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Modeling  of Integrated Circuit Defect  Sensitivities 

Until now only cursory descriptions of mathematical models for defect sensitivities of integrated circuit chips have  been given 
in the yield literature.  This  paper  treats the fundamentals of the defect models  that have  been used successfully at IBM for a 
period of more thanjifteen years. The effects of very small  defects are discussedjirst. The case of photolithographic defects, 
which are of the same dimensions as the integrated circuit device and  interconnection patterns, is dealt with in the remainder of 
the paper. The relationships between these models and test sites are described. Data from measurements of defect sizes are 
discussed. 

1. Introduction 
Previous papers [ 1-31 described  models used to project and 
control  manufacturing yield of large-scale integrated  cir- 
cuits. These  statistical models estimate  the  number of fail- 
ures or faults per  chip. Such  faults  are  caused if defects occur 
in those parts of the  chip where they result in failures. The 
purpose of this  paper is to  investigate  the  interaction between 
defects  and  integrated  circuit  structures or patterns. As a 
consequence of this  approach  it becomes  evident that  defect 
densities can be measured with defect monitors. 

Defect  sensitivities are  treated in two parts in this  paper. 
First we investigate very  small defects, which  often  occur in 
the  chip  insulators.  These  are known as  dielectric pinholes. 
The basic  concept of critical  areas becomes intuitively 
obvious for these defects. 

The second class of defect sensitivities  includes  defects 
that have  sizes comparable  to those of the VLSI patterns. All 
photolithographic  patterns  are in this class. The theory 
needed to  deal with these  defects  must first address  the 
defect sensitivity for each  defect size. The second part of the 
theory must  incorporate  the size distribution of defects. By 
combining the size distribution  with  the  defect sensitivities,  a 
theory  can  be developed for  photolithographic  defects  that is 
similar  to  the theory  for  very  small  defects. Again, it becomes 
possible to design defect monitors to  determine both the 
defect densities and  the  nature of the  defect size distribu- 
tion. 

The yield monitoring and yield modeling methods that 
form  the  core of this paper  make  it possible to continually 
check  the self-consistency of the yield models in an  actual 
process. Defect  densities and  defect size distributions  can be 
evaluated  against  the  actual yield performance of the prod- 
uct.  When  the  parameters  do not  perform as expected, they 
can  be  measured with defect monitors and  the model can  be 
adjusted  to be an  accurate  representation of reality. 

2. Pinhole defects 
One class of defects, known as pinholes, occurs in dielectric 
insulators  such  as  thin  and  thick silicon oxides, oxidized 
polysilicon, chemical  vapor  deposited insulators,  quartz,  etc. 
These  defects  are usually much  smaller  than a micrometer. 
Their  occurrence  can result  in  a short  circuit between 
conductors produced at  different photolithographic levels. 
The  area in which such defects  cause  failures is the overlap 
region between two conductors  that cross each  other,  as 
shown in Fig. 1. Defects that  fall  outside these  overlap areas 
cannot  cause  short circuits. We call the overlap  where 
failures  do occur the  “critical  area.”  The words “defect- 
sensitive area”  and “susceptible area” have also been used in 
the  same  context. 

Critical  areas of pinholes in most designs can be deter- 
mined  readily as  the  total overlap area between patterns a t  
different  photolithographic levels. When  the  integrated  cir- 
cuit masks are  generated with  a computer,  algorithms  are 
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Figure 1 The  critical  area for pinholes  is the  overlap  area  between 
the two conductors. 

often available  to  determine  this  area for an  entire  chip.  The 
result must be less than  the  total  chip  area.  Let 0 be  the 
fraction of chip  area A that is sensitive to pinholes. The 
critical  area Ac can  then  be expressed as 

Ac = 0A. (1) 

The  average  number of failures  or  faults  caused by the 
defects can now be calculated by 

X = A,D (2a) 

= BAD, (2b) 

where D is the density of defects per unit area.  This is the 
direct  relationship between defect densities and  the  average 
number of faults  that also was discussed in previous papers 
[ I ,  21. 

