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Optimization of Relational  Expressions  Using A Logical 
Analogon 

An expression applying to a relational database is optimized by mapping the expression upon set expressions which, in turn, 
are transformed into logical expressions. These logical expressions then  are optimized, taking into account the constraints that 
are  inherent in relational expressions and  the costs of those expressions. Subsequently a reverse transformation to relational 
expressions is  applied. The method is developed for the traditional relational operators and is applicable to a  variety of cost 
criteria. Common subexpressions as well as redundant expressions are optimized. A new relational operation “split” is 
proposed that may be used eflectively in  an optimized expression. Results obtained with a model for the optimization method 
are presented. 

1. Introduction 
Since the original proposal of the relational database model 
by Codd  in 1970 [ 11, this method of organizing data has been 
studied extensively and is  being applied in an increasing 
number of systems [2, 31. The relational database is concep- 
tually general and simple. Yet this generality gives it an 
initial performance disadvantage in comparison to earlier 
database designs, such as  the hierarchical and the network 
approaches. A good part of this performance disadvantage, 
however, can be eliminated by the use of optimization in the 
implementation of the database. This optimization can take 
place at any of several implementation levels.  In this paper 
we are concerned with the highest of these levels, where the 
expression that is  used to access the data is rewritten in a 
form that is more  efficient  for a given  model  of access path 
selection. This rewritten expression  uses the relational opera- 
tors and tables that  are available to the user of the  database, 
as well as  a few derived operators that  are on the same level 
but commonly  not available to the user. This method of 
rewriting has been studied extensively. The methods pre- 
sented in the literature, however, are limited by the relational 
operators that can participate in the optimization [4] and by 
constraints with regard to adjacency of these operators 
[S”]. Such restrictions make these methods only applicable 
locally  within an expression. In contrast, the method pre- 
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sented in this paper is globally applicable. All normal rela- 
tional operators are taken into account without any restric- 
tion concerning their adjacency. 

The optimization method is based on the association of 
relational operations with set operations and subsequently on 
the association of set operations with  logical operations. The 
latter association is  well known, but the association of 
relational operations with set operations is documented only 
for a limited operator set [4,9]; yet it is  worth considering 
this association for the full operator set. Thus, we  show that 
one operation can be expressed  in terms of another, a 
property that is  used  in the optimization process. 

The proposed  method  is  in part heuristic and uses gener- 
ally applicable logical transformations. Although we illus- 
trate it with respect to a certain collection of constraints 
derived from a particular implementation, other conditions 
could  be applied. Furthermore, many methods of logical 
manipulation are known, and they are readily adapted to the 
requirements of relational optimization. 

To obtain a common  basis of understanding and notation 
we start with a brief review  of the theory of the relational 
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database model and  describe  the  operators  that  are  available 
for  this model. Since  optimization  attempts  to  reduce  the  cost 
of the  implementation, we next describe a specific method of 
implementing  the  database model  with  a row-by-row treat- 
ment  for which the  optimization is intended.  For  this imple- 
mentation  the cost of obtaining  intermediate  and final results 
of an expression is determined by the  type of access to  the 
tables  and  the size of the tables. The  optimization itself 
depends upon the definition of universal  relations,  which are 
used in mapping  the  relational  operations upon set  operations 
and  subsequently upon logical  operations. The  equivalent 
logical  expression can  then  be placed  in  a canonical  form  and 
subsequently  transformed  into a closed cover of prime impli- 
cants.  To  combine common  subexpressions a new relation 
“split”  is introduced.  Furthermore,  the logical  expressions 
may  be  transformed  to  satisfy  the  constraints of the  corre- 
sponding relational  operations  and  to  minimize cost. The 
factors within the  resulting  terms  are  then  ordered  to  further 
reduce cost.  Finally, the logical  expression  is transformed 
back  to a realizable  relational expression. The method as 
presented has been  embodied  in an  executable  prototype 
which is used to  demonstrate  the effect of optimization  for 
several examples. 

2. Background and theory 

Relations 
In  the  relational model the  data  item is the two-dimensional 
table called relation. The  columns of the  table  are labeled by 
names  that  are  called attributes, and  the  entries in each 
column are  taken  from a fixed set of values,  called the 
domain of the  attribute.  The  Cartesian  product of domains 
D l ,  D,, ..., D, is the  set of all  k-tuples (u , ,  u,, ..., u,) such 
that u ,  is in D l ,  u,  is in D,, ..., u,  is  in  D,. A relation is  a 
subset of the  Cartesian  product of the  domains of its attri- 
butes. In a relation  all tuples are different. Each  tuple is 
called a row or  an entry; the  number of attributes is the arity 
of the  relation;  the  number of tuples in  a relation r is the size 
of r. If R is the  set of attributes labeling the  columns of a 
relation r, then r is said  to  be  the current relation of R. R is 
called the relation scheme that defines the  format of r, and 
the  set of attributes is denoted by R(r) .  Sometimes we use 
table for relation  and column for  attribute. 

Functional dependency and key columns 
The values of entries in a relation often satisfy  functional 
dependencies. By a functional dependency of Y upon X, 
written X ”+ Y, we mean  that Y is determined by X, where X 
and  Yare  sets of attributes. I A tuple u taken  from r with attributes X belonging to R(r )  
is denoted by u [X]. Since  all  tuples  are  different, a relation 
satisfies functional  dependency X- Yif  and only if for all u, 

498 and u2 in r, u,[X] = u2[X] implies u,[Y] = u , [ Y ] .  
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If R is a relation scheme  with  attributes A,, A,, ..a, A, and 
X is a subset of A,, A,, . . ., A,, we say  that X is a key of R if 

1. X -  A, A, ... A,, and 
2. For no  proper subset Z of X is Z - A, A, . . . A,. 

There  may be more  than  one key for a relation.  Therefore, 
one of the keys may  be  designated  as  primary key. In  this 
paper, however, we recognize just  one key. 

0 Relational operators 
Relational  operators  may  either  be  monadic  or  dyadic. A 
monadic  relational  operator  has  one  relation  as  argument, 
and a dyadic  relational  operator  has two such  arguments.  In 
either  case  the  result is again a relation.  Relational  operators 
define a relational  algebra. 

Project 
The project operator PR is  a monadic  relational  operator.  It 
results in a new relation with attributes Y = {A,, A,, ..., A,,,} 
such  that Y CI R(r) .  We define PR (r, Y )  to  be {u[Y] I u 
E r}.  

The project  in general implies duplicate removal. The 
project can  be replaced by a remove column operator  RC, 
which eliminates  columns  but does not remove duplicates, 
and a subsequent duplicate removal operator  DR, which 
removes duplicate rows. 

Select 
The select operator SL is  a monadic  operator on relation r 
and uses an expression F which uses the  attributes of r as 
operands  and results  in a Boolean value. SL (r, F )  is the  set 
of tuples u of r for which F has a true result. 

The  attributes used by F are  generally called arithmetic 
attributes. If we can  write  the expression as B = F,, however, 
the  attributes of F, are called the  arithmetic  attributes of F 
but  the  single  attribute B of F is a free attribute. 

Union 
The union of two relations r and s is denoted by r U N  s. The 
union is defined for  relations  with  equal  attributes.  This 
means R(r )  = R(s) and  hence R(r )  = R ( r U N  s). The 
union of relations r and s is the  set of tuples  that  are  in r or s 
or both. 

The result of the union  should contain no duplicates.  In  the 
implementation, however, duplicates  are allowed, provided 
they  are  subsequently removed. We  exhibit  these two steps 
by assuming  that  the  output of U N  has  duplicates  and  that 
these  are  subsequently removed by a separate  duplicate 
removal operator  DR.  We  further distinguish the union 
operator U N  from  the disjoint union r D N  s, for  which it is 
known that  the  operands r and s have no  tuples  in  common. 
Whereas  the union U N  in general  creates  duplicates, D N  
creates no duplicates  and does not  require  DR. 
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Cartesian product 
The Cartesian product, or quad, is  a dyadic  operator,  written 
r QD s, where r and s are  relations of arity k,  and k,, 
respectively, and  their  attributes  are disjoint, i.e., R(r)  
n R(s) = 0. The  Cartesian  product of r and s is the  set of 
( k ,  x k,) tuples u, such  that u[R(r ) ]  = r a n d  u[R(s ) ]  = s. 

Intersection 
The intersection is  a dyadic  operator,  written r I N  s, where 
R(s)  C R(r)  and  where r I N  s is the  set of tuples u in r for 
which u[R(s ) ]  is ins .  

Difference 
The difference is  a dyadic  operator,  written r D F  s, where 
R(s) C R(r)  and  where r DF s is the  set of tuples u in r but 
with u[R(s) ]  not  in s. 

Exclusion 
The exclusion is a dyadic  operator,  writen r XC s, where 
R(r)  = R(s) and  where r XC s is the  set of tuples u in r but 
not  in s, or u in s but not  in r. 

The exclusion operator  can  be expressed by other  opera- 
tors, e.g., r XC s = ( r  U N  s) D F  ( r  I N  s). 

Join 
The join, also known as natural join [ 7 ] ,  is a dyadic  operator, 
written r J N  s, where R(r J N  s) = R(r) U R(s)  and  where 
r JN s is the set of tuples u with attributes R(r)  U R(s)  such 
that  there exist tuples u1 in r a n d  u, in s for which u, [R(r ) ]  
= u[R(r) ]  and u,[R(s)] = u[R(s ) ] .  

We  assume R(r)  n R(s)  # 0, to  distinguish  the  join 
from  the  quad.  Similarly, we assume R(s)  $L R(r),  to 
distinguish  the  join  from  the intersection. 

Calculate 
The calculate is a monadic  operator,  written C L  (r, X +- F ) .  
Calculate uses an assignment consisting of a left-hand  side 
specifying an  attribute X and a right-hand side  consisting of 
an  arithmetic expression F involving attributes U; the  attri- 
butes Y are a subset of R(r)  and  are called arithmetic 
attributes. 

If X E R(r),  then  the old attribute is replaced by the new 
attribute X with  values specified by F and  R(resu1t) = R(r) .  
If X €j! R(r),  then  the relation scheme of the  result is 
extended with X and  this column  is filled for all tuples  with 
the values specified by F. 

Rename 
The rename operator  changes  names of attributes.  It is 
denoted by R N  (r,  A, - A ,  B,  - B, ...). We only  consider a 
rename  that  introduces  an  attribute  name  that does  not 
already exist.  A rename R N  (r, B +- A ) ,  where B is an 
existing attribute, is equivalent to a calculate C L  (r, B - A )  
followed by a remove column  that  eliminates A. It is intro- 
duced  and  treated  as  such in the  paper. 

Figure 1 Tree representation of a  relational  expression. 

