
G. A. Blaauw
A. J. W. Duijvestijn
R. A. M. Hartmann

Optimization of Relational Expressions Using A Logical
Analogon

An expression applying to a relational database is optimized by mapping the expression upon set expressions which, in turn,
are transformed into logical expressions. These logical expressions then are optimized, taking into account the constraints that
are inherent in relational expressions and the costs of those expressions. Subsequently a reverse transformation to relational
expressions is applied. The method is developed for the traditional relational operators and is applicable to a variety of cost
criteria. Common subexpressions as well as redundant expressions are optimized. A new relational operation “split” is
proposed that may be used eflectively in an optimized expression. Results obtained with a model for the optimization method
are presented.

1. Introduction
Since the original proposal of the relational database model
by Codd in 1970 [11, this method of organizing data has been
studied extensively and is being applied in an increasing
number of systems [2, 31. The relational database is concep-
tually general and simple. Yet this generality gives it an
initial performance disadvantage in comparison to earlier
database designs, such as the hierarchical and the network
approaches. A good part of this performance disadvantage,
however, can be eliminated by the use of optimization in the
implementation of the database. This optimization can take
place at any of several implementation levels. In this paper
we are concerned with the highest of these levels, where the
expression that is used to access the data is rewritten in a
form that is more efficient for a given model of access path
selection. This rewritten expression uses the relational opera-
tors and tables that are available to the user of the database,
as well as a few derived operators that are on the same level
but commonly not available to the user. This method of
rewriting has been studied extensively. The methods pre-
sented in the literature, however, are limited by the relational
operators that can participate in the optimization [4] and by
constraints with regard to adjacency of these operators
[S”]. Such restrictions make these methods only applicable
locally within an expression. In contrast, the method pre-

I

sented in this paper is globally applicable. All normal rela-
tional operators are taken into account without any restric-
tion concerning their adjacency.

The optimization method is based on the association of
relational operations with set operations and subsequently on
the association of set operations with logical operations. The
latter association is well known, but the association of
relational operations with set operations is documented only
for a limited operator set [4,9]; yet it is worth considering
this association for the full operator set. Thus, we show that
one operation can be expressed in terms of another, a
property that is used in the optimization process.

The proposed method is in part heuristic and uses gener-
ally applicable logical transformations. Although we illus-
trate it with respect to a certain collection of constraints
derived from a particular implementation, other conditions
could be applied. Furthermore, many methods of logical
manipulation are known, and they are readily adapted to the
requirements of relational optimization.

To obtain a common basis of understanding and notation
we start with a brief review of the theory of the relational

o Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor. 497

I IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983 G. A. BLAAUW ET AL.

database model and describe the operators that are available
for this model. Since optimization attempts to reduce the cost
of the implementation, we next describe a specific method of
implementing the database model with a row-by-row treat-
ment for which the optimization is intended. For this imple-
mentation the cost of obtaining intermediate and final results
of an expression is determined by the type of access to the
tables and the size of the tables. The optimization itself
depends upon the definition of universal relations, which are
used in mapping the relational operations upon set operations
and subsequently upon logical operations. The equivalent
logical expression can then be placed in a canonical form and
subsequently transformed into a closed cover of prime impli-
cants. To combine common subexpressions a new relation
“split” is introduced. Furthermore, the logical expressions
may be transformed to satisfy the constraints of the corre-
sponding relational operations and to minimize cost. The
factors within the resulting terms are then ordered to further
reduce cost. Finally, the logical expression is transformed
back to a realizable relational expression. The method as
presented has been embodied in an executable prototype
which is used to demonstrate the effect of optimization for
several examples.

2. Background and theory

Relations
In the relational model the data item is the two-dimensional
table called relation. The columns of the table are labeled by
names that are called attributes, and the entries in each
column are taken from a fixed set of values, called the
domain of the attribute. The Cartesian product of domains
D l , D,, ..., D, is the set of all k-tuples (u , , u,, ..., u,) such
that u , is in D l , u, is in D,, ..., u, is in D,. A relation is a
subset of the Cartesian product of the domains of its attri-
butes. In a relation all tuples are different. Each tuple is
called a row or an entry; the number of attributes is the arity
of the relation; the number of tuples in a relation r is the size
of r. If R is the set of attributes labeling the columns of a
relation r, then r is said to be the current relation of R. R is
called the relation scheme that defines the format of r, and
the set of attributes is denoted by R(r) . Sometimes we use
table for relation and column for attribute.

Functional dependency and key columns
The values of entries in a relation often satisfy functional
dependencies. By a functional dependency of Y upon X,
written X ”+ Y, we mean that Y is determined by X, where X
and Yare sets of attributes. I A tuple u taken from r with attributes X belonging to R(r)
is denoted by u [X]. Since all tuples are different, a relation
satisfies functional dependency X- Yif and only if for all u,

498 and u2 in r, u,[X] = u2[X] implies u,[Y] = u , [Y] .

I G . A. BLAAUW ET AL.

If R is a relation scheme with attributes A,, A,, ..a, A, and
X is a subset of A,, A,, . . ., A,, we say that X is a key of R if

1. X - A, A, ... A,, and
2. For no proper subset Z of X is Z - A, A, . . . A,.

There may be more than one key for a relation. Therefore,
one of the keys may be designated as primary key. In this
paper, however, we recognize just one key.

0 Relational operators
Relational operators may either be monadic or dyadic. A
monadic relational operator has one relation as argument,
and a dyadic relational operator has two such arguments. In
either case the result is again a relation. Relational operators
define a relational algebra.

Project
The project operator PR is a monadic relational operator. It
results in a new relation with attributes Y = {A,, A,, ..., A,,,}
such that Y CI R(r) . We define PR (r, Y) to be {u[Y] I u
E r}.

The project in general implies duplicate removal. The
project can be replaced by a remove column operator RC,
which eliminates columns but does not remove duplicates,
and a subsequent duplicate removal operator DR, which
removes duplicate rows.

Select
The select operator SL is a monadic operator on relation r
and uses an expression F which uses the attributes of r as
operands and results in a Boolean value. SL (r, F) is the set
of tuples u of r for which F has a true result.

The attributes used by F are generally called arithmetic
attributes. If we can write the expression as B = F,, however,
the attributes of F, are called the arithmetic attributes of F
but the single attribute B of F is a free attribute.

Union
The union of two relations r and s is denoted by r U N s. The
union is defined for relations with equal attributes. This
means R(r) = R(s) and hence R(r) = R (r U N s). The
union of relations r and s is the set of tuples that are in r or s
or both.

The result of the union should contain no duplicates. In the
implementation, however, duplicates are allowed, provided
they are subsequently removed. We exhibit these two steps
by assuming that the output of U N has duplicates and that
these are subsequently removed by a separate duplicate
removal operator DR. We further distinguish the union
operator U N from the disjoint union r D N s, for which it is
known that the operands r and s have no tuples in common.
Whereas the union U N in general creates duplicates, D N
creates no duplicates and does not require DR.

IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

Cartesian product
The Cartesian product, or quad, is a dyadic operator, written
r QD s, where r and s are relations of arity k, and k,,
respectively, and their attributes are disjoint, i.e., R(r)
n R(s) = 0. The Cartesian product of r and s is the set of
(k , x k,) tuples u, such that u[R(r)] = r a n d u[R(s)] = s.

Intersection
The intersection is a dyadic operator, written r I N s, where
R(s) C R(r) and where r I N s is the set of tuples u in r for
which u[R(s)] is ins .

Difference
The difference is a dyadic operator, written r D F s, where
R(s) C R(r) and where r DF s is the set of tuples u in r but
with u[R(s)] not in s.

Exclusion
The exclusion is a dyadic operator, writen r XC s, where
R(r) = R(s) and where r XC s is the set of tuples u in r but
not in s, or u in s but not in r.

The exclusion operator can be expressed by other opera-
tors, e.g., r XC s = (r U N s) D F (r I N s).

Join
The join, also known as natural join [7] , is a dyadic operator,
written r J N s, where R(r J N s) = R(r) U R(s) and where
r JN s is the set of tuples u with attributes R(r) U R(s) such
that there exist tuples u1 in r a n d u, in s for which u, [R(r)]
= u[R(r)] and u,[R(s)] = u[R(s)] .

We assume R(r) n R(s) # 0, to distinguish the join
from the quad. Similarly, we assume R(s) $L R(r), to
distinguish the join from the intersection.

Calculate
The calculate is a monadic operator, written C L (r, X +- F) .
Calculate uses an assignment consisting of a left-hand side
specifying an attribute X and a right-hand side consisting of
an arithmetic expression F involving attributes U; the attri-
butes Y are a subset of R(r) and are called arithmetic
attributes.

If X E R(r), then the old attribute is replaced by the new
attribute X with values specified by F and R(resu1t) = R(r) .
If X €j! R(r), then the relation scheme of the result is
extended with X and this column is filled for all tuples with
the values specified by F.

Rename
The rename operator changes names of attributes. It is
denoted by R N (r, A, - A , B, - B, ...). We only consider a
rename that introduces an attribute name that does not
already exist. A rename R N (r, B +- A) , where B is an
existing attribute, is equivalent to a calculate C L (r, B - A)
followed by a remove column that eliminates A. It is intro-
duced and treated as such in the paper.

Figure 1 Tree representation of a relational expression.

Implied project
When the requirements for R(r) and R(s) in union, intersec-
tion, difference, and exclusion are not met, implied projects
are applied that remove a minimum of attributes from r and s
such that these requirements become satisfied.

Relational expressions
Relational expressions can be viewed as a sequence of
relational assignments of the form xi + relational operation.
A sequence of assignments x , , x,, ..., x, can be reduced to
one assignment x, when we eliminate xl , x2, ..., x,-1. For
example,

with R (y) = {A, B, C } and R (z) = {B, C, D } gives R(x ,)
= {A, B, C, Dl, R(x2) = {A, B } , and R(x3) = {A, B, W } .
After elimination of x1 and x2, we obtain

x3 +- C L (PR (y J N z , {A, B }) , W - A + B) .

