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Simulation of Non-Markovian Systems 

A generalized semi-Markov process provides  a stochastic process model for a discrete-event simulation. This representation is 
particularly useful for non-Markovian systems where it is nontrivial to obtain recurrence properties of the underlying 
stochastic processes. We develop ‘geometric  trials” arguments which  can be used to obtain results on recurrence and 
regeneration in this setting. Such properties are needed to establish estimation procedures based on regenerative processes. 
Applications to modeling and simulation of ring and bus networks are discussed. 

1. Introduction 
It  appears  to be the  rule  rather  than  the exception that 
usefully detailed  stochastic models  for  complex systems  are 
such  that  it is extremely difficult or impossible to  obtain  an 
exact  analytic solution. Simulation is essentially  a  controlled 
statistical  sampling  technique which can  be used to  study 
complex stochastic  systems when analytic  and/or  numerical 
techniques do not suffice. We  concentrate  here on discrete- 
event digital simulation in  which the behavior of a specified 
stochastic system is observed by sampling on a digital 
computer system and  stochastic  state  transitions  occur only 
at  a set of increasing  (random) epochs of time. In discrete- 
event simulations most of the  stochastic processes that we 
encounter have  piecewise-constant sample  paths. 

When  simulating, we experiment with a stochastic system 
and observe its behavior. In the course of the  simulation we 
measure  certain  quantities associated with  the  system,  and 
using statistical  techniques,  draw inferences about  charac- 
teristics of well defined random variables. The most obvious 
methodological advantage of simulation is that  in principle it 
is applicable  to  stochastic  systems of arbitrary complexity. It 
is, however, a  decidedly  nontrivial matter in practice  to 
obtain  from a simulation  information which is both  useful 
and  accurate,  and  to  obtain  it  at  reasonable cost. The 
difficulties arise  primarily  from  the  inherent  variability in  a 
stochastic  system,  and  it is necessary to seek theoretically 
sound and  computationally efficient methods  for  carrying 
out  the  simulation.  Apart  from  implementation consider- 

ations,  important  concerns  for  simulation  relate  to genera- 
tion methods for sample  paths of the  stochastic system under 
study,  the design of simulation experiments, and  the analy- 
sis of simulation output. Since  results of a simulation  are 
based on observation of a stochastic system, it is absolutely 
essential that  some assessment of the precision of results  be 
provided. 

Implicit in the  implementation of any  simulation is the 
definition of an  appropriate  “state”  for  the system. Heuristi- 
cally, the system state  maintains sufficient information 
about  the system so that  state  transitions  that occur over time 
completely determine  the  quantities of interest. This  “state 
of the system at  time t” constitutes a stochastic process in 
continuous or discrete  time.  When  carrying  out  the  simula- 
tion, we observe the behavior of this process as it evolves in 
time.  In  order  to  do so it is necessary to have  a means of 
generating  sample  paths of this process and  to have methods 
for obtaining valid estimates of the  quantities of interest in 
the system. 

In this  paper we focus on simulation methods  for non- 
Markovian  systems  in  continuous  time; i.e., systems whose 
state  cannot be modeled as a Markov  chain with countable 
state  space.  This is characteristic of local area  computer 
network  models (see, e.g., Loucks, Hamacher,  and  Preiss 
[l])  where  it is important  to  incorporate system control 
algorithms explicitly into  the simulation model. We  restrict 
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attention  to those  discrete-event simulations whose underly- 
ing stochastic process can  be  represented  as a  generalized 
semi-Markov processs (GSMP) in the sense of Whitt [2]. 

In addition  to providing a framework for generating 
sample  paths of the  underlying  stochastic process of the 
simulation,  the  GSMP  representation is particularly useful 
for simulation of non-Markovian  systems in that  it leads to 
methods for obtaining  recurrence  properties of the underly- 
ing stochastic process; cf. Glynn  [3]. Such  properties  are 
needed to  establish  estimation  procedures based on regenera- 
tive processes; cf.  Fossett [4] and  Iglehart  and  Shedler [5]. 
For specific non-Markovian  systems (e.g., ring and bus 
network  models) it  can be difficult to  determine conditions 
(distributional  assumptions)  under which the underlying 
stochastic process  is regenerative. In this  paper we develop 
"geometric  trials" arguments (cf. Nummelin [ 6 ]  and 
Tuominen  and  Tweedie [7]) which can be used to show the 
applicability of regenerative  simulation methods. 

2. Generalized semi-Markov processes 
Heuristically, a GSMP  (Matthes [SI,  Konig, Matthes,  and 
Nawrotzki [9, IO]) moves from  state  to  state in accordance 
with the  occurrence of events associated with the occupied 
state.  Each of the several possible events associated with  a 
state  compete  to  trigger  the next transition,  and  each of these 
events has  its own distribution  for  determining  the next state. 
At  each  state  transition of the  GSMP, new events may be 
scheduled.  For each of these new  events, a clock indicating 
the  time  until  the event is scheduled to occur  is set  according 
to  an  independent  (stochastic)  mechanism. If a  scheduled 
event  does not  trigger a transition  but is  associated with  the 
next state,  its clock  continues to run; if such  an event is not 
associated  with the next state,  it is abandoned. 