Some investigations into  the  defect  densities of dielectric 
pinholes have shown that  the  average  number of failures per 
monitor can be proportional to  the monitor length [4]. A 
typical structure  where  this  can occur is shown in the cross 
section of a  charge-coupled  device in Fig. 2. Stress effects 
between the two polysilicon patterns  create  defects along the 
edges of the overlap area. 

To model these effects one has  to  count  the  number of 
faults  that  occur along an overlap  section of length L. It is 
then possible to define 

X = LD, , (3) 

where DL is the density in defects per unit  length.  This is a 
model that differs  significantly from  the  area model,  since 
the  defect densities are in different  units. Yet, if both the 
area  and  the  length pinhole  effects take place in the  same 
chip, their combined number of faults is given by 

550 X = AcD + LD, . (4) 

This result demonstrates  an  important principle  in yield 
modeling: Faults caused by different failure mechanisms 
can be added, but defect  densities for different failure 
mechanisms cannot be added. In  this  example  the  defect 
densities have to  be modified by both the  critical  area  and  the 
critical  length  to become faults. 

It is possible a t  this point to expose  a myth  that seems to 
recur  constantly in yield models used by the semiconductor 
industry.  This  myth  assumes  that  the yield can  be modeled 
with only one  critical  area  and  one  defect density,  regardless 
of the process complexity. Even though  thus  far we have 
discussed only one defect type, namely, pinholes, we already 
see that such an  averaging process is impossible. It should be 
clear  that  the  introduction of other  defect types  should make 
this simplification even less likely. The only simplification 
possible is the use of the  cumulative  average  number of faults 
X to which all these defects  contribute. 

3. Pinhole defect monitors 
The relationship  between the  average  number of faults for 
area pinholes and  the  defect density D is a simple  proportion- 
ality.  This simplicity has a useful application. If we have  a 
process without  a linear pinhole  problem, we can  make  defect 
monitors that consist only of a large overlap area between 
two  conductors. By measuring  the  resistance between the 
conductors, we can  determine when the  monitors  are  short- 
circuited  and fail due  to pinholes. 

Let us assume  that we have made N of these  monitors  and 
we find that  Uof these are  short-circuited.  The monitor yield 
Y, is then given by 

N - U  
N 

Y,=-. 

We now want  to  estimate  the  average  number of faults 
that  cause these  failures. Unfortunately, we have no way of 
knowing how many faults  cause a monitor to fail. In most 
cases  it is only one  fault,  but  there  can be instances  in which 
two or  more  defects  cause two or more faults.  If the  defect 
density is constant in the  sample  and  the  defects occur a t  
random,  then  the  distribution of the  number of faults per 
monitor is given by a Poisson distribution [3]. For X faults 
per  monitor this  distribution  can  be  written  as 

where X ,  is the  average  number of faults per  monitor and 
x = 0, 1, 2, ... . The  probability of having  zero faults is 

P ( X  = 0 )  = e-’,. (7) 

But this  must be equal  to  the yield given in (5). It is therefore 
possible to solve for X ,  and  obtain 

C .  H. STAPPER IBM 1. RES. DEVELOP. VOL. 27 NO. 6 NOVEMBER 1983 



= -In (7). N - U  

With  the  average  number of faults known,  it is now 
possible to  determine  the  defect  density  with 

where A, is the  critical  area of the monitor. 

With  the pinhole defect  density known, it is possible to 
calculate  the pinhole-limited yield for  any  product  that is 
made  with  the  same process as  the monitors.  If the pinhole 
critical  area  for  such a product is given by A,, then  the 
pinhole yield is 

where D is the  defect  density  determined with the monitor. 
Use of Eq. ( 9 )  makes  it possible to express the  product yield 
in terms of the monitor yield: 

This is an  interesting  result, showing that we can  scale  the 
monitor yield to  the  product yield with  an exponent given by 
the  critical  area ratio. This is often  referred  to  as  “area 
scaling.”  However, we must  remember  that  it is the  ratio of 
critical  areas  that  must be used here, not the  ratio of actual 
areas of the  chip  and monitor. The  latter is only correct if the 
probability of failure 0 is the  same  for both the monitor and 
product. 