Reversed Polish notation
A parenthesis-free notation for the relational expression can
be obtained by introducing a conceptual stack upon which
the relational operators operate. Relations are accessed by
the operator load, written LD r. This operator conceptually
loads a table on top of the stack. A monadic operator
operates on the top of the stack; its result replaces the top of
the stack. A dyadic operator operates on the two top tables of
the stack, removes these tables from the stack, and places the
result on top of the stack.

Tree representation of relational expressions
Relational expressions can be represented by binary trees.
The nodes of such a tree correspond with the relational
operators. The root, which delivers the result, is at the top of
the tree; the leaf nodes, which load the operands, are at the
bottom of the tree. The example given above appears now as
shown in Fig. 1.

The attributes that are present in the various tables can be
represented by a binary vector whose elements are true
(represented by 1) when an attribute is present and false (0)
otherwise. When the reversed Polish expression is written 499

G. A. BLAAUW ET AL. IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

ABCDW ABCDW

CL (W t A + B) I100 1

PR (A. B) 11000

JN
LD z l l l l O \ 1 0 1 1 1 0

LD Y 11100

Figure 2 Tree representation of a relational expression showing
attributes.

from bottom to top using an indentation for the attributes, it
matches the tree structure. The example of this paragraph
then is as shown in Fig. 2.

3. Evaluation of relational expressions
To demonstrate the optimization method we consider an
actual implementation used for the evaluation of relational
expressions, even though the method is not restricted to this
implementation.

0 Row-by-row treatment
In this implementation each node of the tree representation
delivers its table row by row to the node above it when
requested to do so. The first request originates at the root of
the tree, the top node. When a row reaches the top node, a
request for the next row is issued. Searching continues until
the tree is exhausted.

A node corresponding to a monadic operator asks its lower
level for the next row. As it receives a row, it determines
whether this row fulfills the necessary criteria and, if so,
transforms the row as required and submits it to its upper
level. If the row does not fulfill the criteria, the node
repeatedly asks for the next row until either a satisfactory
row is obtained or the stream is exhausted.

A node corresponding to some dyadic operator, such as a
join, asks for a row from the left subtree and a matching row
from the right subtree. Depending on the kind of node, these
rows are tested, combined, and sent upwards. For other
dyadic nodes, such as a union, no matching occurs; rows are
requested from the left subtree until it is exhausted; then,
rows are similarly requested from the right subtree.

0 Access methods
The relations in general reside in disk storage. The cost of
accessing these relations can be expressed as the number of
accesses to disk storage, called I /&.

Index
An index on one or more attributes may be used to retrieve a
row from a table. We assume that for each stored table an

500 index upon its key is available. If an index is not available on

the desired attributes, we may decide to make one. Making
an index has a certain cost which must be taken into account
in the optimization process. The index is consulted to test for
the presence of a particular row, as for a difference, intersect,
or join. Depending upon the size of the index, this index
inspection may involve one or more I/O's. If the particular
row is not present, no further 1/0 is necessary. If it is present,
extra I /Os may be necessary to fetch the particular row, as
for the join.

Sort
Instead of using an index the participating tables may also be
sorted on common attributes. In particular, in the absence of
a suitable index upon an intermediate result, a sort-merge
operation might be an attractive alternative. The optimiza-
tion method can be used equally well to minimize the cost of
sorts instead of the cost of index building, or even to decide
which of these two methods is most advantageous. For the
sake of simplicity, however, we always consider in this paper
the use (and building) of an index rather than the equivalent
sort operations.

Sequential scan
When the rows of a table can be used in the order in which
they are stored, the table can be accessed sequentially. Such
an access usually has lower cost than accessing the rows of
the table via an index.

cost
The actual disk access time depends heavily on the available
equipment, the general access methods used, and the imple-
mentation thereof. It is beyond the scope of this paper to
treat this subject in detail. We assume here a highly simpli-
fied access-time computation and combine it through suit-
able parameters with an equally simplified processing-time
computation to derive an overall cost figure. This computa-
tion, however, is independent of the optimization method and
can easily be improved if more exact formulas for estimating
time are available and are considered worthwhile.

In the current model the direct retrieval of a row of a table
via an index to the table is considered to cost one 1/0 for each
row. This cost is incurred for each matching row of the right
operand of a join. The sequential retrieval of a table, in
contrast, is considered to yield several useful rows per 1/0
and has a correspondingly lower cost per row. Sequential
retrieval is normally used for a table that is accessed as the
left operand of a dyadic operation, or as the single operand of
a monadic operation, but also for the right operand of a quad
or union.

The inspection of the index of a table to determine the
presence or absence of a row without actually fetching that
row is even lower in cost. This cost is used for the intersection
and the difference.

G. A. BLAAUW ET AL. IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

The lowest cost is attributed to the processing time
required by a select and calculate. In the model this cost is
actually taken as zero, but as stated, it can easily be adjusted
to another value.

The cost of making an index is higher than all these costs.
As stated, we assume that this cost occurs when a table must
be accessed with a key for which no index is available. In the
given implementation duplicates are removed as an index is
made. Therefore, the cost involved in duplicate removal is
taken to be the same as that for making an index. The union
and remove column operations are assumed not to involve
any cost; the cost of the duplicate removal that is caused by
them is separately accounted for.

Size
The size of a relation is used as a parameter in reducing the
cost of an expression. We assume that this size is known for
stored tables. The relative size of intermediate results is
obtained with a stochastic model.

Stochastic model
The stochastic model postulates for each attribute a set of
occurring values of its domain. The size of this value set is
assumed to be known. From the sizes of the tables that are
input to an operation and from the size of the value set of the
common attributes, the size of the resulting table can be
obtained by computing its mathematical expectation. In
reference [101 the size calculation is considered in greater
detail.

Select
The reduction of a table as a result of a select operation
depends upon the nature of the select expression. We assume
that the reduction rate of this expression is known [1 11 and
available to the optimizer as a parameter, called FR (frac-
tion). Observe that the select expression uses only constants
and the attributes of the current table. Since the values of FR
are only used relative to each other, the absolute value of FR
need not be known exactly.

The optimization of the select expression is beyond the
scope of this paper. We note, however, that the expression of
the select operator can be broken up into Boolean factors
separated by AND operators [10, 121. These factors each
give rise to a new select operator which can be treated
independently in the optimization process. We assume that
this decomposition of selects precedes the optimization under
discussion.

4. Transformation to set operators

Problem statement
For a given relational expression the optimization process
should deliver an expression with the same net effect, but

with a minimal cost. A common strategy is to reduce the size
of intermediate tables in an equivalent relational expression
by interchanging adjacent operations. Existing systems have
used this idea by pushing select operators towards the leaves
of the expression tree [4-81. Another general approach is to
recognize common subexpressions and evaluate them only
once [13, 143.

Our method transforms the relational expression into a
suitable equivalent expression of set operations using inter-
section, union, and difference. The set expression is then
transformed into a Boolean expression consisting of AND,
OR, and NOT operations. This expression is optimized using
logical minimization methods, but taking into account the
constraints and the costs of the corresponding relational
expressions. The logical transformation removes redundancy
in the Boolean expression and copes with common subexpres-
sions.

Universal relations
Each relation can be treated as a set of tuples. The tuples of
the various relations that appear in a relational expression,
however, are generally not part of the same universe, since
their elements belong to different attributes. Therefore, the
first step of our method conceptually transforms the partici-
pating relations to relations whose tuples are members of a
common universe, called universal relations.

For a relational expression with relations r l , r2, ..., rk we
construct a universal relation ur with attributes R(rJ
U R(r,) U ... U R(rk). The universal relation thus contains
each existing attribute just once. The relation ur is filled with
all occurring values as follows. Let R(ur) consist of the
attributes A , , A,, ..., A,. For each attribute Ai of ur, we form
a relation r i with the single attribute Ai such that rrj
= PR (T I , Ai) U N P R (r2, Ai) U N ... U N P R (rk, Ai). If Ai
is not an attribute of R(r j) , then the corresponding project
does not participate in this union. The universal relation is
now defined as ur = rrl QD rr2 QD ... QD rr".

In other words, for every attribute Ai occurring in the
relational expression, we place all occurring values of attri-
bute A, of any relation r in a one-column relation rrj. The
universal relation ur is formed by the Cartesian product of all
the relations rrr

Having formed the universal relation, we replace every
relation rj by r; = rj QD PR (ur, R(ur) - R(r j)) . Thus we
project out of the universal relation ur those columns that are
not present in ri and form the Cartesian product of this table
with ri.

1BM J. F L E S . DEVELOP. \ 'OL. 27 NO. 5 SEPTEMBER I 983 G .

50 1

A. BLAAUW ET AL.

'p

'i'
PR (A, B)

LD r,(A. B , C)

LD rz(A, B , C)

Figure 3 Relational expression with a project below a join.

LD r2(A. B , C)

Figure 4 Relational expression with project moved to the top of
the tree.

t

Project
As a rule we move all project operators to the top of the tree.
There they can be combined and applied to the universal
relation, in what we call a universal project.

Columns which are removed by the project operator and
would otherwise participate in a join or intersection must be
renamed before the project can be moved to the top of the
tree. Take, for example, PR (r, A , B) with R(r) = {A, B, C] .
We rename attribute C of R(r) to C,. Thus, if C participates
in a join that follows the project, there is no conflict. After
this rename, we can move the project to the top of the tree.
This case is illustrated in Fig. 3, where tables r , and r2 have
attributes {A, B, C].

The tree of Fig. 3 can now be replaced by the tree of Fig. 4,
with the project appearing at the top. The combination R N
and LD can be treated as a new table, with attributes A, B,
C,. This prevents column C from being used as a join
column.

LD r,(A. B)

Figure 5 Relational expression with a project below a difference.

We can now verify that the following relationships hold:

r: C ur,

ri C PR (ur, R(r i)) ,

rj = PR (r:, R(r j)) ,

ri J N rj = PR ((r : I N ri) , R(r j) U R(rj)) ,

ri Q D rj = PR ((r : I N ri) , R(r i) U R(r j)) ,

ri IN rj = PR ((r : I N ri) , R(r i)) ,

ri D F rj = PR ((ri D F rl) , R(r i)) ,

ri U N rj = PR ((r: U N r;), R(r i)) .