Following Whitt  [2],  formal definition of a GSMP is in 
terms of a general  state  space  Markov  chain  (GSSMC) 
which describes the process a t  successive epochs of state 
transition.  Let S be a  finite or  countable  set of states and 
E = {e,, e,, ..., eM} be a finite set of events. For s E S,  E(s)  
denotes  the set of all events that  can  occur when the  GSMP is 
in states.  When  the process is in states,  the  occurrence of an 
event e E E(s) triggers a transition  to a states'.  We  denote by 
p(s'; s, e )  the  probability  that  the new state is s' given that 
event e triggers a transition in state s. For  each s E S and 
e E E(s)  we assume  that p ( - ;  s, e )  is a probability mass 
function. The  actual event e E E(s) which triggers a 
transition in state s depends on docks associated  with the 
events  in E(s) and  the speeds a t  which these clocks run.  Each 
such clock  records the  remaining  time  until  the event triggers 
a state  transition.  We  denote by rji (20)  the  deterministic 
rate  at which the clock ci, associated with event e,, runs in 
state s; for  each s E S ,  rs, = 0 if e, @ E ( $ ) .  We  assume  that 
rsi > 0 for  some e, E E(s) .  (Typically in applications  all 

speeds r,, are  equal  to one. There  are, however, models in 
which  speeds other  than  unity  as well as  state-dependent 
speeds are convenient.  For example, zero  speeds are needed 
in queueing systems with service interruptions of the preemp- 
tive-resume type; cf. Shedler  and  Southard [I  I].) 

For s E S define 

C(s) = {(c , ,  ..., cM): c, 2 0 and c, > 0 if and only if 

e, E E (s); ciri' # cj rsj' for i # j with c, cj rsi rsj > 01. ( I )  

The conditions  in  Eq. (1) ensure  that no two events simulta- 
neously trigger a transition  (as defined below). The set C(s) 
is the set of possible clock readings in states.  The clock c, and 
event e, are said to be active in state s if e, E E(s) .  For s E S 
and c E C(s), let 

where c,ri' is taken  to be +CO when rsi = 0. Also set 

c,? = c,?(s, c )  = c, - t * (s ,  c)rsi ,  e, E E(s) (3) 

and 

i* = i* (s, c )  = i such  that e, E E(#)  and c,? (s, c)  = 0. (4) 

Beginning in state s with  clock  vector c, t * ( s ,  c )  is the  time  to 
the next state  transition  and i*(s, c )  is the index of the  unique 
triggering event e* = e*(s, c )  = e;(s,c). 

At a transition  from  states  to  states'  triggered by event e*, 
new clock times  are  generated for each e' E N(s'; s, e*)  
= E(s') - (E(s)  - {e*}).  The  distribution function of such a 
new clock time is denoted by F ( .  ; s', e', s, e * )  and we assume 
that F(0;  s', e', s, e * )  = 0. For e' E O(s'; s, e * )  = E(s')  n 
( E ( $ )  - { e * } ) ,  the old clock reading is kept after  the 
transition.  For e' E ( E @ )  - {e*}) - E(s ' ) ,  event e' ceases to 
be scheduled after  the  transition. 

Next consider  a GSSMC {(S", C,) : n 1 0)) having state 
space 

E = u (Is) x CW) 
scs 

and  representing  the  state (S , )  and vector (C,)  of clock 
readings at  successive state  transition epochs. (The  ith 
coordinate of the vector C, is denoted by C",,.) The  transition 
kernel of the  Markov  chain {(S", C,) : n 2 0) is 

JY(s, 4 9 4  
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where N ( s ’ )  = N(s’;  s, e*) ,  O(s’) = O(s’; s, e*) ,  and 

A = {s’} x {(c;, ..., c;) E C(s’): ci 5 ai for ei E E(s’ ) } .  

The set A is the subset of x which corresponds to the GSMP 
entering state s’ with the reading ci on the clock associated 
with  event e ,  E E (sf) set to a value in [0, a i ] .  

Finally, the GSMP is a piecewise constant continuous time 
process constructed from the  GSSMC {(S”,  C,)  : n 2 01 in 
the following manner. Denote by 3;, the time of the nth state 
transition, n L 0. [We assume that 

P {sup s;, = +.o I (So, CJ} = 1 
n 2  1 

for all initial states (So, C,).] Then set 

x ( t )  = SN(,), ( 6 )  

where 

N ( t )  = max {n > 0: S;, 5 t } .  

The process { X ( t )  : t 2 01 is a  GSMP. 

The following examples illustrate  the use of the GSMP 
model as  a formal specification of a discrete-event simulation 
of a non-Markovian system. 

a Example I 
Consider a unidirectional ring network having a fixed  num- 
ber of ports, labeled 1, 2, ..., N in the direction of signal 
propagation. At each port message packets arrive according 
to a random process and queue externally. A single control 
token circulates around the ring from one port to the next. 
The time for the token to propagate from port N to port 1 is a 
positive constant, R,, and the  time for the token to propagate 
from  port j - 1 to portj is a positive constant, Rj-,,J = 2,3, 
. . ., N .  When a port observes the token and there is a packet 
queued for transmission, the port converts the token to a 
connector and transmits a packet followed  by the token 
pattern; the token continues to propagate if there is no packet 
queued for transmission. By destroying the connector prefix 
the port  removes the transmitted packet when it returns 
around the ring. Assume that the time for portj to transmit a 
packet is a positive random variable, Lj, with finite mean. 
Also assume that packets arrive at individual ports randomly 
and independently of each other; i.e., the time from end of 
transmission by port j until the arrival of the next packet for 
transmission by port j is a positive random variable, Ai, with 
finite mean. Note  that there is at most one packet queued for 
transmission at any time at any particular port. 
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where 

1 if there is a packet queued for 
transmission at port j at time t ,  Z j ( t )  = 

0 otherwise, 

and 

1‘ if port j is transmitting  a packet at time t ,  
M ( t )  = 

0 if no port is transmitting a packet at time t .  

