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SLAN-4: A Language  for  the  Specification  and  Design  of 
Large  Software  Systems 

The language SLAN-4 has  been dejned in view of the  need for  formal tools supporting the specification and design of large 
software systems. It oflers its users language constructs for algebraic and axiomatic  specifcations as well as for design in 
pseudocode. One of its major design goals has been to ease subsequent  refinements of a (given) specification. The user can start 
his development with an informal high-level specification which  can  be formalized and implemented at a later date by  using 
lower-level concepts. This  paper  provides the formal definitions of the SLAN-4 language, discusses the design decisions, and 
presents examples for the use of the syntactic constructs. 

Introduction 
When  one  talks  about  computer  languages,  one normally 
means  the  languages used to  instruct  and  control  computers, 
i.e., the  languages for communication between programmers 
and machines.  However,  most of the  time  programmers  do 
not communicate with computers  but  rather with their fellow 
programmers  and  other people, e.g., to design  a piece of 
software,  to implement it,  or  to  document it.  Because the 
normal computer  languages  are  generally  inadequate for this 
kind of communication,  programmers have  invented other 
communication vehicles. For casual discussion, they use  a 
mixture of computer  and  natural  languages; for written 
communication,  they  use  restricted  natural  languages, for- 
mal design  languages, graphic  languages,  etc.  Since  each of 
these languages was  designed  for  a specific purpose, each is 
less well suited for other purposes. Usually a  single piece of 
software is described by using three different types of 
languages (excluding casual discussions):  a  specification and 
design language, a compilable  computer  language,  and a 
graphic  documentation  language.  We believe that  this  situa- 
tion  should be improved, and  that eventually the  program- 
mer needs but  one  language for  most stages of software 
production. 

In  this  paper we propose SLAN-4, a Software  LANguage 
spanning  the  complete  range  from  an  almost  natural  lan- 

guage  to  an  almost compilable language, which can be used 
as a software specification,  design, communication,  and 
documentation tool. 

During  the design of SLAN-4 we used the following 
guidelines: 

The  language should allow the  programmer  to proceed in a 
uniform way from specification to  implementation. Con- 
cepts  that  are initially vague  ultimately become  precise 
through  formal specification,  refining, and  detailing. 
The  language should allow one  to define abstract  data 
types and  data objects  with  varying  degrees of detail.  It 
should emphasize  the definition of data types together 
with the  operations allowed on them. 

A  design  principle of SLAN-4 is that  informal descrip- 
tions  in the  form of comments  may be used as placeholders 
for formal  language  constructs.  This possibility allows a  user 
of SLAN-4  to  start with  a  specification written in natural 
language, but  in  a structural way. Thereafter,  during  the 
development  cycle, the  informal specifications  without  for- 
mal  semantics  can be made precise by formalizing the 
informal  constructs, e.g., by writing out  the axioms of an 
algebraic specification of an  abstract  data type, by providing 

0 Copyright 1983 by International Business Machines Corporation. Copying in  printed  form  for  private use is permitted without payment of 
royalty provided that ( 1 )  each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on 
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by 
computer-based and other information-service systems. Permission to republish any other portion of this paper  must  be obtained from the 

558 Editor. 

F. BEICHTER, 0. HERZOG, AND H. PETZSCH IBM J.  RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983 



precise object  type descriptions, or by supplying  complete 
predicates  for  axiomatic specification. As  the  number of 
formally defined constructs increases,  it is possible to  check, 
for  instance, the consistency of interfaces  and  the  correct use 
of defined objects  very early in the development process. 

SLAN-4  incorporates  four  approaches  to  software specifi- 
cation: 

abstract  data types, 
algebraic specifications, 
specification of operations by means of pre- and post- 

design  with pseudocode. 

The concept of abstract  data  types  represents  the design 
philosophy of a hierarchical,  data-oriented  approach  to spec- 
ification. Algebraic specification,  pre- and post-conditions, 
and pseudocode are  formal tools for  the description of design 
decisions incorporating different levels of abstraction.  The 
algebraic method is not  concerned  with variables  and  other 
objects manipulated by a program.  The pre- and post- 
conditions  specify the  result of a computation in  a model- 
oriented axiomatic  approach, yet in a  nonoperational way. 
Pseudocode offers high-level language  constructs including 
high-level data  types for algorithmic specifications. 

conditions, and 

SLAN-4 was initially  designed by F. Beichter, 0. Bucheg- 
ger, N. E. Fuchs,  and 0. Herzog [ l ]  of the  IBM  System 
Products Division Laboratory in Boeblingen, Germany.  It 
was designed as a formal  language for  use in the development 
of large  software  systems for specifications,  design, commu- 
nication, and  documentation. 

Lexical rules 
Since  computer  terminals normally do not support different 
type styles, SLAN-4  refrains  from using numerous  font types 
for specifications  (bold keywords, comments in italics, etc.) 
The only convention adopted is that keywords and  other 
words with  a predefined meaning in SLAN-4  are  written 
with uppercase  letters; user-defined names use only lower- 
case  letters. 

The  syntactic  notation uses the symbols  shown with their 
definitions in Table 1 .  

The  syntax follows the  general  rules  that 1 )  nesting of 
SLAN-4  constructs is allowed to  any  depth; 2) optional 
terms  may  appear in any  order; 3) the user may  replace 
almost every formal  syntactic  entity with  a comment;  and  4) 
SLAN-4 does  not require  input  formatting. 

As is usual in computer  languages,  there  are lexical rules 
and guidelines in addition  to  the rules given in Backus-Naur 
form, e.g., definition of delimiters, compound  symbols, and 
comments. Appendix 1 lists  these rules  and guidelines. 

Table t Symbols used  in syntactic notation in SLAN-4. 

Symbol Meaning 

._ .- 
[ * I  
[ * I 0  

1.1’ 

‘empty‘ 

uppercase letters 
special characters 
lowercase letters 

. I .  

“is defined by” 
an optional term 
optional repetition of a term; the 0 indi- 

cates that it may be left off 
optional repetition, but the 1 indicates 

that at least one term is needed 
alternatives-one must be chosen 
the empty string (equivalent to an arbi- 

trary  number of blanks) 
must  be written as they stand 

variable terms, to be replaced 

Classes and modules 
The basic forms of specification  in SLAN-4  are classes and 
modules. While classes  define data types,  modules represent 
operations  such  as procedures in high-level programming 
languages.  Whereas classes are used to  group several opera- 
tions together, modules describe  what will be perceived as a 
single  action by future “callers” of the module. 

Descriptions of classes and modules are self-explanatory 
because all  information needed to  understand a  class or 
module is contained within the  construct.  This implies that 
no  object  being defined outside a  module or class may be 
used  within  a  module or class  without  explicitly “importing” 
the object and its  definition.  Given  a  class (module) consist- 
ing of the  interface  declaration  and  the  class  (module) 
specification, the  task of refining the specification by giving 
more  details  can be performed  without  knowledge of other 
parts of the whole specification. Both constructs  control  the 
visibility of data  and  (inner)  operations,  thus serving the 
information-hiding  principle. 

Modules and classes may  be nested  inside one  another 
(and of course  within  themselves). In  this way, SLAN-4 
supports  structured top-down development of software  as 
refinements of modules or classes can be developed to reflect 
the  hierarchical levels of a software system. 

0 The class construct 
The class construct defines both the  data type, i.e., the basic 
types that  make  up  its  structure,  and  all  the operations 
allowed on objects of this  data type. The  class  construct 
incorporates two  different  concepts:  classes as seen by 
Simula [2] and classes as  (algebraically specified) abstract 
data types  (see for example [3]). More  details on algebraic 
specification methods  are given in the section on class 
specification.  For the rest of this discussion, we concentrate 
on the first concept of classes. 
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The class construct defines a data type, Le., a data 
structure or a data  structure  together with  associated  proce- 
dures defining the  operations on the  data  structure.  The class 
concept  enforces abstraction  and information  hiding because 
the use of operations is completely separated  from  their 
implementation.  This is essential  for the  implementation of 
large systems  because it increases their  integrity  and  makes 
them easier to  read  and  maintain: 

class := class-name:CLASS 
[interface-declaration] 
[class-specification] 
[declaration] 
[class I module]0 
[stmts] 

ENDCLASS  class-name 

The  interface-declaration  part describes the  data objects 
which are  exchanged with the  external environment of the 
class. The  class specification, which is discussed  more  fully 
later, defines the  operations of the class  using equations of 
operations; furthermore,  information on sequencing con- 
straints  may be included.  The  declarations  may  describe  the 
data  objects used internally within the class in  terms of more 
basic  types. The  statement  part of a class describes the 
actions being  performed at  the  time of instantiation, Le., 
declaration of an object of this (class)  type. The module 
construct in a class definition is intended to be used as a 
refinement of the specification of a data  type operation 
defined by that class. An  example for the class construct is 
given later in connection with the definition of a class 
specification; “stmts” is defined in the section on pseudo- 
code. 

