
F. Beichter
0. Herzog
H. Petzsch

SLAN-4: A Language for the Specification and Design of
Large Software Systems

The language SLAN-4 has been dejned in view of the need for formal tools supporting the specification and design of large
software systems. It oflers its users language constructs for algebraic and axiomatic specifcations as well as for design in
pseudocode. One of its major design goals has been to ease subsequent refinements of a (given) specification. The user can start
his development with an informal high-level specification which can be formalized and implemented at a later date by using
lower-level concepts. This paper provides the formal definitions of the SLAN-4 language, discusses the design decisions, and
presents examples for the use of the syntactic constructs.

Introduction
When one talks about computer languages, one normally
means the languages used to instruct and control computers,
i.e., the languages for communication between programmers
and machines. However, most of the time programmers do
not communicate with computers but rather with their fellow
programmers and other people, e.g., to design a piece of
software, to implement it, or to document it. Because the
normal computer languages are generally inadequate for this
kind of communication, programmers have invented other
communication vehicles. For casual discussion, they use a
mixture of computer and natural languages; for written
communication, they use restricted natural languages, for-
mal design languages, graphic languages, etc. Since each of
these languages was designed for a specific purpose, each is
less well suited for other purposes. Usually a single piece of
software is described by using three different types of
languages (excluding casual discussions): a specification and
design language, a compilable computer language, and a
graphic documentation language. We believe that this situa-
tion should be improved, and that eventually the program-
mer needs but one language for most stages of software
production.

In this paper we propose SLAN-4, a Software LANguage
spanning the complete range from an almost natural lan-

guage to an almost compilable language, which can be used
as a software specification, design, communication, and
documentation tool.

During the design of SLAN-4 we used the following
guidelines:

The language should allow the programmer to proceed in a
uniform way from specification to implementation. Con-
cepts that are initially vague ultimately become precise
through formal specification, refining, and detailing.
The language should allow one to define abstract data
types and data objects with varying degrees of detail. It
should emphasize the definition of data types together
with the operations allowed on them.

A design principle of SLAN-4 is that informal descrip-
tions in the form of comments may be used as placeholders
for formal language constructs. This possibility allows a user
of SLAN-4 to start with a specification written in natural
language, but in a structural way. Thereafter, during the
development cycle, the informal specifications without for-
mal semantics can be made precise by formalizing the
informal constructs, e.g., by writing out the axioms of an
algebraic specification of an abstract data type, by providing

0 Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the

558 Editor.

F. BEICHTER, 0. HERZOG, AND H. PETZSCH IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

precise object type descriptions, or by supplying complete
predicates for axiomatic specification. As the number of
formally defined constructs increases, it is possible to check,
for instance, the consistency of interfaces and the correct use
of defined objects very early in the development process.

SLAN-4 incorporates four approaches to software specifi-
cation:

abstract data types,
algebraic specifications,
specification of operations by means of pre- and post-

design with pseudocode.

The concept of abstract data types represents the design
philosophy of a hierarchical, data-oriented approach to spec-
ification. Algebraic specification, pre- and post-conditions,
and pseudocode are formal tools for the description of design
decisions incorporating different levels of abstraction. The
algebraic method is not concerned with variables and other
objects manipulated by a program. The pre- and post-
conditions specify the result of a computation in a model-
oriented axiomatic approach, yet in a nonoperational way.
Pseudocode offers high-level language constructs including
high-level data types for algorithmic specifications.

conditions, and

SLAN-4 was initially designed by F. Beichter, 0. Bucheg-
ger, N. E. Fuchs, and 0. Herzog [l] of the IBM System
Products Division Laboratory in Boeblingen, Germany. It
was designed as a formal language for use in the development
of large software systems for specifications, design, commu-
nication, and documentation.

Lexical rules
Since computer terminals normally do not support different
type styles, SLAN-4 refrains from using numerous font types
for specifications (bold keywords, comments in italics, etc.)
The only convention adopted is that keywords and other
words with a predefined meaning in SLAN-4 are written
with uppercase letters; user-defined names use only lower-
case letters.

The syntactic notation uses the symbols shown with their
definitions in Table 1 .

The syntax follows the general rules that 1) nesting of
SLAN-4 constructs is allowed to any depth; 2) optional
terms may appear in any order; 3) the user may replace
almost every formal syntactic entity with a comment; and 4)
SLAN-4 does not require input formatting.

As is usual in computer languages, there are lexical rules
and guidelines in addition to the rules given in Backus-Naur
form, e.g., definition of delimiters, compound symbols, and
comments. Appendix 1 lists these rules and guidelines.

Table t Symbols used in syntactic notation in SLAN-4.

Symbol Meaning

._ .-
[* I
[* I 0

1.1’

‘empty‘

uppercase letters
special characters
lowercase letters

. I .

“is defined by”
an optional term
optional repetition of a term; the 0 indi-

cates that it may be left off
optional repetition, but the 1 indicates

that at least one term is needed
alternatives-one must be chosen
the empty string (equivalent to an arbi-

trary number of blanks)
must be written as they stand

variable terms, to be replaced

Classes and modules
The basic forms of specification in SLAN-4 are classes and
modules. While classes define data types, modules represent
operations such as procedures in high-level programming
languages. Whereas classes are used to group several opera-
tions together, modules describe what will be perceived as a
single action by future “callers” of the module.

Descriptions of classes and modules are self-explanatory
because all information needed to understand a class or
module is contained within the construct. This implies that
no object being defined outside a module or class may be
used within a module or class without explicitly “importing”
the object and its definition. Given a class (module) consist-
ing of the interface declaration and the class (module)
specification, the task of refining the specification by giving
more details can be performed without knowledge of other
parts of the whole specification. Both constructs control the
visibility of data and (inner) operations, thus serving the
information-hiding principle.

Modules and classes may be nested inside one another
(and of course within themselves). In this way, SLAN-4
supports structured top-down development of software as
refinements of modules or classes can be developed to reflect
the hierarchical levels of a software system.

0 The class construct
The class construct defines both the data type, i.e., the basic
types that make up its structure, and all the operations
allowed on objects of this data type. The class construct
incorporates two different concepts: classes as seen by
Simula [2] and classes as (algebraically specified) abstract
data types (see for example [3]). More details on algebraic
specification methods are given in the section on class
specification. For the rest of this discussion, we concentrate
on the first concept of classes.

IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983 F. BEICHTER, 0. HERZOG, P

559

tND H. PETZSCH

The class construct defines a data type, Le., a data
structure or a data structure together with associated proce-
dures defining the operations on the data structure. The class
concept enforces abstraction and information hiding because
the use of operations is completely separated from their
implementation. This is essential for the implementation of
large systems because it increases their integrity and makes
them easier to read and maintain:

class := class-name:CLASS
[interface-declaration]
[class-specification]
[declaration]
[class I module]0
[stmts]

ENDCLASS class-name

The interface-declaration part describes the data objects
which are exchanged with the external environment of the
class. The class specification, which is discussed more fully
later, defines the operations of the class using equations of
operations; furthermore, information on sequencing con-
straints may be included. The declarations may describe the
data objects used internally within the class in terms of more
basic types. The statement part of a class describes the
actions being performed at the time of instantiation, Le.,
declaration of an object of this (class) type. The module
construct in a class definition is intended to be used as a
refinement of the specification of a data type operation
defined by that class. An example for the class construct is
given later in connection with the definition of a class
specification; “stmts” is defined in the section on pseudo-
code.

Through parameterization, classes allow the construction
of generic data types. With their extended descriptive power
(compared to subroutines) they are better suited for forming
prebuilt libraries. Most of the discussion on the advantages of
“packages” given in the @Ada design rationale [4] is also
valid for the SLAN-4 class construct. Therefore, we do not
repeat the arguments but instead highlight the most impor-
tant aspects of SLAN-4 by giving an example.