Since  the beginning of integrated  circuit  manufacturing,  it 
has been clear  that most  defects do not  have the uniformly 
random  distribution  required  for Poisson statistics [ 5 - 8 ] .  
Negative binomial statistics have  been  found to give a better 
fit to  the  data in many  cases [ 1, 3, 9,  IO]. The yield formula 
related  to  these  statistics is 

Y, = (1 + X,/cy)-a, (12) 

where cy is a cluster  parameter.  This  parameter  can be 
estimated  from monitor data  as  described in [9, I O ] .  

Solving  expression (1 2) for the  average  number of faults 
per monitor results in 

The  defect  density is therefore given by 

Since  the yield for  the  product is given by 
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I Substrate I /  
Figure 2 A conductor  structure  that  leads to length defects. 

substitution of the expression for D in (14) gives 

Y, = [ 1 + ( - I )A,/A,] -. (16) 

Yield  scaling  with  these statistics is not as convenient as it 
was with (1  1 b), but the  greater  accuracy of (16) has resulted 
in  its  use for integrated  circuit  chip  manufacturing  defect 
measurements.  Area pinhole  monitors  have been used at  the 
IBM plant a t  Essex Junction, Vermont,  since the  early 
seventies. Data  from  these  monitors  are scaled to  product 
yield with ( 16). 

The line pinholes can be monitored the  same way as  the 
area pinholes, provided only line  defects occur in the monitor. 
The  case in which both defect  types  are present  is discussed 
in the next  section. In the  case of Poisson statistics,  the line 
defect density can  be  obtained by 

= “ 
In Y, 

r ’  
“m 

where L, is the monitor length, N the  number of monitors 
tested, U the  number of failing  monitors, and Y, the monitor 
yield. 

Scaling  the monitor yield to  an equivalent product yield 
with Poisson statistics gives 

where L, is the  length of the pinhole-sensitive patterns in the 
product.  Notice  that in this  case  the scaling is done by a 
critical  length  ratio  rather  than  the  ratio of critical  areas. 

Similarly,  the product yield 

Y, = [ l  + (W - l ) L , / L , ] - a  

is the result  when  negative  binomial statistics  are used. 55 1 
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I w  It is clear from these results that solutions  exist only if 

- 
L 

- 

Figure 3 A small  defect in a long conductor of length L and  width 
w .  I f  the  defects  are  small  enough,  they will not cause  an open circuit 
when this  conductive line is tested. 

4. Defect monitors sensitive  to  two  failure 
modes 
The best strategy is to design defect monitors that fail with 
one  failure mechanism caused by one  type of defect. How- 
ever,  this situation  may not always be possible in practice. 
For example, a  pinhole  monitor might be made with  a 
process that produces  a high defect density  along the edges of 
a pattern  and a low defect density in the middle. Such a 
process can still be monitored. What we need in this  case is 
two pinhole  monitors, each with  a  different area  to  circum- 
ference ratio.  Let us designate  these  as monitor  1 and 
monitor 2, with critical  areas  and  peripheral  lengths A,,,  
A,,, L,,, and L,,. If these monitors are produced  side by side, 
they will be sensitive to  the  same  random  defect densities. 
The  average  number of faults per  monitor  should therefore 
be given by 

X,, = A,,D + L , , D L ,  (21 a) 

X,, = A,,D + Lm2D,.  (21b) 

As was done  before, the  average  number of faults per 
monitor can be determined  from  the monitor yield with (8a) 
and ( 1  3). 

I f  the yields of monitors 1 and 2 are given by Y,, and Y,,, 
then 

A,, = -In Y,, , (22a) 

X,, = -In Y,, , (22b) 

according  to Poisson statistics,  and by 

X,, = 4m - 11, (23a) 

X,, = 4m ~ 11 (23b) 

if negative  binomial statistics  are  appropriate.  These last 
expressions assume  that  the  cluster  parameter a is the  same 
for both monitors. I f  this is not the case, the problem becomes 
more  complex and falls outside  the scope of this  paper. 

The  defect densities can be determined by solving Eqs. 
(21a, b) for D and DL to give 

552 D = (Lrnz’mI - Lml‘rnJ/(Aml‘m, - Arn2Lrn1), (24a) 
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The sensitivity of the monitors is greater for  a larger differ- 
ence between the  area  and length ratios of the monitors. 