N ( t )  = 1 if at time t port N is transmitting a packet or the 
token  is propagating to port 1, and N ( t )  = j if at time t port 
j - 1 is transmitting a packet or the token  is propagating to 
port j ,  j = 2, +. ., N .  

The process { X ( t )  : t I O} defined  by Eq. (7) is a GSMP 
with a finite state space, S,  and event set, E .  The events in the 
set E are “observation of token,” “end of transmission,” and 
“arrival of packet for transmission by port j,” j = 1,2, . . -, N.  
For s = (z , ,  ..., z,, m,  n)  E S, the event sets E @ )  are as 
follows. The events “end of transmission” E E (s) if and only 
if m > 0 and “observation of token” E E ( s )  if and only  if 
m = 0. The event “arrival of packet for transmission by port 
j ”  E E (s) if and only if z j  = 0 and m # j .  

If s = (z,,  ..e, z,, m, m + 1) E S with 0 < m < N ,  
s‘ = (z,, ..., zN, 0,  m + 1) [or if s = (z , ,  ..., z,, N ,  1) E S,  
s’ = (z,, ..., z,, 0, l)] and e = “end of transmission,” then 
the  state transition probability p(s’ ;  s, e )  = 1 .  If 
s = (z , ,  ..., z,-~, 1 ,  z,+,, ..., z,, 0, n )  E S with n < N ,  
s’= (z,, .e., z”-~, 0, z,+,, ..., z,, n, n + 1) [or if 
s=(z,,~~~,z,~,,l,O,N)ESands’=(z,,~~~,z,_,,O,N,l)] 
and e = “observation of token,” then p(s’; s, e )  = 1. If 

0, z,+ ,, ---, z,, 0, n + I), and e = “observation of token,” 
thenp(s‘; s, e )  = 1.  If s = (z,,  ..., zj- l ,  0, zj+, ,  . e . ,  z,, m, 
m + l ) E S w i t h m # j a n d O < m < N , s ’ = ( z , , ~ ~ ~ , z j - , ,  
1 , ~ ~ + ~ ,  ..., z,, m, m + 1) [or if s = (zl, ..e, zi-,, 0, zj+,, .I., 
z,,N,l)ESwithN#j,s’=(~,;~~,zj~,,l,zj+,,~~~,~,,N, 
l)], and e = “arrival of packet for transmission by port j,” 
then p(s’;  s, e )  = 1.  All other state transition probabilities 
p (s‘;  s, e )  are equal to zero. 

s = (ZI, *’., z”-I,o, z,+,, ”‘,Z,’O, n) E s, s’ = (2,’ ..., zn-,, 

The distribution functions of  new clock times for events 
e’ E N(s’;  s, e*)  are as follows. If e’ = “end of transmission” 
and s‘ = (zl, ..., zN, m,  n) ,  then F(x;  s’, e’, s, e*)  
= P{L,  I x )  for all s and e* such that p(s’;  s, e * )  > 0. If 
e’ = “observation of token” and s’ = (zl, ..., z,, 0, n), then 
F(x;  s‘, e’, s, e*)  = lLRn-,,-)(x). If e’ = “arrival of packet for 
transmission by portj” and s’ = (z,, ..., zj-l ,  0, zj+,, ..., zN, 
0 , j  + l), then F(x; sf, e’, s, e * )  = P(A,  5 x ) .  

Example 2 
Consider a ring  network  having a fixed number, K, of equal 
size slots and a fixed number of equally spaced ports, labeled 
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I ,  2, . . ., N in the  direction of signal propagation.  At  each port 
constant (slot  size) length message packets arrive  according 
to a random process and  queue  externally.  The propagation 
delay from  one  port  to  the next  is a positive constant, R .   We 
assume  that  the  number of ports N is a multiple of K and (so 
that  there is no loss of utilization  due  to “unused bits”)  that 
the  time  to  transmit a  message packet is equal  to NRIK.  The 
lead “full/empty” bit maintains  the  status of each slot. 
Subject  to  the restriction that no port can hold more  than  one 
slot simultaneously, a port  that  has a packet  queued for 
transmission and observes the  status  bit of an  empty slot sets 
the  bit  to 1 (“full”)  and  starts transmission (begins filling the 
slot). Transmission  ends when the slot contains  the  entire 
packet.  When  the  status  bit of the filled slot propagates  back 
to  the  sending  port,  the port  resets the bit to 0 (“empty”)  and 
releases the slot. To  ensure  that  all ports  have an  opportunity 
to  transmit, a  port  which  releases a slot  passes the  empty slot 
to  the next  port. Assume  that  packets  arrive a t  individual 
ports randomly  and  independently of each  other; i.e., the 
time  from  end of transmission by por t j  until  the  arrival of the 
next packet for  transmission by port j is  a positive random 
variable, A,, with  finite mean.  Note  that  there is a t  most one 
packet  queued  for transmission at  any  time  at  any  particular 
port. 

I 1 if there is a packet  queued for 
Zj( t )  = 

transmission at  port j at  time t ,  

0 otherwise, 

fori  = 1 ,  2, ..., K ,  

1‘ if port j holds slot i a t  time Z, 
Mi(?) = 

0 otherwise. 