The introduction of universal relations permits transforma-
tion of joins and quads into intersections and makes it
possible subsequently to treat intersection, difference, and
union as set operations.

Of the remaining relational operators, the select and
calculate are transformed such that they also can be treated
as set operators; the project and rename are moved to the
periphery of the expression, where they affect only the output
of the expression or its input. (Thus they need not be

502 transformed to set operators.)

In case the right operand of a difference contains a project,
we again rename the attribute that is removed by the project.
The left operand must also be extended with this attribute
such that the difference applies to universal relations. In
contrast to the intersection, however, the extension of the left
operand is not with the full domain of the removed attribute,
but with such a subset of this domain that the net effect of the
difference is not altered. This requirement is taken into
account in the subsequent minimization.

In the example of Fig. 5 , attribute A is projected away. We
rename A to A , in the right subtree and expand the left
subtree with an attribute A, with such values that the new
expression is equivalent to the original expression. The
project can now be moved above the difference.

Select
The select can be transformed into an intersection with a
so-called select table. For select S L (r, F) we obtain the
select table, rselect, by selecting out of relation r those tuples
for which F becomes true; hence rselect = S L (r, F) , and
SL (r, F) can be replaced by r IN rselect. In the examples
this substitution is assumed to be made; hence a select is
shown as a select table followed by an intersection.

Calculate
The calculate is transformed into a join with a so-called
calculate table, rcalc. As a first step we introduce project and
rename operators to avoid conflicts between the attribute
generated by the calculate and existing attributes. There are
three types of calculates illustrated by the examples in Figs.
6, 7, and 8. In each case the expression a t right is obtained
from that at left.

G . A. BLAAUW ET AL. IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

Figure 6 illustrates a calculate that changes a column
using its old value. We first rename the column B, which is to
be changed, to B, . Then we use B, in the calculate and
subsequently remove it by a project. In general, with X in
R(r) and X used by F, C L (r, X - F(X, Y)) is replaced by
PR (CL (RN (r, X , - X) , X - F(X, , Y)), R(r)) , where Y
represents all attributes that are not changed. If a calculate
produces a new value for an existing column without using
that column, the transformation is basically the same. This
case is shown in Fig. 7. With X in R(r) but not used by F,
C L (r, X - F (Y)) is replaced by PR (CL (RN (r, X , - X) ,
X - F (Y)) , R (r)) . When, however, a new attribute is
generated, no change is required (Fig. 8). With X not in
R(r), C L (r, X - F (Y)) remains unchanged.

The calculate operators now have the property that they
calculate only new columns.

We next replace a calculate C L (r, X - F(X,, Y)) by
r J N rcalc with rcalc = PR (CL (r, X - F (X , , Y)) , X , X , ,
Y) . In case X , and Yare empty, F is a constant and the join
becomes a quad. These substitutions are again assumed to
have been made in the examples shown in this paper.

The artificially introduced select and calculate tables are
called special tables. In contrast, the tables of the original
relational expression are called regular tables.

Rename
As stated earlier, the renames that are part of the original
expression are treated as calculates. But the renames that are
generated by projects and calculates are pushed down to the
leaf nodes of the tree. They are then combined with the
stored tables. These tables thus obtain new attributes and
become distinct from the same table in which this transfor-
mation is not performed. When a table is used a t several
places in a relational expression, the corresponding set
expression may have different variables a t those places
because of this renaming.

Load
A project that applies directly to the load of a regular table is
combined with that table, thus introducing a new table,
instead of moving the project to the top of the tree. When the
removed attributes are part of the key of the table, however,
the project is always moved to the top of the tree.

Construction of universal tables
The relational expression can now be rewritten in terms of
universal relations. With the relational expression written in
reversed Polish notation, the operators are processed as they
are encountered:

1. Calculate is replaced by a join with a calculate table, and

2. Project may produce a rename.
may produce a rename and a project.

t t
CL (E t B + A) PR (A , B)
LD r(A, E) CL (E t E , + A)

RN (B, t E)
LD r (A, E)

Figure 6 Transformation of a calculate that uses and changes a
column.

'p t
CL (Ct A + B) PR (A, B , C))
LD r (A, B, C) CL (C t A + B)

RN (C, t C)
LD r(A, E , C)

Figure 7 Transformation of a calculate that gives a column a new
value.

t
CL (Ct A + B)
LD r (A, B)

Figure 8 A calculate that generates a new column.

3. Rename produces new attributes and new tables.
4. Select is replaced by an intersection with a select table.
5. Joins and quads are replaced by intersections.
6 . Unions, differences, and intersections remain unchanged.

The process described above leads to an expression consist-
ing exclusively of unions, differences, and intersections,
which can be interpreted as an expression of set operations.

Preservation of information
The universal project that precedes the relational expression
is preserved as such. The relations involved in the expression
are the extended regular relations and the extended special
select and calculate tables. For the regular relations we
remember their original attributes and keys. For the special
tables we keep a record of the arithmetic and free attributes
that are required for the operation from which they were
derived. The nature of a special table, such as a select or
calculate, is also recorded, including the select or calculate
expression.

The preservation of information ensures that no informa-
tion is lost that is needed for optimization and back transfor-
mation.

Logical optimization

Transformation to logical operations
The expression of set operations is replaced by a logical
expression by substituting for the union an OR, for the
difference an AND-NOT, and for the intersection an AND. 503

G . A. BLAAUW ET AL. IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

I

t
PR IB. D) PR

t t
PR

’1 ’u

~ F - L D 3

‘PLD 2

LD 0

D F \ ~ ~ 1 I
I y LD 4

LD 0

IN-. LD 4 I
l N - ~ ~ 2 I
LD 0

‘LD 3 1

’‘LD I A

10

I
4

0

” 4

4 2

L‘3‘

‘ 1‘

Relational expression Set expression Logical expression

Figure 9 Example of the transformation of a relational expression
to a logical expression.

The logical expression operates on a set of variables asso-
ciated with the regular and special tables.

A logical expression is a logical function whose variables
can take either the value true (1) or false (0). A logical
function can be specified by tabulating the function as a
so-called truth table. Thus the relational expression of Fig. 9
yields a logical expression. By tabulating the output of this
expression for all 32 possible input values, the truth table of
Fig. 10 is obtained. The names of the input variables, derived
from the relations rk, are chosen in such a way that a binary
number can be derived from them. The suffix k corresponds
to a bit in the binary number, where suffix 0 corresponds
with the most significant bit. In Fig. 10 the binary number is
represented by 5 bits. The truth table contains all possible
5-bit input values 0 . . . 3 1.

The truth table can be condensed by giving only the rows
for which the function value is true. By giving the decimal
equivalent of the binary codes, we can write the truth table
even more compactly. Thus the truth table of Fig. 10
becomes 16 17 19 20 21 23 28 29 3 1. For example, 28,
which in binary is 11100, means ro A r, A rz A (-r3)
A (-4).

When this specification is given in a Karnaugh diagram
504 [151, as in Fig. 11, we can visually observe the binary

encoding. The Karnaugh diagram is akin to the Venn
diagram. It displays the relation between the variables and
codes, which we use in the minimization.

Observe that Figs. 10 and 11 no longer contain the
particular structure of Fig. 9, yet they are its exact logical
equivalent. Therefore, the truth table and the associated
information about its variables is a general and neutral
starting point for the minimization process.

0 Logical expression optimization
The goal of the logical expression optimization is to minimize
the cost of executing the corresponding relational expres-
sions, as defined in the section “Cost.” The optimization of
these logical expressions is akin to the minimization problem
in digital switching theory [161. We briefly mention the
major concepts of this theory. For each function specifica-
tion, we can always find a so-called canonical form which
corresponds to the OR of several terms whose factors are
separated by AND and AND-NOT. We next change the
canonical form such that the number of terms is reduced as
well as the number of factors in the terms. Subsequently, we
verify whether these terms can be realized. If not, an
inversion is applied resulting in a new set of terms. The
realizable terms are then optimized by changing the order of
the factors in the terms.

Canonical form
The minimization starts with the specification of the logical
function as a truth table, as indicated in the section “Trans-
formation to logical operations.” The rows of the truth table
that are true can be satisfied by a sequence of terms
separated by OR operators. Each term comprises all vari-
ables separated by an AND or an AND-NOT operator. This
is the canonical form, and the terms are called canonical
terms. Each variable occurs once and only once as a factor in
a canonical term.

The canonical form is represented by a series of terms such
as (0 A 1’ A 2‘ A 3’ A 4’) v (0 A 1’ A 2’ A 3’ A 4), where 1’
means NOT 1, and the variables 0, 1, 2, 3, 4 are abbrevia-
tions of r,,, rI, rz, r,, r4, respectively, and correspond to
relational tables. This example shows the first two terms,
terms 16 and 17, of the function for the truth table of Fig.
10.

Constraints
Each term of the ultimate expression must obey the con-
straints that are inherent in the corresponding relational
expression. Otherwise this expression is not realizable.

First, a factor preceded with a NOT is called a negative
factor. Such a negative factor may not appear first in a term
since we cannot manage the corresponding complement of a
relation.

G. A. BLAAUW ET AL. IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

Second, for ti AND NOT ti the attributes R(t j) should be a
subset of R(t,) . Otherwise, the corresponding difference
operator is not realizable.

Third, a factor corresponding to a special table is called a
special factor. Such a special factor must be preceded by
other factors such that the arithmetic attributes of the
special tables are a subset of the attributes provided by the
preceding tables.

Prime implicants
The number of terms and the total number of factors that
appear in all the terms can be reduced by finding the prime
implicants of the given expression, as is standard practice for
logical minimization. This reduction is based on the theorem
(x A y) v (x A y ') = x, which is based on the following

I postulates of Boolean algebra:

Distributive law: (x A y) v (x A z) = x A (y V z),

Complement law: x v x' = 1, with 1 = true,

Identity law: x A 1 = x.

Hence two terms that differ in only one factor (two adjacent
terms) can be combined into one term with one less factor.