An area  and  length model,  like the model  for  pinholes,  has 
also been applied to  junction  leakage defects. Such defects 
cause semiconductor junctions  to “leak” an excessive amount 
of “leakage”  current when the  junction is reverse-biased. 
Defect  monitors capable of evaluating  the  contributions of 
leakage  current  from both area  and line defects  are used at  
IBM  to  evaluate  the dielectric integrity  and  junction  quali- 
ties of new semiconductor manufacturing processes. 

5. Photolithographic defects 
Patterns of polysilicon, metal,  dielectric  insulators,  and dif- 
fusions in silicon wafer surfaces  are used to  make  and 
interconnect  the  transistors, diodes,  resistors, and  capacitors 
in integrated  circuit chips. Minimum  pattern dimensions of a 
few micrometers  are typical  for the  integrated  circuits  manu- 
factured today. Dust  and  dirt  particles with similar  dimen- 
sions, or  larger,  are  the  major  cause of defects  in integrated 
circuit production. Such particles interfere with the photo- 
lithographic processes used to define the  patterns.  Whether a 
particle causes  a failure  depends on its  location on a chip or 
on the  photographic  mask used in the process. The size of the 
resulting  defect also determines  whether  the  chip will fail. In 
many  cases small defects  do not cause  chip  failures a t  all. 

A theory  for mathematically modeling the size  depen- 
dency of defects  was  originally developed by R. H.  Dennard 
and  P. Cook at  the  IBM  Thomas J. Watson  Research  Center, 
Yorktown Heights,  New York,  in the  late 1960s. This theory 
has subsequently been adapted by Maeder  et  al. in a yield 
model used for manufacturing  control [ I  11. Other yield 
models that  make use of this  approach have since been 
applied  for yield projection and line  control a t  a number of 
IBM  manufacturing locations [ 121. However,  until now only 
a cursory description of the  defect size model has been given 
in the  literature  [3, 131. It is the purpose of the next  sections 
to  describe  the model and derive it  from  fundamental princi- 
ples. 

6. Critical areas of very long  conductors 
The effect of defect size on integrated  circuit  patterns is best 
approached by first considering  a very long straight conduc- 
tive line. We  assume  that  this  conductor is deposited on an 
insulator  and  has a  length L which is much  greater  than its 
width w. This conductive  line has  to allow an  electric  current 
to flow from  one end  to  the  other.  The  failures in this  case  are 
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open circuits  caused by holes in the conductive material. 
These holes are  referred  to  as missing photolithographic 
patterns. 

It must be pointed out  here  that  there is a  class of open 
circuits  that is caused by minute  cracks in the conductive 
material.  This usually  occurs where  the  conductor passes 
over steps from the  edges of the  patterns  underneath.  Such 
defects  can be modeled by counting  the  number of critical 
steps in a  design. This propensity of steps  to  cause disconti- 
nuities can be measured with defect monitors. These defects 
are not  included in the  analysis which follows. 

When  photolithographic defects are very small,  there  can 
be enough  conductive material left to allow the line to 
conduct currents without  failure. Such a  condition is 
depicted in Fig. 3.  We define the  defect size as a maximum 
defect  dimension perpendicular  to  the line  edges. 

The width of the  defect in the longitudinal or horizontal 
dimension does not matter. In actual cases it is usually of the 
same  magnitude  as  the transverse  dimension. It  has  therefore 
proven convenient to model the  defects  as circles, as is done 
in the rest of this  paper.  The  diameter of each  circular  defect 
is designated with the  Greek  letter x. 

The object of our model is to find the  mathematical 
relationship between the  critical  area  and  the  defect size. We 
have already seen that for  small  enough defects  the conduc- 
tor will not fail. We now must  consider the  maximum 
amount of conductive material  that  can be left by a defect 
and have it still cause a failure. If  more than  this  amount is 
left, the  line will not fail.  When less than  this  amount 
remains,  the line will always  fail. 