N i ( t )  = 1 if at  time t the  status bit of slot i is propagating to 
port 1, and N i ( t )  = j if a t  time t the  status  bit of slot i is 
propagating  to port j ,  j = 2,3 ,  ..., N .  For  any i (1 5 i I K )  
the vector ( Z , ( t ) ,  ..., Z,(t), Ml(t), ..., M K ( t ) ,  N i ( t ) )  
contains  the  same  information  about  the system as  the vector 
X ( ? ) .  Incorporation of all  the  components N , ( t ) ,  ..., N K ( t )  
into  the  state vector facilitates  generation of the process. 

The process { X ( ? )  : t 2 0) defined by Eq. (8) is a GSMP 
with a  finite state  space S and event set E .  The events  in the 
set E are “observation of status  bits by ports” and  “arrival of 
packet  for transmission by port j,” j = 1, 2, ..., N .  Let s 
= (z1, . .., z,, m l ,  ..., mK,  n I ,  ..., n K )  E S. The event 
“observation of status  bits by ports” E E(s)  for all s E S. 
The event  “arrival of message for transmission by port j”  E 

detail 

Figure 1 Bus network and ports. 

E (s) if and only if z j  = 0 and for each i either ( I  ) mi # j or 
( 2 )  mi = j and ni - 1 = j - 1 + II (mod N )  for some  integer 
II such  that N / K  < II < N.  Note  that  the  ends of transmis- 
sion coincide  with the  occurrence of particular “observation 
of status bits by ports” events.  Suppose,  for example,  that 
there  are N = 4 ports  and K = 2 slots and  that s = (0,  0, 0, 
0,  1, 0, 3 ,  1); i.e., port 1 is transmitting a packet in slot 1 ,  slot 
2 is empty,  the  status bit of port 1 is propagating  to  port 3, 
and  the  status  bit of  slot 2 is propagating  to port 1. Then  the 
occurrence of the event  “observation of status  bits by ports” 
in state s corresponds to  an  end of transmission by port 1 .  

Example 3 
Consider a  collision-free  bus  network (cf.  Eswaran,  Hamach- 
er,  and  Shedler [ 121) with N ports, numbered 1 ,  2, ..., N 
from left to  right; see  Fig. 1. Message packet traffic  on the 
passive bilateral bus is transmittedlreceived by port j at   tap 
B(j). In addition  to  the bus,  a  one-way logic control wire also 
links the ports.  Associated  with each por t j  is a flip-flop, S ( j ) ,  
called the send flip-flop. The signal P(j), called the  OR- 
signal, tapped at  the control  wire input  to port j is the 
inclusive OR of the send flip-flops of all ports to  the  left of 
port j .  Denote by T the end-to-end bus propagation delay. 
[For technical reasons, T actually  must be the end-to-end 
propagation delay plus a small (fixed) quantity.]  Denote  the 
actual  propagation delay along  the bus between port i and 
port jby T ( i , j ) ,   i , j  = 1 ,  2, ..., N .  Thus, T ( i , j )  = T ( j ,  i) < 
T for all i ,  j and T ( i , j )  + T ( j ,  k )  = T ( i ,   k )  for all i < j < 
k.  (We  assume  that T ( i , j )  f T ( k ,  j )  for distinct i, k and  all 
j . )  Let R ( j )  be the  propagation  delay  (including  gate delays) 
along  the  control wire from  port j to port N ,  j = 1 ,  2, . . ., N, 
thus, R(1)  2 R ( 2 )  2 ... 1 R ( N )  = 0. Denote by R ( i , j )  
the  propagation  delay  along  the control  wire from  port i to 
port j .  We  assume  that signal propagation along the  control 
wire  is slower than along the  bus  and  that delays  along 
shorter sections of each  path  scale proportionally; i.e., 
R ( l )  > Tand R ( i , j )  > T( i , j )  for  all i , j .  

Specification of distributed  control  scheme A1 is in terms 
of an  algorithm for an individual portj.  Packets (for trans- 475 

IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983 DONALD L. IGLEHART AND GERALD S. SHEDLER 



mission by port j )  which arrive while an execution of the 
algorithm by port j is in progress queue  externally.  Upon 
completion of this execution of the  algorithm,  one of any  such 
packets  immediately becomes available  to port j for trans- 
mission and  the next  execution of the  algorithm begins. 

Algorithm A1 

0 Set S ( j )  to 1. 
Wait  for a time  interval R ( j )  + T. 
Wait  until  the  bus is  observed (by  port j ) ,  to be  idle  AND 
P(j) = 0; then  start transmission of the  packet,  simulta- 
neously resetting S ( j )  to 0. 

For simplicity we assume  that  there  can  be  at most one 
packet in queue  at  each port.  Specifically,  suppose that  the 
time  from  end of transmission by port j until  the  arrival of a 
next packet  for transmission by port j is a positive random 
variable, Aj ,  with  finite mean. Also  suppose that  the  time  for 
port j to  transmit a packet is a positive random  variable, Lj ,  
with finite mean. 

Set 

where wj(t) equals 1 if a t  time t p o r t j  has  set  its flip-flop but 
has  not  yet completed the R ( j )  + T wait,  equals 2 if port j 
has completed the R ( j )  + T wait but  has not started 
transmission, equals 3 if port j is transmitting,  and  equals 4 
otherwise. Next  set 

where uj(t) equals 1 if port j observes the  bus  to be busy a t  
time t and  equals 0 otherwise. Also set 

‘(‘) = (‘2,l(‘)Y v 3 , 1 ( t ) 7  ‘3,2(‘)7 V4,1(t)*’..9 vN, ,%”l(r))9 (11) 

where Vj,:;k(f)  equals 1 if port j has observed that port k has 
set  its flip-flop and  equals 0 otherwise. (Port j observes 
P(j) = 1 at  time t if and only if Vj,k( t )  = 1 for  some k < j . )  
Finally, set 

N t )  = (w(t) ,  U t ) ,  U t ) ) .  