A Boolean function f implies a function g if for every v

satisfying f (v) = true it is also the case that g(u) = true,
where u is the complete set of variables occurring inf. An
implicant of a logical function f is a term that impliesf. A
term t , subsumes a term t , if all the variables of t , are
contained in t , . A prime implicant of a given logical function
f is an implicant off such that no other term subsumed by the
prime implicant is an implicant off.

In the example of Fig. 10 the prime implicants are

O A l 'A3 ' (16 172021),

ro r, rz r3 r4 Value

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 0
0 0 1 1 1 0
0 1 0 0 0 0
0 1 0 0 1 0
0 1 0 1 0 0
0 1 0 1 I 0
0 1 1 0 0 0
0 1 1 0 1 0
0 1 1 1 0 0
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 I 1
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 1
1 0 1 0 1 1
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 1 0

1 1 0 1 1 0
1 1 0 1 0 0

1 1 1 0 1 1
1 1 1 0 0 1

I l l 1 0 0
1 1 1 1 1 1

Figure 10 Truth table for the expression of Fig. 9.

"""""""" 0
2 """"""""

Figure 11 Karnaugh diagram of Fig. 10.

0 A 1' A 4 (17 19 21 23),

0 A 2 A 3' (20 21 28 29), Quine [161; that for finding the minimal cover is based on

0 A 2 A 4 (21 23 29 31), McCluskey [171; both are used in the prototype, which is

The algorithm to determine the prime terms is based on

described in [101.
with in each case the function values shown between paren-
theses. In the Karnaugh diagram of Fig. 11 these prime The prime terms may overlap. This means that they may
implicants are indicated by an oval. The adjacency of terms have canonical terms in common. F~~ example, both
is displayed by adjacency of position (perhaps across the (1 6 17 20 2 1) and (1 7 19 2 1 23) satisfy 17 and 2 1.
boundary) in small diagrams.

We now replace the canonical solution of 9 terms and 45 after the union of subtrees, a duplicate
Prime terms that overlap may create duplicates. Hence,

factors with the prime implicant solution of 4 terms and 12
factors. In the given example all prime implicants are

removal is necessary.

necessary for the solution. This is not true in general. Identities
Therefore, after finding the complete set of prime implicants, The representation of a logical function with prime impli-
a minimal cover of these prime implicants is selected such cants eliminates any redundancies that may have been part
that all function values are satisfied with a minimum number of the relational expression from which the logical function is
of terms. derived. The logical minimization, however, does not take 505

IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983 G. A. BLAAUW ET AL.

t
AND

0 ’ \(l’A3 ’)V(l ‘A4)V(2A3 ’)V(2 A 4)

Figure 12 Common factor with right subtree.

t

9””\
(1 ‘ A 3 ’) V (I ’ A 4) V (2 A 3 ‘) V (2 A 4) 0

Figure 13 Common factor with left subtree.

0

Figure 14 Use of the split operation.

because X A Y A Z subsumes X A Y and the renamed
attribute P is a subset of the renamed attributes P and Q.

We can now state that if within one term there are two
complete sets of factors, such that the first set is a compatible
subset of the second set, then the first set can be removed.

Second, if within a term a set of factors is negated and that
set is a complete set of factors that is a compatible subset of a
complete set of factors in the remainder of the term, then the
entire term can be deleted.

Third, if within a term two sets of factors are negated, and
the first set is a complete set of factors that is a compatible
subset of a complete set of factors within the second negated
set of factors, then the second negated set of factors can be
deleted.

Fourth, if a term contains one or more complete sets of
factors such that each is a compatible subset of a complete
set of factors in a second term and if the other factors of the
first term also appear in the second term, then the second
term can be deleted.

into account the nature of the tables that are part of the
corresponding relational expression. Some tables may permit
further reduction of the logical expression.

Derived tables A J N A l - A 1 J N A - A , (1)
Tables that are derived from others through a generated
rename are called derived tables, and the corresponding A DF 9 (2)
factors are called derived factors. As an example, in the term (B I)F A I) DF A - (B DF A) DF - B DF A I , (3)
X1 A 2 2 A Y l A X 2 A Y2, the factors X1 and Y l are derived
from tables X and Y by renaming their attributes P and Q to (B J N A) UN (B J N - J N (4)
PI and QI* whereas the factors x23 y 2 , and 2 2 are derived In Eqs. (3) and (4) the factor B has the necessary attributes
from X , Y, and Z by renaming only P to P2. to satisfy the constraints of the expression.

These rules are summarized by considering a complete set
of factors AI that is a compatible subset of another complete
set of factors A. Then the following equalities hold:

Derived factors corresponding to derived tables in which
the same attributes are renamed to the same new attributes,
or are deleted, are called compatible derived factors. Thus,
XI and YI are compatible derived factors, but not X1 and
x 2 .

Common factors
The solution with prime implicants can be further improved
by exploiting the occurrence of common factors. If some
terms have one or more factors in common, we can combine
these terms by isolating the common factors.

A set of all derived factors within a term that are mutually
compatible is called a complete set of factors. In the given
example XI and Y l form a complete set of factors, but not

For the example of Fig. 9 all prime terms have the factor 0
in common. Hence we can write the expression as

X 2 and YZ, since 2 2 should be included as well. o A (1 ’ A 3 ’ V 1 ’ A 4 V 2 A 3 ’ V 2 A 4) .

One complete set of positive factors is considered a corn- There are several possible ways to proceed from this
patible subset of another complete set of positive factors if Point.
the originals of the second set subsume the originals of the
first set and if the renamed attributes of the second set are a First, f can be decomposed as shown in Fig. 12, with the
subset of the renamed attributes of the first set. For our common factor 0 as the left subtree and the compound factor

506 example X1 A Y l is a compatible subset of X 2 A Y 2 A 2 2 as the right subtree.

G. A. BLAAUW ET AL. IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

requires an index for the right subtree. A second possibility
has the common factor as the right subtree and the com-
pound factor as the left subtree, as shown in Fig. 13.

If there is a usable index on 0, which is normally the case
with a stored table, we could allow this possibility. The left
subtree, however, contains a term with negative factors only.
This term cannot be realized since each term must begin with
a positive factor.

/ O R \ < AND\ (3 ’V4) rh”.;
Q SP /AND\,,

I
0

A third possibility is to ignore the common factor and
build the terms separately. This has the disadvantage that Figure 15 Further extraction of common terms.

the common factor is evaluated repeatedly.

To evaluate the common factor only once, we introduce in
the next subsection an operation called “split” that has the
property of sending the result of the common factor to two
destinations.

Split operation
A split operator, written SP, has one input and two outputs. /OR\ /OR\
Split has the property of making its input available at both c p (y
outputs with the input evaluated only once. Thus, the use of a
split is always advantageous over the evaluation of separate
terms. In the given example we save three sequential accesses

t

/OR 1

SP
I

SP
I

of table 0.

To use the split we must partition the expression that

I

/ANT,,
follows the common term. This partitioning is performed by
an algorithm that tries to get a maximum number of common
factors in each of the two parts. We decompose the left I
subtree of Fig. 13 into two expressions, recognizing two
terms with common factor 2 and two terms with common Figure 16 Repeated use of split operation.
factor l’, as shown in Fig. 14.

0

In the left subtree we factor 2, in the right subtree we
factor l‘, which gives Fig. 15 as a result.

Next we use the split in the remaining expressions as
shown in Fig. 16.

t

The relational expression that is equivalent to Fig. 16 is
shown in Fig. 17, where we have replaced AND 2 by IN 2;
similarly, AND 1’ is replaced by DF 1, OR by UN, etc.

Constraints of the split operation SP

The use of the split operation presupposes that the common I I
term that serves as its input can be realized. This, in turn,
requires that at least one positive factor be derived from a c ~ l //9”
regular table in the common term. In the given example the
common term is the positive factor 0, derived from ro. Hence
table r,, can be accessed and its rows presented sequentially to 5”
the split operation. If the common term had been 0’ or a
special table, this would have been impossible. In general the Figure 17 Relational equivalent of Fig. 16. 507

LD 0

IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983 G. A. BLAAUW ET AL.

Figure 18 Solution of operators.

common term can have several factors. As long as at least
one of them is positive and regular, the split can be used.
Common negative factors and special factors must be realiz-
able; that is, all attributes of the negative factors and the
arithmetic attributes of the special factors must be covered
by the common positive factors. The nonrealizable factors
are placed in the branches following the split. Once the split
can be used, subsequent splits can always be realized, as
illustrated in Fig. 16.

Semantics of the split operation
If the prime terms that are combined by a split operation
overlap, the corresponding union may deliver duplicate rows.
It is possible to avoid these duplicates, however, by a suitable
choice of the semantics of the split and its corresponding
union [lo]. Because this union is a particular function, we
denote it by N D (for “end”) in contrast to the union UN,
which may deliver duplicates.

Stack operators for the split function
We introduce the two dyadic operators T N and ES, which
are abbreviations of THEN and ELSE, respectively, which
operate on the top of the stack of tables. The operator T N
conceptually duplicates the top of the stack. The operator ES
reverses the two top locations of the stack. With the use of
T N and ES we can write a solution in reversed Polish
notation. Thus, the example of Fig. 17 can now be written as
in Fig. 18. The row-by-row implementation of TN, ES, and
N D avoids the string of the result of the common subexpres-

508 sion.

Nonoverlapping terms
When there are no regular positive common factors, the split
cannot be used and the solution must use a union combining
two sets of prime implicant terms. Again a partition algo-
rithm is used to divide the terms into two groups. This time
the algorithm optimizes the occurrence of regular positive
common factors in each of the two groups, such that for these
groups the use of a split is favored.

In general the union that combines these two groups will
meet duplicates in the rows that it receives from its two
operands. Since a duplicate removal is a costly operation, we
accept overlapping terms only if a duplicate removal is
necessary anyway for other reasons.

When a t least one of the groups can be realized without
duplicates, we change the second set of terms so that it does
not overlap the first set. The union now reduces to a disjoint
union DN because nonoverlapping terms have no common
tuples. As an example we consider the expression in Fig. 19.
The specification function is given in the Karnaugh diagram
in Fig. 20. We can derive two nonoverlapping terms by
taking

0 (2 31,
1 AO’ (1).

Therefore, an equivalent solution is

O V 1 AO’.

