
Cleve Moler
Donald Morrison

Replacing Square Roots by Pythagorean Sums

An algorithm is presented for computing a “Pythagorean sum” a 0 b = d m directly from a and b without computing
their squares or taking a square root. No destructive floating point overflows or underflows are possible. The algorithm can be
extended to compute the Euclidean norm of a vector. The resulting subroutine is short, portable, robust, and accurate, but not
as eficient as some other possibilities. The algorithm is particularly attractive for computers where space and reliability are
more important than speed.

1. Introduction
It is generally accepted that “square root” is a fundamental
operation in scientific computing. However, we suspect that
square root is actually used most frequently as part of an
even more fundamental operation which we call Pythagorean
addition:

a 0 b = d m .
The algebraic properties of Pythagorean addition are very
similar to those of ordinary addition of positive numbers.
Pythagorean addition is also the basis for many different
computations:

Polar conversion:

r = x O y ;

Complex modulus:

I z I = real(t) o imag(z);

Euclidean vector norm:

[I u 11 = u, 0 u* 0 ... 0 U ” ;

Givens rotations:

(c, :) (;) = (J ;

The conventional Fortran construction

R = SQRT(X**2+Y**2)

may produce damaging underflows and overflows even
though the data and the result are well within the range of
the machine’s floating point number system. Similar con-
structions in other programming languages may cause the
same difficulties.

The remedies currently employed in robust mathematical
software lead to code which is clever, but unnatural, lengthy,
possibly slow, and sometimes not portable. This is even true
of the recently published approaches to the calculation of the
Euclidean vector norm by Blue [11 and by the Basic Linear
Algebra Subprograms group, Lawson et al. [2].

In this paper we present an algorithm pythag(a,b) which
computes a 0 b directly from a and b, without squaring
them and without taking any square roots. The result is
robust, portable, short, and, we think, elegant. It is also
potentially faster than a square root. We recommend that the
algorithm be considered for implementation in machine
language or microcode on future systems.

One of our first uses of pythag and the resulting Euclidean
norm involved a graphics minicomputer which has a sophisti-
cated Fortran-based operating system, but only about 32K
bytes of memory available to the user. We implemented

o Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor. 577

IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983 CLEVE MOLER AND DONALD MORRISON

MATLAB [3], an interactive matrix calculator based on
LINPACK and EISPACK. In this setting, the space occu-
pied by both source and object code was crucial. MATLAB
does matrix computations in complex arithmetic, so pythag is
particularly useful. We are able to produce robust, portable
software that uses the full range of the floating point
exponent.

2. Algorithm pythag
The algorithm for computing pythag(a,b) = a @ b is

real function pythag(a,b)
real a,b,p,q,r,s
P : = m a x (l a l , l b l)
q : = m i n (l a l , l b J)
while (q is numerically significant)
do

r := (SIP)’

p := p+2*s*p
s := r/(4+r)

q := s*q
od
pythag := p

The two variables p and q are initialized so that

p @ q = a @ b a n d O < q < p .

The main part of the algorithm is an iteration that leaves
p @ q invariant while increasing p and decreasing q. Thus
when q becomes negligible, p holds the desired result. We
show in Section 4 that the algorithm is cubically convergent
and that it will never require more than three iterations on
any computer with 20 or fewer significant digits. It is thus
potentially faster than the classical auadratically convergent
iteration for square root.

There are no square roots involved and, despite the title of
this paper, the algorithm cannot be used to compute a square
root. If either argument is zero, the result is the absolute
value of the other argument.

Typical behavior of the algorithm is illustrated by
pythag(4,3). The values of p and q after each iteration are

iteration P 4

0 4.000000000000 3 . ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ 0 ~

1 4.986301369863 0.369863013698

2 4.999999974188 0 ~ ~ ~ ~ 5 ~ 8 ~ 5 2 6 3 3

3 5.000000000000 ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~

The most important feature of the algorithm is its robust-
ness. There will be no overflows unless the final result

578 overflows. In fact, no intermediate results larger than a @ b

are involved. There may be underflows if I b I is much smaller
than 1 a 1, but as long as such underflows are quietly set to
zero. no harm will result in most cases.

There can be some deterioration in accuracy if both 1 a 1 and
Ib(are very near p, the smallest positive floating point
number. As an extreme example, suppose a = 4p and b
= 3p. Then the iterates shown above should simply be scaled
by p. But the value of q after the first iteration would be less
than p and so would be set to zero. The process would
terminate early with the corresponding value of p, which is
an inaccurate, but not totally incorrect, result.

3. Euclidean vector norm
A primary motivation for our development of pythag is its
use in computing the Euclidean norm or 2-norm of a vector.
The conventional approach, which simply takes the square
root of the sum of the squares of the components, disregards
the possibility of underflow and overflow, thereby effectively
halving the floating point exponent range. The approaches of
Blue [11 and Lawson et al. [2] provide for the possibility of
accumulating three sums, one of small numbers whose
squares underflow, one of large numbers whose squares
overflow, and one of “ordinary-sized” numbers. Environ-
mental inquiries or machine- and accuracy-dependent con-
stants are needed to separate the three classes.