Then  the  stochastic process { X ( t )  : t 2 O} is a GSMP with a 
finite state  space S and event set E.  The events  in the  set E 
are “end of transmission by port j,” “end of wait  for R ( j )  
+ T,” “setting  (to 1 )  of flip-flop by port j,” “observation by 
port j of start of transmission,”  “observation by port j of end 
of transmission,”  “observation by port j of the  setting  (to 1) 
of flip-flop by port k to  the  left,”  and “observation by port j 
of the  resetting  (to 0) of a flip-flop by port k to  the left,” j 
= 1, 2, ..., N .  For s = (wl,  ..., w N ,  uI ,  ..., u N ,  u ~ , ~ ,  ..., 
v ~ , ~ - , )  E S the event sets E ( s )  are  as follows. The event set 
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wj = 3. The event  “end of wait for R ( j )  + T” E E ( s )  if and 
only if w, = 1. The event “setting of flip-flop by port j ”  E 
E (s) if and only if wj = 4. The event  “observation by port j 
of start of transmission” E E ( s )  if and only if w k  = 3 for 
some k and u j  = 0. The event  “observation by port j of end of 
transmission” E E(s )  if and only if w k  = 3 for  some k and 
ui  = 1. The event  “observation by por t j  of setting of flip-flop 
by port k to  the  left” E E (s) if and only if wk = 1 for  some 
k < j and uk,j = 0. The event  “observation of resetting of 
flip-flop by port k to  the left” E E ( s )  if and only if w k  = 3 
for some k < j and uk,, = 1. 

The  distribution  functions of new clock times  for events 
e’ E N(s’; s, e * )  are  as follows. If e’ = “end of transmission 
by port j”  E E(s’) - ( E ( s )  - {e*} )  andp(s’; s, e*)  > 0, the 
clock setting  distribution  function F(x;  s‘, e’, s, e )  = 
P{Lj  5 x}. If e’ = “end of wait for R ( j )  + T,” the clock 
setting  distribution  function F ( x ;  S I ,  e’, s, e * )  = 
1 [ R V ) + T , m ) ( ~ ) .  If e‘ = “setting of flip-flop by port j,” the clock 
setting  distribution  function F ( x ;  s‘, e’, s, e*) = PIA. < x). If 
e’ = “observation by port j of start of transmiss/oi”  the 
clock setting  distribution  function  F(x; SI, e’, s, e*) = 

liT(k,,),m)(x) if w; = 3. If e‘ = “observation by port j of 
end of transmission,” the clock setting  distribution function 
F(x ;  sf, e’, s, e*)  = l [T(k, j l ,m)(x)  if w; = 4. If e‘ = “observa- 
tion by port j of setting of flip-flop by port k to  the left,” 
the clock setting  distribution  function F(x;  s‘, e‘, s, e * )  
= l[R(k,,),m)(~) if w; = 1 ( k  < j ) .  If e’ = “observation by 
port j of resetting of flip-flop by port k to  the left,” the clock 
setting  distribution  function F ( x ;  sf, e‘, s, e * )  = l[R(k,j),m)(x) 
if w; = 3. 

3. Returns  to a fixed state 
Recurrence properties of the  underlying  stochastic process of 
a  discrete-event simulation  are needed to  establish  estima- 
tion procedures  based  on regenerative processes. Lemma 4 is 
a  special case of a  generalized  Borel-Cantelli lemma  due  to 
Doob [ 13, p. 3241. The  elementary proof given below uses a 
“geometric  trials”  argument. 

Lemma 4 
Let {Y,, : n 2 01 be a sequence of random  variables defined 
on  a  probability space (Q,  3, P )  and  taking on values  in  a  set 
S .  Let s‘ E S.  Suppose  that  there exists 6 > 0 such that 

P{Y, = s f [  Y,- , ,  ..., Yo} L 6 a s .  (12) 

for all n 2 1. Then P { Y n  = s’ i.0.) = 1. 

Pro0 f 
Let I be  the index of first entrance  time of {Yn : n 2 0) to 
state st: 

I = min {n 2 1 : Y, = st}. 

Then 

P { I  > n} = P (Y, # s’, . . ., Yl # s’) 
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Lemma 4 provides a means of showing that  the underlying 
stochastic process of a  simulation returns infinitely  often to a 
fixed state. Specifically, let  {X(t) : t 2 01 be a stochastic 
process with right-continuous  and piecewise constant  sample 
paths  and  countable  state  space, S.  Let s' E S and sup- 
pose that (Tn : n 2 O} is an  increasing  sequence of finite 
( T n  < m as.)  state  transition  times for { X ( ? )  : t 2 0) such 
that 

P{x(T, )  = S ' [ X ( T ~ - , ) ,  ..., x ( T , ) )  I 6a.s. 

for some 6 > 0. Then P ( X (  T n )  = s' io .}  = 1 by Lemma 4 
[with Y, = X ( T , ) ] .  In  practice,  it  can  be difficult to show 
that T ,  < m a s .  

The  argument used  in Example 5 is due  to  Richard 
Tweedie. 

