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Simulation of Non-Markovian Systems

A generalized semi-Markov process provides a stochastic process model for a discrete-event simulation. This representation is
particularly useful for non-Markovian systems where it is nontrivial to obtain recurrence properties of the underlying
stochastic processes. We develop “geometric trials” arguments which can be used to obtain results on recurrence and
regeneration in this setting. Such properties are needed to establish estimation procedures based on regenerative processes.
Applications to modeling and simulation of ring and bus networks are discussed.

1. Introduction

It appears to be the rule rather than the exception that
usefully detailed stochastic models for complex systems are
such that it is extremely difficult or impossible to obtain an
exact analytic solution. Simulation is essentially a controlled
statistical sampling technique which can be used to study
complex stochastic systems when analytic and/or numerical
techniques do not suffice. We concentrate here on discrete-
event digital simulation in which the behavior of a specified
stochastic system is observed by sampling on a digital
computer system and stochastic state transitions occur only
at a set of increasing (random) epochs of time. In discrete-
event simulations most of the stochastic processes that we
encounter have piecewise-constant sample paths.

When simulating, we experiment with a stochastic system
and observe its behavior. In the course of the simulation we
measure certain quantities associated with the system, and
using statistical techniques, draw inferences about charac-
teristics of well defined random variables. The most obvious
methodological advantage of simulation is that in principle it
is applicable to stochastic systems of arbitrary complexity. It
is, however, a decidedly nontrivial matter in practice to
obtain from a simulation information which is both useful
and accurate, and to obtain it at reasonable cost. The
difficulties arise primarily from the inherent variability in a
stochastic system, and it is necessary to seek theoretically
sound and computationally efficient methods for carrying
out the simulation. Apart from implementation consider-

ations, important concerns for simulation relate to genera-
tion methods for sample paths of the stochastic system under
study, the design of simulation experiments, and the analy-
sis of simulation output. Since results of a simulation are
based on observation of a stochastic system, it is absolutely
essential that some assessment of the precision of results be
provided.

Implicit in the implementation of any simulation is the
definition of an appropriate “state” for the system. Heuristi-
cally, the system state maintains sufficient information
about the system so that state transitions that occur over time
completely determine the quantities of interest. This “state
of the system at time #” constitutes a stochastic process in
continuous or discrete time. When carrying out the simula-
tion, we observe the behavior of this process as it evolves in
time. In order to do so it is necessary to have a means of
generating sample paths of this process and to have methods
for obtaining valid estimates of the quantities of interest in
the system.

In this paper we focus on simulation methods for non-
Markovian systems in continuous time; i.e., systems whose
state cannot be modeled as a Markov chain with countable
state space. This is characteristic of local area computer
network models (see, e.g., Loucks, Hamacher, and Preiss
[1]) where it is important to incorporate system control
algorithms explicitly into the simulation model. We restrict

© Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the

Editor.

DONALD L. IGLEHART AND GERALD S. SHEDLER

IBM J. RES. DEVELOP. @ VOL. 27 e NO. 5 « SEPTEMBER 1983




attention to those discrete-event simulations whose underly-
ing stochastic process can be represented as a generalized
semi-Markov processs (GSMP) in the sense of Whitt [2].

In addition to providing a framework for generating
sample paths of the underlying stochastic process of the
simulation, the GSMP representation is particularly useful
for simulation of non-Markovian systems in that it leads to
methods for obtaining recurrence properties of the underly-
ing stochastic process; cf. Glynn [3]. Such properties are
needed to establish estimation procedures based on regenera-
tive processes; cf. Fossett [4] and Iglehart and Shedler [5].
For specific non-Markovian systems (e.g., ring and bus
network models) it can be difficult to determine conditions
(distributional assumptions) under which the underlying
stochastic process is regenerative. In this paper we develop
“geometric trials” arguments (cf. Nummelin [6] and
Tuominen and Tweedie [7]) which can be used to show the
applicability of regenerative simulation methods.