Implied project 
When  the  requirements  for R(r)  and R(s) in  union,  intersec- 
tion,  difference, and exclusion are not met, implied projects 
are  applied  that remove  a minimum of attributes  from r and s 
such  that  these  requirements become  satisfied. 

Relational expressions 
Relational expressions can be viewed as a sequence  of 
relational  assignments of the  form xi + relational operation. 
A sequence of assignments x , ,  x,, ..., x, can  be reduced to 
one  assignment x, when we eliminate xl ,   x2,  ..., x,-1.  For 
example, 

with R ( y )  = {A, B, C }  and R ( z )  = {B, C, D }  gives R(x , )  
= {A, B, C, Dl,  R(x2)  = {A, B } ,  and R(x3) = {A, B, W } .  
After elimination of x1 and x2, we obtain 

x3 +- C L  (PR ( y  J N  z ,  {A, B } ) ,  W -  A + B ) .  

Reversed Polish notation 
A parenthesis-free notation for the  relational expression can 
be  obtained by introducing a conceptual  stack upon  which 
the  relational  operators  operate.  Relations  are accessed by 
the  operator load, written LD r. This  operator conceptually 
loads  a table on top of the  stack. A monadic  operator 
operates on the  top of the  stack;  its result  replaces the  top of 
the  stack. A dyadic  operator  operates on the two top  tables of 
the  stack, removes these  tables  from  the  stack,  and places the 
result on top of the  stack. 

Tree representation of relational expressions 
Relational expressions can  be represented by binary  trees. 
The nodes of such a tree correspond  with the  relational 
operators.  The root,  which  delivers the  result, is at  the  top of 
the  tree;  the leaf nodes, which load the  operands,  are at   the 
bottom of the  tree.  The  example given above appears now as 
shown in Fig. 1. 

The  attributes  that  are present in the various tables  can  be 
represented by a binary vector whose elements  are  true 
(represented by 1) when an  attribute is present and  false (0) 
otherwise. When  the reversed Polish expression is written 499 
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ABCDW  ABCDW 

CL (W t A + B )  I100  1 

PR (A. B)  11000  

JN 
LD z l l l l O \  1 0 1 1 1 0  

LD Y 11100 

Figure 2 Tree representation of a relational  expression  showing 
attributes. 

from  bottom  to  top using an  indentation  for  the  attributes,  it 
matches  the  tree  structure.  The  example of this  paragraph 
then is as shown  in  Fig. 2. 

3. Evaluation of relational expressions 
To  demonstrate  the  optimization method we consider an 
actual  implementation used  for the  evaluation of relational 
expressions, even though  the  method is not  restricted  to  this 
implementation. 

0 Row-by-row treatment 
In  this  implementation  each node of the  tree  representation 
delivers its  table row by row to  the node above  it when 
requested to  do so. The first request  originates at  the root of 
the  tree,  the  top node. When a row reaches  the  top node,  a 
request for the next row is  issued. Searching  continues  until 
the  tree is exhausted. 

A node  corresponding to a monadic  operator  asks  its lower 
level for  the next row. As it receives a row, it  determines 
whether  this row fulfills the necessary criteria  and, if so, 
transforms  the row as  required  and  submits  it  to  its  upper 
level. If the row does not fulfill the  criteria,  the node 
repeatedly  asks for the next row until  either a satisfactory 
row is obtained or the  stream is exhausted. 

A node  corresponding to  some  dyadic  operator,  such  as a 
join, asks for  a row from  the  left  subtree  and a matching row 
from  the  right  subtree.  Depending on the kind of node, these 
rows are  tested,  combined,  and  sent  upwards. For other 
dyadic nodes, such  as a  union,  no matching occurs; rows are 
requested from  the left subtree  until  it is exhausted;  then, 
rows are  similarly  requested  from  the  right  subtree. 

0 Access methods 
The  relations in general reside  in  disk storage.  The  cost of 
accessing these  relations  can be expressed as  the  number of 
accesses to disk storage, called I /&.  

Index 
An index on one or more  attributes  may  be used to  retrieve a 
row from a table.  We  assume  that for each  stored  table  an 

500 index  upon its key is  available. If  an index is not  available on 

the  desired  attributes, we may  decide  to  make one. Making 
an index has a certain cost which must  be  taken  into  account 
in the  optimization process. The index  is  consulted to  test for 
the presence of a particular row, as  for a difference,  intersect, 
or join.  Depending  upon the  size of the index, this index 
inspection may involve one or more  I/O's. If the  particular 
row is not present, no further 1/0 is  necessary.  If it is  present, 
extra I /Os may  be necessary to  fetch  the  particular row, as 
for  the join. 

Sort 
Instead of using an index  the  participating  tables  may also be 
sorted on common attributes.  In  particular, in the  absence of 
a suitable index  upon an intermediate  result, a sort-merge 
operation  might  be an  attractive  alternative.  The  optimiza- 
tion method  can  be used  equally well to minimize the cost of 
sorts  instead of the cost of index  building, or even to  decide 
which of these two methods is  most advantageous. For the 
sake of simplicity, however, we always consider  in this  paper 
the  use  (and building) of an index rather  than  the equivalent 
sort operations. 

Sequential scan 
When  the rows of a table  can  be used  in the  order in which 
they  are  stored,  the  table  can  be accessed  sequentially. Such 
an access  usually has lower cost than accessing the rows of 
the  table via an index. 

cost 
The  actual disk  access time  depends heavily on the  available 
equipment,  the  general access methods used, and  the imple- 
mentation thereof. It is beyond the scope of this  paper  to 
treat  this  subject in detail.  We  assume  here a highly  simpli- 
fied access-time computation  and combine it  through  suit- 
able  parameters  with  an  equally simplified processing-time 
computation  to derive an overall  cost figure. This  computa- 
tion,  however,  is independent of the  optimization  method  and 
can easily be improved if more  exact  formulas for estimating 
time  are  available  and  are considered  worthwhile. 

In  the  current model the  direct  retrieval of a row of a table 
via an index to  the  table is considered to cost one 1/0 for  each 
row. This cost  is incurred  for  each  matching row of the  right 
operand of a join. The  sequential retrieval of a table, in 
contrast, is considered to yield several  useful rows per 1/0 
and  has a  correspondingly lower cost  per row. Sequential 
retrieval is  normally  used for a table  that is accessed as  the 
left  operand of a dyadic  operation, or as  the single operand of 
a monadic  operation,  but  also  for  the  right  operand of a quad 
or union. 

The inspection of the index of a table  to  determine  the 
presence or absence of a row without actually  fetching  that 
row is even lower in cost. This cost is  used  for the  intersection 
and  the difference. 
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The lowest cost is attributed  to  the processing time 
required by a select and  calculate. In the model this cost is 
actually  taken  as  zero,  but  as  stated,  it  can easily be adjusted 
to  another value. 

The cost of making an index is higher  than  all  these costs. 
As  stated, we assume  that  this cost occurs when  a table  must 
be accessed with a key for which no index  is  available. In the 
given implementation  duplicates  are removed as  an index is 
made.  Therefore,  the  cost involved in duplicate removal is 
taken  to  be  the  same  as  that for making  an index. The union 
and remove  column operations  are  assumed  not  to involve 
any cost; the cost of the  duplicate removal that is caused by 
them is separately  accounted for. 

Size 
The size of a  relation is used as a parameter in reducing  the 
cost of an expression. We assume  that  this size is known for 
stored tables.  The relative  size of intermediate  results is 
obtained with  a stochastic model. 

Stochastic model 
The  stochastic model  postulates  for each  attribute a set of 
occurring values of its  domain.  The size of this  value  set is 
assumed  to be known. From  the sizes of the  tables  that  are 
input  to  an operation and  from  the size of the value set of the 
common attributes,  the size of the  resulting  table  can  be 
obtained by computing  its  mathematical  expectation.  In 
reference [ 101 the size calculation is  considered in greater 
detail. 

Select 
The reduction of a table  as a result of a  select operation 
depends upon the  nature of the select  expression. We  assume 
that  the reduction rate of this  expression  is known [ 1 11 and 
available  to  the  optimizer  as a parameter, called FR  (frac- 
tion). Observe that  the select  expression uses only constants 
and  the  attributes of the  current  table.  Since  the values of FR 
are only used relative  to  each  other,  the  absolute value of FR 
need not  be known exactly. 

The  optimization of the select  expression  is beyond the 
scope of this  paper.  We note, however, that  the expression of 
the select operator  can  be broken up  into Boolean factors 
separated by AND operators [ 10, 121. These  factors  each 
give rise to a new select operator which can  be  treated 
independently in the optimization process. We  assume  that 
this decomposition of selects  precedes the  optimization  under 
discussion. 

4. Transformation to set operators 

Problem statement 
For a given relational expression the  optimization process 
should  deliver an expression  with the  same  net effect, but 

with  a minimal cost. A common strategy is to  reduce  the size 
of intermediate  tables in an equivalent relational expression 
by interchanging  adjacent operations.  Existing  systems  have 
used this idea by pushing  select operators  towards  the leaves 
of the expression tree [4-81. Another  general  approach is to 
recognize  common  subexpressions and  evaluate  them only 
once [13, 143. 

Our method transforms  the  relational expression into a 
suitable equivalent  expression of set  operations using inter- 
section,  union, and difference. The  set expression  is then 
transformed  into a Boolean expression  consisting of AND, 
OR, and  NOT operations. This expression is optimized  using 
logical minimization methods, but  taking  into  account  the 
constraints  and  the costs of the corresponding relational 
expressions. The logical transformation removes redundancy 
in the Boolean expression and copes  with  common  subexpres- 
sions. 

Universal relations 
Each relation can  be  treated  as a  set of tuples. The tuples of 
the various relations  that  appear in  a relational expression, 
however, are generally  not part of the  same universe,  since 
their  elements belong to different attributes.  Therefore,  the 
first step of our  method conceptually transforms  the partici- 
pating  relations  to  relations whose tuples are  members of a 
common  universe,  called universal relations. 

For a relational expression  with  relations r l ,  r2, ..., rk we 
construct a  universal  relation ur with  attributes R(rJ  
U R(r,)  U ... U R(rk).  The universal relation  thus  contains 
each existing attribute  just once. The  relation ur is filled with 
all  occurring values as follows. Let R(ur) consist of the 
attributes A , ,  A,, ..., A,. For  each  attribute Ai of ur, we form 
a  relation r i  with the single attribute Ai such  that rrj 
= PR ( T I ,  Ai) U N   P R  (r2, Ai) U N  ... U N   P R  (rk, Ai). If Ai 
is  not an  attribute of R(r j ) ,  then  the corresponding  project 
does  not participate in this union. The universal  relation  is 
now defined as ur = rrl QD rr2 QD ... QD rr". 