Since SLAN-4 does not introduce any dynamic objects
such as pointers, there is no need to consider the semantics of
dynamic classes. We are convinced that, for specification
purposes, static classes are fully sufficient. As an example,
we refer to the class directory, which is parameterized by the
type of element entry. This type must be transferred upon
instantiation of the class:

directory: CLASS
<< of all operations upon unordered directories >>

INTERFACE
entry-type : PARAMETER(TYPE)

createjnsert,
delete,list : EXPORT(OPERATION)

<< gives type of a directory element>>

<< allowed operations>>
ENDINTERFACE 560

F. BEICHTER. 0. HERZOG. AND H. PETZSCH

DECLARATION
entry,entry 1: entry-type

dir: RECORD
<< names of directory elements>>

<<data structure of the directory >>
- dir-descriptor:

RECORD
- total-number-dir-entries: INTEGER.
- number-dir-entries: INTEGER.

ENDRECORD
- dir-entries: SET OF entry-type.

ENDRECORD.
ENDDECLARATION
<< functional description of operations to follow >>

ENDCLASS directory

The module construct
The notion of module refers to a procedural or functional
entity of a program, regardless of whether it is seen as a
separately compilable unit or as a subroutine within the
program. The nesting of modules can be regarded as an
Algol-like block structure, with similar scope rules for
names. A major difference from the Algol-60 concept,
however, is that the declaration of each name used in the
module must be stated explicitly in its declaration or inter-
face part. Thus, a module acts like a self-contained unit,
where the programmer must specify all objects used and
imported by that module; this enforces a complete interface
declaration which is essential to the specification, design, and
implementation of large software systems.

A module represents a part of an algorithm which we want
to regard as a functional entity (Le., an indivisible operation
to those who call it):

module := module-name: MODULE
[interface-declaration]
[RESULT type .I
[module-specification]
[declaration]
[class I module]0
[stmts]

ENDMODULE module-name

The interface-declaration part describes the data objects
which are exchanged with the external environment of the
module. For example,

directory : CLASS

create : MODULE
. . .

INTERFACE
entry-type : IMPORT(TYPE).
dir : IMPORT(WRITE).

ENDINTERFACE

ENDMODULE create
<< functional description to follow >>

ENDCLASS directory

If the module has to return a value (like a function in
high-level programming languages) the type of the value is
defined in the result clause. The module specification defines
the effect which the execution of the module has on the
variables of its environment. The declaration of inner objects,
classes, and modules, together with a block of executable

IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

1 I

statements (given in SLAN-4 pseudocode), describes a
refinement of the module specification. An example for the
module construct is given in connection with the definition of
a module specification.

Declarations
While SLAN-4 is very strict in requiring the existence of
declarations for each name occurring in a module/class,
(type) attributes of a name may be given loosely as a
comment a t first. Later, in the software development cycle,
the informal description can be sharpened to any degree of
detail by referring either to basic data types or by detailing
the structure of the given object.

Every name used in a specification must be defined as
belonging to a class, module, parameter, type, or object. The
definitions of (non-class) types and objects are given within
the declaration:

declaration := DECLARATION
[type-declaration I object-declarationlo

ENDDECLARATION

All names which are defined within a declaration are local to
the class/module in which the declaration resides. For exam-
ple,
DECLARATION

TYPE err1 : ARRAY (1. .lo) OF INTEGER.
a l ,a2 : arrl << inputloutput-arrays>>
cl ,c2 : INTEGER << indices for a1 /a2>>

ENDDECLARATION

Type declarations
A data type is defined by the set of its elements, together with
the operations which may be performed on the elements. A
type definition has the form

type-declaration := TYPE name [,namelo : type.

type : = type-name I record I array I set I list I
semaphore I enumeration I subrange I
class-name parameterlist I’empty’

We distinguish among simple types, structured types, and
class types. In the first (simple types), the elements and the
operations are predefined. In structured types, the composi-
tion of elements is defined by the user, whereas the opera-
tions (i.e., selections of substructures) are predefined with
the structure. In class types, both the construction of ele-
ments and the definition of operations are given explicitly.

The simple and structured types offered by SLAN-4 are
well known from high-level programming languages like
@Ada or Pascal. The use of sets, lists, and arrays (mappings)
is supported because they offer a framework for describing
data concepts in a mathematical and abstract way. This
allows programmers to deal with objects by using a concep-
tual view within the specification part, rather than by
committing themselves early to an implementation-oriented
data structure.

From the conceptual point of view, there is no difference
between a general mapping and an array with an infinite
index type. We therefore did not introduce separate key-
words for “arrays” and “mappings,” but included several
predefined functions on arrays. These standard functions are
introduced in [5] as operators on partial mappings. Their
semantics may be defined in terms of arrays by introducing
an “undefined value,” which is used for initalization.

Semaphores are introduced because they are a very power-
ful and universal synchronization tool. The disadvantage
stemming from the universality of semaphores is that their
use can be quite “dangerous” for a program’s control flow,
because inadvertent deadlocks may be programmed. By
using the results described in [6], such control-flow anoma-
lies can be detected by the static analysis of the SLAN-4
text. In this way, one can prove automatically a t specification
time the absence of those control flow anomalies.

The possibility of defining new types via the class con-
struct improves considerably the descriptive flexibility of
SLAN-4. As far as declarations are concerned, a class name
denotes a type just as INTEGER does. Difficulties may arise
with respect to referencing the operations and objects defined
in a class. There are two possibilities:

Let x be an instance of a class. An operation (op) may
depend on objects local to the class, as in the case of
“push” on a stack; push will perform some changes on the
local “store” of the class. It looks very natural to qualify
the operation with the name of the data object either like
Alphard [7] or CLU [8], namely op(x,. . .); or in the way
of Simula [2] or @Ada [9], x. op(. . .).
The operation does not depend on any internal data of the
class, as is the case with an operation which adds two
complex values and returns the result in a third parameter.
We feel that “complex.add (xl,x2,y)” is the most natural
notation for this situation. This is much more readable
than “x.add (. . .)” because “add” does not depend on the
value of “x.”

To be able to handle both situations appropriately SLAN-
4 offers the concept of anonymous declarations: each time an
operation is prefixed only with a class name, a new incarna-
tion of the class is generated and referred to. In contrast to
class operations incarnated in a declaration part, operations
which belong to an anonymous incarnation are therefore not
able to retain information between two calls. Thus the use of
anonymous incarnations emphasizes that an operation does
not depend on internal data of a given class (but of course it
may use internal objects to store intermediate results). Note
that it is not possible to use this concept in connection with
parameterized classes. (For an example of a class declara-
tion, see the last section on the module construct.)

BM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983 F. BEICHTER, 0. I

56 1

3ERZOG. AND H. PETZSCH

Table 2 Basic data types and operations associated with them.

Operator Operation Type of operand(s)” Result - iype Priority

arithmetic:
+(unary)
-(unary)
+ *

I
MOD **

identity

addition
sign inversion

multiplication
subtraction
division
modulus : a MOD b = a -
exponentiation

relational:

<>, 1=
<
>
<=
>=

equality
inequality
less than
greater than
less or equal
greater or equal

logic:
NOT, 1
AND
OR
XOR
=>

negation
conjunction
disjunction
exclusive or
implication

I1 concatenation c , s S 4

‘I = integer, R = real, B = Boolean, C = character, S = string

Table 3 Operations on enumerations.

relational operations-equal and notequal (=, -I=, <, >);
FIRST (’enumeration’)
LAST (’enumeration’)
ORD (’eename’)
SUCC (’eename’)
PRED (’eename’)

: ’eename’ << enumeration-element-name >>;
: ’eename’;
: INTEGER << ORD(first-element) = 0 >>;
: ’eename’;
: ’eename’.

Simple types The basic data types, integer, real, boolean,
character, and string, require the operations shown in Table
2. Further simple types are subranges, enumerations, sets,
and semaphores.