2. Generalized semi-Markov processes
Heuristically, a GSMP (Matthes [8], Konig, Matthes, and
Nawrotzki [9, 10]) moves from state to state in accordance
with the occurrence of events associated with the occupied
state. Each of the several possible events associated with a
state compete to trigger the next transition, and each of these
events has its own distribution for determining the next state.
At each state transition of the GSMP, new events may be
scheduled. For each of these new events, a clock indicating
the time until the event is scheduled to occur is set according
to an independent (stochastic) mechanism. If a scheduled
event does not trigger a transition but is associated with the
next state, its clock continues to run; if such an event is not
associated with the next state, it is abandoned.

Following Whitt [2], formal definition of a GSMP is in
terms of a general state space Markov chain (GSSMC)
which describes the process at successive epochs of state
transition. Let S be a finite or countable set of states and
E = {el, €y eM} be a finite set of events. For s € S, E(s)
denotes the set of all events that can occur when the GSMP is
in state s. When the process is in state s, the occurrence of an
event e € E(s) triggers a transition to a state s’. We denote by
p(s’; s, e) the probability that the new state is &’ given that
event e triggers a transition in state s. For each s € § and
e € E(s) we assume that p(-; s, e) is a probability mass
function. The actual event e € E(s) which triggers a
transition in state s depends on clocks associated with the
events in E(s) and the speeds at which these clocks run. Each
such clock records the remaining time until the event triggers
a state transition. We denote by 7, (=0) the deterministic
rate at which the clock ¢, associated with event e, runs in
state s; for each s € S, r, = 0 if ¢, & E(s). We assume that

* Ui

r, > 0 for some e, € E(s). (Typically in applications all
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speeds r,, are equal to one. There are, however, models in
which speeds other than unity as well as state-dependent
speeds are convenient. For example, zero speeds are needed
in queueing systems with service interruptions of the preemp-
tive-resume type; cf. Shedler and Southard {11].)

For s € S define

C(s) = (e, -+~ ¢,): ¢, = O and ¢, > 0 if and only if

e, C E(s)cr, # ¢ry fori # jwithe,cor,r, >0} (1)
The conditions in Eq. (1) ensure that no two events simulta-
neously trigger a transition (as defined below). The set C(s)
is the set of possible clock readings in state s. The clock ¢, and
event e, are said to be active in state s if e, € E(s). Fors € §
and ¢ € C(s), let

t* = t*(s,¢) = min {c,. r;,l }, 2)
fize,CE@)}

where ¢,r' is taken to be +co when r,, = 0. Also set

cF =cXs,c) =, — t*(s, O)r

i si?

e, € E(s) )
and
i* = i* (s5,c) = i such that e, € E(s) and ¢} (5,¢) = 0. (4)

Beginning in state s with clock vector ¢, t*(s, ¢) is the time to
the next state transition and i*(s, ¢) is the index of the unique
triggering event e* = e*(s, ¢) = ey, -

At a transition from state s to state s’ triggered by event e*,
new clock times are generated for each & € N(s’; s, e*)
= E(s") — (E(s) — {e*}). The distribution function of such a
new clock time is denoted by F(-; s, €', 5, e*) and we assume
that F(0; s’, €', 5s,e*) = 0. Fore’ € O(s';5,e*) = E(s') N
(E(s) — {e*]), the old clock reading is kept after the
transition. For ¢’ € (E(s) — {e*}) — E(s’), event ¢’ ceases to
be scheduled after the transition.

Next consider a GSSMC {(S,, C,) : n = 0)} having state
space

> =U (st x Cs))
sES

and representing the state (S,) and vector (C,) of clock
readings at successive state transition epochs. (The ith
coordinate of the vector C,, is denoted by C,;.) The transition
kernel of the Markov chain {(S,, C,) : n = 0} is

P((s, c), 4)

=p(sss,et) I Flaps,es,e) T1 14, @, )

e EN() (A2
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where N(s') = N(s'; 5, e*), O(s') = O(s"; s, €¥), and
A=t x{(c, - e)) €ECs)ic, < a,fore € E(s)}

The set A4 is the subset of ) which corresponds to the GSMP
entering state s’ with the reading ¢, on the clock associated
with event ¢; € E(s') set to a value in [0, a,].