Example 5 
In the token  ring model of Example 1 let T ,  be  the  nth  time  at 
which port 1 observes the token, n 0. Then  there is a 
packet  queued for  transmission at  ports 2, 3, . . ., N a n d  port 1 
starts transmission of a packet a t  time T ,  if X ( T , )  = s', 
where s' = (0, 1 ,  .. ., 1, 1, 2).  Lemma 4 implies that 
P ( X ( T , )  = s'i.0.1 = 1 provided that 

P ( A j > x + y ~ A j > y } I P t A j > x )  (13) 

for all x, y 2 0 and 

PIAj I Rj + ... + R,] > 0, (14) 

j = 1, 2, ..., N. First observe that T,, < m a s .  since 
N 

E { T ,  - Tn- , ]  I R ,  + ... + R, + x E { L j }  < m 

for all n 2 1. Now  set 
j =  1 

N 

6 = n P { A j  I Rj + ... + RN]. 
j =  1 

By Eq. (14), 6 > 0 and we claim that 

P { X ( T , )  = s ' p q T n - , ) ,  ..., X(T,)I L 6. (15) 

To see  this,  let T,  ( j )  be  the first time  after Tn-I that  the 

token leaves port j ;  i.e., 

T,(N) = inf {t > T,-, : N ( t )  = 1 and M ( t )  = O} 

and 

T , ( j )  = inf {t > T,-,  : N ( t )  = j + 1 and M ( t )  = O}, 

j = 1,2, . . ., N - 1. The definition of T, ( j )  implies that  there is 
no packet queued for transmission at  port j at time T,,(j) and 
that T,  - T,G) 2 Rj + ... + R,, the  time for the token to 

I 

propagate from port j to port 1. Equation (1 3) ensures that 

P I Z j ( T n - )  = 1 IX(Tn-,), .-,X(T,)I 

2 P{Aj  i R, + ... + R ,  

for all j and  therefore  that 

P{X(T")  = S'lX(Tn-J, -., X(T,)I = P {Z , (T , - )  

= 1, ...) Z,(T,-)  = 1 IX(T,-,), -.,X(T,)I 

L 6 .  

4. Regenerative generalized semi-Markov  pro- 
cesses 
Heuristically, a regenerative  stochastic process has  the  char- 
acteristic  property  that  there exist random  time points, 
referred  to  as  regeneration  points or regeneration  times, a t  
which the process probabilistically restarts. Typically,  a 
regenerative process probabilistically starts  afresh when the 
process returns  to  some fixed state.  The essence of regenera- 
tion is that between any two successive regeneration  points 
the evolution of the process is a  probabilistic  replica of the 
process between any  other  such  pair of regeneration points. 

In  the presence of certain  regularity conditions,  a  regener- 
ative  stochastic process ( X ( ? )  : t 2 01 has a limiting  distribu- 
tion provided that  the  time between regeneration points  is 
finite. Furthermore,  the  regenerative  structure  ensures  that 
the behavior of the process  between two successive regenera- 
tion points determines  the  limiting  distribution of the process 
as a ratio of expected  values. A consequence of these  results 
(Crane  and  Iglehart [ 141) is that a  strongly  consistent  point 
estimate  and  asymptotically valid confidence interval  for  the 
expected value of a general  (measurable)  function of the 
limiting random  variable X can  be  obtained by observation of 
a  finite  portion of a  single sample  path of the regenerative 
process. This is accomplished by simulating  the process in 
cycles and  measuring  certain  quantities defined  within the 
individual cycles. 

Irreducible  and positive recurrent  continuous  time  Mar- 
kov chains having  a  finite or countable  state  space  are  the 
most familiar examples of a regenerative process  in  continu- 
ous time. The successive entrances of such a Markov  chain  to 
any fixed state  form a  sequence of regeneration  points. It is 
frequently difficult, however, to show that  the underlying 477 
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stochastic process of a non-Markovian system  is regenera- 
tive. Typically,  the  problem lies primarily in establishing 
conditions under which the process returns infinitely often to 
a fixed state. 

P { V ( T , )  = (so, s;) I V ( T n - l ) ,  ..., V(TO)l L 6 as . ,  where 
L(t )  is the  last  state occupied by the  GSMP before jumping 
to X ( ? )  and V ( t )  = (L ( t ) ,  X ( t ) ) .  Then { X ( t )  : t L 01 is a 
regenerative process in  continuous  time. Moreover, if 

The  usual  formal definition (cf.  Smith [ 151) of a regenera- 
tive process is in terms of the  pasting  together of so-called 
“tours.” We give an equivalent  definition. then  the expected time between regeneration points  is  finite. 

Dejinition 6 
A stopping time for a stochastic process { X ( ? )  : t 2 01 is a 
random  variable T [taking values  in [0, -)I such  that for 
every  finite t 2 0, the  occurrence  or  nonoccurrence of the 
event {T  5 t }  can  be  determined  from  the  history 
{ X ( u )  : u 5 t }  of the process up to time t .  

Dejinition 7 
The  real  (possibly  vector-valued)  stochastic  process 
{ X ( ? )  : t I 01 is a regenerative process in continuous time 
provided that 

1. There exists a sequence of stopping  times {T ,  : k L 01 
such that {T,,,  - Tk : k L 0} are  independent  and iden- 
tically distributed; 

2. For every sequence of times 0 < t I < t ,  < ... < 
t ,  (m  2 1) and k 2 0, the  random vectors { X ( t , ) ,  ..., 
X(t,)} and { X ( T k  + t l ) ,  ---, X ( T ,  + t , ) }  have the  same 
distribution  and  the processes { X ( t )  : t < T k ]  and 
&(Tk + t )  : t 2 01 are  independent. 

