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On Murphy's Yield Formula 

Some  properties  of  yield are presented, and one lower and three upper bounds for  yield are derived.  Some  of these  bounds 
represent yield  formulas  already known as useful approximalions. Pure  Poisson statistics  for defect density  provides the lower 
bound. The upper  bounds are  obtained  with  mixtures  of  Poisson  distributions and a formula  of Price and Stapper. 

Introduction 
A very general  formula for the yield of a  single processing 
step in the  fabrication of integrated  circuits was given by 
Murphy  [I]. However, the  complete  probability  distribution 
function of the  defect density must  be known in order  to 
evaluate  this  formula, which can be used both  for discrete 
and for continuous  defect density distributions.  The yield 
then  becomes  a  function of the active area  and  the final yield 
for the whole fabrication process is the  product of the yields 
of the individual  steps. 

It is shown in what follows that useful approximations for 
the yield can be obtained even if less than  the  complete defect 
density information is available, e.g., if only the first moment 
or the first  two moments of the  defect  density  are given. 
These  approximations have the  additional property that they 
are lower or upper bounds; i.e., it is known a priori whether 
they  underestimate or overestimate  the yield. The  upper 
bounds are of special interest because if an  optimistic 
approximation for the yield shows that  it is insufficient, the 
corresponding  process step  has  to be improved so that  the 
defect  density is suitably  reduced. 

The lower bound is obtained by pure Poisson statistics for 
the  defect density. Several  authors have observed that  this 
use of statistics leads to a  pessimistic approximation for the 
yield [ 1 - 141. One of the upper  bounds is a yield formula 
proposed by Price [ 151 and  Stapper [ 1 1 1. The  other two 
upper  bounds are  obtained with mixtures of Poisson distribu- 
tions [6,  121. 

The  main goals of this  paper  are 1) to show that  the 
approximations  for yield (some of which are  already well 

known) are bounds in the  strictest  mathematical sense, and 
2)  to present  two  simple properties of yield. 

Properties of yield 
Murphy's yield formula [ 11 states  that 

Y,(a)  = lm e""dF(t), (1) 

which gives the yield as a function of the active area a.  The 
defect  density D is a random  variable with  a  probability 
distribution function (or cumulative  distribution  function) 
F(?)  = Pr [D < t J ,  where Pr indicates probability. We  are 
mainly interested in the  interdependence between the yield 
and  the  distribution of defect density. If the derivative f ( t )  
= F'( t )  exists, Eq. (1) can also be written  as 

Y J a )  = le e-"'f(t)dt .  

In the following discussion, we need a certain  ordering in 
the set of all defect-density  distributions.  This  ordering  has a 
simple  physical interpretation, since w e  call  a defect density 
F, "larger than" a  defect density F, if the yield correspond- 
ing to F, is smaller  than  the yield corresponding to F,. 

First, the definition of a  semi-ordering  relation is given. A 
relation  for which we shall  use the symbol ( R ) s  is called  a 
semi-ordering  relation if the following conditions are ful- 
filled: 

1. F F. 
2. From F,  (R), F,, F ,  ( R ) ,  F,, it   follows  that 

3.  From F, ( R ) ,  F,, F2 (R), F,, it follows that F, = F,. 
F, ( R ) ,  F3. 

- 
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These  are  the  same conditions  which hold for the 1 relation 
in the  set of real  numbers.  But in the field of real numbers, 
two numbers  can  always  be  compared with  respect to 2; i.e., 
for any  two  arbitrary  numbers x and y ,  either x 2 y ory 2 x. 
A semi-ordering relation does  not require  the  property  that 
all  pairs of functions  can  be  compared; Le., two functions F* 
and F** may exist such  that none of the following statements 
is true: F* (I?)< F**, F** ( R ) ,  F*,  F* = F**. An example 
of a semi-ordering relation is the 2 relation  for distribution 
functions,  because two functions X(t)  and  Y(t) exist such 
that for some values of t, X( t )  2 Y( t ) ,  and for some  other 
values oft,  Y(t) 1 X ( t ) .  