Finally, the GSMP is a piecewise constant continuous time
process constructed from the GSSMC {(S,, C,) :n = 0} in
the following manner. Denote by {, the time of the nth state
transition, n = 0. [We assume that
Plsup{, = 40l (S, CHl =1

nzl

for all initial states (S, C;).] Then set

X(1) = Sy, (6)
where

N(@t) = max{n>0:{, <t}

The process {X(¢) : t = 0} is a GSMP.

The following examples illustrate the use of the GSMP
model as a formal specification of a discrete-event simulation
of a non-Markovian system.

e Example |

Consider a unidirectional ring network having a fixed num-
ber of ports, labeled 1, 2, ---, N in the direction of signal
propagation. At each port message packets arrive according
to a random process and queue externally. A single control
token circulates around the ring from one port to the next.
The time for the token to propagate from port Nto port lisa
positive constant, Ry, and the time for the token to propagate
from port j — 1 to port j is a positive constant, R, ,,j = 2,3,
---, N. When a port observes the token and there is a packet
queued for transmission, the port converts the token to a
connector and transmits a packet followed by the token
pattern; the token continues to propagate if there is no packet
queued for transmission. By destroying the connector prefix
the port removes the transmitted packet when it returns
around the ring. Assume that the time for port j to transmit a
packet is a positive random variable, L, with finite mean.
Also assume that packets arrive at individual ports randomly
and independently of each other; i.e., the time from end of
transmission by port j until the arrival of the next packet for
transmission by port j is a positive random variable, 4, with
finite mean. Note that there is at most one packet queued for
transmission at any time at any particular port.

Set

X(t) = (Zl(t)""a ZN(t)v M(t)7N(t))’ (7)
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where
1 if there is a packet queued for
Zj(t) — transmission at port j at time ¢/,
0 otherwise,
and
j  if port j is transmitting a packet at time ¢,
M(t) =
0 if no port is transmitting a packet at time ¢.

N(t) = 1if at time ¢ port N is transmitting a packet or the
token is propagating to port 1, and N(z) = jif at time ¢ port
Jj — 1is transmitting a packet or the token is propagating to
portj,j=2,---, N.

The process {X(¢) : ¢ = 0} defined by Eq. (7) is 2 GSMP
with a finite state space, S, and event set, E. The events in the
set E are “observation of token,” “end of transmission,” and
“arrival of packet for transmission by port j,” j = 1,2,---, V.
For s = (z,, -*+, zy, m, n) € S, the event sets E(s) are as
follows. The events “end of transmission” € E (s) if and only
if m > 0 and “observation of token” € E(s) if and only if
m = 0. The event “arrival of packet for transmission by port
J"E€ E(s)ifandonlyif z; = Oand m # j.

Ifs = (2, 2y, my,m+1) € Swith 0 <m <N,
8 =(z, 2y, 0,m+ 1) Jorifs = (z,--, 2y, N, 1) €S,
§' = (2, -+, zy, 0, 1)] and e = “end of transmission,” then
the state transition probability p(s’; s, e) = 1. If
s = (2, vz, 1,2, 2y 0,n) €S withn < N,
S=(zp 2,0 0, 2,000 2y, B n+ 1) Jor if

s=(z, 2y, LONYESand & = (2}, -, z_;, 0, N, 1)]
and e = “observation of token,” then p(s’; s, ) = 1. If
s=(z, 2, ,0,2z, 1,2y, 0,0) ES, 8 = (2, ", 2,_,,
0,2, " 2y 0, 7+ 1), and e = “observation of token,”
then p(s’;s,e) = 1. If s = (2, -+, 2, 100,20, 2y, m,
m+1)ESwithm#jand0<m <N, 5 = (zl,--',zj_l,
Lz, g, zy,mm+ 1) forif s = (2, -+, FRTI T FRTELN
zy,N,1) ESwithN # j, 5" = (2, vz Lz zy, N,
1)], and e = “arrival of packet for transmission by port j,”
then p(s; s, ) = 1. All other state transition probabilities

p(s’; s, e) are equal to zero.