Subranges may be used to restrict the elements of a
previously defined type to those within a given range (includ-
ing the boundaries):

subrange := RANGE constant. .constant

Operations on subranges are inherited from the base type.
For example,

TYPE index : RANGE ”5..+5. << index type for the array xyz >>
When the array xyz is defined, all operations on its indices

562 may be applied to index.

Enumerations are defined by giving names to all the
elements of the enumeration type:

enumeration := VALUES [constant su constant^^]

The enumeration defines an order for the enumerated ele-
ments. Operations on enumerations are summarized in Table
3. For example, the definition

TYPE color : VALUES red, green, blue, yellow.

implies that

FIRST(co1or) = red
ORD(BLUE) = 2 <<since the first element is defined as 0>>
PRED(green) = red.

The values of SUCC(ye1low) and PRED(red) are undefined
because there are no given elements after “yellow” or before
“red.”

F. BEICHTER, 0. HERZOG, A N D H. PETZSCH IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

Table 4 Operations on sets.

‘set’ + ’set’
‘set’ * ’set’
‘set‘ - ’set’
’element’ IN ’set’
’set‘ < = ’set’
‘set‘ > = ‘set‘
CARD (’set’)

: ‘set‘
: ‘set‘
: ‘set‘
: BOOLEAN
: BOOLEAN
: BOOLEAN
: INTEGER

<< union >>
<< intersection >>
<< set difference >>
<< set membership >>
<< first set subset of second set >>
<< second set subset of first set >>
<< number of elements >>

Given a data type t, SET builds the powerset of the
elements of t :

set : = SET [OF type]

The operations on sets are summarized in Table 4. For
example,

TYPE stopchar: SET OF CHARACTER . << word terminators >>
abc , xyz : stopchar.
xyz : = (I I . ‘ , ’ , I , ’ ; I I) .
abc := (1 1) . << empty set >>
Sets have many properties which correspond to properties of
programming systems, e.g., the uniqueness of the elements of
a set. This is one of the reasons-together with well-defined
constructs-that sets can be very useful in a model-oriented
specification approach.

Semaphores can be used to control the synchronization of
modules:

semaphore := SEMAPHORE

The only operations on a semaphore are wait and signal. For
example,

TYPE buffer-control : SEMAPHORE
<< controls buffer access>>

Semaphores were included in SLAN-4 because they are very
powerful yet basic synchronization data types. If a SLAN-4
user wishes other synchronization constructs, e.g., monitors,
he can construct them using semaphores and semaphore
operations.

Structured types Structured types use previously defined
types for the definition of the base set of a new type. For
every structured type there is an operation for the decomposi-
tion of an element of that structured type. Structured types
may be nested to any depth, and comprise arrays, lists, and
records.

Arrays specify a sequence of fixed length of elements; the
sequence is indexed by all the elements of the index type:

array : = ARRAY [(indextype [,indextype]’)
[OF type1

indextype := constant. .constant I type

For example,

TYPE table : ARRAY (1. .100,5. 50) OF INTEGER.

IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

Table 5 Operations on arrays.

DOM (’array’) : ‘set’ << DOMAIN >>
RNG (’array’) : ’set’ << RANGE >>
RESTRICT(’array‘,’set’) : ‘array’
OVERWRITE(‘array’,’array’) : ’array’

If tab1 is an object of type “table,” then tabl(l5 , 27) is an
element of type “integer,” whereas tabl(37) is an array of
type ARRAY(5. S O) of “integer.”

Operations which can be performed on arrays are shown in
Table 5. These operations extend arrays to “mappings.” The
operation DOM defines the indices of an array, where the
array has been initialized; R N G is the set of the values of all
initialized array elements; RESTRICT forgets about the
initialization of all elements whose index is not a member of a
given set; and OVERWRITE(a, b)(i) becomes equal to b(i)
wherever this is initialized, and remains a(i) elsewhere.

Lists specify a variable-length sequence of elements. Lists
do not have a defined index type, but indexing a list with
positive integers is an operation which is easy to define in
terms of the given primitive operations:

list := LIST [OF type]

Operations on lists are given in Table 6 . For example,

TYPE string1 : LIST OF CHARACTERS.

abc , xyz : string1
xyz : = < I ’a’, ‘b, ’c’ I >
abc : = < I I > << empty list >>

Records are used to group together several elements of
(possibly) distinct types to form one new type:

record := RECORD
[- object-name : type]’
[CASE name : type OF

[constant [,constant]’ :

ENDRECORD
[IS record]

([- object-name : type I’) 1’]

For example, for 563

F. BEICHTER, 0. HERZOG, AND H. PETZSCH

Table 6 Operations on lists.

HEAD(”’)
TAIL(’1ist’)
LENGTH(’1ist’)
‘list’ II ‘list’
ELEMS(’1ist’)

: element - type
: ‘list’
: INTEGER
: ‘list’
: ‘set‘

<< first element >>
<< all but the first >>
<< number of elements >>
<< concatenation >>
<< a set of all the elements in the list >>

TYPE person : RECORD
- name : STRING
- age : INTEGER
CASE sex : VALUES(male,female) OF

male : (- beard : BOOLEAN

female : (- maiden-name : STRING)
- weight : REAL)

ENDRECORD

if “p” is an object of type “person,” then “p.name” and
“pmaiden-name” are objects of type string. The value of
“p.maiden -name” is undefined if “p.sex” is “male.”

Class types A class gives an explicit definition of both the
elements of the introduced type and of the operations
belonging to this type. Class definitions may be parameter-
ized; in a type declaration there must be an actual parameter
for each formal parameter:

class-type := class-name parameterlist

parameterlist := [(act-param [,act-paramlo)] I
[(parameter-name: act-param

[,parameter-name: act-param]’ 11

act-param := object-name I constant I type-name I module-name

Thus, if c is an object of type class and x is an object (a
module, inner class) defined in this class which appears in an
export clause, then the (inner) object (module, . . .) can
either be denoted by “c.class-name.x” or by “c.x”. For
example,

TYPE bounded-stack : stack(max-depth : 100).

0 Object declarations
Each data object used, together with its attributes, must be
described in an object declaration. The attributes can be
given very loosely, or to any degree of detail wanted. The
default scope of an object name is the module or class in
which it is defined. The initialization of an object may be
specified within the declaration.

An object declaration has the form

object-declaration:=name [,name]’ : type
[INITIAL constant].

For example,

escape1,escapeZ : CHARACTER INITIAL ’4’.

Expressions
Expressions describe the computation of values starting with

564 given objects. The syntax given here does not distinguish

between set expressions, list expressions, integer expressions,
etc. Where such a distinction is needed, it will be indicated in
the accompanying text:

expression:= IF expression : expression
[I expression : expressionlo
[ELSE expression] ENDIF I
ALL I EX var-name IN expression : expression I
LET var-name = expression : expression I
simple-expression I ’empty’

The syntactic form for expressions follows the standard
which was set by Algol-60. The set of predefined operators is
only slightly incremented. The need for complex predicates
in pre- and post-conditions has led to the introduction of local
declarations in combination with a single assignment within
expressions (a well-known concept in functional languages)
and quantified expressions using a notation similar to the
mathematical “for all x elements of S holds . . . ,” or “there
exists an x element of S such that” The quantifiers ALL
and EX represent the mathematical quantifiers “for all x in
‘set’ : . . .” and “there exists a t least one x in ’set’ such
tha t” The first expression in such a construct must
therefore be of type “set.” For example,

EX X IN (I 1. 5 1) : ~ * * 2 = 16

The conditional expression “IF expr. : . . . ENDIF” is
given in the same syntax as the IF statement used within the
pseudocode (see later section on pseudocode). This allows the
designer to enumerate a group of “condition-resulting
expression” pairs easily:

<< assume as declaration :
input-type : VALUES numeric,identifier,string,delimiter. >>
input - type : = IF input IN (I ’0’ . . ‘9’ I) : numeric

I input IN (I’a’ . . ’z’ I) : identifier
I input = ’ ” : string
ELSE delimiter
ENDIF.