- 

It  can be seen from Eq. (1) that  the yield is a Laplace- 
Stieltjes  transform of the  distribution F of defect  density D, 
wherein the  active  area a can only assume  real values. 
Therefore we can use  a  known semi-ordering  relation (L )5 ,  
as defined by the  Laplace-Stieltjes  transform [16]. We 
define F, ( L ) ,  F2 if 

Lm e-"'dF,(t) 1 L'e-"'dF,(t) (2) 

or Y,,(a) 2 YF2(a) for all a, 0 5 a < m. 

(As mentioned earlier, a smaller  defect  density  means a 
higher yield for  all possible active  areas.) 

The relation ( L ) ,  has  Properties 1 to 3 of a semi-ordering 
[ 161. From known theorems [ 161 about  the  relation (I,),, if 
the following two properties of yield, which are  stated 
without proof, can be derived. 

Property f 
From  F,(t) 5 F2(t), 0 5 t < m, it follows that  F,(t)   (L),  
F,( t )  or equivalently  YF2(a) 5 Y,,(a). A defect-density 
distribution which is smaller for all values oft  than  another 
distribution gives the lower yield. This  property  may be used 
to  compare different  distributions. 

Property 2 
If we have Y,,(a) 1 YF2(a) for all a, 0 5 a < rn, then  it 
follows for  the expected  values of the  defect  densities  that 

E [ D l ]  = $" tdF,(t) 2 E [D,] = 6" tdF,(t), 

provided that  these expected  values are finite. (A higher 
yield also  means a smaller  mean  number of defects.) 

Finally, it should be  mentioned  that a Laplace-Stieltjes 
transform  can  be  written  as a Laplace  transform, which leads 
to the following expression  for yield as being  equivalent to 
Eq. (1): 

546 Y,(a) = a L" e-"'F(t)dt - F(0) 

[with  F(0) = 0 in this case]. 

Bounds for yield 
Here we present some bounds for yield, Le., the  minimum 
and  the  maximum yield which can  be achieved if the 
defect-density distributions belong to certain classes of distri- 
bution functions. Such bounds can  be  obtained in the follow- 
ing way. A lower bound Y,,(a) requires minimization of 
the yield over all  distributions F of a certain class K ,  

Then we have, for all F E K ,  Y,,(a) 5 Y,(a). The 
maximization of the  same expression  yields upper  bounds 
Y,,(a) for the yield. A few of these extrema1 distributions 
are known [ 161 and  are presented in the following proposi- 
tions. The proofs for Propositions 1-3 are based on the  fact 
that  under  certain conditions the  integral of Eq. ( 1 )  is 
maximized or minimized by distribution functions which are 
step  functions with  two or three  jumps [I  7-19]. The proof is 
outlined in [20]. The proof for Proposition 4 makes  use of a 
bound for  distribution  functions of the  type  NBUE (new 
better  than used  in expectation), which  is given in [21, p. 
1881. We  use  the following notation for the  degenerate 
distribution: 

0 for t  5 rn, 

1 for  t > rn. 8,(t) = 

0 Proposition I 
Let K ,  be  the  set of all  distribution  functions F with  expected 
value m, 

rn = l" tdF(t)  = E [Dl. 

Then, ern minimizes the yield in  class K,. This gives a lower 
bound  for yield with a given expected value of defect density 

Y,,,(a) = e-'',, or 

Y,(a) L e"'rn for all F E K , .  ( 5 )  

Several authors have  observed that  the yield given by Eq. (5) 
is too  pessimistic [ 1 - 141. It even represents a minimum yield 
which is  achieved with  constant  defect density. That  means 
that  clustering of defects increases the yield if the  mean 
remains fixed. This  result is hardly  surprising  to a  specialist 
in the yield field; but  this  author  has never seen a rigorous 
proof of it in the yield literature.  The  upper bound equals 1 
for  functions in K , .  Therefore subclasses of K ,  have to  be 
investigated to  get nontrivial upper bounds. The  minimum 
yield for  the classes to be considered  in what follows is again 
given by ( 5 ) ;  Le., we obtain nontrivial maxima,  but no other 
minima. 
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0 Proposition 2 
Let K2 C K ,  (given E [Dl = m )  be the  set of all  distribution 
functions which are 0 or 1 outside a  finite  interval (a,  p), 
F ( a ) = O , F ( P + O ) = l , O I a < p < - .  