The corresponding relational expression is shown in Fig. 21.
It trades the duplicate removal of the overlapping union for
the index inspection of a difference. A more elaborate
application of this principle is found in Example 6 , Section
8.

Negative terms
We observed in the creation of universal tables that a project
in the right subtree of a difference introduces a renamed
attribute in the left subtree of the difference whose value set
depends upon the right subtree. Such a value set cannot
easily be realized. But it need not be realized if the renamed
attributes of the right subtree are properly combined in the
ultimate expression. For the logical terms this means that the
attributes of a negative factor must be covered by the
attributes of the positive factors. If not, the terms in which
these attributes occur are inverted by applying De Morgan’s
theorem: (-x) v (- y) = -(x A y) . This negative term is
then combined with a common factor through a difference.
Thus, the two terms obtained for the example of Fig. 5 are
1 A 2’ and 1 A 3’. In these terms the renamed attribute A , of
the negative factors 2’ and 3’ is not present in the regular
positive factor 1. Hence the expression is rewritten with De
Morgan’s theorem as 1 A -(2 A 3). Therefore, in this
example the optimized result is the same as the original. In

G. A. BLAAUW ET AL IBM J. RES. DEVELOP. VOL. 27 0 NO. 5 SEPTEMBER 1983

general, however, some optimization within these constraints
is still possible, as illustrated by Example 8, Section 8.

Decomposition algorithm
The steps of the decomposition algorithm encountered so far
are: Obtain the canonical form from the relational expres-
sion; derive the prime implicants; determine a minimal
cover.

We adopt the following strategy for splitting a cover of
more than one term:

IF a regular positive common factor has occurred in the past
or occurs now

IF all terms involve attributes that are not properly

THEN determine the inverse of those terms and apply one

ELSE apply a split operator and split the cover into two
sets of prime implicants, the first of which contains all
terms with improperly covered attributes; if the first set
is empty, the split is such that the number of common
factors is optimal.

THEN

covered in some terms

or more differences to the inverted terms.

ENDIF
ELSE split the prime implicants into two parts such that the

parts have an optimal number of regular positive common
factors.
IF the universal project does not spoil the key of the first

part
THEN specify the second part nonoverlapping with the

first (this normally involves the derivation of a new set
of prime implicants).

ELSE place a DR (duplicate removal) above the union
unless a DR is set subsequently, and retain the overlap-
ping prime implicants of the second part.

ENDIF
ENDIF

Repeat the algorithm until a single term is obtained. For a
single term the DR is placed at the end of the term when the
key is spoiled.

6. Term optimization
Ultimately the original expression is broken up into terms,
separated by splits, differences, and unions. A term may be
located at the periphery of the tree; it can also be situated
between a TN and ES or an ES and ND. In the term there
are positive factors and negative factors of regular or special
tables. Factors may be interchanged taking the constraints
into account. Also, the term should contain the necessary
index generation and duplicate removal.

Term optimization criteria
The term optimization uses the following heuristics, which
reflect the cost criteria mentioned in the section on cost.

IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

t
DR
UN

I ‘LDI
LD 0

Figure 19 Overlapping union.

- 0 - 0

509

G. A. BLAAUW ET AL.

Figure 20 Karnaugh diagrams for overlapping and nonoverlap-
ping unions.

t Dp\LDo LD 1

LD 0

Figure 21 Nonoverlapping union.

First, the generation of an index is avoided where possible;
second, an intersection is preferred over a join; third, a
special table is preferred over a regular table; fourth, a join or
difference with a table that gives a large reduction is placed
earlier than one that gives a smaller reduction.

Nature and reduction of factors
As is common for a hierarchy of criteria, they are applied in
ascending order, starting with the weakest and ending with
the strongest. Thus the terms are first placed in the
ascending order of the fraction of the value set that their
table contains (for the positive terms) or does not contain (for
the negative terms). Next, the special tables are placed in
front of the regular tables, leaving the order within each set
unchanged.

As an illustration we refer to Example 5 of Section 8. This
expression has the logical equivalent of just one term of eight
positive factors 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7. The factors 0,
1,2,3 are regular factors with a fraction of 1; the factors 4,5,
6,7 are special factors derived from selects with a fraction of
0.7, 0.9, 0.4, 0.5, respectively. After the sort, their order
becomes 6 7 4 5 0 1 2 3.

Non-index groups
The factors are now grouped. Starting with each factor, a
group is formed of all factors that can be combined without

510

recourse to building an index. Hence regular positive factors
should have their key attributes covered by the attributes of
preceding factors, negative factors should have all attributes
covered, and special positive factors should have their arith-
metic attributes covered. Positive regular factors give cover-
age with all their attributes; positive special factors give
coverage only with their free attributes.

When the term is preceded by the common factors of a
split, the positive factors of the common term give a starting
cover. Otherwise, there is no starting cover. When a positive
factor is placed in a group, its attributes can be used in turn
to cover other factors. Hence grouping is a converging
iterative process.

For our example the nature of keys and arithmetic attri-
butes shown in Section 8, Example 5 , gives the eight groups
0, 14 , 25 , 3675 , 41 , 5, 6 7 5 3 , 7 6 5 3 .

Meta-groups
When all groups are obtained, those groups that are a proper
subset of another group are eliminated. This leaves a set of
groups such that each factor is in at least one group, and all
groups start with a different factor. The groups are now
combined into meta-groups; all groups within a meta-group
contain the same set of factors. One member of a meta-group
must be selected and the order of these selected groups must
be established.

From the eight groups of our example the group contain-
ing table 5 is eliminated, since it is a proper subset of group
2 5 . Next, four meta-groups with 1,2,1, and 3 members each
are obtained: 0; 1 4, 4 1; 2 5; 3 6 7 5,6 7 5 3,7 6 5 3. Ob-
serve that the factor 5 appears in two meta-groups.

Order of groups
We now establish all possible orderings of groups. First we
determine all permutations of the meta-groups. Next we
replace for each permutation every meta-group, in turn, by
each of its members.

Thus, for the four meta-groups of our example, 24 meta-
group permutations are derived, and by substituting groups
for meta-groups, 24 x 1 x 2 x 1 x 3 = 144 orders are
obtained. These 144 orders to be investigated are far less
than the 40 320 permutations of the eight constituting fac-
tors.

Valid group orders
The number of group orders is reduced by first testing the
validity of each order. Each group should start with a regular
positive factor unless the first factor of that group is suitably
covered by the attributes of the preceding groups or of a
possible common term. In our example the number of orders
is thus reduced from 144 to 24.

Maximum key join
The valid group orders are further reduced by taking those
orders that allow a maximum number of key joins between
groups. The key join applies only to groups whose starting
factor is covered by more than one preceding group. In the
given example no key joins between groups are possible, so
the number of orders remains unchanged.

Minimal join cost
From the remaining orders the one with minimal join cost is
finally selected. For each order the intersecting value sets are
determined using the stochastic model and from this the
increase or decrease in size that results from joining the
groups. The sum of all intersection sizes then gives a relative
cost figure.

For our example the order 2 5 , 3 6 7 5, 0, 1 4 is selected,
which has intersecting sizes of 2, 4, and 20, as shown in
Example 5 , with a relative cost figure of 26. Placing the
group 1 4 first instead of last, for instance, would have given
intersecting sizes of 30, 60, and 120 with a cost figure of
210.

Order within groups
Now that the order of the groups has been established, the
order of the factors within each group can be determined.
Since the starting cover of the group is known, the factors
whose attributes are covered are placed in the order estab-
lished in the section “Nature and reduction of factors” to
form ultimately intersections or differences. The remaining
factors that have their key or arithmetic attributes covered,
ultimately resulting in joins, are now investigated in turn.
The least expensive solution is obtained using backtracking.
After the placement of each join, intersections and differ-
ences may become possible again; the process is repeated
until all factors are placed. A relative cost factor, derived
from the stochastic model, is applied such that the optimum
solution can be retained. In our example the order within the
groups is not changed.

7. Transformation of logical to relational opera-
tions
Once a suitable form has been obtained for the logical
analogon, its expression must be transformed back to a
relational expression. Formally, two steps are involved. The
first maps logical operators upon set operators, which is
trivial. The second step maps the set operators upon the
relational operators such that an expression in terms of the
original tables, as well as the original select and calculate
operators, is obtained.

Table transformation
Since for each variable the originating table is known, a load
of a variable can be changed to a load of a table. If the table

G. A. BLAAUW ET AL. IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

was created out of an original table by renaming one or more
of its attributes, the derived table name is replaced by the
original table name and rename operators are introduced as
needed.

Remove column
The project appears as the universal project at the top of the
tree at the start of the reverse transformation. This project is
decomposed into a remove column, RC, and a duplicate
removal, DR. During the transformation the attributes of the
upper and lower levels of the tree nodes are determined for
each node. The remove column can pass through a union to
the left as well as to the right subtree. Since all unions appear
at the top of the tree (or a negative subtree), the universal
project applies to each term.

The remove column may only be pushed through a join
provided the common attributes of the join remain
unchanged. In that case the remove column is pushed to the
left or the right subtree. If, however, a remove column would
omit common attributes, such a remove column would
remain above the join. A new remove column that is
composed of the union of the attributes of the old remove
column and the common attributes can be pushed through
the join.

Similar rules apply to the quad, intersection, and differ-
ence.

1
When two remove columns meet a t a split, we distinguish

two cases: If the remove columns are equal, they are united
as one remove column below the split. If the remove columns
are different, a remove column which omits the attributes
that are absent in both remove columns is pushed through the
split. At the left branch of the split a remove column remains
which omits attributes that need omission in the left branch,
but are required in the right branch. In the right branch a
remove column is placed for the reversed situation.

c Although these rules appear quite complex, they follow

I directly from the nature of the remove column and the nodes
that are encountered. Furthermore, the term optimization
provides a structure to the term, which makes the placement
of the remove column nodes quite straightforward.

