b = d m .  
The  algebraic properties of Pythagorean  addition  are very 
similar to  those of ordinary  addition of positive numbers. 
Pythagorean  addition is also  the basis  for many different 
computations: 

Polar conversion: 

r = x O y ;  

Complex  modulus: 

I z I = real(t) o imag(z); 

Euclidean vector  norm: 

[I u 11 = u, 0 u* 0 ... 0 U ” ;  

Givens  rotations: 

(c, :) (;) = (J ; 

The conventional Fortran  construction 

R = SQRT(X**2+Y**2) 

may produce damaging underflows and overflows even 
though  the  data  and  the result are well within the  range of 
the machine’s  floating  point number system. Similar con- 
structions in other  programming  languages  may  cause  the 
same difficulties. 

The remedies currently employed in robust  mathematical 
software lead to code which is  clever, but  unnatural,  lengthy, 
possibly slow, and sometimes  not portable.  This is even true 
of the recently  published approaches  to  the  calculation of the 
Euclidean vector  norm by Blue [ 11 and by the Basic Linear 
Algebra  Subprograms  group, Lawson et  al. [2]. 

In  this  paper we present an  algorithm  pythag(a,b) which 
computes a 0 b directly  from a and  b,  without  squaring 
them  and without taking  any  square roots. The result is 
robust, portable, short,  and, we think,  elegant.  It is also 
potentially faster  than a square root. We recommend that  the 
algorithm  be considered  for implementation in machine 
language or microcode on future systems. 

One of our first uses of pythag  and  the resulting Euclidean 
norm involved a graphics  minicomputer which has a  sophisti- 
cated  Fortran-based  operating  system,  but only about  32K 
bytes of memory available  to  the user. We  implemented 
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MATLAB [3], an  interactive  matrix  calculator based on 
LINPACK  and  EISPACK.  In  this  setting,  the  space occu- 
pied by both source  and  object code  was crucial.  MATLAB 
does matrix  computations in complex arithmetic, so pythag is 
particularly useful. We  are  able  to produce robust,  portable 
software  that uses the full range of the floating  point 
exponent. 

2. Algorithm pythag 
The  algorithm for computing  pythag(a,b) = a @ b  is 

real function  pythag(a,b) 
real a,b,p,q,r,s 
P : =  m a x ( l a l , l b l )  
q : = m i n ( l a l , l b J )  
while (q is numerically significant) 
do 

r := (SIP)’ 

p := p+2*s*p 
s := r/(4+r) 

q := s*q 
od 
pythag := p 

The two variables p and q are initialized so that 

p @ q = a @ b a n d O < q < p .  

The main part of the  algorithm is an  iteration  that leaves 
p @ q invariant while increasing p and  decreasing q. Thus 
when q becomes negligible, p holds the  desired result. We 
show in Section 4 that  the  algorithm is cubically  convergent 
and  that  it will never require  more  than  three  iterations on 
any  computer with 20 or fewer  significant  digits. It is thus 
potentially faster  than  the classical auadratically convergent 
iteration for square root. 

There  are no square roots involved and,  despite  the  title of 
this paper, the  algorithm  cannot be used to  compute a square 
root.  If either  argument is zero, the result is the  absolute 
value of the  other  argument. 

Typical behavior of the  algorithm is illustrated by 
pythag(4,3). The values of p and q after  each  iteration  are 

iteration P 4 

0 4.000000000000 3 . ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ 0 ~  

1 4.986301369863  0.369863013698 

2 4.999999974188 0 ~ ~ ~ ~ 5 ~ 8 ~ 5 2 6 3 3  

3 5.000000000000 ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~  

The most important  feature of the  algorithm is its robust- 
ness. There will be no overflows unless the final result 

578 overflows. In  fact, no intermediate  results  larger  than a @ b 

are involved. There  may  be underflows if I b I is much  smaller 
than 1 a 1, but  as long as such underflows are  quietly  set  to 
zero. no harm will result  in  most  cases. 

There  can be some  deterioration in accuracy if both 1 a 1 and 
Ib( are very near p, the  smallest positive floating point 
number. As an  extreme example,  suppose a = 4p and b 
= 3p. Then  the  iterates shown above  should  simply be scaled 
by p. But the  value of q after  the first iteration would be less 
than p and so would be set to zero. The process would 
terminate  early with the corresponding  value of p, which is 
an  inaccurate,  but not totally incorrect,  result. 

3. Euclidean  vector norm 
A primary motivation  for our development of pythag is its 
use in computing  the  Euclidean norm or 2-norm of a vector. 
The conventional approach, which  simply takes  the  square 
root of the  sum of the  squares of the components, disregards 
the possibility of underflow and overflow, thereby effectively 
halving the floating  point  exponent range.  The  approaches of 
Blue [ 11 and Lawson et  al. [2]  provide  for the possibility of 
accumulating  three  sums,  one of small numbers whose 
squares underflow, one of large  numbers whose squares 
overflow, and  one of “ordinary-sized” numbers. Environ- 
mental inquiries or machine-  and  accuracy-dependent con- 
stants  are needed to  separate  the  three classes. 