Then  the yield is maximized by the following defect- 
density distribution FMu,: 

The corresponding maximum yield is 

or Y,(a) 5 YMu,(a) for all a and  all F E K,. 

For m = @, the lower and  the  upper bounds  coincide,  since 
Om is then  the only element of K2. 

This bound is very good if the  number of defects is small, 
since p is then  not much bigger than m. The bound permits 
the following interpretation:  The  defect density which maxi- 
mizes yield only assumes its minimum value a and  its 
maximum value /3 with the proper  probabilities. This repre- 
sents a form of maximum clustering. 

Other  authors  get  approximate yield formulas of this  type 
by mixing Poisson distributions [6, 121. In [ 6 ] ,  for example, 
it was even suggested that  approximately IO5 Poisson distri- 
butions be combined to  obtain a better yield formula, i.e., to 
use in Eq. ( 1 )  a defect density distribution of the  form 

N 

F(X) = E ' y i L ,  
i= I 

with N = lo5 and X i ,  ai properly  chosen. 

Proposition 3 
Let K ,  be  the  subset of K ,  containing  all  distribution func- 
tions  having  a given variance a'. Then  the following defect- 
density distribution maximizes yield: 

2 a 

a + m  
with p = 7. 

The corresponding maximum yield is 

yMAX2(a) = p + ( 1  - p)e-a'm+"2/m) (9) 

or Y,(n) I YMAX2(a) for all F E K3. 

The  interpretation is similar to  that for FMu,. The  defect 
density  again  assumes only its  extreme values 0 and 
m + u2/m to achieve maximum  clustering. 

Figure 1 Bounds for yield as a function of area with normal 
variance.  Here YMm3 comes  closest  to 

The  last  upper bound requires  some knowledge of reliabil- 
ity theory [16]. Let F ( t )  be a distribution function, and 
define 

F( t  + T )  - F ( T )  
1 - F ( T )  

for F ( T )  # 1, 
Fr(t)  = 

Then F is of type  NBUE if 

l- tdFT(t)  5 l- t d F ( t )  = m. 

In terms of reliability, F is the  distribution of the  duration of 
life until failure of a new unit,  and F, is the  distribution of the 
residual life of a unit of age T .  Equation ( 1  0) just means that 
the expected time  to  failure is greater for a new unit  than  for 
a unit  already in use  for  a time T .  

The condition (10) is fulfilled for distributions where 
log (1 - F ( t ) )  is concave. Examples  are  gamma  and Wei- 
bull distributions with a 2 1 .  Now we can  formulate  the next 
proposition. 

Proposition 4 
Let K4 be the  subset of all  distributions in K ,  of type  NBUE. 
Then  the yield is maximized by the defect-density distribu- 
tion 

FM,(t) = I - e"im. 

The  maximum yield is 

1 
1 + a m '  Y,(n) I - 
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Area 

Figure 2 Bounds for yield as  a function of area with small 
variance. Notice  that now YMuz comes closest to YMIW 

for all F E K4. This  formula was  derived in [ 151 but not 
recognized as  an  upper bound. It also represents  the special 
case a = 1 for  a formula proposed by Stapper [ 10-121. For 
CY > 1, Eq. (1 1) always gives upper  bounds  for  Stapper’s 
yield because his defect-density distribution is a gamma 
distribution,  and in this  case is of type NBUE. This is no 
longer true for a < 1,  where Stapper’s  formula  may give a 
higher yield than YMax,, as examples show. 

Numerical examples 
Two  numerical examples follow. In Fig. 1, the lower bound 
and  the  three  upper bounds are given as  functions of the 
active  area  (linear  scale) for the  parameter values E [Dl  
= m = 2, Var [Dl = a2 = 4, a = 0, and (3 = 8. 

The  variance is reduced in Fig. 2: Var [Dl  = 1 ,  01 = 0, 
and (3 = 4. This leads to much narrower bounds. It is 
interesting  to  note  that in Fig. 1, YMAx, is nearest  to Y,,, but 
in Fig. 2, YMMz comes  closest to YMIw This is due  to  the  fact 
that YMM2 approximated  the yield better whenever the 
variance of the  defect  density is smaller.  Therefore  it is useful 
to have  several upper bounds to choose from.  Depending on 
the special case of interest,  the  “best” bound can be chosen. 
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