Proof 
SinceP{V(T,) = (so, si) I V(T, - , ) ,  ..., V(To)}  2 6 > 0 and 
T,, < 00 as.,  Lemma 4 ensures  that { V( T,) : n 1 0) hits  state 
(so, SA) infinitely often with probability one. Furthermore,  at 
such a time T,, the only  clocks that  are  active have just been 
set  since O(sA; so, e*) = 0. The  joint  distribution of X (  Tn)  
and  the clocks set a t  time T ,  depends on the  past  history of 
{ X ( t )  : t 2 0} only through SA, the previous state so, and  the 
trigger event e*. Therefore,  the  subset of times Tn at  which 
event e* triggers a transition  from  state so to  state S A  are 
regeneration points for  the process { X ( t )  : t 2 01. 

To show that  the expected time between regeneration 
points is finite, let {SA : n 2 l }  be  the regeneration  points; 
1.e., 

SA = inf { T ,  > S A - ,  : x(T,) = S ; , X ( T , - )  = so}. 

Then  E{Si  - Si-,} < 00 if and only if 

According  to Definition 7, every regenerative process has 
an  embedded  renewal  process.  The  random  times 
{ T ,  : k 2 0 )  are  regeneration  points  for  the  process 
{ X ( ? )  : t 1 O}, and  the  time  interval [T ,_ , ,  T , )  is called the 
kth cycle of the process. The  requirement  that  the  regenera- 
tion points be stopping  times  means  that  for  any fixed t the 
occurrence of a regeneration point prior  to  time t (i.e., 
T I  I t )  depends  on  the  evolution  of  the  process 
{ X ( ? )  : t 2 O} in the  interval (0, t ]  but  not beyond time t .  

Proposition 8 gives a set of conditions on the building 
blocks of a GSMP which ensures  that  the process is regener- 
ative  and  that  the expected time between regeneration points 
is  finite. The  latter  result is due  to  Peter  Glynn. 

Next  observe  that Sk = T,(,, for  some  sequence 
{ k ( n )  : n 2 l} and  that 

- Tk(n)  k(n)  . 
n k (n)  n 

Thus, 

l l m ~ I c u f i -  . S’ . k(n)  
- 
n-- n n-- n 

and  it  can  be shown (using  an  argument  similar  to  that in 
Lemma 4 and  the Borel-Cantelli lemma)  that 

so that 

Proposition 8 
Let { X ( t )  : t L 0)  be a GSMP with a  finite state  space S a n d  
event set E.  Suppose  that  there exist states so, si E S and  an 
event e* E E such  that p(sA; so, e*) > 0 and O(s;; so, e*) = 

E($,) f’ @(so) - (e*}) = 0. Also suppose that  there exists 
an increasing sequence of stopping  times {T ,  : n 2 0 )  that 
are finite (Tn  < m as . )  state transition  times at which e* is 

478 the  trigger event and 6 > 0 such  that 

Example 9 
In  the token  ring of Example 1, take SA = (0, 1, ..., 1, 1, 2) 
and e* = “observation of token.” A transition  to  state SA can 
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occur  when  event e* is the  trigger event only if e* occurs in 
state so = (1, . . ., 1, 0, 1) and in this  case  the set O(s6; so, e*) 
= 0. If Tn is the  nth  time  that port  1  observes the token, 
there exists 6 > 0 such  that P { X ( T n )  = SI ( X ( T , ) ,  ..., 
X(To) }  2 6 by the  argument in Example 5. The successive 
times T,  a t  which e* is the  trigger event  in state so (and  there 
is a transition  to  state si) are  regeneration points for  the 
process {x(t) : t L 0). 

Next observe that 

T ,  - Tn- ,  I R ,  + ... + R ,  + L, ,  + ... + L,,  

where Ljn is distributed  as Lj.  Thus, 

where Uk = R ,  + ... + R ,  -t L,, + ... + LNk. By the  strong 
law of large  numbers 

Therefore, 

and  the expected time between regeneration points is finite. 

5. Concluding remarks 
Most  discrete-event simulations  can be modeled within the 
GSMP framework.  In  some  stochastic systems, however, it is 
possible to define  a system  state which maintains sufficient 
information to  determine  the  quantities of interest  and  to 
specify an  algorithm for generating  sample  paths of the 
associated stochastic process, but  the process  does  not  have  a 
GSMP representation. As an example, suppose that  the  state 
of the collision-free bus network at  time t is  defined to  be 

X ( t )  = ( W t ) ,  W ) ,  V t ) ) ,  

where W ( t )  and U ( t )  are  as in Example 3, Vi(?) is the 
number of ports to  the  left observed by p o r t j  to have set  their 
flip-flop and V ( t )  = ( V , ( t ) ,  ..., V,(t)). The process 
{ X ( t )  : t 2 0) has a  finite state  space, S .  It does  not appear  to 
be possible, however, to specify an event  set E such  that 
{ X ( t )  : t 2 0) is a GSMP with state  space S and event set E .  
For example,  suppose that E is the  set of events: “end of 
transmission by port j,” “end of a wait  for R ( j )  + T,” 
“setting of flip-flop by port j,” “observation by port j of start 
of transmission,”  “observation by port j of end of transmis- 
sion,” “observation by port j of setting of flip-flop by port to 
the left,” and “observation by port j of resetting of flip-flop 
by port to  the left,” j = 1, 2, ..., N .  Then { X ( ? )  : t 2 01 fails 
to  be a GSMP because there  are  states  for which it is  not 
possible to  determine  whether or not the event  “observation 

by port j of setting of flip-flop by port  to  the left” or the event 
“observation by port j of resetting of a flip-flop by port  to  the 
left” is  active. (Select i, j ,  and k with 1 5 i < j < k 5 N 
and  takes = (w,, ..., w,, u,, ..., u,, u , ,  ... u,) with w i  = 3, 
wk = 1, andv, = 1.) 

