On Murphy’s Yield Formula

Bernd Meister .

Some properties of yield are presented, and one lower and three upper bounds for yield are derived. Some of these bounds
represent yield formulas already known as useful approximations. Pure Poisson statistics for defect density provides the lower
bound. The upper bounds are obtained with mixtures of Poisson distributions and a formula of Price and Stapper.

introduction

A very general formula for the yield of a single processing
step in the fabrication of integrated circuits was given by
Murphy [1]. However, the complete probability distribution
function of the defect density must be known in order to
evaluate this formula, which can be used both for discrete
and for continuous defect density distributions. The yield
then becomes a function of the active area and the final yield
for the whole fabrication process is the product of the yields
of the individual steps.

It is shown in what follows that useful approximations for
the yield can be obtained even if less than the complete defect
density information is available, e.g., if only the first moment
or the first two moments of the defect density are given.
These approximations have the additional property that they
are lower or upper bounds; i.e., it is known a priori whether
they underestimate or overestimate the yield. The upper
bounds are of special interest because if an optimistic
approximation for the yield shows that it is insufficient, the
corresponding process step has to be improved so that the
defect density is suitably reduced.

The lower bound is obtained by pure Poisson statistics for
the defect density. Several authors have observed that this
use of statistics leads to a pessimistic approximation for the
yield [1-14]. One of the upper bounds is a yield formula
proposed by Price [15] and Stapper {i1]. The other two
upper bounds are obtained with mixtures of Poisson distribu-
tions {6, 12].

The main goals of this paper are 1) to show that the
approximations for yield (some of which are already well

known) are bounds in the strictest mathematical sense, and
2) to present two simple properties of yield.

Properties of yield
Murphy’s yield formula [1] states that

Y,(a) = fome“"dp(z), (1

which gives the yield as a function of the active area a. The
defect density D is a random variable with a probability
distribution function (or cumulative distribution function)
F(t) = Pr [D << t], where Pr indicates probability. We are
mainly interested in the interdependence between the yield
and the distribution of defect density. If the derivative f(¢)
= F'(t) exists, Eq. (1) can also be written as

Y@ = [ e

In the following discussion, we need a certain ordering in
the set of all defect-density distributions. This ordering has a
simple physical interpretation, since we call a defect density
F, “larger than” a defect density F, if the yield correspond-
ing to F, is smaller than the yield corresponding to F,.

First, the definition of a semi-ordering relation is given. A
relation for which we shall use the symbol (R)_ is called a
semi-ordering relation if the following conditions are ful-
filled:

1. F (R). F.

2. From F, (R)_ F,, F, (R). F,, it follows that
F (R). F,

3. From F, (R)_ F,, F, (R). F,, it follows that F| = F,.
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These are the same conditions which hold for the = relation
in the set of real numbers. But in the field of real numbers,
two numbers can always be compared with respect to =; i.e.,
for any two arbitrary numbers x and y, either x = yory = x.
A semi-ordering relation does not require the property that
all pairs of functions can be compared; i.e., two functions F*
and F** may exist such that none of the following statements
is true: F* (R)_ F**, F** (R)_ F*, F* = F** An example
of a semi-ordering relation is the = relation for distribution
functions, because two functions X(¢) and Y(¢) exist such
that for some values of ¢, X(¢) = Y(t), and for some other
values of ¢, Y(¢) = X(¢).

It can be seen from Eq. (1) that the yield is a Laplace-
Stieltjes transform of the distribution F of defect density D,
wherein the active area a can only assume real values.
Therefore we can use a known semi-ordering relation (L)_,
as defined by the Laplace-Stieltjes transform [16]. We
define F, (L)_ F,if

LT earw = [ emarm )

or YFI(a) > er(a) for all a, 0<<g<co

(As mentioned earlier, a smaller defect density means a
higher yield for all possible active areas.)

The relation (L)_ has Properties 1 to 3 of a semi-ordering
[16]. From known theorems [16] about the relation (L)_, if
the following two properties of yield, which are stated
without proof, can be derived.

® Property 1

From F(t) < F,(t),0 < t < o, it follows that F,(¢) (L)
F,(#) or equivalently Y, Fz(a) = Yr,(“)- A defect-density
distribution which is smaller for all values of # than another
distribution gives the lower yield. This property may be used
to compare different distributions.

® Property 2
If we have YFl(a) = YFz(a) for all @, 0 < a < oo, then it
follows for the expected values of the defect densities that

E(D) = [ tart)=E D) = [ wFy),

provided that these expected values are finite. (A higher
yield also means a smaller mean number of defects.)

Finally, it should be mentioned that a Laplace-Stieltjes
transform can be written as a Laplace transform, which leads
to the following expression for yield as being equivalent to
Eq. (1):

Yo(@) =a [~ e F@)di - F(0)
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[with F(0) = 0 in this case].

Bounds for yield

Here we present some bounds for yield, i.e., the minimum
and the maximum yield which can be achieved if the
defect-density distributions belong to certain classes of distri-
bution functions. Such bounds can be obtained in the follow-
ing way. A lower bound Y, (a) requires minimization of
the yield over all distributions F of a certain class K,

Yi(@) = min f0 " e AR (L), 3)

Then we have, for all F € K, Y, ,.(a) = Y (a). The
maximization of the same expression yields upper bounds
Y, (@) for the yield. A few of these extremal distributions
are known [16] and are presented in the following proposi-
tions. The proofs for Propositions 1-3 are based on the fact
that under certain conditions the integral of Eq. (1) is
maximized or minimized by distribution functions which are
step functions with two or three jumps [17—19]. The proof is
outlined in [20]. The proof for Proposition 4 makes use of a
bound for distribution functions of the type NBUE (new
better than used in expectation), which is given in [21, p.
188]. We use the following notation for the degenerate
distribution:

[o
6,(t) =

fort < m,

1 fort > m. 4

® Proposition [
Let K| be the set of all distribution functions F with expected
value m,

m= [ 1dF(t) = E[D].