The distribution functions of new clock times for events
¢ € N(s';s,e*) are as follows. If ¢’ = “end of transmission”
and 8’ = (z,, -*+, zy, m, n), then F(x; s, €, s, e*)
= P{L, < x} for all s and e* such that p(s’; 5, e*) > 0. If
¢ = “observation of token” and 5’ = (z,, -*-, 2, 0, ), then
F(x;s5',¢',s,e*) = I[Rn_“m) (x). If ¢’ = “arrival of packet for
transmission by port j” and s = (z,, -+, 2, 50,2, 2y,
0,7 + 1), then F(x; 5, €, s, e*) = P{Aj. =< x}.

® Example 2

Consider a ring network having a fixed number, K, of equal
size slots and a fixed number of equally spaced ports, labeled
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1,2, ---, NVin the direction of signal propagation. At each port
constant (slot size) length message packets arrive according
to a random process and queue externally. The propagation
delay from one port to the next is a positive constant, R. We
assume that the number of ports N is a multiple of K and (so
that there is no loss of utilization due to “unused bits”) that
the time to transmit a message packet is equal to NR/K. The
lead “full/empty” bit maintains the status of each slot.
Subject to the restriction that no port can hold more than one
slot simultaneously, a port that has a packet queued for
transmission and observes the status bit of an empty slot sets
the bit to 1 (“full”’) and starts transmission (begins filling the
slot). Transmission ends when the slot contains the entire
packet. When the status bit of the filled slot propagates back
to the sending port, the port resets the bit to 0 (“empty”) and
releases the slot. To ensure that all ports have an opportunity
to transmit, a port which releases a slot passes the empty slot
to the next port. Assume that packets arrive at individual
ports randomly and independently of each other; i.e., the
time from end of transmission by port j until the arrival of the
next packet for transmission by port j is a positive random
variable, 4 s with finite mean. Note that there is at most one
packet queued for transmission at any time at any particular

port.
Set
X(t) =
(Z, (1), -+, Zp(0), M ((2), -+, M (2), N, (2), -+, N()), (8)
where

1 if there is a packet queued for

Zj( 7 = transmission at port j at time ¢,

0 otherwise,
fori=1,2,---,K,

j  if port j holds slot i at time ¢,
M0) = [
0 otherwise.
N(t) = 1if at time ¢ the status bit of slot { is propagating to
port 1, and N,(¢) = j if at time ¢ the status bit of slot i is
propagating to port j, j = 2,3,---, N.Forany i (1 <i=<K)
the vector (Z,(2), -+, Zy(1), M, (t), -, M (1), N.())
contains the same information about the system as the vector
X(t). Incorporation of all the components N,(¢), ---, N (2)
into the state vector facilitates generation of the process.

The process {X(z) : ¢ = 0} defined by Eq. (8) is a GSMP
with a finite state space S and event set £. The events in the
set E are “observation of status bits by ports” and “arrival of
packet for transmission by port j,” j = 1,2, ---, N. Let s
= (z;, =4 Zy My, ===, My, By, -+-, ) €S, The event
“observation of status bits by ports” € E(s) for all s € S.
The event “arrival of message for transmission by port j” €
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Figure 1 Bus network and ports.