The  amount of the  conductor  that  has  to be left by a defect 
in order not to  cause a failure  during final test  depends on the 
electrical current  that flows through  the line when it is tested. 
In this  paper we focus attention on models for final test or 
functional yield of chips.  Reliability failures  caused by the 
phenomenon of aluminum migration can be modeled with  a 
similar model but  are not treated in this  paper.  We  assume 
that,  during normal  operation and final test,  the  conductor 
carries enough current  to  make it "blow" when only a  width 
d of material is left. If the width is greater  than d ,  we assume 
that  the line is not affected, while any  amount of material of 
width d or less always causes a failure. 

Thus  defects of size x < ( w  - d )  leave enough  conductive 
material  to keep the  conductor  operational,  and  defects of 
size x 2 (w - d) cause  the line to fail if they  occur in the 
right location. These conditions are known as  the  failure 
criteria.  The locus of the  center of defects  that lead to  failure 
is known as  the  critical  area.  The  critical  area is therefore 
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Figure 4 Determination of the  critical  area for  minimum  defect 
size that will cause a conductor to fail. 
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Figure 5 Diagram  pertinent to calculating the critical area of a 
conductive  line with length L and width w. An open circuit  results 
when  less than an amount d of conductor is left. 

defined as the area in which the center of  a  defect  must fal l  
to  cause a  failure  or  a  fault. 

Let us first determine  the  critical  area for  a defect of size 
x = ( w  - d ) .  This  area is indicated by the  dashed lines in 
Fig. 4. If the  center of the  defect falls  above the upper dashed 
line, no failure will occur. Similarly, if the  defect is centered 
below the lower dashed line, there will be no fault. In both 
these  cases  more than a  width d of conductive material is left. 
With  the  drawing in Fig. 4 we can  determine  the  distance 
between either  edge of the  conductor  and its nearest  dashed 
line. This  distance is equal  to  the  radius of the  defect, which 
is (w - d ) / 2 .  The  space between the two dashed lines of Fig. 
4 is therefore  equal  to d ,  the  same  distance  as for the  failure 
criteria.  We  obtain  the  critical  area by multiplying the line 
length by the  distance  to  get  an  area Ld. This is an interesting 
result. For defects smaller  than size ( w  - d )  the  critical  area 
was zero. Then all of a  sudden at  defect  size ( w  - d )  we find 
a critical  area  equal  to Ld. The  critical  area is therefore 
discontinuous. This is a direct consequence of the minimum 
allowable  line  width assumption used in the derivation of this 
critical  area. 

Next we must determine  the  critical  areas for  defects that 
are  larger  than (w  ~ d ) .  This  critical  area  depends on the 
defect size. The  diagram in Fig. 5 should be helpful in the 553 
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I Defect size X 

Figure 6 Critical  area  as  a function of defect size for the conductor 
in Fig. 5 .  Failure occurs if <d width of the conductor remains. 

Figure 7 Critical  area  as  a function of defect size for two very long 
conductors spaced a  distances  apart. 

analysis of this dependency. A defect  shown in this  diagram 
is positioned in the  uppermost location where  it will cause a 
fault  during  test. If it were  located just a little  higher,  it 
would leave a strip of material  that is wider than  distance d. 
In  that  case no failure would occur  during  testing. 

We  can  also see that less than a  width d would be left if the 
center of the  defect were  located  a little lower than shown. 
The  dashed  line in Fig. 5, therefore, is the  upper  boundary  for 
the  critical  area.  It is shown  a distance h above the  edge of 
the  conductor.  From  the  diagram we can  deduce  that  the 
distance h must be equal  to  the  defect  radius  minus  the 
distance ( w  - d), so that 

X (26) 
554 

h = - - (w - d). 
2 

A similar lower boundary for the  critical  area exists below 
the  conductor.  The  situation is  completely symmetrical, so 
that we have again a distance h from  the  conductor  edge  to 
this  boundary.  The  critical  area is equal  to  the  distance 
between the two dashed lines times  the line length  L, or 
(w + 2h)L. By use of (26) we therefore  obtain 

A, = ( X  + 2d - w)L,  (27) 

which holds  for defects of size X larger  than (w - d) and is a 
function of the size of these defects. 

The best way to  describe  the  critical  area  mathematically 
is as follows: 

1" for 0 5 x < w - d,  (28a) 

(x + 2d - w ) L  for w - d 5 x < m. (28b) 4 X )  = 

This discontinuous function is  plotted in Fig. 6. 