Through  parameterization, classes  allow the  construction 
of generic  data types. With  their  extended descriptive power 
(compared  to  subroutines)  they  are  better  suited for forming 
prebuilt libraries.  Most of the discussion on the  advantages of 
“packages” given in the  @Ada design rationale [4] is also 
valid for the  SLAN-4  class  construct.  Therefore, we do not 
repeat  the  arguments  but instead  highlight the most impor- 
tant  aspects of SLAN-4 by giving an example. 

Since  SLAN-4 does  not introduce  any  dynamic objects 
such as pointers, there is no need to consider the  semantics of 
dynamic classes. We  are convinced that, for specification 
purposes, static classes are fully sufficient. As  an  example, 
we refer to  the  class directory, which is parameterized by the 
type of element  entry.  This  type  must be transferred upon 
instantiation of the class: 

directory: CLASS 
<< of all operations upon unordered directories >> 

INTERFACE 
entry-type : PARAMETER(TYPE) 

createjnsert, 
delete,list : EXPORT( OPERATION) 

<< gives type of a directory element>> 

<< allowed operations>> 
ENDINTERFACE 560 
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DECLARATION 
entry,entry 1: entry-type 

dir: RECORD 
<< names of directory elements>> 

<<data structure of the directory >> 
- dir-descriptor: 

RECORD 
- total-number-dir-entries: INTEGER. 
- number-dir-entries: INTEGER. 

ENDRECORD 
- dir-entries: SET OF  entry-type. 

ENDRECORD. 
ENDDECLARATION 
<< functional description of operations to follow >> 

ENDCLASS directory 

The module construct 
The notion of module refers to a  procedural or functional 
entity of a program, regardless of whether it is seen as a 
separately compilable unit or as a subroutine within the 
program.  The nesting of modules can be regarded  as  an 
Algol-like block structure, with similar scope  rules  for 
names.  A  major  difference from  the Algol-60  concept, 
however, is that  the  declaration of each  name used in the 
module must be stated explicitly in its  declaration or inter- 
face  part.  Thus, a  module acts like  a  self-contained unit, 
where  the  programmer  must specify all objects used and 
imported by that module;  this  enforces  a  complete interface 
declaration which is essential to  the specification,  design, and 
implementation of large  software systems. 

A  module  represents  a part of an  algorithm which we want 
to  regard  as a functional  entity (Le., an indivisible operation 
to those who call it): 

module := module-name: MODULE 
[interface-declaration] 
[RESULT type .I 
[module-specification] 
[declaration] 
[class I module]0 
[stmts] 

ENDMODULE module-name 

The  interface-declaration  part describes the  data objects 
which are exchanged with the  external environment of the 
module. For example, 

directory : CLASS 

create : MODULE 
. . .  

INTERFACE 
entry-type : IMPORT(TYPE). 
dir : IMPORT( WRITE). 

ENDINTERFACE 

ENDMODULE create 
<< functional description to follow >> 

ENDCLASS directory 

If the module has  to  return a  value  (like  a  function in 
high-level programming  languages)  the  type of the value is 
defined in the result clause. The  module specification defines 
the effect which the execution of the module has on the 
variables of its  environment. The  declaration of inner objects, 
classes, and modules, together with  a block of executable 
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statements (given in SLAN-4 pseudocode),  describes  a 
refinement of the  module specification. An  example for the 
module construct is given in  connection  with the definition of 
a module specification. 

Declarations 
While  SLAN-4 is very strict in requiring  the existence of 
declarations for each  name  occurring in a module/class, 
(type)  attributes of a name  may  be given loosely as a 
comment a t  first. Later, in the  software development  cycle, 
the  informal description can be sharpened  to  any  degree of 
detail by referring  either  to basic data types or by detailing 
the  structure of the given object. 

Every name used in a specification must  be defined as 
belonging to a  class,  module, parameter, type, or object.  The 
definitions of (non-class)  types and  objects  are given within 
the  declaration: 

declaration := DECLARATION 
[type-declaration I object-declarationlo 

ENDDECLARATION 

All names which are defined  within  a declaration  are local to 
the  class/module in which the  declaration resides. For  exam- 
ple, 
DECLARATION 

TYPE err1 : ARRAY ( 1. .lo) OF INTEGER. 
a l ,a2  : arrl << inputloutput-arrays>> 
cl ,c2 : INTEGER << indices for a1  /a2>> 

ENDDECLARATION 

Type declarations 
A data  type is defined by the set of its  elements,  together with 
the  operations which may  be performed on the  elements. A 
type definition has  the  form 

type-declaration := TYPE name [,namelo : type. 

type : = type-name I record I array I set I list I 
semaphore I enumeration I subrange I 
class-name parameterlist I’empty’ 

We distinguish among simple  types, structured types, and 
class  types. In  the first  (simple types),  the  elements  and  the 
operations  are predefined. In structured types, the composi- 
tion of elements is  defined by the  user,  whereas  the  opera- 
tions (i.e., selections of substructures)  are predefined with 
the  structure. In class types,  both the  construction of ele- 
ments  and  the definition of operations  are given explicitly. 

The  simple  and  structured types offered by SLAN-4  are 
well known from high-level programming  languages like 
@Ada  or  Pascal.  The use of sets,  lists, and  arrays  (mappings) 
is supported because they offer a framework for describing 
data  concepts in a mathematical  and  abstract way. This 
allows programmers  to  deal with objects by using  a  concep- 
tual view within the specification part,  rather  than by 
committing themselves early  to  an  implementation-oriented 
data  structure. 

From  the  conceptual point of view, there is no difference 
between  a general  mapping  and  an  array with an infinite 
index  type. We  therefore  did not introduce  separate key- 
words for “arrays”  and  “mappings,”  but included  several 
predefined functions on arrays.  These  standard functions are 
introduced in [5] as  operators on partial mappings. Their 
semantics  may be defined in terms of arrays by introducing 
an “undefined value,” which is used  for initalization. 

Semaphores  are introduced because  they  are a very power- 
ful  and universal  synchronization tool. The  disadvantage 
stemming  from  the universality of semaphores is that  their 
use  can  be  quite  “dangerous” for  a  program’s  control flow, 
because inadvertent deadlocks may  be  programmed. By 
using the results  described  in [6], such control-flow anoma- 
lies can be detected by the  static analysis of the  SLAN-4 
text.  In this way, one  can prove automatically a t  specification 
time  the  absence of those control flow anomalies. 

The possibility of defining new types via the class  con- 
struct improves  considerably the descriptive flexibility of 
SLAN-4.  As  far  as  declarations  are concerned,  a  class name 
denotes a type  just  as  INTEGER does. Difficulties may arise 
with  respect to referencing the  operations  and objects defined 
in a  class. There  are two possibilities: 

Let x be an  instance of a  class. An operation  (op) may 
depend on objects local to  the class, as in the  case of 
“push” on a stack; push will perform some changes on the 
local “store” of the class. It looks very natural  to qualify 
the operation  with the  name of the  data object either like 
Alphard [7] or CLU [8], namely  op(x,. . .); or in the way 
of Simula [2] or @Ada [9], x. op(. . .). 
The  operation does not  depend on any  internal  data of the 
class, as is the  case with an operation which adds two 
complex  values and  returns  the result  in  a third  parameter. 
We feel that “complex.add (xl,x2,y)” is the most natural 
notation for this  situation.  This is much  more  readable 
than  “x.add (. . .)” because “add” does not depend on the 
value of “x.” 