With the LET construct, local variables can be defined in
expressions. The value of the local variable is computed once
upon entering the expression. For example,

LET X = f (g (5) ~) : h (x , x * * ~)

Additional syntax rules and examples of expressions can
be found in Appendix 2, where the use of selectors for arrays
and for records is covered and expressions are discussed
which relate very closely to programming languages, e.g.,
Boolean, integer, and real number expressions.

F. BEICHTER. 0. HERZOG, AND H. PETZSCH IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

interfaces and scope rules
The region of a specification (program) where the definition
of a name is known is called the scope of the name. Names
may only be referenced within their scope. If a name is used
within a module/class (with the exception of the class
specification), it must be either declared or imported by the
module/class. This informal definition is precise because the
default scope of a name defined in a declaration consists of 1)
the complete declaration, 2) the accompanying interface
declaration of the class/module, 3) the interface declarations
of inner classes/modules as long as no redefinition of the
name makes the former definition inaccessible, 4) the
accompanying module specification, if any, and 5) the
accompanying statements. Here, accompanying means “be-
ing defined in the same specification part at the same level.”
A name may be defined only once within a class/module; it
may be redefined within an inner class/module.

The scope rules chosen for SLAN-4 are similar to the
scope rules of Euclid [lo]; i.e., modules and classes define a
closed scope. The difference between an open and a closed
scope can be defined as follows: An identifier is accessible in
an open scope if it is declared in that scope or accessible in
the enclosing scope. An identifier is accessible in a closed
scope if it is declared in that scope or accessible in some
enclosing scope and explicitly imported via an IMPORT
clause.

A closed scope has the advantage, compared to the com-
monly used open scope, that it is easier for the user of t h t
module/class to determine which objects may be used within
the (module) specification, declaration, and pseudocode
part. In that way, the effects of changes of declarations can
be more easily localized. The danger of introducing complex-
ity through long transitive import lists [4] has been avoided
by allowing the import of a variable from any enclosing
scope, instead of only the directly enclosing one. A name
which is used in n scopes must still be “declared” n + 1
times: once within a declaration part and n times within
interface descriptions. However, the overhead seems to be
smaller for a specification language than for a programming
language. Within a specification, one usually gives one name
to a complex data structure instead of naming all the
lowercase elements of the representation of that structure.
Thus, one has to import only the single name instead of a long
list of names.

The default scope of a formal parameter is the scope of a
name declared in the accompanying declaration of the
class/module. For purposes of explicit references the formal
parameter name may be used in the parameter list of the call
of the class/module (see below). The default scope of a class
or module name is the scope of a name declared in the
accompanying declaration (i.e., at the same level) plus the

scope of a name declared in the declaration part of the class,
Le., the module; recursive modules therefore do not have to
import their own names.

If a class or a module has to exchange values (operations)
with another specification, the transfer is described in the
interface declaration:

interface-declaration := INTERFACE
[parameter-declarationlo
[import-declarationlo
[export-declarationlo

ENDINTERFACE

The parameter declaration describes the parameters and the
way they are accessed:

parameter-declaration := parameter-name [,parameter-nameIo :
PARAMETER qualification type.

qualification := (READ I WRITE I READ/ WRITE I TYPE I
OPERATION).

Parameter passing for objects corresponds to a “call by
reference” as used in high-level programming languages.

There are two possibilities for substituting actual parame-
ters for formal parameters: The correspondence can be
established by an explicit reference to the formal parameter
name, or it can be established by conforming parameter
positions as known from programming languages. One can-
not mix the two forms. In both cases there has to be an actual
parameter for each formal parameter. Lists of actual param-
eters come with parameterized classes when they are used to
define objects, or with parameterized modules when they are
called within the pseudocode.

The possibility of binding actual parameters to formal
ones by giving an explicit reference to their names has been
included because it can improve the readability of a specifi-
cation. Binding by corresponding positions has been included
as a possibility for situations where the correspondence is
obvious, e.g., because there is only one parameter.

Any externally defined object (type, class, module) which
is used within a class or module, but defined outside it, must
appear in an import declaration along with information on
how it can be accessed. For example,

import-declaration := name [.namelo : IMPORT qualification
type.

The (original) scope of the imported name must surround the
import declaration; Le., the name must have been defined on
a higher level of the specification. Importing a name extends
the scope of the name by the scope it would have if it were
defined in the accompanying declaration.

Any object (class, module) that should be known external-
ly, i.e., outside its default scope, must appear in an export 565

F. BEICHTER, 0. HERZOG, AND H. PETZSCH

declaration. This declaration also indicates the access rights
granted:

export-declaration : =
name [,namelo : EXPORT [TO name [,namelo 1 qualification.

It is possible to include the name of the specification to
which the name is exported; note that the inclusion is treated
as an informal comment in the semantics. Exporting a name
from a module extends the scope of the name by the scope the
name would have if it were defined on the next higher level of
the specification, i.e., within the declaration part of the
directly surrounding class or module. Exporting a name from
a class does not extend the scope but is a prerequisite for
referring to the name using the dot notation (compare with
class types). It is not necessary to export names to inner
classes or modules.

SLAN-4 offers very few rules for type compatibility; this
omission is obvious in the case of parameter, export, and
import declarations. On the one hand, we did not want to
impose restrictions on the user which might be too strict for
early system specification. On the other hand, strong typing
has been proven to be a property of a language which
enforces discipline in the use of data objects to make
powerful “specification time” checks possible. That is why
the user is responsible for indicating how to perform type
conversions in nontrivial cases.

The export clause serves two different purposes. First, it
defines which items of a class c can be used after the
declaration of an object of type c. Second, it allows the
definition of a variable within a module at a lower level, if we
want to describe a situation wherein a variable is only
changed by this module, but exists not only during its
execution but is to be accessed by other modules or classes as
well. In the second case, the lower-level module seems to be
the natural owner of the variable. (Note that it may become
difficult in this case to find the original definition of the
variable if one starts a t an import statement at the same
syntactic level.) An imported name, therefore, may either be
directly defined in the enclosing scope or may be indirectly
defined by exporting it from a module at the same level as the
import clause. We decided against offering two keywords for
distinguishing between the two situations (e.g., “import” to
refer to a corresponding export; “use” to refer to a declara-
tion in the enclosing scope) because the design of the module
may find it impossible to decide whether the name should be
“imported” or “used.”

The class specification
Algebraic specifications may be used to specify abstract data
types. Their main advantage is that the specification is

566 completely independent of any representation of the ele-

F. BEICHTER, 0. HERZOG, AND H. PETZSCH

ments of the specified data type. This is achieved by giving
information only about the relations which hold between the
different operations defined on the elements of the data type.
Abstract data types may be described by choosing a conve-
nient representation of the data objects and by defining the
operations by the effects the operations have on the chosen
representation. It then becomes very difficult to distinguish
between the properties of the representation and the proper-
ties of the class to be defined. This impairs the free choice of
an implementation appropriate for the ideas behind the
specification. The same holds for axiomatic specifications:
While these abstract from any algorithms for computing the
results of operations, they nevertheless depend on a represen-
tation of the input and output states for the operations.
Therefore, the algebraic method appears to be well suited to
the specification of systems in a representation-independent
way.

On the other hand, sole use of the algebraic method for
specifications presents several problems. First, if the repre-
sentation of the data objects is fixed (e.g., because one wants
to specify an operation “sort array”), it may be more
convenient to use this representation instead of abstracting
from it. Second, algebraic descriptions are given in an
applicative language. Thinking in terms of applicative con-
structs is not very popular in many programming environ-
ments. Third, since we are dealing with second order (or
predicate) logic, it is impossible, in the general case, to decide
whether a specification is consistent (Le., whether the rela-
tions given do not imply that TRUE = FALSE) or whether
it is complete with respect to a base type. That is, we cannot
decide in the general case whether an equivalent element of
the base type exists for each operation. For some specifica-
tions, it is even necessary to introduce new operations to be
able to specify the behavior of the wanted operations com-
pletely (see for instance [111).