In  the analysis of FET memory chip yields it  has proven 
useful to simplify the preceding  results. This is done by 
setting  the  minimum allowable conductor width d equal  to 

(29a) 

(29b) 

d line width w 

zero. This  critical  area is then given by 

This  function is no  longer  discontinuous an1 
corresponds to  the  minimum  defect size that will cause a 
failure.  This  assumption is used throughout  the  rest of this 
paper.  The results obtained with this  assumption  can be 
readily extended by introducing  the offset and  minimum 
defect size requirements of (28). 

It  must  be noted here  that in both the preceding cases  line 
length L was  much  larger  than  line  width w. The  case when L 
and w have comparable dimensions requires different failure 
criteria, which depend on the  circuits in which such a pattern 
is used. The  critical  area usually becomes a quadratic 
function of the  defect size. This, however,  is  beyond the scope 
of this  paper. 

The  theory  for  short  circuits is identical  to  the  one for  open 
circuits.  In  this case we  can consider two very large conduc- 
tors  separated by a long straight  gap with space s. Under  the 
condition  where the  length of the  gap L > > s we obtain  the 
critical  area 

(" 
for 0 I x 5 s, (30a) 

L(x - s) for s I x < m. (30b) N x )  = 

In  this  case  there  is  no  equivalent to the  distance d for open 
circuits, since the  defect  must  always touch the  two conduc- 
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tors  to  cause a short  circuit.  The  resulting  critical  area  as a 
function of defect size is shown in Fig. 7. 

7. Defect size distributions 
Finding the  critical  area of a conductor  as a  function of 
defect size is the first step  towards a photolithographic yield 
model. To  determine  the  average  number of failures  caused 
by these defects we must next consider the  defect size 
distribution. A number of people at  IBM have made  studies 
to  determine  this  distribution.  The result from work done by 
G. F. Guhman  at  IBM Burlington is shown in Fig. 8. These 
data were  compiled from  optical microscope  observations of 
memory  chips. Mathematical  functions were  fitted to these 
results and given the  general designation D ( x )  for  a defect 
size distribution.  This  distribution  has  the  property  that  the 
average  defect  density is given by 

It is also possible to  relate  the  defect size distribution  to a 
probability distribution function h(x)  by 

The  defect size distribution  can be combined  with the 
critical  area  as a function of defect size. To  obtain  the 
average  number of faults or failures X we must  evaluate 

The  integral in (33b) gives the expected or average value of 
the  critical  area with respect to  the  defect size distribution. 
We  can write this  as 

(34) 

It is therefore possible to  reduce  (33)  to  the simplicity of the 
pinhole defect model: 

x = AB. (35) 

It  must be remembered, however, that  this simplicity  hides 
the  defect size averaging  that  has been employed. 

D. R. Thomas of IBM Burlington used test sites to de- 
termine  whether  the  distribution given in (7) was appropriate 
for  use in the  photolithographic  defect model. His  structures 
consisted of very long narrow conductors with  different 
widths and spacings. Thousands of these  test sites  were made 
in an  experimental pilot line. The  average  number of failing 
lines  was determined for each  structure with a continuity 
test. The  average  defect density is the  same for each monitor. 
Therefore,  according  to  (35)  the  ratio between the  average 

IDefect size  (micrometers) 

with a microscope. 

number of failures of differer 

Figure 8 Defect  size  distribution  obtained  from  counting  defects 

to  the It monitors has to be equal 
ratio of the  critical  areas of those  monitors. Critical  areas for 
Thomas'  test sites  were calculated by this author using (29 ) ,  
(30),  and a mathematical  approximation for the defect  size 
distribution of Fig. 8.  The results, however, were  disappoint- 
ing. There were far more failures in the narrower conductors 
than  had been anticipated  from  the calculations.  Two rea- 
sons for this were  discovered. The counting of small defects is 
very difficult due  to  the optical limitations of the microscopes 
that were  used. This resulted in inaccurate  counts of the 
smaller defects. The  other reason for the discrepancy 
between calculation and  experiment is the difference that 
exists in the classification of defect sizes between experiment 
and  theory.  The  experimenters  determined  their defect  size 
as seen on the photolithographic patterns after etching, while 
the  theory uses defect sizes that apply to  patterns before they 
are  etched. 