In  other words,  for  every attribute Ai occurring in the 
relational expression, we place all  occurring values of attri- 
bute A, of any relation r in  a  one-column relation rrj. The 
universal relation ur is formed by the  Cartesian product of all 
the  relations rrr 

Having  formed  the universal relation, we replace every 
relation rj by r; = rj QD PR (ur,  R(ur) - R(r j ) ) .  Thus we 
project out of the universal  relation ur those columns  that  are 
not  present  in ri and  form  the  Cartesian  product of this  table 
with ri. 
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'i' 
PR (A, B )  

LD r,(A. B ,  C )  

LD rz(A, B ,  C )  

Figure 3 Relational  expression with a project  below a join. 

LD r2(A. B ,  C) 

Figure 4 Relational  expression with project  moved  to the top of 
the tree. 

t 

Project 
As a rule we move all project operators  to  the  top of the  tree. 
There  they  can  be combined and applied to  the universal 
relation,  in what we call a universal project. 

Columns which are removed by the project operator  and 
would otherwise participate in  a join  or intersection must be 
renamed before the  project  can  be moved to  the  top of the 
tree.  Take, for example, PR (r, A ,  B )  with R(r) = {A,  B, C ] .  
We  rename  attribute C of R(r) to C,. Thus, if C participates 
in  a join  that follows the project, there is  no conflict. After 
this  rename, we can move the  project  to  the  top of the  tree. 
This  case is illustrated in  Fig. 3, where  tables r ,  and r2 have 
attributes {A,  B, C]. 

The  tree of Fig. 3 can now be replaced by the  tree of Fig. 4, 
with  the project appearing at   the  top. The combination R N  
and  LD  can be treated  as a new table, with attributes A,  B, 
C,. This prevents column C from being used as a join 
column. 

LD r,(A. B )  

Figure 5 Relational  expression with a project  below a difference. 

We  can now verify that  the following relationships hold: 

r: C ur, 

ri C PR (ur, R(r i ) ) ,  

rj = PR (r:, R( r j ) ) ,  

ri J N  rj = PR ( ( r :  I N  ri) ,  R( r j )  U R(rj)) ,  

ri Q D  rj = PR ( ( r :  I N  ri) ,  R(r i )  U R(r j ) ) ,  

ri IN rj = PR ( ( r :  I N  ri) ,  R( r i ) ) ,  

ri D F  rj = PR ((ri D F  rl) ,  R(r i ) ) ,  

ri U N  rj = PR ((r:  U N  r;), R( r i ) ) .  

The  introduction of universal relations  permits  transforma- 
tion of joins  and  quads  into  intersections  and  makes  it 
possible subsequently  to  treat intersection,  difference, and 
union as  set  operations. 

Of  the  remaining  relational  operators,  the select and 
calculate  are  transformed  such  that  they  also  can  be  treated 
as  set  operators;  the  project  and  rename  are moved to  the 
periphery of the expression, where  they  affect only the  output 
of the expression or  its  input.  (Thus  they need not  be 

502 transformed  to  set  operators.) 

In  case  the  right  operand of a difference contains a project, 
we again  rename  the  attribute  that is removed by the project. 
The  left  operand  must  also  be  extended with this  attribute 
such  that  the difference  applies to universal  relations. In 
contrast  to  the intersection, however, the extension of the  left 
operand is not with the full domain of the removed attribute, 
but with such a subset of this  domain  that  the  net effect of the 
difference  is  not altered.  This  requirement is taken  into 
account in the  subsequent minimization. 

In  the  example of Fig. 5 ,  attribute A is projected away.  We 
rename A to A ,  in the  right  subtree  and  expand  the  left 
subtree with an  attribute A,  with such values that  the new 
expression  is  equivalent to  the original expression. The 
project can now be moved above the difference. 

Select 
The select can  be  transformed  into  an intersection with a 
so-called select table. For select S L  (r, F )  we obtain  the 
select table, rselect, by selecting out of relation r those  tuples 
for which F becomes true;  hence rselect = S L  (r, F ) ,  and 
SL (r, F )  can  be replaced by r IN rselect. In  the examples 
this  substitution is assumed  to  be  made; hence a select is 
shown as a  select table followed by an intersection. 

Calculate 
The  calculate is transformed  into a join with  a so-called 
calculate table, rcalc. As a first step we introduce project and 
rename  operators  to avoid conflicts  between the  attribute 
generated by the  calculate  and existing attributes.  There  are 
three types of calculates  illustrated by the examples  in Figs. 
6,  7, and 8. In  each  case  the expression a t  right is obtained 
from  that  at left. 
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Figure 6 illustrates a calculate  that  changes a column 
using its old  value. We first rename  the  column B, which is to 
be  changed,  to B, .  Then we use B, in the  calculate  and 
subsequently remove it by a  project. In  general, with X in 
R(r) and X used by F, C L  (r, X - F(X,  Y ) )  is  replaced by 
PR  (CL  (RN (r, X ,  - X ) ,  X - F(X, ,  Y)), R(r) ) ,  where Y 
represents  all  attributes  that  are  not  changed. If a calculate 
produces a new value  for an existing column  without using 
that  column,  the  transformation is  basically the  same.  This 
case is shown in Fig. 7. With X in R(r )  but  not used by F, 
C L  (r, X - F ( Y ) )  is replaced by PR  (CL  (RN (r,  X ,   - X ) ,  
X - F ( Y ) ) ,  R ( r ) ) .  When, however, a new attribute is 
generated, no change is required  (Fig. 8). With X not  in 
R(r),  C L  (r,  X - F ( Y ) )  remains  unchanged. 

The  calculate  operators now have  the  property  that  they 
calculate only new columns. 

We next replace a calculate C L  (r, X - F(X,,  Y ) )  by 
r J N  rcalc with rcalc = PR  (CL (r, X - F ( X , ,  Y ) ) ,  X ,   X , ,  
Y ) .  In  case X ,  and  Yare  empty, F is a constant  and  the  join 
becomes a quad.  These  substitutions  are  again  assumed  to 
have  been made in the examples  shown in this  paper. 

The artificially introduced select and  calculate  tables  are 
called special tables. In contrast,  the  tables of the  original 
relational expression are called regular tables. 

Rename 
As  stated  earlier,  the  renames  that  are  part of the  original 
expression are  treated  as  calculates.  But  the  renames  that  are 
generated by projects and  calculates  are pushed  down to  the 
leaf  nodes of the tree. They  are  then combined  with the 
stored  tables. These  tables  thus  obtain new attributes  and 
become distinct  from  the  same  table in which this  transfor- 
mation is not  performed.  When a table is used a t  several 
places  in a relational expression, the corresponding set 
expression may have  different variables a t  those places 
because of this  renaming. 

Load 
A  project that applies directly  to  the load of a regular  table is 
combined  with that  table,  thus  introducing a new table, 
instead of moving the  project  to  the  top of the  tree.  When  the 
removed attributes  are  part of the key of the  table, however, 
the project is always moved to  the  top of the  tree. 

Construction of universal tables 
The  relational expression can now be rewritten in terms of 
universal  relations. With  the  relational expression written in 
reversed Polish notation,  the  operators  are processed as  they 
are  encountered: 

1. Calculate is replaced by a join with a calculate  table,  and 

2. Project  may  produce a rename. 
may produce a rename  and a  project. 

t t 
CL (E t B + A )  PR (A ,  B )  
LD r(A, E )  CL (E t E ,  + A )  

RN (B, t E )  
LD r (A,  E )  

Figure 6 Transformation of a  calculate  that uses and changes a 
column. 

'p t 
CL (Ct A + B )  PR (A,  B ,  C ) )  
LD r (A,  B,  C )  CL (C  t A + B )  

RN (C, t C )  
LD r(A, E ,  C )  

Figure 7 Transformation of a  calculate  that gives a column a new 
value. 

t 
CL (Ct A + B )  
LD r (A,  B )  

Figure 8 A calculate  that  generates  a new column. 

3. Rename produces new attributes  and new tables. 
4. Select is  replaced by an intersection with a  select table. 
5. Joins  and  quads  are replaced by intersections. 
6 .  Unions,  differences, and intersections remain  unchanged. 

The process described  above  leads to  an expression  consist- 
ing exclusively of unions,  differences, and intersections, 
which can be interpreted  as  an expression of set  operations. 

Preservation of information 
The universal  project that precedes the  relational expression 
is preserved as  such.  The  relations involved in the expression 
are  the  extended  regular  relations  and  the  extended special 
select and  calculate tables. For the  regular  relations we 
remember  their original attributes  and keys. For the special 
tables we keep  a  record of the  arithmetic  and  free  attributes 
that  are  required for the  operation  from which they were 
derived. The  nature of a special table,  such  as a  select or 
calculate, is also  recorded, including the select or  calculate 
expression. 

The preservation of information  ensures  that no informa- 
tion is lost that is needed for  optimization  and  back  transfor- 
mation. 

Logical optimization 

Transformation to logical operations 
The expression of set  operations is  replaced by a  logical 
expression by substituting  for  the union an OR, for  the 
difference an  AND-NOT,  and for the intersection an  AND. 503 
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Figure 9 Example of the  transformation of a relational  expression 
to  a  logical  expression. 

The logical  expression operates on a set of variables asso- 
ciated with the  regular  and special  tables. 

A logical expression  is a logical function whose variables 
can  take  either  the value true  (1) or false (0). A  logical 
function  can be specified by tabulating  the  function  as a 
so-called truth  table. Thus  the  relational expression of Fig.  9 
yields a  logical  expression. By tabulating  the  output of this 
expression  for all  32 possible input values, the  truth  table of 
Fig. 10 is obtained.  The  names of the  input  variables, derived 
from  the  relations rk, are chosen  in such a way that a binary 
number  can  be derived from  them.  The suffix k corresponds 
to a bit in the  binary  number,  where suffix 0 corresponds 
with the most  significant  bit. In Fig. 10  the  binary  number is 
represented by 5 bits. The  truth  table  contains  all possible 
5-bit input values 0 . . . 3 1. 

The  truth  table  can  be condensed by giving only the rows 
for which the  function value is true. By giving the  decimal 
equivalent of the  binary codes, we can  write  the  truth  table 
even more  compactly.  Thus  the  truth  table of Fig. 10 
becomes  16 17  19  20  21  23  28  29 3 1. For example,  28, 
which in binary is 11100, means ro A r, A rz A (-r3) 
A (-4). 

When  this specification  is given in  a Karnaugh  diagram 
504 [ 151, as in Fig. 11, we can visually observe the  binary 

encoding. The  Karnaugh  diagram is akin  to  the  Venn 
diagram. It displays the  relation between the  variables  and 
codes, which we use in the minimization. 

Observe that Figs. 10  and 11 no longer contain  the 
particular  structure of Fig. 9, yet  they  are its exact logical 
equivalent.  Therefore,  the  truth  table  and  the associated 
information  about  its  variables is  a general  and  neutral 
starting point  for the minimization process. 