Therefore, SLAN-4 encourages the combination of both
algebraic and axiomatic specifications. Whereas the axio-
matic specifications describe the effects of an operation with
regard to its input and output states, relations which hold
between operations can be comfortably described using
algebraic specifications. We do not suppose that either
method is a complete specification on its own; each describes
different aspects of the target system. It is, therefore, possi-
ble for one operation to have different types in the axiomatic
and algebraic specifications; normally the types in the axio-
matic part are a refinement of the types in the algebraic
specification. Every operation used within a class specifica-
tion therefore must be defined in the definition part. Corre-
spondence to objects existing outside of the class specifica-
tion is given only by name; no automatic check on compati-
bility can be performed.

IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

The class specification describes the interactions of the
modules defined within a class. It consists of three parts: 1)
the definitions, where the domain and range of operations are
specified; 2) the relations, where equalities holding between
the operations are established; and 3) a specification con-
cerning sequencing constraints. Note that the class specifica-
tion is not part of the scope of names declared in the
surrounding environment; every operation name to be used in
specifying the relation or sequence must be defined in the
definition part. Undefined names in the relation part are
taken to be variables which must be used consistently within
every single relation. Every name used in the sequence part
must have been defined earlier. The correspondence to
modules declared in the surrounding environment is given
only by the equality of the names; operations within the class
specification may have other arities (e.g., domain, range)
than their counterparts in the environment. That is, the
number and types of parameters of a module do not have to
be the same within the class specification and the module
interface description:

class-specification := SPECIFICATION
definition
[relation]
[sequence]

ENDSPECIFICATION

definition := DEFINITION
[module-name : [typeref [,typeref]’] => typeref.]’

ENDDEFINITION

typeref. := type-name I *
The use of “*” instead of a type name is discussed later. The
relation part describes (together with the definition of
domain and range) an abstract algebraic model of the data
type to be implemented:

relation := RELATION
[element = expression]‘

ENDRELATION,

where the variable in the expression is an implicitly defined
object whose scope is only the equation in which it appears.
Note that the syntax for the definition part allows only one
output type to be specified for an operation. This may seem
to forbid the specification of operations with side effects, but
this is not quite true. If the output type should be a type
which consists of several components (e.g., ’state-of-vari-
ables’ * ’result-of-operation’), the user himself can intro-
duce the pairing functions and projections needed; e.g.,

pair : state, integer => pair-type.
prol : pair-type => state.
pro2 : pair-type => integer.
opl : . . . => pair-type.

RELATION
. . .

prol (pair(s,i)) = s
pro2 (pair (sj)) = i
opl (. . .) = pair(. . . , . . .)

etc.

The “*” as a type description has been introduced for
distinguishing between data objects declared in the declara-
tion part of the class construct and imported objects of the
same type. A type name in the list is always a placeholder for
an explicit parameter, whereas the “*” refers to the object to
which the operation belongs when it is used. As further
examples,

add : complex, complex => complex

is an operation with two parameters of type “complex”
producing a value of type “complex”;

add1 : complex, * => complex

is an operation with one parameter of type “complex” and an
argument, which is also of type “complex” if the above
definition appears within the specification of a class named
“complex.” If x is an object of type “complex,” then x is an
implicit parameter for the “x.add1” operation. Thus,
“x.addl(y)” adds the value of x to the value of y and
produces a value of type “complex.” Finally,

add2 : complex, * => *
is an operation with one parameter and an implicit argument
of type “complex”; it changes the value of the implicit
argument. For example, “x.add2(y)” sets the value of x to
the result of the addition of x and y .

For presenting the relations holding between the opera-
tions, SLAN-4 offers an equational notation. This is the most
common method for algebraic specifications. More powerful
methods, e.g., using conditional equations of the form p , and
p , and . . . and pn => t , = t,, could be used (where pi is a
predicate), but we doubt whether the additional expressive
power really adds to the readability of SLAN-4 specifica-
tions (see [121). A possible alternative would be the restric-
tion to operations specified by recursive definitions similar to
the primitive recursive functions defined on natural numbers
(see [13]). The advantages of such a restriction are easier
semantics for the composition of several specifications and
the possibility of executing such specifications for testing
purposes (see [14]). Further research is necessary in this
area.

Restricted- or unrestricted-execution sequences of opera-
tions can be specified with the sequence construct. This is of
great value in cases where operations must be performed in a
specific total ordering (i.e., sequentially) or where operations
can happen in a partial ordering (i.e., concurrently).
Campbell [151 proposes the use of “open path expressions”
which are incorporated into Path Pascal in order to describe
the synchronization of operations defined within an encapsu-
lation mechanism, a restricted abstract data type construct.
For SLAN-4, we use Campbell’s concept of synchronization
specification for cfasses and also his syntax of open path
expressions: 567

IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983 F. BEICHTER, 0. HERZOG, AND H. PETZSCH

sequence := SEQUENCE
[PATH seqlist ENDPATH]‘

ENDSEQUENCE

seqlist := itemlist [,itemlistlo

itemlist := item [;itemlo

item := [expr :I (seqlist) I I seqlist I I module-name.

Four types of constraints can be specified: 1) strict
sequencing, denoted by the semicolon, “;”; 2) no sequencing,
denoted by the comma, “,”; 3) resource restriction, denoted
by “expression :(. . .)”; and 4) “ I . . . I ” which denotes
resource derestriction. A path can be composed of arbitrary
subexpressions consisting of all of these elements. Module
names may be repeated within one path. The specified
synchronization constraints for each occurrence are evalu-
ated from left to right.

The following example provides a flavor of the underlying
ideas.

directory: CLASS
<< The INTERFACE declaration goes here >>

SPECIFICATION
DEFINITION

<< of arities, domains, and ranges >>
create : => *.
insert : *, entry-type => *.
delete : *, entry-type => *.
is-elem : *, entry-type => BOOLEAN.

ENDDEFINITION
RELATION << Essentially a set is defined >>

ispelem(create.entry) = FALSE.
is-elem (insert(drc,entry),entryl) =

IF entry = entry1 : TRUE

ENDIF.
ELSE is_elem(drc,entryl)

delete(create,entry) = create.
<< delete is allowed on empty directories >>
delete(insert(drc.entry),entryl) =

IF entry = entry1 :
delete(drc,entryl)

insert(delete(drc,entryl),entry)
ELSE

ENDIF.
ENDRELATION
SEQUENCE

PATH create; I insert,delete,is-elem I
ENDPATH

ENDSEQUENCE
ENDSPECIFICATION

ENDCLASS directory

In the definition construct, the insert function is shown to
operate on “directory x entry- type” as domain and “direc-
tory” as range. Correspondingly, the relation part shows the
operation “insert” with two parameters, where the second
axiom means that an insert function applied to a directory
with an entry will result in bringing that entry into the
directory. The sequence specification shows that first of all a
“create” operation must take place, followed by an arbitrary

568 number of “insert,” “delete,” and “list” operations, which

F. BEICHTER. 0. HERZOG, A N D H. PETZSCH

may happen to occur concurrently in an unrestricted manner.
The specification of the possible concurrent activation of
these operations indicates that synchronization must be
provided in the final implementation to ensure the integrity
of a directory created by an instantiation of this class.