To  be  able  to  handle both situations  appropriately  SLAN- 
4 offers the concept of anonymous declarations: each  time  an 
operation is prefixed only with  a  class name, a new incarna- 
tion of the class is generated  and referred to. In  contrast  to 
class  operations  incarnated in  a declaration  part,  operations 
which belong to  an  anonymous  incarnation  are  therefore not 
able  to  retain information  between two calls. Thus  the  use of 
anonymous  incarnations emphasizes that  an operation does 
not  depend on internal  data of a given class (but of course  it 
may use internal objects to  store  intermediate  results).  Note 
that it is not possible to use this concept  in  connection  with 
parameterized classes. (For  an  example of a class  declara- 
tion,  see the  last section on the module construct.) 
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Table 2 Basic data types and operations associated with them. 

Operator  Operation Type of operand(s)” Result - iype Priority 

arithmetic: 
+(unary) 
-(unary) 
+ * 

I 
MOD ** 

identity 

addition 
sign inversion 

multiplication 
subtraction 
division 
modulus : a  MOD  b = a - 
exponentiation 

relational: 

<>, 1= 
< 
> 
<= 
>= 

equality 
inequality 
less than 
greater  than 
less or equal 
greater or equal 

logic: 
NOT, 1 
AND 
OR 
XOR 
=> 

negation 
conjunction 
disjunction 
exclusive or 
implication 

I1 concatenation c ,  s S 4 

‘I = integer, R = real, B = Boolean, C = character, S = string 

Table 3 Operations on enumerations. 

relational operations-equal and notequal (=, -I=, <, >); 
FIRST (’enumeration’) 
LAST (’enumeration’) 
ORD (’eename’) 
SUCC (’eename’) 
PRED (’eename’) 

: ’eename’ << enumeration-element-name >>; 
: ’eename’; 
: INTEGER << ORD(first-element) = 0 >>; 
: ’eename’; 
: ’eename’. 

Simple  types The basic data types, integer,  real,  boolean, 
character, and string, require  the  operations shown in Table 
2. Further simple types  are subranges,  enumerations,  sets, 
and semaphores. 

Subranges  may be used to  restrict  the  elements of a 
previously defined type  to those  within  a given range  (includ- 
ing the boundaries): 

subrange := RANGE constant. .constant 

Operations on subranges  are  inherited  from  the base  type. 
For example, 

TYPE index : RANGE ”5..+5. << index type for the array xyz >> 
When  the  array xyz is defined, all  operations on its indices 

562 may be applied to index. 

Enumerations  are defined by giving names  to  all  the 
elements of the  enumeration type: 

enumeration := VALUES [constant su constant^^] 

The  enumeration defines an  order for the  enumerated ele- 
ments. Operations on enumerations  are  summarized in Table 
3. For example,  the definition 

TYPE color : VALUES  red,  green,  blue, yellow. 

implies that 

FIRST(co1or) = red 
ORD( BLUE) = 2 <<since the first element  is defined as 0>> 
PRED(green) = red. 

The values of SUCC(ye1low) and  PRED(red)  are undefined 
because there  are no given elements  after “yellow” or before 
“red.” 
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Table 4 Operations on sets. 

‘set’ + ’set’ 
‘set’ * ’set’ 
‘set‘ - ’set’ 
’element’ IN ’set’ 
’set‘ < = ’set’ 
‘set‘ > = ‘set‘ 
CARD (’set’) 

: ‘set‘ 
: ‘set‘ 
: ‘set‘ 
: BOOLEAN 
: BOOLEAN 
: BOOLEAN 
: INTEGER 

<< union >> 
<< intersection >> 
<< set  difference >> 
<< set  membership >> 
<< first  set  subset of second  set >> 
<< second  set subset of first  set >> 
<< number of elements >> 

Given  a data  type  t,  SET builds the powerset of the 
elements of t :  

set : = SET [OF type] 

The  operations on sets  are  summarized in Table 4. For 
example, 

TYPE  stopchar:  SET OF CHARACTER . << word  terminators >> 
abc , xyz : stopchar. 
xyz : = (I I . ‘ ,  ’ , I ,  ’ ; I  I )  . 
abc := ( 1 1 ) .  << empty set >> 
Sets have many properties which correspond to properties of 
programming systems,  e.g., the uniqueness of the  elements of 
a  set. This is one of the reasons-together with well-defined 
constructs-that sets  can  be very useful  in  a  model-oriented 
specification approach. 

Semaphores  can be used to  control  the synchronization of 
modules: 

semaphore := SEMAPHORE 

The only operations on a semaphore  are wait and signal. For 
example, 

TYPE buffer-control : SEMAPHORE 
<< controls  buffer  access>> 

Semaphores were  included in SLAN-4 because they  are very 
powerful yet basic  synchronization data types.  If  a SLAN-4 
user wishes other  synchronization  constructs, e.g., monitors, 
he  can  construct  them using semaphores  and  semaphore 
operations. 

Structured types Structured types  use previously defined 
types for  the definition of the  base set of a new type. For 
every structured  type  there is an  operation for the decomposi- 
tion of an  element of that  structured type. Structured types 
may  be nested to  any  depth,  and comprise arrays, lists,  and 
records. 

Arrays specify  a sequence of fixed length of elements;  the 
sequence is  indexed by all  the  elements of the index  type: 

array : = ARRAY [ ( indextype [,indextype]’) 
[OF type1 

indextype := constant. .constant I type 

For example, 

TYPE table : ARRAY (1. .100,5. 50) OF INTEGER. 
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Table 5 Operations on arrays. 

DOM (’array’) : ‘set’ << DOMAIN >> 
RNG (’array’) : ’set’ << RANGE >> 
RESTRICT(’array‘,’set’) : ‘array’ 
OVERWRITE(‘array’,’array’) : ’array’ 

If tab1 is an object of type  “table,”  then tabl( l5 ,  27) is an 
element of type “integer,” whereas  tabl(37) is an  array of 
type  ARRAY(5. S O )  of “integer.” 

Operations which can  be performed on arrays  are shown in 
Table 5. These  operations  extend  arrays  to “mappings.” The 
operation DOM defines the indices of an  array, where the 
array  has been  initialized; R N G  is the  set of the values of all 
initialized array elements; RESTRICT  forgets  about  the 
initialization of all  elements whose index is not a member of a 
given set;  and  OVERWRITE(a,  b)(i) becomes equal  to  b(i) 
wherever this is initialized, and  remains  a(i) elsewhere. 

Lists specify  a  variable-length sequence of elements.  Lists 
do not  have  a defined index type,  but indexing  a list with 
positive integers is an  operation which is easy to define in 
terms of the given primitive  operations: 

list := LIST [OF type] 

Operations on lists  are given in Table 6 .  For example, 

TYPE string1 : LIST OF CHARACTERS. 

abc , xyz : string1 
xyz : = < I ’a’, ‘b,  ’c’ I > 
abc : = < I I > << empty  list >> 

Records are used to  group  together several elements of 
(possibly) distinct types to  form  one new type: 

record := RECORD 
[ - object-name : type]’ 
[CASE name : type OF 

[constant [,constant]’ : 

ENDRECORD 
[ IS record ] 

( [ - object-name : type I’ ) 1’ ] 

For example, for 563 
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Table 6 Operations on lists. 

HEAD(”’) 
TAIL(’1ist’) 
LENGTH(’1ist’) 
‘list’ II ‘list’ 
ELEMS(’1ist’) 

: element - type 
: ‘list’ 
: INTEGER 
: ‘list’ 
: ‘set‘ 

<< first  element >> 
<< all but the  first >> 
<< number of elements >> 
<< concatenation >> 
<< a set of all the  elements in the list >> 

TYPE person : RECORD 
- name : STRING 
- age : INTEGER 
CASE sex : VALUES( male,female) OF 

male : ( - beard : BOOLEAN 

female : ( - maiden-name : STRING ) 
- weight : REAL ) 

ENDRECORD 

if “p” is an object of type “person,” then  “p.name”  and 
“pmaiden-name”  are  objects of type string. The value of 
“p.maiden -name” is undefined if “p.sex” is “male.” 