0 Logical expression optimization 
The goal of the logical  expression optimization is to minimize 
the cost of executing  the corresponding relational expres- 
sions, as defined in the section  “Cost.” The  optimization of 
these logical  expressions  is akin to the  minimization problem 
in digital switching theory [ 161. We briefly mention  the 
major concepts of this theory. For  each  function specifica- 
tion, we can always find a so-called canonical form which 
corresponds to  the OR of several terms whose factors  are 
separated by AND  and  AND-NOT.  We next change  the 
canonical  form  such  that  the  number of terms is reduced  as 
well as  the  number of factors in the  terms.  Subsequently, we 
verify whether  these  terms  can  be realized.  If  not, an 
inversion  is  applied resulting  in a new set of terms.  The 
realizable  terms  are  then optimized by changing  the  order of 
the  factors in the  terms. 

Canonical form 
The minimization starts with the specification of the logical 
function as a truth  table,  as  indicated in the section “Trans- 
formation  to logical  operations.” The rows of the  truth  table 
that  are  true  can  be satisfied by a  sequence of terms 
separated by OR operators.  Each  term comprises all vari- 
ables  separated by an  AND or an  AND-NOT  operator.  This 
is the canonical form, and  the  terms  are called canonical 
terms. Each  variable  occurs once and only once as a factor in 
a canonical  term. 

The  canonical  form is represented by a  series of terms  such 
as (0 A 1’ A 2‘ A 3’ A 4’) v (0 A 1’ A 2’ A 3’ A 4), where 1’ 
means NOT 1, and  the  variables 0, 1,  2, 3, 4 are  abbrevia- 
tions of r,,, rI, rz, r,, r4, respectively, and correspond to 
relational tables. This  example shows the first two  terms, 
terms  16  and 17, of the  function for the  truth  table of Fig. 
10. 

Constraints 
Each  term of the  ultimate expression must obey the con- 
straints  that  are  inherent in the corresponding relational 
expression. Otherwise  this expression  is  not  realizable. 

First, a factor preceded  with  a NOT is called  a negative 
factor. Such a  negative factor  may not appear first  in  a term 
since we cannot  manage  the corresponding complement of a 
relation. 
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Second, for ti AND  NOT ti the  attributes R(t j )  should  be a 
subset of R(t,) .  Otherwise, the corresponding difference 
operator is  not realizable. 

Third,  a factor corresponding to a special table is called a 
special factor. Such  a special factor must  be  preceded by 
other factors such that the  arithmetic  attributes of the 
special tables are a subset of the  attributes provided by the 
preceding tables. 

Prime implicants 
The number of terms  and  the  total number of factors that 
appear in all the terms can be reduced by finding the prime 
implicants of the given  expression, as is standard practice for 
logical minimization. This reduction is  based on the theorem 
(x A y )  v (x A y ' )  = x, which is based on the following 

I postulates of  Boolean algebra: 

Distributive law: (x A y )  v (x A z)  = x A ( y  V z), 

Complement law: x v x' = 1, with 1 = true, 

Identity law: x A 1 = x. 

Hence two terms that differ in only one factor (two adjacent 
terms) can be combined into one term with one less factor. 

A Boolean function f implies a function g if for  every v 

satisfying f ( v )  = true it is also the case that g(u)  = true, 
where u is the complete set of variables occurring inf. An 
implicant of a logical function f is a term that impliesf. A 
term t ,  subsumes a  term t ,  if all the variables of t ,  are 
contained in t , .  A prime implicant of a given  logical function 
f is an implicant off such that no other term subsumed by the 
prime implicant is an implicant off. 

In the example of Fig. 10 the prime implicants are 

O A  l 'A3 '  (16  172021), 

ro r, rz  r3 r4 Value 

0 0 0 0 0  0 
0 0 0 0 1  0 
0 0 0 1 0  0 
0 0 0 1  1 0 
0 0 1 0 0  0 
0 0 1 0 1  0 
0 0 1 1 0  0 
0 0 1 1 1  0 
0 1 0 0 0  0 
0 1 0 0 1  0 
0 1 0 1 0  0 
0 1 0 1 I  0 
0 1 1 0 0  0 
0 1 1 0 1  0 
0 1 1 1 0  0 
0 1 1 1 1  0 
1 0 0 0 0  1 
1 0 0 0  I 1 
1 0 0 1 0  0 
1 0 0 1 1  1 
1 0 1 0 0  1 
1 0 1 0 1  1 
1 0 1 1 0  0 
1 0 1 1 1  1 
1 1 0 0 0  0 
1 1 0 0 1  0 

1 1 0 1 1  0 
1 1 0 1 0  0 

1 1 1 0 1  1 
1 1 1 0 0  1 

I l l 1 0  0 
1 1 1 1 1  1 

Figure 10 Truth table for the expression of Fig. 9. 

"""""""" 0 
2 """""""" 

Figure 11 Karnaugh  diagram of Fig. 10. 

0 A 1' A 4 (17 19 21 23), 

0 A 2 A 3' (20 21  28 29), Quine [ 161; that for finding the minimal cover  is  based  on 

0 A 2 A 4 (21 23 29 31), McCluskey [ 171; both are used  in the prototype, which  is 

The algorithm to determine the prime terms is based on 

described in [ 101. 
with  in each case the function values shown  between paren- 
theses.  In the  Karnaugh  diagram of Fig. 11 these prime The prime terms may overlap. This means that they may 
implicants are indicated by an oval. The adjacency of terms have canonical terms in common. F~~ example, both 
is  displayed by adjacency of position (perhaps across the (1 6 17 20 2 1) and (1 7 19 2  1 23) satisfy 17 and 2 1. 
boundary) in small diagrams. 

We now replace the canonical solution of 9 terms and 45 after the union of subtrees, a duplicate 
Prime terms that overlap may create duplicates. Hence, 

factors with the prime implicant solution of 4 terms and 12 
factors. In the given example all prime implicants are 

removal  is necessary. 

necessary for the solution. This is  not true in general. Identities 
Therefore, after finding the complete set of prime implicants, The representation of a logical function with prime impli- 
a minimal cover of these prime implicants is selected such cants eliminates any redundancies that may  have  been part 
that all function values are satisfied  with a minimum number of the relational expression from which the logical function is 
of terms. derived. The logical minimization, however,  does  not take 505 
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0 ’ \(l’A3 ’ )V( l ‘A4)V(2A3 ’ )V(2  A 4 )  

Figure 12 Common factor with right subtree. 

t 

9””\ 
( 1 ‘ A 3 ’ ) V ( I ’ A 4 ) V ( 2 A 3 ‘ ) V ( 2  A 4 )  0 

Figure 13 Common factor with left subtree. 

0 

Figure 14 Use of the split operation. 

because X A Y A Z subsumes X A Y and  the  renamed 
attribute P is a subset of the  renamed  attributes P and Q. 

We  can now state  that if within  one  term  there  are  two 
complete  sets of factors,  such  that  the first set is a compatible 
subset of the second set,  then  the first set  can  be removed. 

Second, if within  a term a set of factors is negated  and  that 
set is a complete  set of factors  that is a compatible  subset of a 
complete set of factors in the  remainder of the  term,  then  the 
entire  term  can  be  deleted. 

Third, if within  a term  two  sets of factors  are  negated,  and 
the first  set is a complete  set of factors  that is a compatible 
subset of a complete  set of factors within the second negated 
set of factors,  then  the second negated  set of factors  can  be 
deleted. 

Fourth, if a term  contains  one or more  complete sets of 
factors  such  that  each is a compatible subset of a complete 
set of factors in  a  second term  and if the  other  factors of the 
first term  also  appear in the second term,  then  the second 
term  can  be  deleted. 

into  account  the  nature of the  tables  that  are  part of the 
corresponding relational expression. Some  tables  may  permit 
further reduction of the logical  expression. 

Derived tables A J N A l - A 1   J N A - A ,  (1) 
Tables  that  are derived from  others  through a generated 
rename  are called derived tables, and  the corresponding A DF 9 (2) 
factors  are  called derived factors. As an  example, in the  term ( B  I)F A I )  DF A - ( B  DF A )  DF - B DF A I ,  (3) 
X1 A 2 2  A Y l  A X 2  A Y2,  the  factors X1 and Y l  are derived 
from  tables X and Y by renaming  their  attributes P and Q to ( B  J N  A )  UN ( B  J N  - J N  (4) 
PI and QI* whereas  the  factors x23 y 2 ,  and 2 2  are derived In Eqs. (3) and (4) the  factor B has  the necessary attributes 
from X ,  Y, and Z by renaming only P to P2. to  satisfy  the  constraints of the expression. 

These  rules  are  summarized by considering  a complete  set 
of factors AI that is  a compatible  subset of another  complete 
set of factors A.  Then  the following equalities hold: 

Derived factors corresponding to derived tables in which 
the  same  attributes  are  renamed  to  the  same new attributes, 
or are  deleted,  are called compatible derived factors. Thus, 
XI and YI are  compatible derived factors,  but not X1 and 
x 2 .  

Common factors 
The solution with  prime  implicants  can  be  further improved 
by exploiting the  occurrence of common  factors.  If some 
terms have one  or  more  factors in common, we can  combine 
these  terms by isolating the common factors. 

A set of all derived factors within a term  that  are  mutually 
compatible is called a complete set of factors. In  the given 
example XI and Y l  form a complete  set of factors,  but  not 

For  the  example of Fig. 9 all  prime  terms have the  factor 0 
in common.  Hence we can  write  the expression as 

X 2  and YZ, since 2 2  should be included as well. o A ( 1 ’ A 3 ’ V 1 ’ A 4 V 2 A 3 ’ V 2 A 4 ) .  

One  complete  set of positive factors is  considered  a corn- There  are several possible ways to proceed from  this 
patible subset of another  complete set of positive factors if Point. 
the  originals of the second set  subsume  the  originals of the 
first set  and if the  renamed  attributes of the second set  are a First, f can be decomposed as shown  in  Fig. 12, with  the 
subset of the  renamed  attributes of the first set. For our common factor 0 as  the left subtree  and  the compound factor 

506 example X1 A Y l  is a compatible  subset of X 2  A Y 2  A 2 2  as  the  right  subtree. 
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requires an index for the right subtree. A second  possibility 
has the common factor as  the right subtree and the com- 
pound factor as the left subtree, as shown  in  Fig. 13. 

If there is a usable index on 0, which is normally the case 
with a stored table, we could  allow this possibility. The left 
subtree, however, contains a term with negative factors only. 
This term cannot be realized since each term must begin  with 
a positive factor. 