The module specification
In addition to the concept of pre- and post-conditions,
SLAN-4 offers a framework for an implicit specification at a
functional level. This specification was developed along the
lines described in [51 and [161 and the basic Vienna develop-
ment method (VDM). High-level data types such as sets,
lists, mappings, etc. are also part of SLAN-4. In addition,
SLAN-4 provides a more programming-style syntax (Pascal-
like), together with an explicit strict data interface control.
In [SI it is shown how the basic VDM constructs can be used
to formally express the semantics of highly complicated
software systems. The expression of operational constraints
via a pre-condition on the variable state domain is proposed.
A post-condition relates the initial and final variable states
of an operation:

module-specification := SPECIFICATION
PRE-module-name: expression
[INTERMEDIATE expressionlo
POST-module-name: expression
[EXCEPTIONS: expression]

ENDSPECIFICATION

The user is responsible for checking that the supplied pre-
and post-conditions of a module are compatible with the
requirements of the module as given in a preceding class
specification. The pre-condition corresponds exactly to [5],
whereas the post-conditions are split into three parts: The
post-condition expresses the non-exceptional semantics; the
intermediate allows the designer to state explicitly interme-
diate states of a module (e.g., in order to be able to express a
certain sequence of the internal behavior of a module which
might be useful if one wants to provide synchronization
points of a module); and the exceptions denote exceptional
cases explicitly.

In the previous section, the class directory was specified
using the algebraic specification method. Now the appropri-
ate pre- and post-specification is given for the operation
“insert.” Again, it is assumed here that an object directo-
ry-entry is declared elsewhere before creating an instance
of the class directory with these elements. The pre-/post-
specification seems to be well suited as a refinement of the
class specification. The semantic binding is performed by the
object names common to both pre- and post-specifications or
by the refinement of common objects in both. It should be
noted in the example that follows that the value of an object
in the final state is distinguished from the initial value by a
prime (e.g., old-directory’).

IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

insert: MODULE << inserts an entry into a directory >>
INTERFACE

entry-type: PARAMETER (TYPE).
new-entry: PARAMETER (READ) entry-type.
old-directory: IMPORT (WRITE) directory

number-dir-entries: PARAMETER (WRITE) INTEGER.
total-dir-entries: IMPORT (READ)

return-code: IMPORT (WRITE)

<< imported from class directory >>

<< max. size >>

<< indicates result of insert >>
ENDINTERFACE
SPECIFICATION

PRE-insert: TRUE
POST-insert:

number-dir-entries < total-dir-entries =>
number-dir-entries’ = number-dir-entries+ 1

old-directory’ = old-directory + (I new-entry I)

return-code’ = “SUCCESSFULLY-DONE”

number-dir-entries = total-dir-entries =>
return-code’ = ”DIRECTORY -FULL”

old-directory‘ = old-directory

AND

AND

EXCEPTIONS:

AND

ENDSPECIFICATION
ENDMODULE insert

Pseudocode
Besides offering language constructs for high-level specifica-
tion methods, SLAN-4 allows the user to express his low-
level design in a notation similar to high-level imperative
programming languages. This sublanguage of SLAN-4 is
called pseudocode, and contains control structures for
sequential and concurrent processing besides assignment and
procedure calls. The pseudocode part has been designed to
offer a way of presenting algorithms independently of the
language in which the final program is to be written.

For the description of a module decomposition into smaller
parts as well as for the description of actions taking place at
the instantiation of a class, SLAN-4 offers a notation which
is similar to a conventional programming language. All
statements are placed in the “body” of a class or a module:

stmts := BODY
[statement]’

ENDBODY

Statements represent the actions to be performed. The
syntax rule for the general form of a statement specifies that
it may be preceded by one or more labels and that it is always
ended by a period. For the control of sequence, selection, and
iteration, SLAN-4 includes concepts which are well-known
from high-level programming languages. Besides the control
of serial actions, SLAN-4 offers language elements for
concurrent processing, e.g., the EXECUTE CONCUR-
RENTLY, DO CONCURRENTLY statements and the
WAIT and SIGNAL operations on semaphores:

statement := [label:]o [unlabeled-statement].
unlabeled-statement := assign I do I if I loop I for-loop I

execute I assert I return I goto

Labels must be unique within the body of a module or a
class. The empty statement (i.e., [label:]’.) has no effect on
the values of variables; it may be used in any case where a
formal statement is required but the user wants to remain
informal.

ASSIGN
The assign statement changes the value of an object:

assign : = name : = expression

For example,

newvalue : = 17-4.

The assign statement does not use the equality sign for
denoting an action; instead, it uses the composite sign. This is
well-known from Algol-60, Pascal, and @Ada. By now it
should not be necessary to justify this distinction. We did not
want to offer a multiple or a parallel assignment because of
the difficulties concerning the understanding of the seman-
tics of multiple (parallel) assignments in connection with
arrays.

DO
The do statement combines statements which have to be
processed serially or, by specifying the keyword CONCUR-
RENTLY, in parallel. In the latter case, the ENDDO
statement acts like a WAIT statement for the termination of
the execution of all the statements inside this do statement.

do := DO [CONCURl?ENTLY]

ENDDO
[statement]

For example,

DO CONCURRENTLY
EXECUTE read- bufferl.
EXECUTE read- buffer2.

ENDDO.

The do statement has been introduced primarily for the
description of concurrent execution of several statements. It
can also be used as a “begin-end” bracket for a group of
statements; however, most statement constructors accept
groups of statements without brackets. That is, the DO/
ENDDO can almost always be omitted without changing the
semantics of a design.

IF
The ifconstruct offered by SLAN-4 combines the functions
of the usual I F and CASE statements known from other
languages:

if := IF expression : [statement]‘
[I expression : [statement]’ 1

ENDIF
[ELSE [statement]’ 1

The conditions are tested serially from top to bottom. As soon
as a true condition is found, the associated statement is 569

F. BEICHTER, 0. HERZOG, AND H. PETZSCH IBM J . RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

executed and the IF statement is left. If no condition is true
the ELSE branch will be taken if present. The ifstatement is
equivalent to the empty statement if no ELSE branch is
given and no condition is true. For example,

I F x < a (m) : h : = m .
lx > a(m): 1 := m.

ELSE h := m.
1 := m.

ENDIF.

LOOP
The loop statement provides a unifying concept for “while”
and “repeat” loops and avoids redundant tests or duplicate
code in situations where the decision to leave the loop is taken
in the middle of the loop. We did not introduce a more
sophisticated approach (e.g., using multiple exits as in the
proposal of Knuth [171) because we felt that the overhead for
writing down “common loops” would become too big.
“While” and “repeat” loops can be written by placing the
exit test at the beginning or at the end of the loop:

loop := LOOP
[statement]’

EXlTlF expression.
[statement]”

ENDLOOP

For example,

LOOP

EXlTlF input = ’quit’.

ENDLOOP.

<< ask for next input >>

<< process input >>

FOR
Loops with an iteration counter, which takes values from a
finite set, are represented by thefor construct:

for-loop := FOR name IN [REVERSE]
<<set>>expression DO [statement]’

ENDFOR

If REVERSE is not specified, values are selected in increas-
ing order; otherwise they are selected in decreasing order.
The variable “name” is implicitly defined with a scope
comprising only the for-loop:

FOR i IN (I l . . l O l) DO
a(i):= 0.

ENDFOR.

Thefor statement is more general than the usual form; the
set of values of the control variable can be a discrete range or
an arbitrary set. If the elements of the set are not ordered, the
keyword REVERSE should not be used. Note that the
control variable is implicitly defined and is local to the loop.

EXECUTE
The execute statement starts the sequential or concurrent
execution of a module. If a module represents a function
procedure (i.e., returns a value), it may be called by using its
name in an expression: 570

F. BEICHTER. 0. HERZOG, A N D H. PETZSCH

execute : =
EXECUTE [CONCURRENTLY] module-name parameterlist

For a discussion of parameters see the section on interfaces
and scope rules. For example,

EXECUTE insert (old-directory: macro-directory,
new- entry: request - storage).

9 ASSERT
The assert statement describes the conditions which have to
be met at a certain point in the program flow. If the test fails,
an error message is generated:

assert : = ASSERT expression.

For example,

ASSERT 1E-20 < eps.

9 RETURN
The return statement terminates execution of a module and
transfers control back to the caller:

return : = RETURN expression.

9 GOTO
The goto statement transfers control to the point specified by
the label. The label must appear within the same body of a
module or a class as the goto statement:

goto := GOTO label

One cannot jump into a FOR-loop from the outside.