E(s) if and only if z, = 0 and for each i either (1) m, # jor
(2)ym,=jandn — 1 =j— 1+ 2(mod V) for some integer
2 such that N/K < 2 << N. Note that the ends of transmis-
sion coincide with the occurrence of particular “observation
of status bits by ports™ events. Suppose, for example, that
there are N = 4 ports and K = 2 slots and that s = (0, 0, 0,
0,1,0,3,1);i.e., port 1 is transmitting a packet in slot 1, slot
2 is empty, the status bit of port 1 is propagating to port 3,
and the status bit of slot 2 is propagating to port 1. Then the
occurrence of the event “observation of status bits by ports”
in state s corresponds to an end of transmission by port 1.

e Example 3

Consider a collision-free bus network (cf. Eswaran, Hamach-
er, and Shedler [12]) with N ports, numbered 1, 2, .-, N
from left to right; see Fig. 1. Message packet traffic on the
passive bilateral bus is transmitted/received by port j at tap
B(/). In addition to the bus, a one-way logic control wire also
links the ports. Associated with each port j is a flip-flop, S(j),
called the send flip-flop. The signal P(j), called the OR-
signal, tapped at the control wire input to port j is the
inclusive OR of the send flip-flops of all ports to the left of
port j. Denote by T the end-to-end bus propagation delay.
[For technical reasons, T actually must be the end-to-end
propagation delay plus a small (fixed) quantity.] Denote the
actual propagation delay along the bus between port i and
portjby T(i, )i, j=1,2,--, N. Thus, T(i,j) = T(j, i) <
Tforalli,jand T(i,j) + T(j, k) = T(@i, k) foralli <j <
k. (We assume that T'(i, j) # T(k, j) for distinct i, k and all
j.) Let R(j) be the propagation delay (including gate delays)
along the control wire from port jtoport N,j = 1,2, .-, N;
thus, R(1) = R(2) = --- = R(N) = 0. Denote by R(i, j)
the propagation delay along the control wire from port i to
port j. We assume that signal propagation along the control
wire is slower than along the bus and that delays along
shorter sections of each path scale proportionally; i.e.,
R(1) > Tand R(i,j) > T(i,j) forall i, j.

Specification of distributed control scheme A! is in terms
of an algorithm for an individual port j. Packets (for trans-
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mission by port j) which arrive while an execution of the
algorithm by port j is in progress queue externally. Upon
completion of this execution of the algorithm, one of any such
packets immediately becomes available to port j for trans-
mission and the next execution of the algorithm begins.

Algorithm Al

e SetS(j)tol.

® Wait for a time interval R(j) + T.

e Wait until the bus is observed (by port j), to be idle AND
P(j) = 0; then start transmission of the packet, simulta-
neously resetting S(j) to 0.

For simplicity we assume that there can be at most one
packet in queue at each port. Specifically, suppose that the
time from end of transmission by port j until the arrival of a
next packet for transmission by port j is a positive random
variable, A » with finite mean. Also suppose that the time for
port j to transmit a packet is a positive random variable, L,
with finite mean.

Set

W(t) = (Wl(t), T WN(t))’ (9)

where W (1) equals 1 if at time ¢ port j has set its flip-flop but
has not yet completed the R(j) + T wait, equals 2 if port j
has completed the R(j) + T wait but has not started
transmission, equals 3 if port j is transmitting, and equals 4
otherwise. Next set

U(t) = (U|(t)3"'s UN(t))’ (10)

where U, (?) equals 1 if port j observes the bus to be busy at
time ¢ and equals O otherwise. Also set

V(t) = (V2,1(t)v Vg_l(t), V3_2(t), V4,1(t)9 ‘T VN,N_l(t))’ (11)

where V(1) equals 1 if port j has observed that port k has
set its flip-flop and equals O otherwise. (Port j observes
P(j) = lattime tifand only if V,,(¢) = 1 for some k < j.)
Finally, set

X(@) = (W(), U@, V(1))