/ O R \  < AND\ (3 ’V4) rh”.; 
Q SP /AND\,, 

I 
0 

A third possibility  is to ignore the common factor and 
build the terms separately. This has the disadvantage that Figure 15 Further  extraction of common  terms. 

the common factor is evaluated repeatedly. 

To evaluate the common factor only  once, we introduce in 
the next subsection an operation called “split” that has the 
property of sending the result of the common factor to two 
destinations. 

Split  operation 
A split operator, written SP, has one input and two outputs. /OR\ /OR\  
Split has the property of making its input available at both c p  (y 
outputs with the input evaluated only  once. Thus, the use of a 
split is always advantageous over the evaluation of separate 
terms. In the given example we save three sequential accesses 

t 

/OR 1 

SP 
I 

SP 
I 

of table 0. 

To use the split we must partition the expression that 

I 

/ANT,, 
follows the common term. This partitioning is performed by 
an algorithm that tries to get a maximum number of common 
factors in each of the two parts. We decompose the left I 
subtree of  Fig. 13 into two  expressions,  recognizing  two 
terms with  common factor 2 and two terms with  common Figure 16 Repeated  use of split  operation. 
factor l’, as shown  in  Fig. 14. 

0 

In the left subtree we factor 2, in the right subtree we 
factor l‘, which  gives  Fig. 15 as a result. 

Next we use the split in the remaining expressions as 
shown  in  Fig. 16. 

t 

The relational expression that is equivalent to Fig. 16 is 
shown  in  Fig. 17, where we have replaced AND 2 by IN 2; 
similarly, AND 1’ is replaced by DF 1, OR by UN, etc. 

Constraints of the split operation SP 

The use of the split operation presupposes that  the common I I 
term that serves as  its input can be realized. This, in turn, 
requires that  at least one positive factor be  derived  from a c ~ l  //9” 
regular table in the common term. In the given example the 
common term is the positive factor 0, derived from ro. Hence 
table r,, can be  accessed and its rows presented sequentially to 5” 
the split operation. If the common term had been 0’ or a 
special table, this would  have  been  impossible. In general the Figure 17 Relational  equivalent of Fig. 16. 507 

LD 0 
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Figure 18 Solution of operators. 

common term  can have  several factors. As long as  at  least 
one of them is positive and  regular,  the  split can be used. 
Common negative factors  and special factors  must  be realiz- 
able;  that is, all  attributes of the negative factors  and  the 
arithmetic  attributes of the special factors  must  be covered 
by the common positive factors.  The  nonrealizable  factors 
are placed  in the  branches following the split. Once  the split 
can be used, subsequent splits can  always  be realized, as 
illustrated in  Fig.  16. 

Semantics of the split operation 
If the  prime  terms  that  are  combined by a split  operation 
overlap, the corresponding  union may deliver duplicate rows. 
It is possible to avoid these  duplicates, however, by a suitable 
choice of the  semantics of the split and  its corresponding 
union [lo]. Because this union  is  a particular  function, we 
denote  it by N D  (for  “end”) in  contrast to the union UN, 
which may deliver duplicates. 

Stack operators for the split function 
We  introduce  the two dyadic  operators T N  and  ES, which 
are  abbreviations of THEN  and  ELSE, respectively,  which 
operate on the  top of the  stack of tables. The  operator T N  
conceptually duplicates  the  top of the  stack.  The  operator  ES 
reverses the  two  top locations of the  stack.  With  the  use of 
T N  and  ES we can  write a  solution  in  reversed Polish 
notation. Thus,  the  example of Fig. 17  can now be written  as 
in Fig. 18. The row-by-row implementation of TN,  ES, and 
N D  avoids the  string of the  result of the common  subexpres- 

508 sion. 

Nonoverlapping terms 
When  there  are no regular positive common factors,  the  split 
cannot be used and  the solution must use a union  combining 
two sets of prime  implicant  terms.  Again a partition algo- 
rithm is  used to divide  the  terms  into  two groups. This  time 
the  algorithm optimizes the  occurrence of regular positive 
common factors in each of the two groups,  such  that for these 
groups  the  use of a split is favored. 

In  general  the union that combines these two groups will 
meet  duplicates in the rows that  it receives from  its two 
operands.  Since a duplicate removal  is  a  costly operation, we 
accept overlapping terms only if a duplicate removal is 
necessary anyway  for  other reasons. 

When a t  least  one of the  groups  can be realized  without 
duplicates, we change  the second set of terms so that  it does 
not  overlap the first set. The union now reduces  to a  disjoint 
union DN because  nonoverlapping terms have  no  common 
tuples. As  an  example we consider the expression  in Fig. 19. 
The specification function is given in the  Karnaugh  diagram 
in  Fig. 20. We  can derive  two  nonoverlapping terms by 
taking 

0 (2 31, 
1 AO’ (1). 

Therefore, an equivalent solution is 

O V  1 AO’. 

The corresponding relational expression  is shown in  Fig.  21. 
It  trades  the  duplicate removal of the overlapping  union for 
the index  inspection of a  difference. A more  elaborate 
application of this principle is found  in Example 6 ,  Section 
8. 

Negative terms 
We observed in the  creation of universal tables  that a project 
in the  right  subtree of a  difference introduces a renamed 
attribute in the  left  subtree of the difference whose value  set 
depends upon the  right  subtree.  Such a  value  set cannot 
easily be realized. But  it need  not be realized if the  renamed 
attributes of the  right  subtree  are properly  combined in the 
ultimate expression. For  the logical terms  this  means  that  the 
attributes of a negative  factor  must  be covered by the 
attributes of the positive factors. If  not, the  terms in which 
these  attributes occur are inverted by applying  De Morgan’s 
theorem: (-x) v ( - y )  = -(x A y ) .  This negative term is 
then combined  with  a  common factor  through a  difference. 
Thus,  the two terms  obtained  for  the  example of Fig. 5 are 
1 A 2’ and 1 A 3’. In  these  terms  the  renamed  attribute A ,  of 
the negative factors 2’ and 3’ is not present in the  regular 
positive factor 1. Hence  the expression is rewritten  with  De 
Morgan’s theorem  as 1 A -(2 A 3). Therefore, in this 
example  the optimized result is the  same  as  the  original.  In 
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general, however,  some optimization within these constraints 
is still possible, as illustrated by Example 8, Section 8. 

Decomposition algorithm 
The steps of the decomposition algorithm encountered so far 
are: Obtain  the canonical form from the relational expres- 
sion; derive the prime implicants; determine a minimal 
cover. 

We adopt the following strategy for splitting a cover  of 
more than one term: 

IF a regular positive  common factor has occurred in the past 
or occurs now 

IF all terms involve attributes that  are not  properly 

THEN determine the inverse of those terms and apply one 

ELSE apply a split operator and split the cover into two 
sets of prime implicants, the first of which contains all 
terms with improperly covered attributes; if the first set 
is empty, the split is such that the number of  common 
factors is optimal. 

THEN 

covered  in some terms 

or more differences to the inverted terms. 

ENDIF 
ELSE split the prime implicants into two parts such that the 

parts have an optimal number of regular positive  common 
factors. 
IF  the universal project does  not  spoil the key  of the first 

part 
THEN specify the second part nonoverlapping  with the 

first (this normally involves the derivation of a new set 
of prime implicants). 

ELSE place a  DR (duplicate removal)  above the union 
unless a DR  is set subsequently, and retain the overlap- 
ping prime implicants of the second part. 

ENDIF 
ENDIF 

Repeat the algorithm until a single term is obtained. For a 
single term the DR is placed at  the end of the  term when the 
key  is spoiled. 

6. Term  optimization 
Ultimately the original expression is broken up into terms, 
separated by splits, differences, and unions. A  term may  be 
located at the periphery of the tree; it can also be situated 
between a TN and ES or  an ES and ND. In the term  there 
are positive factors and negative factors of regular or special 
tables. Factors may  be interchanged taking the constraints 
into account. Also, the term should contain the necessary 
index generation and duplicate removal. 

Term optimization criteria 
The  term optimization uses the following heuristics, which 
reflect the cost criteria mentioned  in the section on cost. 
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Figure 19 Overlapping union. 
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Figure 20 Karnaugh diagrams for overlapping and nonoverlap- 
ping unions. 

t Dp\LDo LD 1 

LD 0 

Figure 21 Nonoverlapping union. 

First, the generation of an index  is  avoided  where  possible; 
second, an intersection is preferred over a join; third, a 
special table is preferred over a regular table; fourth, a join or 
difference with a  table that gives a large reduction is  placed 
earlier than one that gives a smaller reduction. 

Nature and reduction of factors 
As is  common for a hierarchy of criteria, they are applied in 
ascending order, starting with the weakest and ending with 
the strongest. Thus  the terms are first  placed  in the 
ascending order of the fraction of the value set that their 
table contains (for the positive terms) or does  not contain (for 
the negative terms). Next, the special tables are placed  in 
front of the regular tables, leaving the order within each set 
unchanged. 

As an illustration we refer to Example 5 of Section 8. This 
expression has the logical equivalent of just one term of eight 
positive factors 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7. The factors 0, 
1,2,3  are regular factors with a fraction of 1;  the factors 4,5, 
6,7 are special factors derived from selects with a fraction of 
0.7, 0.9, 0.4, 0.5, respectively. After the sort, their order 
becomes 6 7 4 5 0 1 2 3. 

Non-index groups 
The factors are now grouped. Starting with each factor, a 
group is  formed of all factors that can be  combined without 
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recourse to building an index. Hence regular positive factors 
should have their key attributes covered by the  attributes of 
preceding factors, negative factors should have all attributes 
covered, and special positive factors should  have their arith- 
metic attributes covered. Positive regular factors give  cover- 
age with all their  attributes; positive special factors give 
coverage only  with their free  attributes. 

When the  term is  preceded by the common factors of a 
split, the positive factors of the common term give a  starting 
cover. Otherwise, there is  no starting cover. When a positive 
factor is  placed  in a group, its  attributes can be  used  in turn 
to cover other factors. Hence grouping is a converging 
iterative process. 

For our example the nature of  keys and  arithmetic attri- 
butes shown  in Section 8, Example 5 ,  gives the eight groups 
0, 14 ,   25 ,   3675 ,   41 ,  5, 6 7 5 3 ,   7 6 5 3 .  

Meta-groups 
When all groups are obtained, those groups that  are a proper 
subset of another group are eliminated. This leaves a  set of 
groups such that each factor is  in at least one group, and all 
groups start with a different factor. The groups are now 
combined into meta-groups; all groups within a meta-group 
contain the  same set of factors. One member of a meta-group 
must  be selected and the order of these selected groups must 
be established. 

From the eight groups of our example the group contain- 
ing table 5 is eliminated, since it is a proper subset of group 
2 5 .  Next, four meta-groups with 1,2,1, and 3 members each 
are obtained: 0; 1 4, 4 1; 2 5; 3 6 7 5,6 7 5 3,7 6 5 3. Ob- 
serve that the factor 5 appears in  two meta-groups. 