Class  types A class gives an explicit  definition of both the 
elements of the  introduced  type  and of the  operations 
belonging to  this type. Class definitions may  be  parameter- 
ized; in  a type  declaration  there  must be an  actual  parameter 
for each  formal  parameter: 

class-type := class-name parameterlist 

parameterlist := [ (  act-param  [,act-paramlo)] I 
[ ( parameter-name: act-param 

[,parameter-name: act-param]’ 11 

act-param := object-name I constant I type-name I module-name 

Thus, if c is an  object of type class and x is an  object  (a 
module, inner class)  defined in this  class which appears in an 
export  clause,  then  the  (inner) object (module, . . . ) can 
either  be  denoted by “c.class-name.x” or by “c.x”. For 
example, 

TYPE bounded-stack : stack(max-depth : 100). 

0 Object declarations 
Each  data object used, together with its  attributes,  must  be 
described in an object declaration.  The  attributes  can  be 
given very loosely, or to  any  degree of detail  wanted.  The 
default scope of an  object  name is the  module  or  class in 
which it is defined. The initialization of an object  may  be 
specified within the  declaration. 

An object declaration  has  the  form 

object-declaration:=name [,name]’ : type 
[INITIAL constant]. 

For example, 

escape1,escapeZ : CHARACTER  INITIAL ’4’. 

Expressions 
Expressions describe  the  computation of values starting with 

564 given objects. The  syntax given here  does not distinguish 

between set expressions, list expressions, integer expressions, 
etc.  Where  such a  distinction  is  needed, it will be indicated in 
the  accompanying text: 

expression:= IF expression : expression 
[ I  expression : expressionlo 
[ ELSE expression ] ENDIF I 
ALL I EX var-name IN expression : expression I 
LET var-name = expression : expression I 
simple-expression I ’empty’ 

The  syntactic  form  for expressions follows the  standard 
which was set by Algol-60. The  set of predefined operators is 
only  slightly incremented.  The need for complex predicates 
in  pre- and post-conditions has led to  the  introduction of local 
declarations in combination  with a single  assignment within 
expressions (a well-known concept  in functional  languages) 
and quantified  expressions  using  a notation  similar  to  the 
mathematical “for all x elements of S holds . . . ,” or “there 
exists an x element of S such  that . . . .” The  quantifiers  ALL 
and  EX represent the  mathematical  quantifiers “for all x in 
‘set’ : . . .” and  “there exists a t  least  one x  in ’set’ such 
tha t .  . . .” The first  expression  in such a construct  must 
therefore be of type “set.” For example, 

EX X IN ( I  1. 5 1 )  : ~ * * 2  = 16 

The conditional  expression “IF expr. : . . . ENDIF” is 
given in the  same  syntax  as  the IF statement used  within the 
pseudocode (see later section  on  pseudocode). This allows the 
designer to enumerate a group of “condition-resulting 
expression” pairs easily: 

<< assume as declaration : 
input-type : VALUES numeric,identifier,string,delimiter. >> 
input - type : = IF input IN ( I  ’0’ . . ‘9’ I ) : numeric 

I input IN (I’a’ . . ’z’ I ) : identifier 
I input = ’ ” : string 
ELSE delimiter 
ENDIF. 

With  the  LET  construct, local variables  can  be defined in 
expressions. The value of the local variable is computed once 
upon entering  the expression. For example, 

LET X = f ( g   ( 5 ) ~ )  : h ( x , x * * ~ )  

Additional  syntax  rules  and  examples of expressions can 
be found  in  Appendix 2, where  the  use of selectors for  arrays 
and for  records is covered and expressions are discussed 
which relate very closely to  programming  languages, e.g., 
Boolean, integer,  and real number expressions. 
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interfaces and scope rules 
The region of a  specification (program)  where  the definition 
of a name is known is called the scope of the  name.  Names 
may only be referenced  within their scope. If  a name is used 
within  a module/class  (with  the exception of the class 
specification), it  must  be  either  declared or imported by the 
module/class.  This  informal definition is precise  because the 
default scope of a name defined in  a declaration consists of 1) 
the  complete  declaration, 2) the  accompanying  interface 
declaration of the  class/module, 3) the  interface  declarations 
of inner  classes/modules  as long as no redefinition of the 
name  makes  the  former definition inaccessible, 4)  the 
accompanying  module specification, if any,  and 5) the 
accompanying  statements.  Here,  accompanying  means “be- 
ing defined in the  same specification part at  the  same level.” 
A name  may be defined only once  within  a class/module;  it 
may be redefined within an  inner  class/module. 

The scope  rules  chosen for SLAN-4  are  similar  to  the 
scope rules of Euclid [lo]; i.e., modules and classes  define  a 
closed scope. The difference  between an open and a closed 
scope can  be defined as follows: An identifier  is  accessible in 
an open scope if it is declared in that scope or accessible in 
the enclosing scope. An identifier is accessible  in  a closed 
scope if it is declared in that scope or accessible in some 
enclosing  scope and explicitly imported via an  IMPORT 
clause. 

A closed scope has  the  advantage,  compared  to  the com- 
monly used open scope, that  it is easier for the user of t h t  
module/class  to  determine which objects  may  be used  within 
the  (module) specification, declaration,  and pseudocode 
part.  In  that way, the effects of changes of declarations  can 
be more  easily  localized. The  danger of introducing complex- 
ity through long transitive  import lists  [4] has been avoided 
by allowing the  import of a variable  from  any enclosing 
scope, instead of only the  directly enclosing  one.  A name 
which is used in n scopes must  still be  “declared” n + 1 
times: once within  a declaration  part  and n times within 
interface descriptions.  However, the overhead seems  to be 
smaller for a specification language  than for a programming 
language.  Within a  specification, one usually gives one  name 
to a  complex data  structure  instead of naming  all  the 
lowercase elements of the  representation of that  structure. 
Thus,  one  has  to  import only the single name  instead of a long 
list of names. 

The  default scope of a formal parameter is the scope of a 
name  declared in the  accompanying  declaration of the 
class/module.  For purposes of explicit  references the  formal 
parameter  name  may  be used in the  parameter list of the  call 
of the  class/module  (see below). The  default scope of a class 
or module name is the scope of a name  declared in the 
accompanying  declaration (i.e., at  the  same level) plus the 

scope of a name  declared in the  declaration  part of the class, 
Le., the module;  recursive  modules therefore  do not  have to 
import  their own names. 

If  a  class or a  module has  to  exchange values (operations) 
with another specification, the  transfer is described  in the 
interface declaration: 

interface-declaration := INTERFACE 
[parameter-declarationlo 
[import-declarationlo 
[export-declarationlo 

ENDINTERFACE 

The parameter declaration describes the  parameters  and  the 
way they  are accessed: 

parameter-declaration := parameter-name [,parameter-nameIo : 
PARAMETER qualification type. 

qualification := (READ I WRITE I READ/ WRITE I TYPE I 
OPERATION). 

Parameter passing  for objects corresponds to a  “call by 
reference” as used  in high-level programming  languages. 

There  are two possibilities for substituting  actual  parame- 
ters for formal  parameters:  The correspondence can  be 
established by an explicit reference  to  the  formal  parameter 
name,  or  it  can be established by conforming parameter 
positions as known from  programming  languages.  One  can- 
not mix the two forms. In both cases  there  has  to be an  actual 
parameter for each  formal  parameter.  Lists of actual  param- 
eters  come with parameterized classes when they  are used to 
define  objects, or with parameterized modules when they  are 
called  within the pseudocode. 

The possibility of binding actual  parameters  to  formal 
ones by giving an explicit reference  to  their  names  has been 
included  because it  can improve the  readability of a specifi- 
cation. Binding by corresponding positions has been  included 
as a possibility for situations  where  the correspondence is 
obvious, e.g., because there is only one parameter. 

Any  externally defined object  (type, class,  module)  which 
is used within  a  class or module, but defined outside  it,  must 
appear in an import declaration along  with information on 
how it  can  be accessed. For example, 

import-declaration := name  [.namelo : IMPORT qualification 
type. 

The  (original) scope of the  imported  name  must  surround  the 
import  declaration; Le., the  name  must have  been defined on 
a  higher level of the specification. Importing a name  extends 
the scope of the  name by the scope it would have if it were 
defined in the  accompanying  declaration. 