Then the stochastic process {X(¢) : t = 0} is a GSMP with a
finite state space .S and event set E. The events in the set E
are “end of transmission by port j,” *“end of wait for R(j)
+ T,” “setting (to 1) of flip-flop by port j,” “observation by
port j of start of transmission,” “observation by port j of end
of transmission,” “observation by port j of the setting (to 1)
of flip-flop by port k to the left,” and “observation by port j
of the resetting (to 0) of a flip-flop by port & to the left,” j
= 1,2, -, N Fors = (W, -, Wy, t, ", Up, 0,5,
vyn-1) € S the event sets E(s) are as follows. The event set
E(s) contains “end of transmission by port j if and only if
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w, = 3. The event “end of wait for R(j) + T € E(s) if and
only if w, = 1. The event “setting of flip-flop by port j” €
E(s) if and only if w; = 4. The event *“observation by port j
of start of transmission” € E(s) if and only if w, = 3 for
some k and #; = 0. The event “observation by port j of end of
transmission” € E(s) if and only if w, = 3 for some k and
u, = 1. The event “observation by port j of setting of flip-flop
by port k to the left” € E(s) if and only if w, = 1 for some
k <jand v, ; = 0. The event “observation of resetting of
flip-flop by port k to the left” € E(s) if and only if w, = 3
for some k << jand v, ; = 1.

The distribution functions of new clock times for events
e’ € N(s';s,e*) are as follows. If ¢’ = “end of transmission
by port j” € E(s') ~ (E(s) — {e*]) and p(s; 5, e*) > 0, the
clock setting distribution function F(x; s', €', s, e) =
P{Lj =< x}. If ¢ = “end of wait for R(j) + T,” the clock
setting distribution function F(x; s’, €', s, e*) =
Liggys 1.y (X)- If €” = “setting of flip-flop by port j,” the clock
setting distribution function F (x; &', €', 5, e*) = P{4 ;=< x}. If
¢ = “observation by port j of start of transmission,” the
clock setting distribution function F(x; s, €, s, e*) =
Lz ey (¥) if wy = 3. If & = “observation by port j of
end of transmission,” the clock setting distribution function
F(x;s', ¢,s,e*) = Lir ey (x) if w, = 4. If ¢’ = “observa-
tion by port j of setting of flip-flop by port k to the left,”
the clock setting distribution function F(x; s, €', s, e*)
= L @) if wp =1 (k< j). If ¢ = “observation by
port j of resetting of flip-flop by port k to the left,” the clock
setting distribution function F(x; §', €, 5, e*) = LRy (%)
ifw; = 3.

3. Returns to a fixed state

Recurrence properties of the underlying stochastic process of
a discrete-event simulation are needed to establish estima-
tion procedures based on regenerative processes. Lemma 4 is
a special case of a generalized Borel-Cantelli lemma due to
Doob [13, p. 324]. The elementary proof given below uses a
“geometric trials” argument.

® Lemma 4

Let {Y, : n = 0} be a sequence of random variables defined
on a probability space (2, #, P) and taking on values in a set
S. Let s € S. Suppose that there exists 6 > 0 such that

PlY,=5|Y, , - Y}=6 as. (12)
foralln = 1. Then P{Yn =5 io}=1.

Proof
Let 7 be the index of first entrance time of {Y,: n = 0} to
state 5"

I=min{fn=1:Y,=ys}
Then
PI>n=Ply,#¢5,-, Y, # 5}
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and it is sufficient to show that P{I > n} < (1 — 8)” for all
n= 1. For any n,

P{I>n}= P{Yn #s, Y # §'}
=EPlYy,#5,-, Y, #51Y, .-, Y }}
=F {I{Y,,;laﬁs’,---,}'l#s’lp {Yn #5Y, Yl}}
=E ”(Y,,_,#s’,n‘,)’,#s') (1 - 5)}
=1 -8P{I>n-1}

and therefore P{I > n} < (1 — 8)". O

Lemma 4 provides a means of showing that the underlying
stochastic process of a simulation returns infinitely often to a
fixed state. Specifically, let {X(¢):t= 0} be a stochastic
process with right-continuous and piecewise constant sample
paths and countable state space, S. Let s € S and sup-
pose that {7, :n= 0} is an increasing sequence of finite
(T, < oo as.) state transition times for {X(z) : 1 = 0} such
that

PIX(T,)) = s'| X(T,_), -, X(T)l = as.

for some & > 0. Then P{X(T,) = s’ i.0.} = 1 by Lemma 4
[with ¥, = X(T,)]. In practice, it can be difficult to show
that T, << oo a.s.