Order of groups 
We now establish all possible orderings of groups. First we 
determine all permutations of the meta-groups. Next we 
replace for each permutation every meta-group, in turn, by 
each of its members. 

Thus, for the four meta-groups of our example, 24 meta- 
group permutations are derived, and by substituting groups 
for meta-groups, 24 x 1 x 2 x 1 x 3 = 144 orders are 
obtained. These 144 orders to be investigated are far less 
than  the 40  320 permutations of the eight constituting fac- 
tors. 

Valid group orders 
The number of group orders is reduced by first testing the 
validity of each order. Each group should start with a regular 
positive factor unless the first factor of that group is suitably 
covered by the attributes of the preceding groups or of a 
possible  common term. In our example the number of orders 
is thus reduced from 144 to 24. 

Maximum  key join 
The valid group orders are further reduced by taking those 
orders that allow a maximum number of  key joins between 
groups. The key join applies only to groups whose starting 
factor is covered by more than one preceding group. In the 
given example no key joins between groups are possible, so 
the number of orders remains unchanged. 

Minimal join cost 
From the remaining orders the one with minimal join  cost is 
finally selected. For each order the intersecting value sets are 
determined using the stochastic model and from this the 
increase or decrease in size that results from joining the 
groups. The sum of all intersection sizes then gives a relative 
cost  figure. 

For our example the order 2 5 ,  3 6 7 5, 0, 1 4 is selected, 
which has intersecting sizes of 2, 4, and 20, as shown  in 
Example 5 ,  with a relative cost figure of 26. Placing the 
group 1 4 first instead of last, for instance, would have given 
intersecting sizes of 30, 60, and 120 with a cost  figure of 
210. 

Order within groups 
Now that the order of the groups has been established, the 
order of the factors within each group can be determined. 
Since the  starting cover  of the group is  known, the factors 
whose attributes are covered are placed  in the order estab- 
lished  in the section “Nature and reduction of factors” to 
form ultimately intersections or differences. The remaining 
factors that have their key or arithmetic  attributes covered, 
ultimately resulting in joins, are now investigated in turn. 
The least expensive solution is obtained using backtracking. 
After the placement of each join, intersections and differ- 
ences may  become  possible again; the process  is repeated 
until all factors are placed. A relative cost factor, derived 
from the stochastic model,  is applied such that the optimum 
solution can be retained. In our example the order within the 
groups is  not changed. 

7. Transformation of logical to relational opera- 
tions 
Once a suitable form has been obtained for the logical 
analogon, its expression must be transformed back to a 
relational expression. Formally, two steps are involved. The 
first maps logical operators upon set operators, which  is 
trivial. The second step maps the set operators upon the 
relational operators such that an expression in terms of the 
original tables, as well as  the original select and calculate 
operators, is obtained. 

Table transformation 
Since for each variable the originating table is  known, a load 
of a variable can be changed to a load of a table. If the  table 
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was created  out of an original  table by renaming  one or more 
of its  attributes,  the derived table  name is replaced by the 
original  table  name  and  rename  operators  are  introduced  as 
needed. 

Remove column 
The  project  appears as the universal project at  the  top of the 
tree at  the  start of the reverse transformation.  This  project is 
decomposed into a  remove column,  RC,  and a duplicate 
removal, DR.  During  the  transformation  the  attributes of the 
upper  and lower levels of the  tree nodes are  determined for 
each node. The remove  column can pass through a union to 
the left as well as  to  the  right  subtree.  Since  all unions appear 
at  the  top of the  tree (or a  negative subtree),  the universal 
project applies  to  each  term. 

The remove column  may  only  be pushed through a join 
provided the  common  attributes of the  join  remain 
unchanged.  In  that  case  the remove column is pushed  to  the 
left or the  right  subtree.  If, however, a  remove column would 
omit common attributes,  such a remove column would 
remain above the join.  A new remove column  that is 
composed of the union of the  attributes of the old remove 
column and  the  common  attributes  can be pushed through 
the join. 

Similar  rules  apply  to  the  quad, intersection, and differ- 
ence. 

1 
When two remove columns meet a t  a  split, we distinguish 

two  cases: If the remove columns  are  equal,  they  are  united 
as  one remove column below the split. If  the remove columns 
are  different, a remove column which omits  the  attributes 
that are absent in  both  remove columns is  pushed through  the 
split. At  the left branch of the  split a remove column  remains 
which omits  attributes  that need  omission  in the  left  branch, 
but  are  required in the  right  branch.  In  the  right  branch a 
remove column is  placed  for the reversed situation. 

c Although  these  rules  appear  quite complex, they follow 

I directly  from  the  nature of the remove column  and  the nodes 
that  are  encountered.  Furthermore,  the  term  optimization 
provides a structure  to  the  term, which makes  the  placement 
of the remove column nodes quite  straightforward. 

1 Figures 22 and 23 show the  result of placing the remove 
I columns for the  example of Fig. 18. Figure 22 gives the 

starting  situation.  Next  to  the nodes the  attributes of the 
tables  and  the  attributes of the  intermediate  results  are 

1 shown. On  top of the  tree  there is the universal  project. Since 
the  project does not spoil the key of the  result,  the  project  can 
be replaced by a remove  column  in the final  expression; since, 
furthermore,  the unions are replaced by N D  operations, 
there is no duplicate removal. Figure 23 shows the original 
expression and  its optimized result using the reversed Polish 
notation described earlier  and giving the  details of the 

7. 
PR (01010) 

I 

LD o'(11111) 

Figure 22 Tree with attributes and  universal  project. 

examples of Section 8. Note  that  the  prototype  makes a 
different (but  equivalent) choice  in  using the  TN  and ES 
branches. 

Type of intersection 
As  the remove  columns are placed during  the reverse trans- 
formation,  some of the intersections are  replaced by joins or 
quads in accordance with the definitions of Section 2. 

Type of table 
The reverse transformation of LD selecttable I N  transforms 
back to SL  (F) ,  where Fis   the select function associated with 
the select table.  The reverse of LD selecttable D F  is 
SL (NOT F).  In  our examples, however, we keep  the  form 
with  the select table. 

Similarly,  the reverse transformation of LD calculateta- 
ble J N  results in CL (X - F ) ,  where F is the  arithmetic 
expression of the  calculate.  The  case of LDcalculateta- 
ble IN is replaced by S L  ( X  = F ) ;  LD calculatetable D F  is 
replaced by S L  ( X  # F) .  

Index generation 
In  the  term  optimization we have accounted for the building 
of an index  for  a stored  table  that occurs as  right  operand of 
some join. At those  places an index operator is  placed, 
written  IX (Y), where Y is the  set of attributes for which the 
index  should be  built. 

8. Examples 
In  this section the  optimization  method is illustrated by a few 
examples. In  each  case an original expression is given, using 
the  notation of Section 2. Each figure gives the  participating 51 1 
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SIZE COST 
129 1310 P R  10 01010 
1 9 5  U N  11111 

COLUMNS 

68 
8 9  U N  

UN 
48 7 DF 11111 

63 21 IN 11111 

11111 

7 LD 1 0 1 0 0 0  

1 S L  4 0 0 0 0 1  

11111 
11111 

5 LD 3 00010 

3 LD 2 00100 
210  42 LD 0 

2 0  5 DF 11111 

4 2  I n  11111 

11111 

0 0 0 0 1  

00100 

210  42 LD 0 
2 1  
1 

IN 11111 
S L  4 

3 LD 2 
2 1 0  42 LD 0 11111 
106 14 DF 

5 LD 3 
11111 

137 21 DF 11111 
00010 

I 
2 1 0  42 LD 0 11111 

LD 1 01000 

63 21 I n  11111 

SUM: 1567 

T B  A T T R  KEY FR 
0 11111 01010 50  
1 01000 01000 3Q 

3 00010 0 0 0 1 0  20 
2 00100 00100 25 

4 00001 00001 1 7  
AT[  V A L ;  1 
2 0  2 0  10 21 5 
F 
16  17 1 9  20 2 1  2 3  2 8   2 9  31 

Figure 23 Example of Fig. 22 after pushing  of remove  column. 

tables (TB), their attributes (ATTR), and keys (KEY), as 
well as  the fraction (FR) of the value set represented by the 
table. For the special tables, the  arithmetic  attributes are 
shown instead of the key. AT [VAL;] gives the size of the 
value set for each attribute. 

Next,  the analogous logical function value is presented in 
the form of a Karnaugh diagram,  as explained  in the section 
“Transformation to logical operations.” In the diagram the 
terms of the optimized result are drawn as ovals. The 
function value is also given as F in linear form for the 
optimized result. The two function values should be the 
same, which is a necessary (but  far from sufficient) check 
upon the  output of the optimizer. Finally, the optimized 
result expression  is  displayed in the same manner as the 
input. The tables participating in the result are the same as 
for the input and are not repeated. 

To  the left of the original and  the optimized expression, 
size and cost entries are shown at each point  in the execution 
of the expression. This size is computed by simulation 
independent of the optimization. The simulator checks that 
the results of the original expression and the optimized 
expression are  the same. The cost estimate is derived from 

S I Z E  COST 
1 2 9  
1 0 8  

N D  01010 
ND 01010 

106 14 DF 01010 
5 LD 3 

137 RC 1 0  
131 ES 

0 1 0 1 0  

2 0  
01010 01011 

RC 1 0  01  01 0 
20 IN 01011 

137 TN 
137 21 DF 

01011 01011 
01011 

210 
01000 

210 
RC 11 01011 
ES 01010 01111 

53 
2 1  

N D  01010 
RC 10 

21 
01010 

IN 
1 

01011 

63 
S L  4 00001 
ES 01010 01011 

48 7 DF 
5 

01010 
LD 3 00010 

63 
63 

RC 10 01  01 0 
TN 

63 
01011 01011 

63 21 IN 
RC 11 01011 

01111 

2 1 0  
210 RC 1 5  01111 

TN 01111  01111 

210  42 LD 0 11111 

COLUMNS 

00010 

1 S L  4 00001 

7 LD 1 

3 LD 2 00100 

SUM: 105 

the size estimate. Indexed  access  is  given a relative cost value 
of 10, sequential access 0.2, and index  inspection 0.1. Index 
generation and duplicate removal  involve  indexed  access and 
index  inspection. Fractional costs are rounded up to integers. 
The value sum gives the  total cost. The sizes of tables and 
value sets are kept small to reduce simulation time; the cost 
values are relative anyway. 

Example I 
This example (Fig. 24) illustrates the use of the split 
operation (TN, ES, ND);  the elimination of an index genera- 
tion (IX); the change of a calculate (CL) into a select (SL); 
the implied  remove  column of a difference (DF);  the use  of 
one sequential scan (LD 0) instead of  two (LD 0 and LD 1); 
the “pushing down” of the remove  column (RC); changing 
the project into a remove  column (RC), and duplicate 
removal (DR). 