With pythag available, computation of the 2-norm is
easy:

real function norm2(x)
real vector x
real s
s : = 0
for i := 1 to (number of elements in x)

norm2 := x
s := pythag(s,x(i))

This algorithm has all the characteristics that might be
desired of it, except one. It is robust-there are no destruc-
tive underflows and no overflows unless the result must
overflow. It is accurate-the round-off error corresponds to
a few units in the last digit of each component of the vector.
It is portable-there are no machine-dependent constants or
environmental inquiries. It is short-both the source code
and the object code require very little memory. It accesses
each element of the vector only once, which is of some
importance in virtual memory and other modern operating
systems.

The only possible drawback is its speed. For a vector of
length n, it requires n calls to pythag. Even if pythag were
implemented efficiently, this is roughly the same as n square
roots. The approaches of [11 and [2] require only n multipli-

CLEVE MOLER AND DONALD MORRISON IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

cations for the most frequent case where the squares of the
vector elements do not underflow or overflow. However, in
most of the applications we are aware of, speed is not a major
consideration. In matrix calculations, for example, the
Euclidean norm is usually required only in an outer loop. The
time-determining calculations do not involve pythag. Thus,
in our opinion, all the advantages outweigh this one disad-
vantage.

4. Convergence analysis
When the iteration in pythag is terminated and the final
value of p accepted as the result, the relative error is

e = (P 0 - P) / (P 0 4)

= (G - l) / G ,

where r = (q / p) ' . (We assume throughout this section that
initially p and q are positive.)

The values of e and r are closely related, and the values of
their reciprocals are even more closely related. In fact,

1 1 JiG
"- - +1+-.
e r

Since 1 < < 1 + r / 2 , it follows that

2 1 2 3 - + 1 < - < - + - .
r e r 2

Thus 1 / e exceeds 2 / r by at least 1 and at most 1.5.

To see how 2/r and hence the relative error varies during
the iteration, we introduce the variable

4
r

u = " .

The values of u taken in successive iterations are given by

u := u(u + 3)'.

If the initial value of u is outside the interval - 4 I u I - 2,
then u increases with each iteration. Hence u - w, r - 0,
and p - a 0 b. The fact that u is more than cubed each
iteration implies the cubic convergence of the algorithm.
Since initially we have 0 < q I p , it follows that

O < r < l a n d 4 < u ,

and u increases rapidly from the very beginning. If the initial
value of q / p happens to be an integer, then u takes on integer
values.

The most slowly convergent case has initial values p = q
and r = 1. The iterated values of u are

iteration 0 1 2 3 4

U 4 196 7761796 >4*1OZ0 >lo6'

1BM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

It follows that after three iterations

e < - = - < 0.5*10- r 2 20

2 u

If the arithmetic were done exactly, after three iterations
the value of p would agree with the true value of p 0 q to 20
decimal digits. If there were further iterations, each one
would at least triple the number of correct digits. Initial
values with q < p produce even more rapid convergence.

With quadratically convergent iterations such as the clas-
sical square root algorithm, it is often desirable to use special
starting procedures to produce good initial approximations.
Our choice of initial values with q I p can be regarded as
such a starting procedure since the algorithm will converge
even without this condition. However, since the convergence
is so rapid, it seems unlikely that any more elaborate starting
mechanism would offer any advantage.

5. Round-off error and stopping criterion
In addition to being robust with respect to underflow and
overflow, the performance of pythag in the presence of
round-off error is quite satisfactory. It is possible to show
that after each iteration the computed value of the variablep
is the same as the value that would be obtained with exact
computation on slightly perturbed starting values. The rapid
convergence guarantees that there is no chance for excessive
accumulation of rounding errors.

The main question is when to terminate the iteration. If we
stop too soon, the result is inaccurate. If we do not stop soon
enough, we do more work than is necessary. There are several
possible types of stopping criteria.

1. Take a fixed number of iterations.

The appropriate number depends upon the desired accura-
cy: two iterations for 6 or fewer significant digits, three
iterations for 20 or fewer significant digits, four iterations for
60 or fewer significant digits. There is thus a very slight
machine and precision dependence. Moreover, fewer itera-
tions are necessary forpythag(a,b) with b much smaller than
U .

2. Iterate until there is no change.

This can be implemented in a machine-independent man-
ner with something like

ps := p

p :=p+2*s*p 579

CLEVE MOLER AND DONALD MORRISON

if p = ps then exit

This is probably the most foolproof criterion, but it always
uses one extra iteration, just to confirm that the final
iteration was not necessary.

3. Predict that there will be no change.

The idea is to do a simple calculation early in the step that
will indicate whether or not the remainder of the step is
necessary. If we usef(x) A y to mean that the computed
value off(x) equals y , then the condition we wish to predict
is

p + 2sp A p.