Conclusion
SLAN-4 offers a framework for data abstraction and formal
specification techniques such as

algebraic and axiomatic specification methods suited for a
conceptual design;
predefined data types and pseudocode for the stepwise
refinement process of both data and control structures.

The connection between both design steps is given by the
interface and data declaration parts of the syntactic struc-
ture of modules and classes.

The algebraic and axiomatic specification methods are
used for different aspects of a system. While the algebraic
approach documents the relations that exist between the
components of a system, the axiomatic method describes the
behavior of individual components.

SLAN-4 was used in several IBM locations to specify and
design more then five software systems adding up to more
than 100 000 lines of code. The experience using SLAN-4 as
the specification and design language can be summarized as
follows:

IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

Table 7 SLAN-4 words with fixed meanings.

ALL AND ARRAY ASSERT
BODY CASE CLASS CONCURRENTLY
DECLARATION DEFINITION DO ELSE
ENDBODY ENDCLASS ENDDECLARATION ENDDEFINITION
ENDDO ENDFOR ENDIF ENDINTERFACE
ENDLOOP ENDMODULE ENDPATH ENDRECORD
ENDRELATION ENDSEQUENCE ENDSPECIFICATION EX
EXCEPTIONS EXECUTE EXITIF EXPORT
FOR GOT0 IF IMPORT
IN INITIAL INTERFACE INTERMEDIATE
IS LET LIST LOOP
MOD MODULE NOT OF
OPERATION OR PARAMETER PATH
POST PRE RANGE READ
RECORD RELATION RESULT RETURN
REVERSE SEMAPHORE SEQUENCE SET
SPECIFICATION TO TYPE VALUES
WRITE XOR

1. The rigorous use of SLAN-4 requires a thorough reflec-
tion of the designer’s intentions leading to a concise
documentation of it.

2. The precision introduced by pre- and post-conditions and
interface descriptions eases inspections and maintenance.

3. The design contains fewer errors and the documentation
avoids ambiguities.

SLAN-4 serves as a good basis for an integrated auto-
matic software development environment that supports the
programmer in writing, validating, and verifying specifica-
tions and documents for large software systems.

Acknowledgments
The efforts of many were involved in this paper; we especially
thank B. Commentz-Walter. H.-G. Frischkorn, C. B. Jones,
G. Kreissig, B. Schoener, F. Scholz, and the manuscript
referees for their valuable criticism and suggestions.

Appendix 1: Lexical guidelines
In addition to the rules given in Backus-Naur form, the
following guidelines must be observed in SLAN-4:

1. Every nonblank character which is not a letter, a digit,

2. The two-character combinations (I , I) , <I, I > , **, I I, l=,
<>, <=, h, =>, :=, .., <<, and >>, are called
compound symbols. Compound symbols are also delimit-
ers.

‘ ‘ I ” , or “-” is a delimiter.

3. A comment is started by “<<” and delimited by “>>”.
4. Blanks and comments may appear everywhere within a

specification, but not within names, compound symbols,
numbers, or character strings delimited by ‘“” or “””
without changing the semantics of the specification.

Table 8 SLAN-4 words with meanings which are predefined but
which may be redefined by the user.

BOOLEAN CARD CHARACTER DOM
ELEMS FALSE FIRST HEAD
INTEGER LAST LENGTH ORD
OVERWRITE PRED REAL RESTRICT
RNG STRING SUCC TAIL
TRUE

5. Identifiers (including reserved words) must be delimited
with a blank, a comment, or another delimiter.

6. Identifiers and strings delimited with ‘“” must be further
delimited by a blank (since identifiers could end with a
‘“”).

7. The end of a line is only significant in combination with a
period; in all other situations it is logically equivalent to a
blank.

The length of a syntactic name is not restricted. The
underscore character “-” can be used to generate meaning-
ful names. Within the definition part of a class specification,
the asterisk can be used as a placeholder for a name. Within
pre- and post-conditions, names may have the suffix ‘“”.

Table 7 lists words that have a fixed meaning in SLAN-4
(Le., they may only be used in the contexts indicated in the
syntax). Words that have predefined meanings but which
may be redefined by the user are listed in Table 8.

The chosen syntactic notation is in some cases ambiguous.
For example, one cannot distinguish between “A or (B
followed by C)” and “(A or B) followed by C.” Normally the 57 1

F. BEICHTER, 0. HERZOG, AND H. PETZSCH IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

intended meaning can be grasped from the context; the
syntax diagrams presented in Appendix 3 serve as an unam-
biguous reference.

The requirement that it should be possible to include
SLAN-4 specification as a comment within the code (i.e.,
programs written in high-level or assembler language) has as
consequences two syntactic peculiarities. First, the syntactic
form of comments in SLAN-4 must be compatible with
comments in the code language. For example, a SLAN-4
comment must not be used to terminate a comment in the
code language. Because of this, delimiters were chosen that
had not been used elsewhere. Second, we had to exclude the
use of the semicolon for a statement or declaration termina-
tor, because compilers for high-level languages often produce
a warning when they find a semicolon within comments,
assuming that an end-comment is missing. The only other
character which seems to be acceptable as a terminator is
“.”, the dot or period.

Appendix 2: Expressions
A series of examples of various types of expressions follow.

I. simple-expression := term [AND I OR I XOR I => term]’

AND, ..., and => are Boolean operators and therefore
expect Boolean factors. For example,

p < = y A N D y < z
input-empty => error-message-generated

2. term := simple-term [INI = I T = I <> I <I
<= I> I >= simple-term]

I N is the test for set membership; the possible operands for
the relational operators <, <= ... are the basic data types
(except BOOLEAN) and enumerations. The equality opera-
tors may be applied to all expressions. For example,

char IN (I ‘a’ .. ’2’ I)
x * y + 1 = 1 2

3. simple-term := factor [+ I - I I I factor]’

Here, “+” and “-” are defined on INTEGER and REAL
operands; I I denotes the concatenation of strings. For exam-
ple,
’fish’l I ’ and chips‘ << yields ’fish and chips‘ >>
4. factor := simple-factor [* I/I MOD simple-factor]’

Here, “*” and “/” are defined on INTEGER and REAL
operands; MOD takes two INTEGER operands and returns
the remainder. For example,

i / (1 - i)

5. simple-factor := component [** component]

Here, ** denotes exponentiation and accepts two operands of
type INTEGER or REAL. For example,

sin(x) ** 1.5.

572 6. component : = [+ I - I NOT I 1] element

The unary operators + and - are defined on INTEGER and
REAL; NOT or 1 denotes the complement on BOOLEAN
values; e.g.,

NOT (a**b = c).

7. element := ’empty’l constant I variable I (expression) I
module-name parameterlist I
(I [expression I range 1, expression I range]’] I) I
< I [expression I range [, expression I range]’] I>

8. range := expression .. expression

The “(I ... I)” is used to denote sets, while “<I ... I>” yields a
list. For example,

sqrt (X+Y+Z)
(I 1, 5, 10..19, 231)
<I <l1,2l>, <11..31> I> << a list of lists >>
<I I> << the empty list >>

9. variable :=
var-name [(expression [, expression]’) I . objectname 1’

Array variables may be indexed by expressions to indicate
the selection of a specific element. Object names may be
applied to record names as selectors and module names may
be used as selectors for class names.

X.FIRST(7).

10. constant := int-const I real-const I char-const I
string-const I constant-name

11. int-const := [digit 1’

12. real-const := int-const [.[digit]‘]
[E [+ I - I int-const]

13. char-const := ’character‘l “character”

14. string-const := ’ [character]’’I” [character]’“

The “E” in a real constant (exponent) must be followed by a
blank, a plus, or a minus sign:

12.3 E 7,

To represent the character “”’ within a string delimited by
‘“” it must be written twice:

’THE0”S PIPE.