1 Figures 22 and 23 show the result of placing the remove
I columns for the example of Fig. 18. Figure 22 gives the

starting situation. Next to the nodes the attributes of the
tables and the attributes of the intermediate results are

1 shown. On top of the tree there is the universal project. Since
the project does not spoil the key of the result, the project can
be replaced by a remove column in the final expression; since,
furthermore, the unions are replaced by N D operations,
there is no duplicate removal. Figure 23 shows the original
expression and its optimized result using the reversed Polish
notation described earlier and giving the details of the

7.
PR (01010)

I

LD o'(11111)

Figure 22 Tree with attributes and universal project.

examples of Section 8. Note that the prototype makes a
different (but equivalent) choice in using the TN and ES
branches.

Type of intersection
As the remove columns are placed during the reverse trans-
formation, some of the intersections are replaced by joins or
quads in accordance with the definitions of Section 2.

Type of table
The reverse transformation of LD selecttable I N transforms
back to SL (F) , where Fis the select function associated with
the select table. The reverse of LD selecttable D F is
SL (NOT F). In our examples, however, we keep the form
with the select table.

Similarly, the reverse transformation of LD calculateta-
ble J N results in CL (X - F) , where F is the arithmetic
expression of the calculate. The case of LDcalculateta-
ble IN is replaced by S L (X = F) ; LD calculatetable D F is
replaced by S L (X # F) .

Index generation
In the term optimization we have accounted for the building
of an index for a stored table that occurs as right operand of
some join. At those places an index operator is placed,
written IX (Y), where Y is the set of attributes for which the
index should be built.

8. Examples
In this section the optimization method is illustrated by a few
examples. In each case an original expression is given, using
the notation of Section 2. Each figure gives the participating 51 1

G. A. BLAAUW ET AL. 1 IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEKEMBER 1983

SIZE COST
129 1310 P R 10 01010
1 9 5 U N 11111

COLUMNS

68
8 9 U N

UN
48 7 DF 11111

63 21 IN 11111

11111

7 LD 1 0 1 0 0 0

1 S L 4 0 0 0 0 1

11111
11111

5 LD 3 00010

3 LD 2 00100
210 42 LD 0

2 0 5 DF 11111

4 2 I n 11111

11111

0 0 0 0 1

00100

210 42 LD 0
2 1
1

IN 11111
S L 4

3 LD 2
2 1 0 42 LD 0 11111
106 14 DF

5 LD 3
11111

137 21 DF 11111
00010

I
2 1 0 42 LD 0 11111

LD 1 01000

63 21 I n 11111

SUM: 1567

T B A T T R KEY FR
0 11111 01010 50
1 01000 01000 3Q

3 00010 0 0 0 1 0 20
2 00100 00100 25

4 00001 00001 1 7
AT[V A L ; 1
2 0 2 0 10 21 5
F
16 17 1 9 20 2 1 2 3 2 8 2 9 31

Figure 23 Example of Fig. 22 after pushing of remove column.

tables (TB), their attributes (ATTR), and keys (KEY), as
well as the fraction (FR) of the value set represented by the
table. For the special tables, the arithmetic attributes are
shown instead of the key. AT [VAL;] gives the size of the
value set for each attribute.

Next, the analogous logical function value is presented in
the form of a Karnaugh diagram, as explained in the section
“Transformation to logical operations.” In the diagram the
terms of the optimized result are drawn as ovals. The
function value is also given as F in linear form for the
optimized result. The two function values should be the
same, which is a necessary (but far from sufficient) check
upon the output of the optimizer. Finally, the optimized
result expression is displayed in the same manner as the
input. The tables participating in the result are the same as
for the input and are not repeated.

To the left of the original and the optimized expression,
size and cost entries are shown at each point in the execution
of the expression. This size is computed by simulation
independent of the optimization. The simulator checks that
the results of the original expression and the optimized
expression are the same. The cost estimate is derived from

S I Z E COST
1 2 9
1 0 8

N D 01010
ND 01010

106 14 DF 01010
5 LD 3

137 RC 1 0
131 ES

0 1 0 1 0

2 0
01010 01011

RC 1 0 01 01 0
20 IN 01011

137 TN
137 21 DF

01011 01011
01011

210
01000

210
RC 11 01011
ES 01010 01111

53
2 1

N D 01010
RC 10

21
01010

IN
1

01011

63
S L 4 00001
ES 01010 01011

48 7 DF
5

01010
LD 3 00010

63
63

RC 10 01 01 0
TN

63
01011 01011

63 21 IN
RC 11 01011

01111

2 1 0
210 RC 1 5 01111

TN 01111 01111

210 42 LD 0 11111

COLUMNS

00010

1 S L 4 00001

7 LD 1

3 LD 2 00100

SUM: 105

the size estimate. Indexed access is given a relative cost value
of 10, sequential access 0.2, and index inspection 0.1. Index
generation and duplicate removal involve indexed access and
index inspection. Fractional costs are rounded up to integers.
The value sum gives the total cost. The sizes of tables and
value sets are kept small to reduce simulation time; the cost
values are relative anyway.

Example I
This example (Fig. 24) illustrates the use of the split
operation (TN, ES, ND); the elimination of an index genera-
tion (IX); the change of a calculate (CL) into a select (SL);
the implied remove column of a difference (DF); the use of
one sequential scan (LD 0) instead of two (LD 0 and LD 1);
the “pushing down” of the remove column (RC); changing
the project into a remove column (RC), and duplicate
removal (DR).

Placing a remove column early in the expression is an
advantage to the implementation, but this is not shown in the
cost figures. As mentioned in the section “Cost,” a sort could
be used instead of the index generation. The load of table 1 in
the result has no cost, since it is a conceptual load; the index
of table 1 is interrogated by the difference, with a cost of 4.

‘OL. 27 NO. 5 SEPTEMBER I 983

S I Z E COST

3 9 4 DF
21 2 1 4 PR

1 3 1 3 2 IX
1 3 J N
1 7 C L

4 0 8 L D
1 3 3 L D

SUM: 3 6 1

2 0 0 1 0

3
0111

1011
1011

2 0 0 1 1
1
0 0111

1 0 1 0

COLUMNS

T B ATTR KEY FR
0 0111 0100 5 0
1 1 0 1 0 0 0 1 0 60
2 0 0 1 1 0 0 1 0 8 0

A T [V A L ; 1
1 0 8 0 21 10

""" 0

1

F
4 5 6

S I Z E

3 7
2 1

3 4
1 3

4 0
1 3

3 7
4 0

1 7
3 7

4 0
40
4 0

SUM:

COST
2 1 4 DR

N D
4 DF

RC 2
L D 1
RC 2
ES
RC 2

S L 2
DF

TN
RC 3

8 LD 0
2 2 6

Figure 24 Example 1.

0 0 1 0
0 0 1 0

COLUMNS

0 0 1 0

1010
0 0 1 0

0 0 1 0
0 0 1 0 0 0 1 1

001 0
0 0 1 1

0 0 1 1 0 0 1 1
0 0 1 1
0 1 1 1

0011

The join in the original has no cost, since it applies to a
calculate table; the two operations should be taken as an
entity that represents a calculate operation. Similarly in the
result the difference that applies to a select table is without
cost; the difference and the load of the select table form a
select operation.

Several of these features reappear in later examples; we do
not mention them each time.

Example 2
This example (Fig. 25) changes a rather involved and
redundant expression into a simpler nonredundant one. The
duplicate removal implied by the final project is not neces-
sary in the result. The algorithm recognizes that the two
terms of the expression are not overlapping, and hence uses
the nonoverlapping union (DN). In the result the difference
with table 3 appears early in the first term and late in the
second term, since table 3 is larger than table 1 and smaller
than table 0. The split cannot be used in this example, since
the only common factor is the difference with table 3.

S I Z E
2 5
3 0
51
5 8
1 8

3 4
5 0

4 0
5 5
3 0
4 0
5 0
2 5

SUM:

COST COLUMNS
2 5 3 PR 3 011

6 DF 111
5 1 6 IX 7

UN
11 1
111

1 8 4 JN
LD 0

111

7 LD 1 110
8 LD 3 111

5 DF 111

1 0 LD 0 111

111

U N 111

LD 3 111

5 LD 2 111
9 9 4

TB ATT KEY F R
0 111 0 1 0 5 0
1 1 1 0 0 1 0 3 4
2 111 010 2 5
3 111 0 1 0 4 0

ATCVAL; 1
2 0 1 0 0 5 0

F
2 6 8 1 0

S I Z E
2 5

6

4 0
6

1 2

2 5
50

1 9
1 9

3 4
3 0
4 0
50

SUM:

COST

2

3

5

3

5

2 8
1 0

Figure 25 Example 2.

COLUMNS
DN 011
RC 3 011
DF 111
L D 3 111
DF 111
LD 0 111
LD 2 111
RC 3 011

LD 1
DP 111

1 1 0
DF 111
LD 3
LD 0 111

111

Example 3
This example (Fig. 26) concerns a single term in which the
order of the factors is changed to avoid index generation.
This change in order, however, requires a rename so as to
preserve the attributes over which the join must be made.
The select, which appears in one of the branches of the
original structure, now appears low in the main stem. Table 1
is not used.

e Example 4
This example (Fig. 27) illustrates the replacement of an
exclusion (XC) by intersections (IN) and differences (DF).
Observe the order of applying tables 1 and 2 in the two
branches of the split, which depends on whether an intersec- 511 3

G . A. BLAAUW ET AL. IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

S I Z E

10
1

10
1

68

9
9

15
1 5
1 5
1 5

SUM:

COST
11 JN

101 IX 1
IN

14 LD 4
S L 3

9 2 JN
RC 1

1 5 2 IX 2
3 LD 2

RC 2
3 LD 0

3 76

TB A T T R KEY F R
0 0110 0010 50
1 0 0 1 0 0 0 1 0 3 3

3 1000 1000 14
2 0111 0001 25

4 1011 1001 16

A T 1 V A L ; 1
7 10 3 0 60

COLUMNS
1011

1011
101 1

1011
1000

0001
0111

0111
0111

0010
0110

"""~"""_" 0
"""""""" 2

F
23 31

S I Z E COST
1
1 1 IN

RC 11

15
15 RC 16

1 5
RN 18
LD 0

15 RC 17
15
15 LD 2

RN 18

1 0
1

IN
S L 3

68 14 LD 4

1 11 JN

SUM: 26

Figure 26 Example 3.