Placing a remove  column early in the expression is an 
advantage to the implementation, but this is  not  shown  in the 
cost  figures.  As  mentioned  in the section “Cost,” a sort could 
be  used instead of the index generation. The load of table 1 in 
the result has no cost, since it is a conceptual load; the index 
of table 1 is interrogated by the difference, with a cost of 4. 
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S I Z E  COST 

3 9  4 DF 
21 2 1 4  PR 

1 3   1 3 2  IX 
1 3  J N  
1 7  C L  

4 0  8 L D  
1 3  3 L D  

SUM: 3 6 1  

2 0 0 1 0  

3 
0111 

1011 
1011 

2 0 0 1 1  
1 
0 0111 

1 0 1 0  

COLUMNS 

T B  ATTR KEY FR 
0 0111 0100  5 0  
1 1 0 1 0  0 0 1 0  60 
2 0 0 1 1  0 0 1 0  8 0  

A T [  V A L ;  1 
1 0  8 0  21 10 

""" 0 

1 

F 
4 5 6  

S I Z E  

3 7  
2 1  

3 4  
1 3  

4 0  
1 3  

3 7  
4 0  

1 7  
3 7  

4 0  
40  
4 0  

SUM: 

COST 
2 1 4  DR 

N D  
4 DF 

RC 2 
L D  1 
RC 2 
ES 
RC 2 

S L  2 
DF 

TN 
RC 3 

8 LD 0 
2 2 6  

Figure 24 Example 1. 

0 0 1 0  
0 0 1 0  

COLUMNS 

0 0 1  0 

1010 
0 0 1 0  

0 0 1 0  
0 0 1 0  0 0 1 1  

001 0 
0 0 1 1  

0 0 1 1  0 0 1 1  
0 0 1 1  
0 1 1 1  

0011 

The  join in the  original  has no cost,  since it applies to a 
calculate  table;  the two operations should be  taken  as  an 
entity  that  represents a calculate  operation.  Similarly in the 
result the difference that applies to a  select table is without 
cost; the difference and  the load of the select table  form a 
select operation. 

Several of these  features  reappear in later examples; we do 
not  mention  them  each  time. 

Example 2 
This  example  (Fig. 25) changes a rather involved and 
redundant expression into a  simpler nonredundant one. The 
duplicate removal  implied by the final  project  is not neces- 
sary in the result. The  algorithm recognizes that  the two 
terms of the expression are  not overlapping, and  hence uses 
the nonoverlapping  union (DN). In the result the difference 
with table 3 appears  early in the first term  and  late in the 
second term,  since  table 3 is larger  than  table 1 and  smaller 
than  table 0. The  split  cannot  be used in this  example, since 
the only common factor is the difference  with table 3. 

S I Z E  
2 5  
3 0  
51 
5 8  
1 8  

3 4  
5 0  

4 0  
5 5  
3 0  
4 0  
5 0  
2 5  

SUM:  

COST COLUMNS 
2 5 3  PR 3 011 

6 DF 111 
5 1 6  IX 7 

UN 
11 1 
111 

1 8 4  JN 
LD 0 

111 

7 LD 1 110 
8 LD 3 111 

5 DF 111 

1 0  LD 0 111 

111 

U N  111 

LD 3 111 

5 LD 2 111 
9 9 4  

TB ATT KEY F R  
0 111 0 1 0  5 0  
1 1 1 0  0 1 0  3 4  
2 111 010  2 5  
3 111 0 1 0  4 0  

ATCVAL;  1 
2 0  1 0 0  5 0  

F 
2 6 8 1 0  

S I Z E  
2 5  

6 

4 0  
6 

1 2  

2 5  
50 

1 9  
1 9  

3 4  
3 0  
4 0  
50 

SUM:  

COST 

2 

3 

5 

3 

5 

2 8  
1 0  

Figure 25 Example 2. 

COLUMNS 
DN 011 
RC 3 011 
DF 111 
L D  3 111 
DF 111 
LD 0 111 
LD 2 111 
RC 3 011 

LD 1 
DP 111 

1 1 0  
DF 111 
LD 3 
LD 0 111 

111 

Example 3 
This  example  (Fig. 26) concerns a single  term in which the 
order of the  factors is changed  to avoid index generation. 
This  change in order, however, requires a rename so as  to 
preserve the  attributes over which the  join  must  be  made. 
The select,  which appears in one of the  branches of the 
original structure, now appears low in the  main  stem.  Table 1 
is not used. 

e Example 4 
This  example  (Fig. 27) illustrates  the  replacement of an 
exclusion (XC) by intersections (IN) and differences (DF). 
Observe the  order of applying tables 1 and 2 in the two 
branches of the  split, which  depends on whether  an intersec- 511 3 
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S I Z E  

10 
1 

10 
1 

68 

9 
9 

15 
1 5  
1 5  
1 5  

SUM: 

COST 
11 JN 

101 IX 1 
IN 

14 LD 4 
S L  3 

9 2  JN 
RC 1 

1 5 2  IX 2 
3 LD 2 

RC 2 
3 LD 0 

3 76 

TB A T T R  KEY F R  
0 0110 0010 50 
1 0 0 1 0  0 0 1 0  3 3  

3 1000 1000 14 
2 0111 0001 25 

4 1011 1001 16 

A T 1   V A L  ; 1 
7 10 3 0  60 

COLUMNS 
1011 

1011 
101 1 

1011 
1000 

0001 
0111 

0111 
0111 

0010 
0110 

"""~"""_" 0 
"""""""" 2 

F 
23  31  

S I Z E  COST 
1 
1 1 IN 

RC 11 

15 
15 RC 16 

1 5  
RN 18 
LD 0 

15 RC 17 
15 
15 LD 2 

RN 18 

1 0  
1 

IN 
S L  3 

68  14 LD 4 

1 11 JN 

SUM: 26 

Figure 26 Example 3. 

COLUMNS 

11011 
01011 

10000 
101 00 
00110 

10001 
10101 
00111 

01000 

11011 

01011 

01 011 

tion or a difference is used. The select (SL 3) moves from the 
end of the  tree to its starting node. One branch of the split 
turns out to give an empty result. 

Example 5 
This example (Fig. 28) is intended to show the placement of 
select operations. Originally four selects are placed at the end 
of a tree of quads (QD). The order is changed to replace one 
quad with a join and to allow the selects to appear early in the 
tree. One select (SL 7) changes into a calculate (CL 7). This 
is  possible because the arithmetic  attributes of this select 
indicate that  attribute 3 can be  derived from attribute 2. 
Select 4 is applied to the right branch of a quad. Select 5 is 

514 applied to the left and right of a join, thus reducing index 

S I Z E  
1 
1 

23 
5 

48 
48 
30 
4 0  
50 

SUM: 

COST 
RC 1 

S L  3 

485 IX 1 
7 xc 
8 LD 1 
6 LD 2 

10 LD 0 

I n  

5 I n  

5 2 1  

T B  AT K E  FR 
0 11 01 50 
1 01 01 40 

3 1 0  1 0  1 0  
2 0 1  01  30 

A T [   V A L ;  1 
5 0  1 0 0  

01 
11 

11 

COLUMNS 

10 

01 
01 

01 
01 

11 

"""" 1 
3 " """ 

0 0 0 0  

F 
11 1 3  

SIZE COST 
1 

1 DF 
N D  

2 1 IN 

1 1 DF 
5 ES 

30 
3 1 IN 

LD 2 

40 
5 

LD 1 
TN 

5 RC 1 
5 IN 
5 S L  3 

50  10 LD 0 

40 LD 1 

30 LD 2 

SUM: 14 

Figure 27 Example 4. 

01 
COL UM N S 

01 

01 

01 01 
01 

01 

01 0 1  
01 
11 

11 

01 

01 

01 

0 1  

10 

generation cost. Duplicates are removed  in the right subtree 
of the quad. The original expression generates many dupli- 
cates, which are removed  in the project. Because of the small 
table sizes, the quads are relatively inexpensive. The Kar- 
naugh diagram is not  shown-with eight variables it would 
become rather large, and would  moreover display only  one 
function value. 

Example 6 
In this example (Fig. 29) a duplicate removal caused by 4 
several unions  is eliminated. Table 0 is sequentially scanned 
and used unaltered; this corresponds to function values 
16-31 of the Karnaugh diagram. Next,  table 1 is scanned, 
but its overlap with table 0 (function values  24-31) is 
eliminated through a difference with 0. Finally, function 
values 5 6 7 are obtained by a split preceded by the common 
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SIZE 
10 
3 

60 
2 

150 
3 

150 
5 

21 0 
840 
30 
5 

28 
6 

I 
4 

SUM: 

COST COLUMNS 
IN 001111 
SL  I 
IN 

001100 

S L  6 
001111 

001000 
IN 001111 
SL  5 
IN 

0 0 0 1 0 0  
001111 

SL  4 000010 
2184 PR 1 5  001111 
336 Q D  111111 
12 Q D  101100 

LD 3 0 0 1 0 0 0  
LD 2 100100 

12 Q D  
LD 1 

010011 
000010 

1 LD 0 010001 
2545 

TB ATTR KEY 
0 010001 010000 
1 000010 0 0 0 0 1 0  
2 100100 100000 
3 001000 001000 
4 000010 000010 
5 000100 000100 
6 001000 001000 
7 001100 001000 

A T C V A L ; ]  
6 4 5 3 1 2  

F 
255 

Figure 28 Example 5 .  

FR 
1 0 0  
100 
100 
100 
70 

40 
90 

50 

factors 2 difference 0, difference 1. The  example  has  many 
implied  projects caused by the unions and  the intersection; 
they  result in the remove columns  that  appear  throughout  the 
result. 

9 Example 7 
This  example  (Fig. 30) illustrates  the implied  project of a 
calculate. As  a small  example  it  also shows how a join is 
replaced by an  intersection  and how the  intersecting  columns 
of joins  are preserved with remove columns when the  order of 
the  factors  changes. 

9 Example 8 
This  last  example  (Fig. 31) illustrates  the recognition of 
negative terms  that  are  otherwise not  realizable.  A  reduction 
in  cost is obtained by combining  two such  terms prior to  the 
index generation. 

9 Prototype of the optimizer 
Since  the proposed method  is  intended  to be general, a large 
variety of cases should be considered. The  use of a prototype 
is almost indispensable in such a situation. Also, the  many 
features  and  interactions  that  must be considered require  the 
accurate description provided by the model. 