Any object  (class,  module) that should be known external- 
ly, i.e., outside  its  default scope, must  appear in an export 565 
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declaration.  This  declaration  also  indicates  the access rights 
granted: 

export-declaration : = 
name [,namelo : EXPORT [TO name [,namelo 1 qualification. 

It is possible to  include  the  name of the specification to 
which the  name is exported;  note  that  the inclusion is treated 
as  an  informal  comment in the  semantics.  Exporting a name 
from a module  extends  the scope of the  name by the scope the 
name would have if it  were defined on the next higher level of 
the specification, i.e., within the  declaration  part of the 
directly  surrounding class or module. Exporting a name  from 
a class  does  not extend  the scope but is a prerequisite  for 
referring  to  the  name using the  dot  notation  (compare with 
class types). It is  not  necessary to  export  names  to  inner 
classes or modules. 

SLAN-4 offers very few rules  for  type  compatibility;  this 
omission is obvious in the  case of parameter,  export,  and 
import declarations. On the  one  hand, we did not want  to 
impose restrictions on the user which might  be too strict for 
early system  specification. On the  other  hand,  strong  typing 
has been proven to be a property of a language which 
enforces  discipline in the  use of data  objects  to  make 
powerful “specification time” checks possible. That is why 
the user is responsible for  indicating how to  perform  type 
conversions  in  nontrivial  cases. 

The  export  clause serves  two  different  purposes. First, it 
defines which items of a class c can be used after  the 
declaration of an  object of type c. Second,  it allows the 
definition of a variable within  a  module at  a lower level, if  we 
want  to  describe a situation wherein  a variable is only 
changed by this module, but exists  not only during  its 
execution but is to  be accessed by other modules or classes as 
well. In  the second case,  the lower-level module seems to be 
the  natural owner of the  variable.  (Note  that  it  may become 
difficult in this  case  to find the original  definition of the 
variable if one  starts a t   an import  statement  at  the  same 
syntactic level.) An  imported  name,  therefore,  may  either  be 
directly defined  in the enclosing  scope or may  be indirectly 
defined by exporting it from a  module at  the  same level as  the 
import clause. We decided against offering  two  keywords  for 
distinguishing  between the two situations (e.g., “import”  to 
refer to a  corresponding export; “use” to  refer  to a declara- 
tion in the enclosing  scope)  because the design of the  module 
may find it impossible to  decide  whether  the  name should be 
“imported” or “used.” 

The class specification 
Algebraic specifications may be used to specify abstract  data 
types. Their  main  advantage is that  the specification is 

566 completely independent of any  representation of the ele- 
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ments of the specified data type. This is achieved by giving 
information only about  the  relations which hold between the 
different operations defined  on the  elements of the  data type. 
Abstract  data  types  may be described by choosing a conve- 
nient representation of the  data objects and by defining the 
operations by the effects the  operations have on the chosen 
representation.  It  then becomes very difficult to distinguish 
between the properties of the  representation  and  the proper- 
ties of the class to  be defined. This  impairs  the  free choice of 
an  implementation  appropriate  for  the ideas  behind the 
specification. The  same holds for axiomatic specifications: 
While these abstract  from  any  algorithms for computing  the 
results of operations,  they nevertheless  depend on a  represen- 
tation of the  input  and  output  states for the operations. 
Therefore,  the  algebraic method appears  to be well suited  to 
the specification of systems in a representation-independent 
way. 

On  the  other  hand, sole  use of the  algebraic method  for 
specifications  presents  several  problems. First, if the repre- 
sentation of the  data  objects is fixed (e.g., because one wants 
to specify an  operation “sort array”),  it  may  be more 
convenient to use this  representation instead of abstracting 
from it. Second,  algebraic descriptions are given in an 
applicative  language.  Thinking in terms of applicative con- 
structs is not very popular in many  programming environ- 
ments. Third, since we are  dealing with  second order (or 
predicate) logic, it is impossible,  in the  general case, to  decide 
whether a specification is consistent (Le., whether  the rela- 
tions given do  not imply that  TRUE = FALSE) or whether 
it is complete with respect to a  base  type. That is, we cannot 
decide in the  general  case  whether  an equivalent element of 
the base type exists  for each  operation. For some specifica- 
tions, it is even necessary to  introduce new operations  to be 
able  to specify the behavior of the  wanted  operations com- 
pletely  (see  for instance [ 111). 

Therefore,  SLAN-4  encourages  the combination of both 
algebraic  and  axiomatic specifications. Whereas  the axio- 
matic specifications  describe the effects of an  operation with 
regard  to  its  input  and  output  states, relations which hold 
between  operations can  be  comfortably described  using 
algebraic specifications. We  do not  suppose that  either 
method is a  complete specification on its own; each describes 
different aspects of the  target  system.  It is, therefore, possi- 
ble for  one  operation  to have  different  types in the  axiomatic 
and  algebraic specifications;  normally the types in the axio- 
matic  part  are a  refinement of the types in the  algebraic 
specification.  Every  operation  used  within  a  class specifica- 
tion therefore  must  be defined in the definition part.  Corre- 
spondence to objects  existing outside of the class specifica- 
tion is given only by name; no automatic  check on compati- 
bility can  be performed. 
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The class specification  describes the  interactions of the 
modules defined within  a  class. It consists of three  parts:  1) 
the definitions, where  the  domain  and  range of operations  are 
specified; 2)  the relations,  where equalities holding  between 
the  operations  are established; and 3) a  specification con- 
cerning sequencing constraints.  Note  that  the class specifica- 
tion is not part of the scope of names  declared in the 
surrounding environment;  every operation  name  to be used in 
specifying the  relation or sequence  must be defined in the 
definition part. Undefined  names in the relation part  are 
taken  to  be  variables which must  be used consistently  within 
every  single  relation.  Every name used in the  sequence  part 
must  have been defined earlier.  The correspondence to 
modules declared in the  surrounding environment is given 
only by the  equality of the names; operations within the class 
specification may have other  arities (e.g., domain,  range) 
than  their  counterparts in the environment. That is, the 
number  and types of parameters of a  module do not  have to 
be the  same within the class  specification and  the module 
interface description: 

class-specification := SPECIFICATION 
definition 
[relation] 
[sequence] 

ENDSPECIFICATION 

definition := DEFINITION 
[module-name : [typeref  [,typeref]’ ] => typeref.]’ 

ENDDEFINITION 

typeref. := type-name I * 
The use of “*” instead of a type  name is discussed later.  The 
relation part describes (together with the definition of 
domain  and  range)  an  abstract  algebraic model of the  data 
type  to be implemented: 

relation := RELATION 
[element = expression]‘ 

ENDRELATION, 

where the  variable in the expression is an implicitly defined 
object whose scope is only the  equation in which it appears. 
Note  that  the  syntax for the definition part allows only one 
output  type  to be specified for an  operation.  This  may seem 
to forbid the specification of operations with side effects,  but 
this is not quite  true. If the  output  type should be a type 
which consists of several  components  (e.g., ’state-of-vari- 
ables’ * ’result-of-operation’), the user himself can intro- 
duce  the pairing functions  and projections  needed; e.g., 

pair : state, integer => pair-type. 
prol : pair-type => state. 
pro2 : pair-type => integer. 
opl : . . . => pair-type. 

RELATION 
. . .  

prol  (pair(s,i)) = s 
pro2 ( pair (sj)) = i 
opl (  . . . ) = pair( . . . , . . . )  

etc. 

The “*” as a type description has been  introduced  for 
distinguishing  between data  objects  declared in the  declara- 
tion part of the  class  construct  and  imported objects of the 
same type.  A type  name in the list is  always a placeholder  for 
an explicit parameter,  whereas  the “*” refers to  the  object  to 
which the  operation belongs when it is  used.  As further 
examples, 

add : complex, complex => complex 

is an  operation with  two parameters of type “complex” 
producing  a value of type “complex”; 

add1 : complex, * => complex 

is an  operation  with  one  parameter of type “complex” and  an 
argument, which is also of type “complex” if the above 
definition appears within the specification of a  class named 
“complex.” If x is an object of type “complex,” then x is an 
implicit parameter for the  “x.add1”  operation.  Thus, 
“x.addl(y)”  adds  the value of x to  the  value of y and 
produces  a value of type “complex.”  Finally, 

add2 : complex, * => * 
is an  operation with one  parameter  and  an implicit argument 
of type “complex”; it  changes  the value of the implicit 
argument. For example,  “x.add2(y)”  sets  the  value of x to 
the result of the  addition of x and y .  