COLUMNS

11011
01011

10000
101 00
00110

10001
10101
00111

01000

11011

01011

01 011

tion or a difference is used. The select (SL 3) moves from the
end of the tree to its starting node. One branch of the split
turns out to give an empty result.

Example 5
This example (Fig. 28) is intended to show the placement of
select operations. Originally four selects are placed at the end
of a tree of quads (QD). The order is changed to replace one
quad with a join and to allow the selects to appear early in the
tree. One select (SL 7) changes into a calculate (CL 7). This
is possible because the arithmetic attributes of this select
indicate that attribute 3 can be derived from attribute 2.
Select 4 is applied to the right branch of a quad. Select 5 is

514 applied to the left and right of a join, thus reducing index

S I Z E
1
1

23
5

48
48
30
4 0
50

SUM:

COST
RC 1

S L 3

485 IX 1
7 xc
8 LD 1
6 LD 2

10 LD 0

I n

5 I n

5 2 1

T B AT K E FR
0 11 01 50
1 01 01 40

3 1 0 1 0 1 0
2 0 1 01 30

A T [V A L ; 1
5 0 1 0 0

01
11

11

COLUMNS

10

01
01

01
01

11

"""" 1
3 " """

0 0 0 0

F
11 1 3

SIZE COST
1

1 DF
N D

2 1 IN

1 1 DF
5 ES

30
3 1 IN

LD 2

40
5

LD 1
TN

5 RC 1
5 IN
5 S L 3

50 10 LD 0

40 LD 1

30 LD 2

SUM: 14

Figure 27 Example 4.

01
COL UM N S

01

01

01 01
01

01

01 0 1
01
11

11

01

01

01

0 1

10

generation cost. Duplicates are removed in the right subtree
of the quad. The original expression generates many dupli-
cates, which are removed in the project. Because of the small
table sizes, the quads are relatively inexpensive. The Kar-
naugh diagram is not shown-with eight variables it would
become rather large, and would moreover display only one
function value.

Example 6
In this example (Fig. 29) a duplicate removal caused by 4
several unions is eliminated. Table 0 is sequentially scanned
and used unaltered; this corresponds to function values
16-31 of the Karnaugh diagram. Next, table 1 is scanned,
but its overlap with table 0 (function values 24-31) is
eliminated through a difference with 0. Finally, function
values 5 6 7 are obtained by a split preceded by the common

G. A. BLAAUW ET AL. IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983 4

SIZE
10
3

60
2

150
3

150
5

21 0
840
30
5

28
6

I
4

SUM:

COST COLUMNS
IN 001111
SL I
IN

001100

S L 6
001111

001000
IN 001111
SL 5
IN

0 0 0 1 0 0
001111

SL 4 000010
2184 PR 1 5 001111
336 Q D 111111
12 Q D 101100

LD 3 0 0 1 0 0 0
LD 2 100100

12 Q D
LD 1

010011
000010

1 LD 0 010001
2545

TB ATTR KEY
0 010001 010000
1 000010 0 0 0 0 1 0
2 100100 100000
3 001000 001000
4 000010 000010
5 000100 000100
6 001000 001000
7 001100 001000

A T C V A L ;]
6 4 5 3 1 2

F
255

Figure 28 Example 5 .

FR
1 0 0
100
100
100
70

40
90

50

factors 2 difference 0, difference 1. The example has many
implied projects caused by the unions and the intersection;
they result in the remove columns that appear throughout the
result.

9 Example 7
This example (Fig. 30) illustrates the implied project of a
calculate. As a small example it also shows how a join is
replaced by an intersection and how the intersecting columns
of joins are preserved with remove columns when the order of
the factors changes.

9 Example 8
This last example (Fig. 31) illustrates the recognition of
negative terms that are otherwise not realizable. A reduction
in cost is obtained by combining two such terms prior to the
index generation.

9 Prototype of the optimizer
Since the proposed method is intended to be general, a large
variety of cases should be considered. The use of a prototype
is almost indispensable in such a situation. Also, the many
features and interactions that must be considered require the
accurate description provided by the model.

The examples of this section are samples of the cases that
have been tested with the prototype of the proposed optimi-

SIZE COST COLUMNS

20 8 Q D 001111
10 102 DR 001111

5
5

IN 0 0 0 0 1 0
S L 4

I LD 1 000010
4 2 Q D 001101
2 21 DR
4 RC 1

0 0 0 0 0 1

4
0 0 0 0 0 1

LD 0
2 2 1 JN 001100

010001

1
1 11 IX 4 0 0 1 1 0 0

IN
3

001100

1
SL 5
JN

000100
0 0 1 1 0 0

3 CL 7 001100
2 IN
2 SL 6

0 0 1 0 0 0

5 1 L D 3 001000
0 0 1 0 0 0

3
6

S L 5
IN 000100

000100
6
6 2 LD 2 100100

RC 4 0 0 0 1 0 0

0 0 0 0 1 0

SUM: 168

zation method. The prototype gives a precise and complete
description of the method concerned. As such it contains the
essential algorithms. Because it is an executable description,
the method can be demonstrated and tested for accuracy,
consistency, and effectiveness. The prototype, however, is an
architectural description and is not concerned with imple-
mentation matters, such as program performance, memory
allocation, or data representation.

A prototype constitutes an important milestone in the
management of a design. It ensures the correctness of a
major part of the design and allows review and feedback
prior to the implementation effort.

For the proposed method the prototype was written in
APLDL [181, which is standard APL to which the regular
control structures IF THEN ELSE, WHILE, CASE,
REPEAT UNTIL, and FOR are added. This enhancement
does not affect the APL interpreter, hence it is generally
applicable; it improves legibility and facilitates the use of the
prototype as a specification for implementation in a different
language.

APL encourages the use of many short functions, each
with a specific task. This language feature, combined with
the control structures of APLDL, give a clear design struc-
ture. In Reference [101 the top levels of the model are shown

G. A. BLAAUW I

515

ZT AL. IBM J. RES. DEVELOP. 0 VOL. 27 NO. 5 SEPTEMBER 1983

S I Z E COST COLUMNS
81 822 DR

1 2 0
0001000

U N
60 U N

0001 0 0 0

1 0 4 IN

3 0
28 283 IX 56

U N
5 1 L D 4

2 5 5 LD 3
4 0 8 LD 2

60 12 LD 0 0001111
50 10 LD 1

SUM: 1145

T B A T T R KEY
0 0001111 0 0 0 1 0 0 0 6 0

F R

1 0011010 0 0 0 1 0 0 0 50
2 0011101 0 0 0 1 0 0 0 4 0
3 1111100 0 0 0 1 0 0 0 25
4 0111110 0 0 0 1 0 0 0 5

A T [: V A L ; 1
2 5 50 100 20 25 100

0011000
0011101

0111100
0111100

1111100
0111110

0011101
0011010

S I Z E COST COL LIMNS
81

0 21
2 2

""""""""

""""""""

"""_ -
5
5

2
7

F
5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31

Figure 29 Example 6.

2

2 5
25

7
7

50
50

1 5
60
60
40
40
19
60
60
50
50
60
60

SUM:

such that the reader can obtain a more precise understanding
of the algorithms employed.

9. Evaluation

General characteristics
The method as described proves to be quite powerful. It is
able to cope with a great diversity of items to be optimized,
such as common subexpressions, empty tables, redundancy,
the assurance of nonoverlapping intermediate results, the use
of the split operation, the order of operations, and the
minimization of index generation (or corresponding sort
operations). It shows that it is possible to separate these
many items using simple overall heuristics, such that each
item can be dealt with effectively. 516

G . A. BLAAUW ET AL.

D N 0001000
D N
N D

1 IN
RC 8

RC 28
LD 4
ES
RC 8

1 IN
RC 28
LD 3
TN

2 DF
RC 2 4
LD 1

RC 8
LD 0
RC 28

5 DF
8 LD 2

RC 8
LD 0
RC 8

10 LD 1
RC 8 0 0 0 1 0 0 0

12 LO 0 0001111
43

4 DF

0 0 0 1 0 0 0
0 0 0 1 0 0 0

0 0 0 1 0 0 0
0011100

0011100
0111110

0001000 0011100
0001000
0011100

1111100
0011100

0011100 0011100
0011100

0 0 1 1 0 0 0
0011010

0 0 0 1 0 0 0
0001111

0011100

0011100
0011101

0001111
0001000

0 0 0 1 0 0 0

0001000
0011010

The mapping upon a logical analogon illuminates the
relation among the various operators, as among join, quad,
and intersection, between two successive differences and an
intersection, or between a select and a calculate. Further-
more, the mapping gives great flexibility in the choice of
optimization algorithms and exploits the efficiency of the
logical operands and operations.

Assumptions
In the method as described, and as implemented in the
prototype, a number of assumptions are made. As stated
before, these assumptions are not essential to the basic
method since any other set could equally well be applied with
appropriate changes in the algorithm. The particular set of
assumptions that is used is close to a practical environment in

IBM J. RES. DEVELOP. \ 'OL. 27 NO. 5 SEPTEMBER 1 983

S I Z E COST COLUMNS
4 5

1 0 0
JN 111
CL 2

4 5 4 5 5 JN 111
111

9 0 LD 1
5 0 10 LD 0 011

1 1 0

SUM: 4 6 5

T B A T T KEY FR
0 011 0 1 0 50
1 1 1 0 0 1 0 9 0
2 111 1 1 0 1 0 0

A T [V A L ; I
5 0 1 0 0 1 0 0

""" 0
2 """

F
I

S I Z E COST COLUMNS
4 5

1 0 0
JN 111

4 5 9 IN 110
CL 2 111

50 RC 2 0 1 0
5 0 LD 0 011
9 0 1 8 LD 1 110

SUM: 2 7

Figure 30 Example 7.