When r is small, then s = r/(4 + r) is less than and almost
equal to r/4. Consequently, a sufficient and almost equiva-
lent condition is

p + rp/2 A p.

It might seem that this is equivalent to

2 + r ~ 2 .

However, this is not quite true. Let /3 be the base of the
floating point arithmetic. For any floating point number p in
the range 1 5 p < 8, the set of floating point numbers d for
which

p + d - p

is the same as the set of d for which

l + d G l .

In other words, the conditions p + dp A p and 1 + d A 1 are
precisely equivalent only when p is a power of 8.

We have chosen to stop when

4 + r - 4 .

There are three reasons for this choice. The quantity 4 + r is
available early in the step and is needed in computing s. The
condition is almost equivalent to predicting no change in p.
The variables p and q have already been somewhat contami-
nated by round-off error from previous steps.

The satisfactory error properties of pythag are inherited
by norm2. I t is possible to show that the computed value of
norm2(x) is the exact Euclidean norm of some vector whose
individual elements are within the round-off error of the

580 corresponding elements of x.

6. Some related algorithms
It is possible to compute Jn by replacing the
statement

:= (q/P)2

in pythag with

r := -(q/p)’.

The convergence analysis in Section 4 still applies, except
that r and u take on negative values. In particular, when a
= b, the initial value of u is -4 and this value does not
change. The iteration becomes simply

P := P/3,

q := -913.

The variable p approaches zero as it should, but the conver-
gence is only linear. If a # b, the convergence is eventually
cubic, but many iterations may be required to enter the cubic
regime.

The iteration within pythag effectively computesp f i .
The related cubically convergent algorithm for square root
is

function sqrt(z)
real z,p,r,s
p : = 1
r := z-1

while (r is numerically significant)

do
s := r/(4+r)
p := p+2*s*p
r := r*(s/(1+2*s))’

od
sqrt := p

Although this algorithm will converge for any positive z, it is
most effective for values of z near 1. The algorithm can be
derived from the approximation

-2-
4 + 3r
4 + r ’

which is accurate to second order for small values of r. The
classical quadratically convergent iteration for square root
can be derived from the approximation

- 2 1 + - ,
r
2

which is accurate only to first order. The cubically conver-
gent algorithm requires fewer iterations, but more operations
per iteration. Consequently, its relative efficiency depends
upon the details of the implementation.

CLEVE MOLER AND DONALD MORRISON IBM I. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

The Euclidean norm of a vector can also be computed by a
generalization of pythag(a,b) to allow a vector argument
with any number of components in place of (a,b), a vector
argument with only two components:

vector-pythag(x)
real vector x,q
real p,r,s,t
p := (any nonzero component of x, preferably the largest)
q := (x with p deleted)
while (q is numerically significant)
do

r := (dot product of q /p with itself)
s := r / (4+r)
p := p+2*s*p
q := s*q

od
vector-pythag : = p

The convergence analysis of Section 4 applies to this
algorithm, but the initial value of u may be less than 4. The
convergence is cubic, but the accuracy attained after a fixed
number of iterations will generally be less than that of the
scalar algorithm. Moreover, it does not seem possible to
obtain a practical implementation which retains the simplic-
ity of pythag and norm2.

References
1. J. L. Blue, “A Portable Fortran Program to Find the Euclidean

Norm of a Vector,” ACM Trans. Math. Software 4, 15-23
(1978).

2. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh,
“Basic Linear Algebra Subprograms for Fortran Usage,” ACM
Trans. Math. Software 5,308-323 (1979).

3. Cleve Moler, “MATLAB Users’ Guide,” Technical Report
CS81-I, Department of Computer Science, University of New
Mexico, Albuquerque.

Received June 6, 1983; revised July 15, 1983

Cleve 0. Moler Department of Computer Science, University
of New Mexico, Albuquerque, New Mexico 87131. Professor Moler
has been with the University of New Mexico since 1972. He is
currently chairman of the Department of Computer Science. His
research interests include numerical analysis, mathematical soft-
ware, and scientific computing. He received his Ph.D. in rnathemat-
ics from Stanford University, California, in 1965 and taught at the
University of Michigan from 1966 to 1972. Professor Moler is a
member of the Association for Computing Machinery and the
Society for Industrial and Applied Mathematics.

Donald R. Morrison Department of Computer Science, Uni-
versity of New Mexico, Albuquerque, New Mexico 871 31. Professor
Morrison has been with the University of New Mexico since 1971.
He received his Ph.D. in mathematics from the University of
Wisconsin in 1950. He taught at Tulane University, New Orleans,
Louisiana, from 1950 to 1955, and was a staff member, supervisor,
and department manager at Sandia Laboratory from 1955 to 1971.
He has published several papers in abstract algebra, computation,
information retrieval, and cryptography. Professor Morrison is a
member of the Association for Computing Machinery and the
Mathematical Association of America.

IBM J. RES. DEVELOP. VOL. 27 0 I VO. 6 NOVEMBER 1983 (

58 1

3LEVE MOLER AND DONALD MORRISON