The argument used in Example 5 is due to Richard
Tweedie.

® Example 5

In the token ring model of Example 1 let 7', be the nth time at
which port 1 observes the token, n = 0. Then there is a
packet queued for transmission at ports 2, 3, ---, V and port 1
starts transmission of a packet at time T, if X(T,) = 5,
where s' = (0, 1, ---, 1, 1, 2). Lemma 4 implies that
P{X(T,) = s’i.0.} = 1 provided that

Pla,> x + y|4,> yt < Pl4, > x} (13)
for all x, y = 0 and
PlA, <R, + -+ Ry} >0, (14)
Jj=1,2,---, N. First observe that T, <C oo a.s. since

N
E{T,- T, }<R +-+Ry+ ) ElL}<

j=t

for all n = 1. Now set
N

s=11I P{4, =R, + -+ Ry}
j=1

By Eq. (14), § > 0 and we claim that
PIX(T,) = s'| X(T,_), - X(T)} = 6. (15)

To see this, let 7, (j) be the first time after T, | that the
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token leaves port j; i.e.,

T,(N) =inf{t> T, ,:N(t) = 1and M(¢) = 0}
and

T (j)=inf{t>T, :N(t) =)+ land M(t) = 0O},

j=1,2,-- N — 1. The definition of T,() implies that there is
no packet queued for transmission at port j at time T, () and
that 7, — T,(j) = R, + -+ + R, the time for the token to
propagate from port j to port 1. Equation (13) ensures that

P{Z(T,~) = 1|X(T,_)), - X(T,)}
= P{4,; =R, + - + Ry}
for all j and therefore that
PX(T) =51 X(T, ), - X(T)l = P{Z(T,-)
=1, ZJ(T,~) = 1X(T, ), X(T)}

=9.

4. Regenerative generalized semi-Markov pro-
cesses

Heuristically, a regenerative stochastic process has the char-
acteristic property that there exist random time points,
referred to as regeneration points or regeneration times, at
which the process probabilistically restarts. Typically, a
regenerative process probabilistically starts afresh when the
process returns to some fixed state. The essence of regenera-
tion is that between any two successive regeneration points
the evolution of the process is a probabilistic replica of the
process between any other such pair of regeneration points.

In the presence of certain regularity conditions, a regener-
ative stochastic process {X(¢) : £ = 0} has a limiting distribu-
tion provided that the time between regeneration points is
finite. Furthermore, the regenerative structure ensures that
the behavior of the process between two successive regenera-
tion points determines the limiting distribution of the process
as a ratio of expected values. A consequence of these results
(Crane and Iglehart [14]) is that a strongly consistent point
estimate and asymptotically valid confidence interval for the
expected value of a general (measurable) function of the
limiting random variable X can be obtained by observation of
a finite portion of a single sample path of the regenerative
process. This is accomplished by simulating the process in
cycles and measuring certain quantities defined within the
individual cycles.

Irreducible and positive recurrent continuous time Mar-
kov chains having a finite or countable state space are the
most familiar examples of a regenerative process in continu-
ous time. The successive entrances of such a Markov chain to
any fixed state form a sequence of regeneration points. It is
frequently difficult, however, to show that the underlying
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stochastic process of a non-Markovian system is regenera-
tive. Typically, the problem lies primarily in establishing
conditions under which the process returns infinitely often to
a fixed state.

The usual formal definition (cf. Smith [15]) of a regenera-
tive process is in terms of the pasting together of so-called
“tours.” We give an equivalent definition.