For  presenting the  relations holding between the  opera- 
tions, SLAN-4 offers an  equational notation. This is the most 
common  method  for algebraic specifications. More powerful 
methods, e.g., using  conditional equations of the  form p ,  and 
p ,  and . . . and pn  => t ,  = t,, could be used (where pi is a 
predicate),  but we doubt  whether  the  additional expressive 
power really adds  to  the  readability of SLAN-4 specifica- 
tions  (see [ 121). A possible alternative would be  the  restric- 
tion to  operations specified by recursive  definitions similar  to 
the primitive  recursive functions defined on natural  numbers 
(see  [13]).  The  advantages of such a  restriction are easier 
semantics for the composition of several  specifications and 
the possibility of executing  such specifications  for testing 
purposes  (see [14]).  Further  research is necessary  in this 
area. 

Restricted- or unrestricted-execution sequences of opera- 
tions can be specified with the  sequence  construct.  This is of 
great value in cases where operations  must  be performed in a 
specific total  ordering (i.e., sequentially) or where  operations 
can  happen in  a partial  ordering (i.e., concurrently). 
Campbell [ 151 proposes the  use of “open path expressions” 
which are  incorporated  into  Path  Pascal in order  to  describe 
the synchronization of operations defined within an  encapsu- 
lation mechanism, a restricted  abstract  data  type  construct. 
For  SLAN-4, we use Campbell’s  concept of synchronization 
specification for cfasses and  also his syntax of open path 
expressions: 567 
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sequence := SEQUENCE 
[PATH seqlist ENDPATH]‘ 

ENDSEQUENCE 

seqlist := itemlist [,itemlistlo 

itemlist := item [;itemlo 

item := [expr :I (seqlist) I I seqlist I I module-name. 

Four types of constraints  can  be specified: 1) strict 
sequencing,  denoted by the semicolon, “;”; 2) no sequencing, 
denoted by the  comma, “,”; 3) resource restriction, denoted 
by “expression :(. . .)”; and  4) “ I .  . . I ” which denotes 
resource derestriction. A path  can be composed of arbitrary 
subexpressions  consisting of all of these elements. Module 
names  may be repeated within one  path.  The specified 
synchronization constraints for each  occurrence  are evalu- 
ated  from left to  right. 

The following example provides a flavor of the underlying 
ideas. 

directory: CLASS 
<< The INTERFACE declaration goes  here >> 

SPECIFICATION 
DEFINITION 

<< of arities, domains, and ranges >> 
create : => *. 
insert : *, entry-type => *. 
delete : *, entry-type => *. 
is-elem : *, entry-type => BOOLEAN. 

ENDDEFINITION 
RELATION << Essentially a set is defined >> 

ispelem( create.entry) = FALSE. 
is-elem  (insert(  drc,entry),entryl) = 

IF entry = entry1 : TRUE 

ENDIF. 
ELSE is_elem( drc,entryl) 

delete(  create,entry) = create. 
<< delete is allowed on empty directories >> 
delete( insert(drc.entry),entryl) = 

IF entry = entry1 : 
delete(  drc,entryl) 

insert( delete(  drc,entryl),entry) 
ELSE 

ENDIF. 
ENDRELATION 
SEQUENCE 

PATH create; I insert,delete,is-elem I 
ENDPATH 

ENDSEQUENCE 
ENDSPECIFICATION 

ENDCLASS directory 

In the definition construct,  the  insert  function is shown to 
operate on “directory x entry- type” as  domain  and “direc- 
tory” as  range.  Correspondingly,  the  relation  part shows the 
operation  “insert” with  two parameters,  where  the second 
axiom means  that  an  insert function applied  to a directory 
with an  entry will result in bringing that  entry  into  the 
directory.  The  sequence specification  shows that first of all a 
“create”  operation  must  take place, followed by an  arbitrary 

568 number of “insert,” “delete,” and “list” operations, which 
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may  happen  to  occur  concurrently in an  unrestricted  manner. 
The specification of the possible concurrent activation of 
these operations  indicates  that synchronization must be 
provided in the final implementation  to  ensure  the  integrity 
of a directory  created by an  instantiation of this class. 

The module specification 
In  addition  to  the concept of pre- and post-conditions, 
SLAN-4 offers a framework  for  an implicit specification at  a 
functional level. This specification  was developed along the 
lines  described in [ 51 and [ 161 and  the basic  Vienna develop- 
ment method (VDM). High-level data types such  as sets, 
lists,  mappings, etc.  are also part of SLAN-4.  In  addition, 
SLAN-4 provides a more programming-style syntax  (Pascal- 
like),  together with an explicit strict  data  interface control. 
In [SI it is shown how the basic VDM  constructs  can  be used 
to formally  express the  semantics of highly  complicated 
software systems. The expression of operational  constraints 
via a pre-condition on the  variable  state  domain is proposed. 
A  post-condition relates  the  initial  and final variable  states 
of an operation: 

module-specification := SPECIFICATION 
PRE-module-name: expression 
[INTERMEDIATE expressionlo 
POST-module-name: expression 
[EXCEPTIONS: expression] 

ENDSPECIFICATION 

The user is responsible  for  checking that  the supplied  pre- 
and post-conditions of a  module are  compatible with the 
requirements of the module as given in a  preceding  class 
specification. The pre-condition  corresponds exactly  to [5], 
whereas  the post-conditions are split into  three  parts:  The 
post-condition expresses the non-exceptional semantics;  the 
intermediate allows the designer to  state explicitly interme- 
diate  states of a  module (e.g., in order  to be able  to express  a 
certain  sequence of the  internal behavior of a  module which 
might be useful if one  wants  to provide synchronization 
points of a module);  and  the  exceptions  denote exceptional 
cases  explicitly. 

In the previous section, the  class  directory was specified 
using the  algebraic specification method. Now the  appropri- 
ate pre- and post-specification is given for the operation 
“insert.”  Again,  it is assumed here  that  an object directo- 
ry-entry is declared elsewhere  before creating  an  instance 
of the class directory with these elements.  The  pre-/post- 
specification  seems to be well suited  as a  refinement of the 
class specification. The  semantic binding  is  performed by the 
object  names common to both  pre- and post-specifications or 
by the refinement of common  objects in both.  It should be 
noted  in the  example  that follows that  the value of an object 
in the final state is distinguished from  the  initial value by a 
prime (e.g.,  old-directory’). 
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insert: MODULE << inserts an entry into a directory >> 
INTERFACE 

entry-type: PARAMETER (TYPE). 
new-entry: PARAMETER (READ) entry-type. 
old-directory: IMPORT (WRITE) directory 

number-dir-entries:  PARAMETER (WRITE) INTEGER. 
total-dir-entries: IMPORT (READ) 

return-code: IMPORT (WRITE) 

<< imported from class directory >> 

<< max. size >> 

<< indicates result of insert >> 
ENDINTERFACE 
SPECIFICATION 

PRE-insert: TRUE 
POST-insert: 

number-dir-entries < total-dir-entries => 
number-dir-entries’ = number-dir-entries+ 1 

old-directory’ = old-directory + (I new-entry I) 

return-code’ = “SUCCESSFULLY-DONE” 

number-dir-entries = total-dir-entries => 
return-code’ = ”DIRECTORY -FULL” 

old-directory‘ = old-directory 

AND 

AND 

EXCEPTIONS: 

AND 

ENDSPECIFICATION 
ENDMODULE insert 

Pseudocode 
Besides offering language  constructs for high-level specifica- 
tion methods, SLAN-4 allows the user to express  his low- 
level design in a notation similar to high-level imperative 
programming  languages.  This  sublanguage of SLAN-4 is 
called pseudocode, and  contains  control  structures for 
sequential  and  concurrent processing besides assignment  and 
procedure calls. The pseudocode part  has been designed to 
offer a  way of presenting  algorithms independently of the 
language in which the final program is to be written. 