Acknowledgments 
The  authors have  benefitted from  stimulating  technical 
discussions  with Carl  Hamacher  and  Richard  Tweedie  and 
from  the  comments of anonymous referees.  Both authors  are 
grateful  to  the  National  Science  Foundation for support 
under  Grant  MCS-8203483.  In  addition,  Donald L. Iglehart 
gratefully acknowledges partial  support  under Office of 
Naval  Research  Contract  N00014-76-C-0578 ( N R  042- 
343). 

References 
1. W. M. Loucks, V. C. Hamacher,  and B. Preiss,  “Performance of 

Short Packet Local  Area  Rings,” Technical Report, Depart- 
ments of Electrical  Engineering  and  Computer  Science,  Univer- 
sity of Toronto,  Ontario, Canada. 

2. W. Whitt, “Continuity of Generalized  Semi-Markov  Pro- 
cesses,” Math.  Oper.  Res. 5,494-501  (1980). 

3. P.  W.  Glynn,  Forthcoming technical  report,  Department of 
Industrial  Engineering,  University of Wisconsin,  Madison, WI, 
1983. 

4. L. D. Fossett,  “Simulating  Generalized  Semi-Markov  Pro- 
cesses,” Technical Report No. 4, Department of Operations 
Research,  Stanford  University,  CA, 1979. 

5. D. L. Iglehart and G. S. Shedler, “Statistical Efficiency of 
Regenerative  Simulation  Methods for Networks of Queues,’’ 
Adv.  Appl.  Prob. 15,183-197  (1983). 

6. E. Nummelin, “A Splitting Technique for @-Recurrent Markov 
Chains,” Technical Report MAT  A80, Helsinki  University of 
Technology,  Finland, 1976. 

7. P.  Tuominen  and  R. L. Tweedie,  “Exponential  Ergodicity in 
Markovian  Queueing  and  Dam  Models,” J .  Appl. Prob. 16, 

8. K. Matthes, “Zur Theorie  der  Bedienungsprozesse,” Trans. 3rd 
Prague Conference on Information Theory and Statistical 
Decision Functions, Prague, 1962. 

9. D.  Konig, K. Matthes, and K. Nawrotzki, Verallgemeinerungen 
der Erlangschen und Engsetschen Formeln, Akademie-Verlag, 
Berlin, 1967. 

10. D.  Konig, K. Matthes, and  K.  Nawrotzki,  “Unempfindlichkeit- 
seigenschaften von Bedienungsprozessen,”  Appendix to Intro- 
duction to Queueing Theory, B. V. Gnedenko  and I. N. Koval- 
enko, German  edition, 1974. 

11. Gerald S. Shedler  and Jonathan Southard, “Regenerative  Sim- 
ulation of Networks of Queues  with  General  Service  Times: 
Passage  Through  Subnetworks, IBM J .  Res.  Develop. 26, 

12. K. P. Eswaran, V.  C. Hamacher,  and  G. S. Shedler,  “Collision- 
Free Access  Control for Computer  Communication Bus Net- 
works,” IEEE  Trans.  Software Engineering SE-7, 574-582 
(1981). 

13. J. L.  Doob, StochasficProcesses, John Wiley & Sons,  Inc., New 
York, 1953. 

14. M. A. Crane and D. L. Iglehart, “Simulating Stable Stochastic 
Systems: 111, Regenerative  Processes  and  Discrete  Event  Simu- 
lation,” Oper. Res. 23,33-45  (1975). 

15. W. L. Smith, “Renewal  Theory  and Its Ramifications,” J.  Roy. 
Statist.  SOC.  Ser.  B 20,243-302  (1958). 

867-880  (1979). 

625-633  (1982). 

Received April 13, 1983; revised May 11, 1983 478 

IBM J.  RES, DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983 DONALD L. IGLEHART AND GERALD S. SHEDLER 



Donald L. lglehart Stanford University, Stanford. Califor- 
nia 94305. Dr. lglehart is Professor of Operations Research in the 
Department of Operations Research at Stanford University. He 
received a B.S. in engineering physics from Cornel1 University, 
Ithaca, New York, and  an M S .  and  a Ph.D. in mathematical 
statistics from Stanford University. He has published papers on 
inventory theory, queueing theory, simulation methodology, and 
stochastic processes. 

Gerald S. Shedler IBM Research Division, 5600 C o d e  
Road, Sun Jose, California 95193. Mr. Shedler has been a Research 
staff member at IBM since 1965, initially at  the  Thomas J. Watson 

480 

DONALD L. IGLEHART AND GERALD S. SHEDLER 

Research Center, Yorktown Heights, New York, and since 1970, in 
the Computer Science Department at  the Research laboratory in 
San Jose. During 1973-1974, while  on sabbatical from IBM, he  was 
associated with Stanford University as Acting Associate Professor in 
the Department of Operations Research, and subsequently has been 
Consulting Associate Professor in the same department. He has 
worked  extensively  on applications of stochastic processes, particu- 
larly to performance evaluation of computer systems. His current 
research is on discrete event methods for simulation of stochastic 
systems. Mr. Shedler is coauthor with Donald L. Iglehart of 
Regenerative Simulation of Response Times in Networks of 
Queues, published in 1980. 

IBM J.  RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983 