With  pythag  available,  computation of the 2-norm is 
easy: 

real function  norm2(x) 
real vector x 
real s 
s : =  0 
for i := 1 to  (number of elements in x) 

norm2 := x 
s := pythag(s,x(i)) 

This  algorithm  has  all  the  characteristics  that  might be 
desired of it, except one. It is robust-there are no destruc- 
tive underflows and no overflows unless the result  must 
overflow. It is accurate-the round-off error corresponds to 
a few units in the  last digit of each component of the vector. 
It is portable-there are no machine-dependent  constants or 
environmental inquiries. It is short-both the  source code 
and  the object  code require very little memory. It accesses 
each  element of the vector only once, which is of some 
importance in virtual memory and  other modern operating 
systems. 

The only possible drawback is its speed. For a vector of 
length n, it  requires n calls to pythag. Even if pythag were 
implemented efficiently, this is roughly the  same  as n square 
roots. The  approaches of [ 11 and [2] require only n multipli- 
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cations for the most frequent  case  where  the  squares of the 
vector elements  do not underflow or overflow. However,  in 
most of the  applications we are  aware of,  speed is not  a major 
consideration.  In  matrix  calculations, for example,  the 
Euclidean  norm is usually  required only in an  outer loop. The 
time-determining  calculations do  not involve pythag.  Thus, 
in our opinion, all  the  advantages outweigh this  one  disad- 
vantage. 

4. Convergence analysis 
When  the  iteration in pythag is terminated  and  the final 
value of p accepted  as  the result, the  relative  error is 

e = (P 0 - P ) / ( P  0 4 )  

= ( G - l ) / G ,  

where r = ( q / p ) ' .  (We  assume  throughout  this section that 
initially p and q are positive.) 

The values of e and r are closely related,  and  the values of 
their reciprocals are even more closely related.  In  fact, 

1 1  JiG 
"- - +1+-.  
e r  

Since 1 < < 1 + r / 2 ,  it follows that 

2 1 2 3  - +  1 < - < - + - .  
r e r 2  

Thus 1 / e  exceeds 2 / r  by at  least  1 and  at  most 1.5. 

To see how 2/r  and  hence  the  relative  error varies during 
the  iteration, we introduce  the  variable 

4 
r 

u = " .  

The values of u taken in successive iterations  are given by 

u := u(u  + 3)'. 

If the  initial value of u is outside  the  interval - 4  I u I - 2, 
then u increases  with each  iteration.  Hence u - w, r - 0, 
and p - a 0 b. The  fact  that u is more  than  cubed  each 
iteration implies the  cubic convergence of the  algorithm. 
Since initially we have 0 < q I p ,  it follows that 

O < r < l a n d 4 < u ,  

and u increases rapidly  from  the very  beginning. If the  initial 
value of q / p  happens  to be an  integer,  then u takes on integer 
values. 

The most slowly convergent case  has  initial values p = q 
and r = 1. The  iterated values of u are 

iteration 0 1  2 3 4 

U 4  196 7761796 >4*1OZ0 >lo6' 
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It follows that  after  three  iterations 

e < - = - < 0.5*10- r 2  20 

2 u  

If the  arithmetic were done  exactly,  after  three  iterations 
the  value of p would agree with the  true value of p 0 q to  20 
decimal digits.  If there were further  iterations,  each  one 
would at  least triple  the  number of correct digits. Initial 
values  with q < p produce even more  rapid convergence. 

With  quadratically convergent iterations  such  as  the clas- 
sical  square root algorithm,  it is often  desirable  to use  special 
starting procedures to produce good initial  approximations. 
Our choice of initial values  with q I p can  be  regarded  as 
such a starting  procedure since the  algorithm will converge 
even without this condition.  However,  since the convergence 
is so rapid, it  seems  unlikely that  any  more  elaborate  starting 
mechanism would offer any  advantage. 

5. Round-off error and stopping criterion 
In  addition  to being robust  with respect to underflow and 
overflow, the  performance of pythag in the presence of 
round-off error is quite  satisfactory.  It is possible to show 
that  after  each  iteration  the  computed value of the  variablep 
is the  same  as  the value that would be obtained with exact 
computation on slightly perturbed  starting values. The  rapid 
convergence guarantees  that  there is no chance for excessive 
accumulation of rounding errors. 

The main  question is when to  terminate  the  iteration. If we 
stop too soon, the result is inaccurate. If we do not stop soon 
enough, we do  more work than is  necessary. There  are several 
possible types of stopping  criteria. 