Constant expressions are defined in terms of their possible
constituents. A constant expression is an expression in which
names of variables or modules do not appear. In addition,
TYPE conversions between INTEGER and REAL, as well
as between CHARACTER and STRING, are performed
implicitly where needed and as late as possible.

Appendix 3: Syntax diagrams

character := any representable letter
digit:=0111213141516171819
label := alphameric string starting with a letter
(any-) name := string of letters, digits,

or ‘ _ ’ starting with a letter.

F. BEICHTER, 0. HERZOG. AND H. PETZSCH IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

, - I F - - - 'I

->ARRAY
a r r a y > - .<-

I.

g o t 0

- > G O T O - > m >
i f

- > I F - > l e x p r (- > : ~ > (-] ~ - > E L S E T > l s l ~ h I I

F. BEICHTER,

573

3. HERZOG, AND H. PETZSCH IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

import-declaration

indextype

>

int-const

A

I

interface-declaration
->INTERFACE

1
i tem

>

itemlist

>

IiZt
-\L I ST
..

\

<
->pxzG"-,

module-speciFication

->SPECIFICATION->PRE-

>lNTERHEDlATE->:-

>POST-

->ENDSPECIFICATION 574

F. BEICHTER, 0. HERZOG. AND n. PETZSCH

I /I

->RECORD
record

relation

->.->ENDRELATION->

1
return

->RETURN >
semaohore

seqlist

n >

sequence

->SEQUENCE->PATH-> ->ENDPATH->ENDSEQUENCE-
A >
I

set

L - > O F - > p J 2

simple-expression

-u A I I I I

LW< " " "

I I I

simple-factor

->I-] >
L>**- >(I--; component

IBM J. RES. DEVELOP. VOL. 21 NO. 6 NOVEMBER 1983

s imp le - te rm

A I l l >
I “ V ”

I ‘U - ’I

, - , 7 - - -
I A

t y p e - d e c l a r a t i o n

>. >

“ “ l a b e l l e d - s t a t e m e n t

>

IBM J . RES. DEVELOP. VOL. 21 e NO. 6 e NOVEMBER 1983

References and notes
1.

2.

3.

4.

5.

6.

7.

8.

9 .

IO.

11.

12.

13.

14

15.

16.

17.

F. Beichter, 0. Buchegger, N. E. Fuchs, and 0. Herzog,
“SLAN-4: A Software Specification and Design Language,”
Technical Report GTR-05.235, IBM Laboratory, Boeblingen,
Germany, December 1979; see also Software Engineering-
Entwurf und SpeziJkation, C. Floyd and H. Kopetz, Eds.,
Teubner Verlag, Munich, 1981, pp. 91-108.
0. J. Dahl, B. Myhrhaug, and U. Nygaard, “SIMULA 67,
Common Base Language,” Publication S-22, Norwegian Com-
puting Center, Oslo, Norway, 1967.
J. V. Guttag, “Abstract Data Types and the Development of
Data Structures,” Commun. ACM 20,396-404 (1977).
J. D. Ichbiah, J. G. P. Barnes, J. C. Heliard, B. Krieg-
Brueckner, 0. Roubine, and B. A. Wichmann, “Rationale for
the Design of the “Ada Programming Language,” ACM Sig-
plan Notices 14,6, Part B (1979).
C. B. Jones, Software Development: A Rigorous Approach,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.
0. Herzog, “Static Analysis of Concurrent Processes for
Dynamic Properties Using Petri Nets,” Proceedings of the
International Symposium on Semantics of Concurrent Compu-
tation, Lecture Notes in Computer Science 70, Springer-Verlag,
New York, 1979, pp. 6 0 ~ 9 0 .
W. A. Wulf, R. L. London, and M. Shaw, “An Introduction to
the Construction and Verification of Alphard Programs,” IEEE
Trans. Software Eng. 2,253-265 (1976).
B. Liskov, A. Snyder, and R. Atkinson, “Abstraction Mecha-
nisms in CLU,” Commun. ACM20, 564-576 (1977).
J. D. Ichbiah, J. G . P. Barnes, J. C. Heliard, B. Krieg-
Brueckner, 0. Roubine, and B. A. Wichmann, “Preliminary
BAda Reference Manual,” ACM Sigplan Notices 14,6, Part A
(1979). Note: Ada is a registered trademark of the U.S.
Department of Defense.
B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell,
and G. J. Popek, “Report on the Programming Language
Euclid,” ACMSigplan Notices 12, 2 (1977).
J. Bergstra and J. V. Tucker, “Equational Specifications for
Computable Data Types: Six Hidden Functions Suffice and
Other Sufficiency Bounds,” Research Report IW 128, Com-
puter Science Department, Mathematical Centre, Amsterdam,
1980.
J. W. Thatcher, E. G. Wagner, and J. B. Wright, “Data Type
Specifications: Parameterization and the Power of Specification
Techniques,” Proceedings of the 10th Annual Symposium on
the Theory of Computing, ACMSIGACT, 119-132 (1978).
H. A. Klaeren, “A Simple Class of Algorithmic Specifications
for Abstract Software Modules,” 9th Mathematical Founda-
tions of Computer Science, Lecture Notes in Computer Science
88, Springer-Verlag, New York, 1980.
H. Petzsch, “INTAS-Ein System zur Interpretation Alge-
braischer Spezifikationen,” Berichte des Lehrstuhls fuer Infor-
matik 11, No. 5 , Rheinisch-Westfaelische Technische Hoch-
schule, Aachen, Germany, 198 1.
R. H. Campbell and R. E. Kolstadt, “Path Expressions in
PASCAL,” Proceedings of the 4th International Conference on
Software Engineering, IEEE, Munich, Germany, 1979, pp.
212-219.
“The Vienna Development Method: The Meta-Language,”
Lecture Notes in Computer Science, D. Bjorner and C. B. Jones,
Eds., Springer-Verlag, Berlin, Vol. 61, 1978.
D. E. Knuth, “Structured Programming with Go To State-
ments,” ACM ComputingSurv. 6,261-301 (1974).

Received July 29, 1982; revised July 1 1 , 1983

Friedrich W. Beichter IBMSystem Products Division. 7030
Boeblingen I , Federal Republic of Germany. Mr. Beichter is a
senior associate programmer in VSE operating system development. 575

F. BEICHTER. 0. HERZOG, AND H. PETZSCH

After joining IBM in 1977 in Boeblingen, he worked on job control
and program librarian programs; he is currently responsible for
design, development, and testing of operating system functions. Mr.
Beichter received a diploma (M.S.) in computer science from the
University of Stuttgart, Germany, in 1977.

Otthein Herzog IBM System Products Division, 7030
Boeblingen I , Federal Republic of Germany. Dr. Herzog joined
IBM in 1977 and is currently manager of a group responsible for the
quality assurance of program products developed in the System
Products Division Laboratory in Boeblingen. He received a diploma
(M.S.) in mathematics from the University of Bonn, Germany, in
1972 and the Ph.D. in computer science from the University of
Dortmund, Germany, in 1976. From 1972 to 1976 he was a research
and teaching assistant in the Computer Science Department of the

576

F. BEICHTER, 0. HERZOG, AND H. PETZSCH

Dortmund University. Prior to his present assignment, he worked on
different projects in systems programming, mainly in the DOS/VSE
area. Dr. Herzog is a member of the ACM, the Gesellschaft fuer
Informatik (GI), and several ACM and GI SIGs. He is also one of
the speakers of the GI SIG on Petri nets and related system models.

Heiko Petzsch Technical University of Aachen. Federal
Republic of Germany. Mr. Petzsch is working as a research assistant
on methods for the specification and development of software. He
recently spent a year in the System Products Division Laboratory at
Boeblingen implementing a computer support system for the lan-
guage SLAN-4. He received a diploma (M.S.) in computer science
in 1979 from the Technical University of Aachen. Mr. Petzsch is a
member of the Gesellschaft fuer Informatik.

IBM J. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983