For the description of a module decomposition into  smaller 
parts  as well as for the description of actions  taking place at  
the  instantiation of a  class, SLAN-4 offers a notation which 
is similar  to a  conventional programming  language. All 
statements  are placed  in the “body” of a  class or a module: 

stmts := BODY 
[statement]’ 

ENDBODY 

Statements  represent  the  actions  to  be  performed.  The 
syntax  rule for the  general  form of a statement specifies that 
it  may be preceded by one  or  more labels and  that  it is always 
ended by a  period. For the control of sequence,  selection, and 
iteration,  SLAN-4 includes concepts which are well-known 
from high-level programming  languages. Besides the  control 
of serial  actions,  SLAN-4 offers language  elements for 
concurrent processing, e.g., the  EXECUTE  CONCUR- 
RENTLY,  DO  CONCURRENTLY  statements  and  the 
WAIT  and  SIGNAL  operations on semaphores: 

statement := [label:]o [unlabeled-statement]. 
unlabeled-statement := assign I do I if I loop I for-loop I 

execute I assert I return I goto 

Labels  must be unique within the body of a module  or a 
class. The  empty  statement (i.e., [label:]’.) has no effect on 
the values of variables;  it may  be used in any  case where a 
formal  statement is required but  the user wants  to  remain 
informal. 

ASSIGN 
The assign statement  changes  the value of an object: 

assign : = name : = expression 

For  example, 

newvalue : = 17-4. 

The assign statement does not use the  equality sign  for 
denoting  an  action;  instead,  it uses the composite sign. This is 
well-known from Algol-60, Pascal,  and  @Ada. By  now it 
should  not be necessary to  justify  this distinction. We  did not 
want  to offer a multiple  or a parallel  assignment because of 
the difficulties concerning the  understanding of the  seman- 
tics of multiple  (parallel)  assignments in  connection with 
arrays. 

DO 
The do statement combines statements which  have to  be 
processed serially or, by specifying the keyword CONCUR- 
RENTLY, in parallel.  In  the  latter case, the  ENDDO 
statement  acts like  a WAIT  statement  for  the  termination of 
the execution of all  the  statements inside this do statement. 

do := DO [CONCURl?ENTLY] 

ENDDO 
[statement] 

For  example, 

DO CONCURRENTLY 
EXECUTE read-  bufferl. 
EXECUTE read- buffer2. 

ENDDO. 

The do statement  has been introduced  primarily for the 
description of concurrent execution of several statements.  It 
can also be used as a  “begin-end” bracket  for a group of 
statements; however, most statement  constructors  accept 
groups of statements  without  brackets.  That is, the DO/ 
ENDDO  can  almost  always be omitted without changing  the 
semantics of a  design. 

IF 
The  ifconstruct offered by SLAN-4 combines the  functions 
of the  usual I F  and  CASE  statements known from  other 
languages: 

if := IF expression : [statement]‘ 
[ I expression : [statement]’ 1 

ENDIF 
[ELSE [statement]’ 1 

The conditions are tested  serially from  top  to bottom. As soon 
as a true condition is found,  the associated statement is 569 
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executed and  the IF statement is  left.  If no condition is true 
the  ELSE  branch will be  taken if present. The  ifstatement is 
equivalent  to  the  empty  statement if no ELSE  branch is 
given and no condition  is true.  For  example, 

I F x < a ( m ) : h : = m .  
lx  > a(m): 1 := m. 

ELSE h := m. 
1 := m. 

ENDIF. 

LOOP 
The loop statement provides a  unifying  concept  for  “while” 
and  “repeat” loops and avoids redundant  tests or duplicate 
code  in situations  where  the decision to leave the loop is taken 
in the  middle of the loop. We  did not introduce a more 
sophisticated  approach (e.g., using  multiple  exits  as  in  the 
proposal of Knuth [ 171) because we felt  that  the overhead for 
writing down “common loops” would become too big. 
“While”  and  “repeat” loops can be written by placing the 
exit test at   the beginning or at  the  end of the loop: 

loop := LOOP 
[statement]’ 

EXlTlF expression. 
[statement]” 

ENDLOOP 

For example, 

LOOP 

EXlTlF input = ’quit’. 

ENDLOOP. 

<< ask for next input >> 

<< process input >> 

FOR 
Loops with an  iteration  counter, which takes values from a 
finite set, are  represented by thefor  construct: 

for-loop := FOR name IN [REVERSE] 
<<set>>expression DO [statement]’ 

ENDFOR 

If REVERSE is not specified, values are selected in increas- 
ing order;  otherwise  they  are selected  in decreasing  order. 
The  variable  “name” is implicitly defined with  a  scope 
comprising  only the for-loop: 

FOR i IN ( I  l . . l O l )  DO 
a(i):= 0. 

ENDFOR. 

Thefor  statement is more  general  than  the  usual  form;  the 
set of values of the  control  variable  can  be a discrete  range or 
an  arbitrary  set. If the  elements of the  set  are  not  ordered,  the 
keyword REVERSE should  not be used. Note  that  the 
control  variable is implicitly  defined and is local to  the loop. 

EXECUTE 
The  execute  statement  starts  the  sequential or concurrent 
execution of a  module.  If  a module  represents a function 
procedure (i.e., returns a value),  it  may  be called by using its 
name in an expression: 570 
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execute : = 
EXECUTE [CONCURRENTLY] module-name parameterlist 

For a  discussion of parameters  see  the section on interfaces 
and scope  rules.  For example, 

EXECUTE insert (old-directory: macro-directory, 
new- entry: request - storage). 

9 ASSERT 
The  assert  statement describes the conditions which have to 
be met  at a certain point  in the  program flow. If the  test fails, 
an  error message is generated: 

assert : = ASSERT expression. 

For example, 

ASSERT 1E-20 < eps. 

9 RETURN 
The  return  statement  terminates execution of a  module and 
transfers  control  back  to  the caller: 

return : = RETURN expression. 

9 GOTO 
The  goto  statement  transfers control to the point specified by 
the label. The label must  appear within the  same body of a 
module or a class as the  goto  statement: 

goto := GOTO label 

One  cannot  jump  into a FOR-loop  from  the outside. 

Conclusion 
SLAN-4 offers a framework for data  abstraction  and  formal 
specification techniques such  as 

algebraic  and  axiomatic specification methods suited  for  a 
conceptual design; 
predefined  data types and pseudocode  for the stepwise 
refinement process of both data  and control structures. 

The connection  between  both  design steps is given by the 
interface  and  data  declaration  parts of the  syntactic  struc- 
ture of modules and classes. 

The  algebraic  and  axiomatic specification methods  are 
used for different aspects of a system.  While  the  algebraic 
approach  documents  the relations that exist  between the 
components of a system,  the  axiomatic method  describes the 
behavior of individual  components. 

SLAN-4 was used in several IBM locations to specify and 
design more  then five software systems adding  up  to more 
than 100 000 lines of code. The experience  using SLAN-4  as 
the specification and design language  can  be  summarized  as 
follows: 
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Table 7 SLAN-4 words with fixed meanings. 

ALL AND ARRAY ASSERT 
BODY CASE CLASS CONCURRENTLY 
DECLARATION DEFINITION DO ELSE 
ENDBODY ENDCLASS ENDDECLARATION ENDDEFINITION 
ENDDO ENDFOR ENDIF ENDINTERFACE 
ENDLOOP ENDMODULE ENDPATH ENDRECORD 
ENDRELATION ENDSEQUENCE  ENDSPECIFICATION EX 
EXCEPTIONS EXECUTE EXITIF EXPORT 
FOR GOT0  IF IMPORT 
IN  INITIAL  INTERFACE  INTERMEDIATE 
IS LET LIST LOOP 
MOD MODULE NOT OF 
OPERATION OR PARAMETER PATH 
POST PRE  RANGE READ 
RECORD RELATION  RESULT RETURN 
REVERSE SEMAPHORE  SEQUENCE  SET 
SPECIFICATION  TO  TYPE VALUES 
WRITE XOR 

1. The rigorous  use of SLAN-4  requires a  thorough reflec- 
tion of the designer’s  intentions  leading to a  concise 
documentation of it. 

2. The precision introduced by pre- and post-conditions and 
interface descriptions  eases  inspections and  maintenance. 