During  the  late 1960s work with large photolithographic 
patterns at  the  IBM  Thomas J. Watson  Research  Center had 
indicated that  the  defect densities  decreased with increasing 
size as 1 / x 3 .  Thomas  and  Stapper decided to  test a distribu- 
tion that varied as 1 / x "  for large defects. Very small defects 
were  assumed to increase  linearly with defect size to a point 
where  the  straight line crosses the l / x "  curve. The result is 
shown in Fig. 9 .  Normalization of this distribution function 
gave them 
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)efect size X 

Figure 9 A hypothetical defect size distribution. 

The  peak of this  distribution occurs a t  defect  size xo. 
Below this size  it is assumed  that  the  photolithographic 
process cannot resolve the  defects well enough.  The value of 
xO, however, must  be  smaller  than  the  minimum  width or 
spacing of the  defect monitors. This is because the  minimum 
dimensions of the monitors  have to be well within the 
resolving capability of the  photolithographic process. Other- 
wise they  cannot be printed. As  a  result,  evaluation of 
integral (34)  with the  critical  area given in (29)  and  the 
defect  size probability distribution  function (36)  only 
involves (29b)  and  (36b).  Consequently,  the  average  number 
of faults or failures  are found to be given by 

2 Lx;- ‘E 
(n + l ) (n  - 2)w”-2. 

x =  (37) 

This expression has been compared with the  test  site  data 
of Thomas.  The results showed that n = 3 gave an excellent 
fit with the  measurements  made.  This  appeared  to hold for 
defects causing open and  short  circuits on monitors consist- 
ing of polycrystalline-silicon and  metal  conductors,  as well as 
diffusions. The observations at  the IBM Research  Center 
were therefore verified. 

The preceding experiment  has been repeated a number of 
times  at various IBM locations. N. Haddad, when working at  
IBM East Fishkill, showed a  long-term average of n = 2.85 
for missing metal  defects  causing open circuits. A value of n 
= 3.10 was obtained for extra  metal  defects  causing  short 
circuits. Subsequent  statistical  tests were also performed on 
defect monitor data  from one of the  integrated  circuit 
manufacturing lines a t  IBM Burlington by D. C.  Sullivan. 
He found the  l /x3 size distribution  to be a good hypothesis 
for defects  occurring in diffusion and  metal  patterns.  The 
hypothesis  could not be rejected statistically  as a model for 
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Using  the value (n = 3) in ( 3 6 )  gives 

h(x) = x/xi for o I x I x,,, (38a) 

h(x) = for x. 5 x I m. (38b) 

The  average  critical  area for the long conductive  line with 
critical  area  (29) becomes 

;I = LXi/2W. (39) 

Similarly, for the  case of short  circuits between two very long 
conductors we find 

z = LXi/2S. (40) 

There  are no restrictions on chip or circuit sizes  in  these 
results.  Critical  areas  can  be affected if  we limit our observa- 
tions to  the  chip or circuit  area itself. These considerations, 
however, fall outside  the scope of this  paper  and  are not 
discussed  here. 

8. Summary 
In integrated  circuit  manufacturing  large  numbers of dif- 
ferent  defects  cause yield losses. Each  defect  type  has  its own 
mechanism  to  cause a chip  failure. In this  paper  defects have 
been categorized into two  classes.  Defects for which the 
defect size is not important  are  the easiest to model and  are 
considered in the first  class,  e.g., defects  that  cause  dielectric 
pinholes and  junction  leakage.  The second  class pertains  to 
defects  that  are  comparable in size to  the  photolithographic 
patterns. In this  case  the  defect sensitivity depends on the 
defect size. We have  shown  a  simple example of how this  can 
be handled. All photolithographic  defects  fall  into  this  cate- 
gory. 

Defect  monitors tie in very well with defect sensitivity 
models. Monitor  data  are used to  measure  the  average 
number of failures and  determine  defect densities.  For 
photolithographic  defects  the monitors  have been used to 
find the  defect size distribution  and establish the  capabilities 
and limits of photolithographic technologies. 
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