1.  Take a fixed number of iterations. 

The  appropriate  number  depends upon the desired accura- 
cy: two iterations for  6 or fewer  significant  digits, three 
iterations for 20 or fewer  significant  digits, four  iterations for 
60 or fewer  significant  digits. There is thus a very slight 
machine  and precision dependence.  Moreover,  fewer itera- 
tions are necessary forpythag(a,b) with b much smaller  than 
U .  

2. Iterate  until  there is no change. 

This  can be implemented in  a machine-independent  man- 
ner with something like 

ps := p 

p :=p+2*s*p 579 

CLEVE MOLER AND DONALD MORRISON 



if p = ps then  exit 

This is probably  the most foolproof criterion,  but  it  always 
uses one  extra  iteration,  just  to confirm that  the final 
iteration  was not  necessary. 

3. Predict  that  there will be no change. 

The idea is to  do a simple  calculation  early in the  step  that 
will indicate  whether or not  the  remainder of the  step is 
necessary.  If we usef(x) A y to  mean  that  the  computed 
value off(x)  equals y ,  then  the condition we wish to  predict 
is 

p + 2sp A p. 

When r is small,  then s = r/(4 + r )  is less than  and  almost 
equal  to r/4. Consequently, a sufficient and  almost equiva- 
lent condition is 

p + rp/2 A p. 

It  might  seem  that  this is equivalent  to 

2 + r ~ 2 .  

However, this is not quite  true.  Let /3 be the base of the 
floating  point arithmetic. For any floating  point number p in 
the  range 1 5 p < 8, the  set of floating  point numbers d for 
which 

p + d - p  

is the  same  as  the  set of d for which 

l + d G l .  

In  other words, the conditions p + dp A p and 1 + d A 1 are 
precisely equivalent only  when p is a  power of 8. 

We have  chosen to  stop when 

4 + r - 4 .  

There  are  three reasons for  this choice. The  quantity 4 + r is 
available  early in the  step  and is  needed  in computing s. The 
condition is almost equivalent to  predicting no change in p. 
The  variables p and q have  already been somewhat  contami- 
nated by round-off error  from previous steps. 

The  satisfactory  error  properties of pythag  are  inherited 
by norm2. I t  is possible to show that  the  computed  value of 
norm2(x) is the  exact  Euclidean  norm of some vector whose 
individual elements  are within the round-off error of the 

580 corresponding elements of x. 

6. Some related algorithms 
It is possible to  compute Jn by replacing the 
statement 

:= (q/P)2 

in pythag with 

r := -(q/p)’. 

The convergence analysis in Section 4 still  applies,  except 
that r and u take on negative  values. In  particular, when a 
= b, the  initial  value of u is -4 and  this  value does  not 
change.  The  iteration becomes  simply 

P := P/3, 

q := -913. 

The  variable p approaches zero as  it should, but  the conver- 
gence is only linear. If a # b, the convergence is eventually 
cubic,  but  many  iterations  may  be  required  to  enter  the  cubic 
regime. 

The  iteration within pythag effectively computesp f i .  
The  related cubically  convergent algorithm for square root 
is 

function  sqrt(z) 
real z,p,r,s 
p : =  1 
r := z-1 

while (r is numerically significant) 

do 
s := r/(4+r) 
p := p+2*s*p 
r := r*(s/(1+2*s))’ 

od 
sqrt := p 

Although  this  algorithm will converge for  any positive z, it is 
most  effective  for  values of z near 1.  The  algorithm  can be 
derived from  the  approximation 

-2- 
4 + 3r  
4 + r ’  

which is accurate  to second order  for  small values of r. The 
classical quadratically convergent iteration for square root 
can  be derived from  the  approximation 

- 2 1 + - ,  
r 
2 

which  is accurate only to first order.  The cubically conver- 
gent  algorithm  requires fewer iterations,  but  more  operations 
per iteration. Consequently, its  relative efficiency depends 
upon the  details of the  implementation. 

CLEVE MOLER AND DONALD MORRISON IBM I. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983 



The  Euclidean  norm of a  vector can  also be computed by a 
generalization of pythag(a,b) to allow  a  vector argument 
with any  number of components in  place of (a,b), a  vector 
argument with only two  components: 

vector-pythag(x) 
real  vector x,q 
real  p,r,s,t 
p := (any  nonzero  component of x, preferably  the  largest) 
q := (x with  p deleted) 
while (q is numerically significant) 
do 

r := (dot  product of q /p  with itself) 
s := r / (4+r)  
p := p+2*s*p 
q := s*q 

od 
vector-pythag : = p 

The convergence analysis of Section 4  applies to  this 
algorithm,  but  the  initial  value of u may  be less than 4. The 
convergence  is cubic,  but  the  accuracy  attained  after a fixed 
number of iterations will generally be less than  that of the 
scalar  algorithm. Moreover,  it  does  not seem possible to 
obtain a practical  implementation which retains  the simplic- 
ity of pythag  and  norm2. 
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