3.  The design contains fewer errors  and  the  documentation 
avoids ambiguities. 

SLAN-4 serves as a good basis  for an  integrated  auto- 
matic  software development  environment that  supports  the 
programmer in writing, validating,  and verifying specifica- 
tions and  documents for large  software systems. 
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Appendix 1: Lexical guidelines 
In  addition  to  the  rules given in Backus-Naur  form,  the 
following guidelines must  be observed in SLAN-4: 

1. Every  nonblank character which is not  a letter, a digit, 

2. The  two-character  combinations ( I ,  I ) ,  <I, I > ,  **, I I, l=, 
<>, <=, h, =>, :=, .., <<, and >>, are called 
compound symbols. Compound symbols are also  delimit- 
ers. 

‘ ‘ I ” ,  or “-” is a delimiter. 

3. A comment is started by “<<” and delimited by “>>”. 
4. Blanks and  comments  may  appear everywhere  within  a 

specification, but not within names, compound  symbols, 
numbers, or character  strings  delimited by ‘“” or “”” 
without changing  the  semantics of the specification. 

Table 8 SLAN-4 words with meanings which are predefined but 
which may be redefined by the user. 

BOOLEAN CARD CHARACTER DOM 
ELEMS FALSE FIRST HEAD 
INTEGER LAST LENGTH ORD 
OVERWRITE PRED REAL RESTRICT 
RNG STRING  SUCC TAIL 
TRUE 

5.  Identifiers (including reserved  words) must  be delimited 
with a blank, a comment,  or  another delimiter. 

6. Identifiers and  strings  delimited with ‘“” must be further 
delimited by a blank (since  identifiers  could  end  with  a 
‘“”). 

7. The  end of a line is only significant in combination with a 
period; in all  other  situations  it is logically equivalent to a 
blank. 

The  length of a syntactic  name is not restricted.  The 
underscore  character “-” can  be used to  generate meaning- 
ful names. Within  the definition part of a  class  specification, 
the  asterisk  can  be used as a  placeholder  for  a name.  Within 
pre- and post-conditions, names  may have the suffix ‘“”. 

Table 7 lists words that have  a fixed meaning in SLAN-4 
(Le., they  may only be used in the  contexts  indicated in the 
syntax).  Words  that have predefined meanings  but which 
may  be redefined by the user are listed in Table 8. 

The chosen syntactic  notation is in some  cases  ambiguous. 
For example, one  cannot distinguish  between “A or (B 
followed by C)”  and  “(A or B) followed by C.” Normally  the 57 1 
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intended  meaning  can  be  grasped  from  the  context;  the 
syntax  diagrams presented in Appendix 3 serve  as  an  unam- 
biguous  reference. 

The  requirement  that  it should be possible to  include 
SLAN-4 specification as a comment within the code (i.e., 
programs  written in high-level or assembler  language)  has  as 
consequences  two syntactic peculiarities. First,  the  syntactic 
form of comments in SLAN-4  must  be  compatible with 
comments in the code language.  For  example, a SLAN-4 
comment  must not be used to  terminate a comment  in  the 
code language. Because of this,  delimiters were  chosen that 
had not  been  used  elsewhere. Second, we had  to  exclude  the 
use of the semicolon for a statement or declaration  termina- 
tor, because  compilers  for high-level languages often produce 
a warning when they find a  semicolon  within comments, 
assuming  that  an  end-comment is missing. The only other 
character which seems  to  be  acceptable  as a terminator is 
“.”, the  dot or period. 

Appendix 2: Expressions 
A  series of examples of various types of expressions follow. 

I. simple-expression := term [AND I OR I XOR I => term]’ 

AND, ..., and => are Boolean operators  and  therefore 
expect Boolean factors.  For example, 

p < = y A N D y < z  
input-empty => error-message-generated 

2. term := simple-term [INI = I T =  I <> I <I 
<= I> I >= simple-term ] 

I N  is the  test  for  set  membership;  the possible operands for 
the  relational  operators <, <= ... are  the  basic  data types 
(except  BOOLEAN)  and  enumerations.  The  equality  opera- 
tors  may  be  applied  to  all expressions. For example, 

char IN (I ‘a’ .. ’2’ I ) 
x * y + 1 = 1 2  

3. simple-term := factor [+ I - I I I factor]’ 

Here, “+” and “-” are defined on INTEGER  and  REAL 
operands; I I denotes  the  concatenation of strings.  For  exam- 
ple, 
’fish’l I ’ and chips‘ << yields ’fish and chips‘ >> 
4. factor := simple-factor [* I/I MOD simple-factor]’ 

Here, “*” and “/” are defined on INTEGER  and  REAL 
operands; MOD takes  two  INTEGER  operands  and  returns 
the  remainder. For example, 

i /  ( 1  - i )  

5. simple-factor := component [** component ] 

Here, ** denotes  exponentiation  and  accepts two operands of 
type  INTEGER or REAL. For example, 

sin(x) ** 1.5. 

572 6. component : = [ + I - I NOT I 1 ] element 

The  unary  operators + and - are defined on INTEGER  and 
REAL;  NOT or 1 denotes  the  complement on BOOLEAN 
values; e.g., 

NOT ( a**b = c ). 

7. element := ’empty’l constant I variable I (expression) I 
module-name parameterlist I 
(I [expression I range 1, expression I range]’] I) I 
< I [expression I range [, expression I range]’] I> 

8. range := expression .. expression 

The “(I ... I)” is used to  denote  sets, while “<I ... I>” yields a 
list. For  example, 

sqrt (X+Y+Z) 
( I  1, 5, 10..19, 231) 
<I <l1,2l>, <11..31> I> << a list  of lists >> 
<I I> << the empty list >> 

9. variable := 
var-name [(expression [, expression]’) I .  objectname 1’ 

Array  variables  may  be indexed by expressions to  indicate 
the selection of a specific element.  Object  names  may be 
applied  to record names  as selectors and module names  may 
be used as selectors for class  names. 

X.FIRST(7). 

10. constant := int-const I real-const I char-const I 
string-const I constant-name 

11. int-const := [digit 1’ 

12. real-const := int-const [ .[digit]‘ ] 
[E [+ I - I int-const ] 

13. char-const := ’character‘l “character” 

14. string-const := ’ [character]’’I” [character]’“ 

The “E” in  a real  constant  (exponent)  must be followed by a 
blank, a  plus, or a minus sign: 

12.3 E 7, 

To  represent  the  character “”’ within  a string delimited by 
‘“” it  must  be  written twice: 

’THE0”S PIPE. 

Constant expressions are defined in terms of their possible 
constituents.  A constant expression is an expression in which 
names of variables or modules do not appear. In addition, 
TYPE conversions between INTEGER  and  REAL,  as well 
as between CHARACTER  and  STRING,  are performed 
implicitly where needed and  as  late  as possible. 

Appendix 3: Syntax  diagrams 

character := any representable letter 
digit:=0111213141516171819 
label := alphameric string starting with a letter 
(any-) name := string  of letters, digits, 

or ‘ _ ’  starting with a  letter. 
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import-declaration 

indextype 

> 

int-const 

A 

I 

interface-declaration 
->INTERFACE 

1 
i  tem 

> 

itemlist 

> 

IiZt 
-\L I ST 
.. 

\ 

< 
->pxzG"-, 

module-speciFication 

->SPECIFICATION->PRE- 

>lNTERHEDlATE->:- 

>POST- 

->ENDSPECIFICATION 574 
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I /I 

->RECORD 
record  

relation 

->.->ENDRELATION-> 

1 
return 

->RETURN > 
semaohore 

seqlist 

n > 

sequence 

->SEQUENCE->PATH->  ->ENDPATH->ENDSEQUENCE- 
A > 
I 

set 

L - > O F - > p J 2  

simple-expression 

-u A I I I I 

LW< " " " 

I I I 

simple-factor 

->I-] > 
L>**- >(I--; component 
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s imp le - te rm 

A I l l  > 
I “ V ”  

I ‘U - ’I 

, - , 7 -  - - 
I A 

t y p e - d e c l a r a t i o n  

>. > 

“ “ l a b e l l e d - s t a t e m e n t  

> 
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