The examples of this section are  samples of the  cases  that 
have been tested  with the  prototype of the proposed optimi- 

SIZE COST  COLUMNS 

20 8 Q D  001111 
10 102 DR 001111 

5 
5 

IN 0 0 0 0 1 0  
S L  4 

I LD 1 000010 
4 2 Q D  001101 
2 21 DR 
4 RC 1 

0 0 0 0 0 1  

4 
0 0 0 0 0 1  

LD 0 
2 2 1  JN 001100 

010001 

1 
1 11 IX 4 0 0 1 1 0 0  

IN 
3 

001100 

1 
SL  5 
JN 

000100 
0 0 1 1 0 0  

3 CL 7 001100 
2 IN 
2 SL  6 

0 0 1 0 0 0  

5 1 L D  3 001000 
0 0 1 0 0 0  

3 
6 

S L  5 
IN 000100 

000100 
6 
6 2 LD 2 100100 

RC 4 0 0 0 1 0 0  

0 0 0 0 1 0  

SUM: 168 

zation  method.  The  prototype gives a  precise and  complete 
description of the  method concerned. As such  it  contains  the 
essential algorithms. Because it is an  executable description, 
the method can  be  demonstrated  and  tested for accuracy, 
consistency, and effectiveness. The prototype, however, is an 
architectural description and is  not  concerned  with  imple- 
mentation  matters,  such  as  program  performance, memory 
allocation, or data  representation. 

A prototype  constitutes an  important milestone in the 
management of a  design. It  ensures  the  correctness of a 
major  part of the design and allows review and  feedback 
prior to  the  implementation effort. 

For the proposed method the  prototype was written in 
APLDL [ 181, which is standard  APL  to which the  regular 
control  structures IF   THEN ELSE,  WHILE,  CASE, 
REPEAT  UNTIL,  and  FOR  are  added.  This  enhancement 
does  not  affect the  APL  interpreter, hence it is generally 
applicable;  it improves  legibility and  facilitates  the  use of the 
prototype  as a specification for  implementation in  a  different 
language. 

APL  encourages  the  use of many  short functions, each 
with a specific task.  This  language  feature, combined  with 
the  control  structures of APLDL, give a clear design struc- 
ture. In Reference [ 101 the  top levels of the model are shown 
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S I Z E  COST COLUMNS 
81  822 DR 

1 2 0  
0001000 

U N  
60 U N  

0001 0 0 0  

1 0  4 IN 

3 0  
28  283 IX 56 

U N  
5 1 L D  4 

2 5  5 LD 3 
4 0  8 LD 2 

60 12 LD 0 0001111 
50 10 LD 1 

SUM: 1145 

T B   A T T R  KEY 
0 0001111 0 0 0 1 0 0 0  6 0  

F R  

1 0011010 0 0 0 1 0 0 0  50 
2 0011101 0 0 0 1 0 0 0  4 0  
3 1111100 0 0 0 1 0 0 0  25 
4 0111110 0 0 0 1 0 0 0  5 

A T [ :  V A L ;  1 
2 5 50 100 20  25 100 

0011000 
0011101 

0111100 
0111100 

1111100 
0111110 

0011101 
0011010 

S I Z E  COST COL LIMNS 
81 

0 21 
2 2 

"""""""" 

"""""""" 

"""_ - 
5 
5 

2 
7 

F 
5 6 7 8 9 10 11 12  13 14 15 

16 17 18 19 20  21  22  23  24  25 

26  27  28  29  30 31 

Figure 29 Example 6.  

2 

2 5  
25 

7 
7 

50 
50 

1 5  
60 
60 
40 
40 
19 
60 
60 
50 
50 
60 
60 

SUM: 

such  that  the  reader  can  obtain a more precise understanding 
of the  algorithms employed. 

9. Evaluation 

General characteristics 
The method as  described proves to  be  quite powerful. It is 
able  to cope  with  a great diversity of items  to  be  optimized, 
such as common  subexpressions, empty  tables,  redundancy, 
the  assurance of nonoverlapping intermediate  results,  the  use 
of the split operation,  the  order of operations,  and  the 
minimization of index generation (or corresponding sort 
operations).  It shows that  it is possible to  separate  these 
many  items using simple overall heuristics,  such  that  each 
item  can be dealt  with effectively. 516 
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D N  0001000 
D N  
N D  

1 IN 
RC 8 

RC 28 
LD 4 
ES 
RC 8 

1 IN 
RC 28 
LD 3 
TN 

2 DF 
RC 2 4  
LD 1 

RC 8 
LD 0 
RC 28 

5 DF 
8 LD 2 

RC 8 
LD 0 
RC 8 

10 LD 1 
RC 8 0 0 0 1 0 0 0  

12 LO 0 0001111 
43 

4 DF 

0 0 0 1 0 0 0  
0 0 0 1 0 0 0  

0 0 0 1 0 0 0  
0011100 

0011100 
0111110 

0001000  0011100 
0001000 
0011100 

1111100 
0011100 

0011100  0011100 
0011100 

0 0 1 1 0 0 0  
0011010 

0 0 0 1 0 0 0  
0001111 

0011100 

0011100 
0011101 

0001111 
0001000 

0 0 0 1 0 0 0  

0001000 
0011010 

The  mapping upon a  logical  analogon illuminates  the 
relation among  the various operators,  as  among  join,  quad, 
and intersection,  between  two successive differences and  an 
intersection, or between  a  select and a calculate.  Further- 
more,  the  mapping gives great flexibility in the choice of 
optimization  algorithms  and exploits the efficiency of the 
logical operands  and operations. 

Assumptions 
In  the method as  described,  and  as  implemented in the 
prototype, a number of assumptions  are  made. As stated 
before, these  assumptions  are not  essential to  the basic 
method since  any  other  set could equally well be applied  with 
appropriate  changes in the  algorithm.  The  particular set of 
assumptions  that is used is close to a practical environment  in 
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S I Z E  COST  COLUMNS 
4 5  

1 0 0  
JN 111 
CL 2 

4 5   4 5 5  JN 111 
111 

9 0  LD 1 
5 0  10 LD 0 011 

1 1 0  

SUM: 4 6 5  

T B   A T T  KEY FR 
0 011 0 1 0  50  
1 1 1 0  0 1 0  9 0  
2 111 1 1 0  1 0 0  

A T [ V A L ; I  
5 0  1 0 0  1 0 0  

""" 0 
2 """ 

F 
I 

S I Z E  COST  COLUMNS 
4 5  

1 0 0  
JN 111 

4 5  9 IN 110 
CL 2 111 

50 RC 2 0 1  0 
5 0  LD 0 011 
9 0   1 8  LD 1 110 

SUM: 2 7  

Figure 30 Example 7. 

S I Z E  
7 

4 1  
4 8  
4 8  
6 0  

5 4  
8 0  

2 2  
2 2  

2 2  
2 5  
43  
9 5  

SUM: 

COST  COLUMNS 

4 1 5  IX 2 
RC 2 

01 0 
01 0 

8 IN 110 

1 6  LD 3 
LD 4 

110 
10 DF 111 

2 2 3  IX 2 01 0 
RC 2 010 

5 IN 
LD 2 

0 11 

9 LD 1 0 1 1  
1 9  LD 0 111 

6 DF 111 

110 

011 

711 

TB A T T  KEY F R  
0 111 l o o  9 5  
1 0 1 1  0 1 0  8 5  
2 011 0 1 0  5 0  
3 1 1 0  1 0 0  8 0  
4 1 1 0  1 0 0  6 0  

A T [   V A L  ; 1 
1 0 0  5 0   2 5  

"""""""" 0 
2 """""""" 

F 
1 6  1 7  1 8  2 0  2 1   2 2   2 4   2 5   2 6  

which the method  is in 
review them here. 

[tended to  be applied. We briefly 

The method is kept  independent of a potential  optimizer 
that  deals with the  semantics of the select and  calculate 
expressions. The  optimized result, however, clusters  the 
selects that  use  the  same  attributes,  such  that a  select 
optimizer  can  be used more effectively. 

The row by row treatment of the  tables is  a typical 
implementation method. It affects the cost calculation used 
in the  optimization.  Since  this  calculation is parameterized, 
another  implementation would require minor adjustments in 
that  calculation.  Such a change is localized  in the algo- 
rithm. 

Similarly, a different access  method, such  as  the  use of 
sorting,  hashing, or clustered indexes, or a  different cost 
estimate of these methods, results only in local adjustment. 

The size estimation  depends upon the  applicability of the 
stochastic  formulas  and  the  accuracy of the  cardinality of the 
value sets.  If  a  different distribution is known to exist, 
different formulas  and  approximations of the size of the 
expected  values will be required. Again,  this  amounts  to a 
local change,  such  as  the  substitution of the  pertinent func- 
tion. If the  cardinality is not known, the best available 

S I Z E  
7 

4 6  

4 8  
70  

4 8  

6 0  
EO 

2 2  
2 2  
43  
2 5  
95 

SUM: 

COST 
10 DF 

4 6 7  IX 2 
U N  
RC 2 

6 IN 
LD 3 

1 2  LD 4 
RC 2 

3 IN 

5 LD 2 
LD 1 

1 9  LD 0 
5 2 2  

COL UMNS 
111 

01 0 
0 10 

01 0 
110 

110 
110 

01 0 
0 11 

011 
01 1 

111 

Figure 31 Example 8.  

estimate  must  be used.  If the relative importance of these 
parameters is known, the system may  be  enhanced by 
gathering  statistical  data necessary  for more  accurate size 
calculation. 

The  operator set  which  is  used  in the model  is  relatively 
extensive to  ensure  the  applicability of the method and  seems 
to  indicate  that  the method is likely to  be  extendable  to  other 
operators of like kind. 

The  method  assumes only  first normal form. If higher- 
order  normal  form is guaranteed,  the size estimation  can be 
improved. 517 
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The logical optimization uses the decomposition into 
prime implicants. Although this is quite effective for the 
current set of assumptions, it is  not an inherent part of the 
method; any other logical  decomposition can be  used equally 
well. 

Another assumption is the availability of an index to the 
key  of each table. A deviation from this assumption would 
result in a change of the cost calculation and possibly  in the 
general structure of the result. 

The use of the split is a major feature of the method. 
Nevertheless, the absence of such a function would still allow 
the method to be  used with  profit. 

The method  uses detailed heuristics at various points. 
Thus, the duplicate removal  is placed at  the top of a term; the 
split is  used  whenever  possible; the partitioning of terms uses 
an algorithm that favors  common terms. All these heuristics 
can be refined or simplified  with a corresponding increase or 
decrease of computing time for the optimizer. Extensive 
experience under practical circumstances will quite likely 
result in various adjustments. 

10. Conclusions 
The method presented proves to be general and powerful; it is 
applicable under a great variety of circumstances. The use  of 
a prototype has been invaluable in  verifying the correctness 
of the overall algorithm as well as demonstrating the func- 
tioning of the method. 
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