S I Z E
7

4 1
4 8
4 8
6 0

5 4
8 0

2 2
2 2

2 2
2 5
43
9 5

SUM:

COST COLUMNS

4 1 5 IX 2
RC 2

01 0
01 0

8 IN 110

1 6 LD 3
LD 4

110
10 DF 111

2 2 3 IX 2 01 0
RC 2 010

5 IN
LD 2

0 11

9 LD 1 0 1 1
1 9 LD 0 111

6 DF 111

110

011

711

TB A T T KEY F R
0 111 l o o 9 5
1 0 1 1 0 1 0 8 5
2 011 0 1 0 5 0
3 1 1 0 1 0 0 8 0
4 1 1 0 1 0 0 6 0

A T [V A L ; 1
1 0 0 5 0 2 5

"""""""" 0
2 """"""""

F
1 6 1 7 1 8 2 0 2 1 2 2 2 4 2 5 2 6

which the method is in
review them here.

[tended to be applied. We briefly

The method is kept independent of a potential optimizer
that deals with the semantics of the select and calculate
expressions. The optimized result, however, clusters the
selects that use the same attributes, such that a select
optimizer can be used more effectively.

The row by row treatment of the tables is a typical
implementation method. It affects the cost calculation used
in the optimization. Since this calculation is parameterized,
another implementation would require minor adjustments in
that calculation. Such a change is localized in the algo-
rithm.

Similarly, a different access method, such as the use of
sorting, hashing, or clustered indexes, or a different cost
estimate of these methods, results only in local adjustment.

The size estimation depends upon the applicability of the
stochastic formulas and the accuracy of the cardinality of the
value sets. If a different distribution is known to exist,
different formulas and approximations of the size of the
expected values will be required. Again, this amounts to a
local change, such as the substitution of the pertinent func-
tion. If the cardinality is not known, the best available

S I Z E
7

4 6

4 8
70

4 8

6 0
EO

2 2
2 2
43
2 5
95

SUM:

COST
10 DF

4 6 7 IX 2
U N
RC 2

6 IN
LD 3

1 2 LD 4
RC 2

3 IN

5 LD 2
LD 1

1 9 LD 0
5 2 2

COL UMNS
111

01 0
0 10

01 0
110

110
110

01 0
0 11

011
01 1

111

Figure 31 Example 8.

estimate must be used. If the relative importance of these
parameters is known, the system may be enhanced by
gathering statistical data necessary for more accurate size
calculation.

The operator set which is used in the model is relatively
extensive to ensure the applicability of the method and seems
to indicate that the method is likely to be extendable to other
operators of like kind.

The method assumes only first normal form. If higher-
order normal form is guaranteed, the size estimation can be
improved. 517

G. A. BLAAUW ET AL. IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

The logical optimization uses the decomposition into
prime implicants. Although this is quite effective for the
current set of assumptions, it is not an inherent part of the
method; any other logical decomposition can be used equally
well.

Another assumption is the availability of an index to the
key of each table. A deviation from this assumption would
result in a change of the cost calculation and possibly in the
general structure of the result.

The use of the split is a major feature of the method.
Nevertheless, the absence of such a function would still allow
the method to be used with profit.

The method uses detailed heuristics at various points.
Thus, the duplicate removal is placed at the top of a term; the
split is used whenever possible; the partitioning of terms uses
an algorithm that favors common terms. All these heuristics
can be refined or simplified with a corresponding increase or
decrease of computing time for the optimizer. Extensive
experience under practical circumstances will quite likely
result in various adjustments.

10. Conclusions
The method presented proves to be general and powerful; it is
applicable under a great variety of circumstances. The use of
a prototype has been invaluable in verifying the correctness
of the overall algorithm as well as demonstrating the func-
tioning of the method.

Acknowledgment
This study was performed under the direction of Ir A. J. du
Croix, development manager at IBM International Opera-
tions Uithoorn, Netherlands. The model was developed at the
Technological University Twente, Enschede, Netherlands.
The authors wish to thank J. Schoonenberg, director of IBM
International Operations Uithoorn, management, and co-
workers for the wholehearted cooperation and fruitful dis-
cussions. The many useful comments of the referees are
gratefully acknowledged.

References
1. E. F. Codd, “A Relational Model of Data for Large Shared

Data Banks,” Commun. ACM 13,6,337-387 (June 1970).
2. D. D. Chamberlin, “Relational Database Management Sys-

tems,” ACM ComputingSurveys 8, 1,43-66 (March 1976).
3. M. W. Blasgen et al., “System R: An Architectural Overview,”

IBMSyst. J. 20, 1,41-62 (January 1981).
4. J. D. Ullmann, Principles of Database Systems, Pittman,

1980.
5. J. M. Smith and P. Y . T. Chang, “Optimizing the Performance

of a Relational Database Interface,” Commun. ACM 18, 10,
568-579 (October 1975).

6. P. A. V. Hall, “Optimization of Single Expressions in a Rela-
tional Data Base System,” ZBM J. Res. Develop, 20,3,244-257

518 (May 1976).

G . A. BLAAUW ET AL.

7. A. V. Aho, Y . Saviv, and J. D. Ullman, “Efficient Optimization
of a Class of Relational Expressions,” ACM Trans. Database
Syst. 4,4,435-454 (April 1979).

8. J. W. M. Stroet and R. Engmann, “Manipulation of Expres-
sions in a Relational Algebra,” Info. Syst. 4, 195-203 (1979).

9. J. Grant and J. Minker, “Optimization in Deductive and
Relational Databases,” Advances in Database Theory, Vol. 1,
H. Galaire, J. Minker, and J. M. Nicolas, Eds., Plenum Press,
New York, 1981.

10. G. A. Blaauw, A. J. W. Duijvestijn, and R. A. M. Hartmann,
“Optimization of Relational Expressions Using a Logical Ana-
logon,” Internal Report IBM laboratory, Uithoorn, Nether-
lands, May 1983.

11. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and P. G. Price, “Access Path Selection in a Relational Data-
base Management System,” Proceedings of the ACM SIGMOD
International Conference on the Management of Data, Boston,
MA, May 1979, pp. 23-34.

12. P. A. V. Hall and S . J. P. Todd, “Factorisation of Algebraic
Equations,” Report UKSC, IBM United Kingdom Scientific
Centre, Peterlee, England, 1974.

13. P. A. V. Hall, “Common Subexpression Identification in Gen-
eral Algebraic Systems,” Scientific Center Report UKSCOO60,
IBM Peterlee Scientific Centre, England, 1974.

14. S. Finkelstein, “Common Expression Analysis in Database
Applications,” ACM SIGMOD International Conference on
Management of Data, Orlando, FL, June 1982.

15. M. Karnaugh, “The Map Method of Synthesis of Combinato-
rial Logic Circuits,” Trans. AZEE 72, Part I, 593-598 (Novem-
ber 1953).

16. W. V. Quine, “The Problem of Simplifying Truth Functions,”
Amer. Math. Monthly 59,521-531 (October 1952).

17. E. J. McCluskey, “The Minimization of Boolean Functions,”
BellSyst. Tech. J . 35,1417-1444 (November 1956).

18. G. A. Blaauw, A. J. W. Duijvestijn, and A. Ledeboer, “An APL
Design Language,” Internal Report IBM Laboratory, Uithoorn,
Netherlands, May 1979.

Received September 14, 1982; revised April 12, I983

Gerrit A. Blaauw Department of Computer Science, Twente
university of Technology, Enschede. Netherlands. Professor
Blaauw received the B.S. in electrical engineering from Lafayette
College, Easton, Pennsylvania, in 1948 and the Ph.D. in applied
science from Harvard University in 1952. While at Harvard, he was
on the staff of the Computation Laboratory and participated in the
design of the Mark I11 and Mark IV calculators. From 1952 to 1955.
he was on the staff of the Mathematical Center in Amsterdam,
Netherlands, where he cooperated in the design of the ARRA and
FERTA computers. Dr. Blaauw joined IBM in 1955 at the Pough-
keepsie, New York, Product Development laboratory. He was one of
the architects of the Stretch computer and of System/360. In 1965,
he left IBM to become Professor of Electrical Engineering and
Computer Science at the Twente University of Technology in the
Netherlands. He is the author of Digital System Implementation,
written in 1976. In 1979, he received the De Groot Award for his
contributions to electrical engineering. Professor Blaauw is a consul-
tant to the IBM World Trade Corporation, a Fellow of the Institute
of Electrical and Electronics Engineers, and a member of the
Association for Computing Machinery, Sigma Xi, and the Royal
Dutch Academy of Science.

A. J. W. Duijvestijn Department of Computer Science,
Twente University of Technology, Enschede, Netherlands. Professor
Duijvestijn is a full professor in the Departments of Computer
Science and Electrical Engineering at Twente University of Tech-
nology, Enschede, Netherlands, with which he has been associated
since 1965. He earned a master’s degree in electrical engineering in
1950 from the Technological University, Delft, Netherlands, a
master’s degree in mathematics in 1955 from the Municipal

IBM J. RES. DEVELOP. VOL. 27 NO. 5 . SEPTEMBER 1983

University, Amsterdam, Netherlands, and a Ph.D. degree in 1962
from the Technological University, Eindhoven, Netherlands.
From 1953 to 1956, Professor Duijvestijn was on the scientific staff
of the Computing Department of the Mathematical Center, Amster-
dam. From 1956 to 1963, he was on the scientific staff of the Philips
Research Laboratory, Eindhoven, Netherlands. He visited IBM in
Poughkeepsie, New York, from November 1957 to May 1958 on an
exchange program between IBM and Philips. From 1963 to 1965, he
was head of the Software Department of Philips Datasystems,
Apeldoorn, Netherlands. He visited IBM in Gaithersburg, Mary-
land, from August 1977 to November 1977. Professor Duijvestijn
was President of the Dutch Computer Society from 1977 to 1980.

IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983

Since 1976, he has been a consultant to IBM International Opera-
tions, Uithoorn, Netherlands.

R. A. M. Hartmann IBM Data Center Services Support
Center. Uithoorn. Netherlands. Mr. Hartmann is an advisory pro-
grammer. Before his current assignment, he worked on the IBM
3790 Communication System development and networking. Mr.
Hartmann received the M S . degree in theoretical electrical engi-
neering from the Technological University, Delft, Netherlands, in
1968. He joined IBM in 1970 at the Uithoorn Development labora-
tory.

3 19

G. A. BLAAUW ET AL.