Then, 6,, minimizes the yield in class K,. This gives a lower
bound for yield with a given expected value of defect density

Y, (@) =e " or

Yo(a) = e forallF € K,. (5)

Several authors have observed that the yield given by Eq. (5)
is too pessimistic [1-14]. It even represents a minimum yield
which is achieved with constant defect density. That means
that clustering of defects increases the yield if the mean
remains fixed. This result is hardly surprising to a specialist
in the yield field; but this author has never seen a rigorous
proof of it in the yield literature. The upper bound equals 1
for functions in K,. Therefore subclasses of K, have to be
investigated to get nontrivial upper bounds. The minimum
yield for the classes to be considered in what follows is again
given by (5); i.e., we obtain nontrivial maxima, but no other
minima.
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® Proposition 2

Let K, C K, (given E [D] = m) be the set of all distribution
functions which are 0 or 1 outside a finite interval (a, 8),
Fl@)=0,FB+0)=1,0<a<f <.

Then the yield is maximized by the following defect-
density distribution F,, ax;

FMAX.=‘;iZ'0a+';_':‘0ﬁ. 6)

The corresponding maximum yield is

B_me—au m— «a —af

5 a +B-ae 7)

orYy(a) <Y, (a)forallaandall F € K,

YMAXI(a) =

For m = 8, the lower and the upper bounds coincide, since
6, is then the only element of K.

This bound is very good if the number of defects is small,
since g is then not much bigger than m. The bound permits
the following interpretation: The defect density which maxi-
mizes yield only assumes its minimum value « and its
maximum value 8 with the proper probabilities. This repre-
sents a form of maximum clustering.

Other authors get approximate yield formulas of this type
by mixing Poisson distributions [6, 12]. In [6], for example,
it was even suggested that approximately 10° Poisson distri-
butions be combined to obtain a better yield formula, i.e., to
use in Eq. (1) a defect density distribution of the form

N
FQ\) = Z a0, ),
i=1

with N = 10’ and \,, a, properly chosen.

& Proposition 3

Let K, be the subset of K, containing all distribution func-
tions having a given variance o”. Then the following defect-
density distribution maximizes yield:

FMAXZ = p00 + (1 — p)o(m+”z/m), (8)
2
. o
withp = — 5 -
g +m

The corresponding maximum yield is

Yy (@) =p + (1 — p)e ™o/™ ©)

orY (a) =Y, y(a)forallF € K,

The interpretation is similar to that for F,,,, . The defect
density again assumes only its extreme values O and

2 . . .
m + o°/m to achieve maximum clustering.

IBM J. RES. DEVELOP. ¢ VOL. 27 ¢ NO. 6 s NOVEMBER 1983

Yield (1)

Area

Figure 1 Bounds for yield as a function of area with normal
variance. Here ¥, comes closest to Y.

The last upper bound requires some knowledge of reliabil-
ity theory [16). Let F(¢) be a distribution function, and
define

F(t+71)— F(1)

for F(7) # 1,
F(1) = 1 — F(7)
6,(1) for F(r) = 1.
Then F is of type NBUE if
- - - 1
fo tdF (1) < fo tdF(t) = m. (10)

In terms of reliability, F is the distribution of the duration of
life until failure of a new unit, and £, is the distribution of the
residual life of a unit of age r. Equation (10) just means that
the expected time to failure is greater for a new unit than for
a unit already in use for a time 7.

The condition (10) is fulfilled for distributions where
log (1 — F(2)) is concave. Examples are gamma and Wei-
bull distributions with & = 1. Now we can formulate the next
proposition.

& Proposition 4

Let K, be the subset of all distributions in K, of type NBUE.
Then the yield is maximized by the defect-density distribu-
tion

Frup)=1-¢"m

The maximum yield is

1
F t) = ) 1
wan (1) 1 + am (1n
and
Y, < s
#(@) 1 +am
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Yield (V)

Area

Figure 2 Bounds for yield as a function of area with small
variance. Notice that now Y, comes closest to ¥y,.

for all F € K,. This formula was derived in [15] but not
recognized as an upper bound. It also represents the special
case o = 1 for a formula proposed by Stapper [10-12]. For
o > 1, Eq. (11) always gives upper bounds for Stapper’s
yield because his defect-density distribution is a gamma
distribution, and in this case is of type NBUE. This is no
longer true for & << 1, where Stapper’s formula may give a
higher yield than Y, ,, , as examples show.

Numerical examples

Two numerical examples follow. In Fig. 1, the lower bound
and the three upper bounds are given as functions of the
active area (linear scale) for the parameter values E [D]
=m=2,Var [D] = o =4,a=0,and8 = 8.

The variance is reduced in Fig. 2: Var [D] = 1, a = 0,
and 8 = 4. This leads to much narrower bounds. It is
interesting to note that in Fig. 1, Yy 4x, s nearestto ¥, but

in Fig. 2, Y, comes closest to Y. This is due to the fact

that Y, . approximated the yield better whenever the
variance of the defect density is smaller. Therefore it is useful
to have several upper bounds to choose from. Depending on
the special case of interest, the “best” bound can be chosen.
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