® Definition 6

A stopping time for a stochastic process {X(t):t = 0}is a
random variable T [taking values in [0, «<)] such that for
every finite ¢ = 0, the occurrence or nonoccurrence of the
event {T <t} can be determined from the history
{X(u) : u < t} of the process up to time ¢.

® Definition 7
The real (possibly vector-valued) stochastic process
{X(¢) : t = 0} is a regenerative process in continuous time
provided that

1. There exists a sequence of stopping times {7, : k = 0}
such that {T,, — T, : k = 0} are independent and iden-
tically distributed;

2. For every sequence of times 0 < ¢, <, < -+ <
t, (m=1) and k = 0, the random vectors {X(tl), .,
X ) and {X(T, +¢,), -+, X(T, + 1,)} have the same
distribution and the processes {X(¢):¢< T,} and
{X(T, + 1) :t = 0} are independent,

According to Definition 7, every regenerative process has
an embedded renewal process. The random times
{T,: k = 0} are regeneration points for the process
{X () : 1 = 0}, and the time interval [T, _,, T,) is called the
kth cycle of the process. The requirement that the regenera-
tion points be stopping times means that for any fixed ¢ the
occurrence of a regeneration point prior to time ¢ (i.e.,
T, =< 1t) depends on the evolution of the process
{X(#) : t = 0} in the interval (0, t] but not beyond time 1.

Proposition 8 gives a set of conditions on the building
blocks of a GSMP which ensures that the process is regener-
ative and that the expected time between regeneration points
is finite. The latter result is due to Peter Glynn.

® Proposition 8

Let {X(#) : t = 0} be a GSMP with a finite state space S and
event set E. Suppose that there exist states s, s; € S and an
event ¢* € E such that p(sg; 5,, €*) > 0 and O(sy; 5,, €*) =
E(s;) N (E(s,) — {e*h) = @. Also suppose that there exists
an increasing sequence of stopping times {7',: n = 0} that
are finite (T, << <o a.5.) state transition times at which e* is
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PIV(T,) = (sp s V(T,_), - V(T)} =38 as., where
L(#) is the last state occupied by the GSMP before jumping
to X(¢z) and V(z) = (L(2), X(1)). Then {X(z):t=0}is a
regenerative process in continuous time. Moreover, if

fim L
M -2 =g <o a.s.,
n—oo n

then the expected time between regeneration points is finite.

Proof

Since P{V(T,) = (54, 5) | V(T,_)), -, V(T,)} = 8 > 0 and
T, < ooas., Lemma 4 ensures that {V'(T,) : n = 0} hits state
(s, 55) infinitely often with probability one. Furthermore, at
such a time T, the only clocks that are active have just been
set since O(sy; 5., €*) = @. The joint distribution of X(T,)
and the clocks set at time T, depends on the past history of
{X(2) : t = 0} only through s/, the previous state s,, and the
trigger event e*. Therefore, the subset of times 7', at which
event e* triggers a transition from state s, to state s, are
regeneration points for the process {X(¢) : t = 0}.

To show that the expected time between regeneration
points is finite, let {S7:n = 1} be the regeneration points;
i.e.,

S! =inf(T, > S._,: X(T,) = s}, X(T,~) = s,}.

Then E{S; - S;_l} << o if and only if

.S’
limZr o a5,

n—w N

Next observe that S, = T, for some sequence

{k(n) : n = 1} and that

k{n)

Sy _ Tuw km)

n  k(n) n
Thus,
lim ﬂ < o lim @ ,

n—o N n—+oo n

and it can be shown (using an argument similar to that in
Lemma 4 and the Borel-Cantelli lemma) that

lim M < oo a.s.

n—w R

so that

.S
ImZr o, a5,

n—o R

and E{S} = S, |} < . O

e Example 9
In the token ring of Example 1, take s, = (0, 1,---, 1, 1, 2)
and e* = *“‘observation of token.” A transition to state s, can
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occur when event e* is the trigger event only if e* occurs in
state s, = (1, -+, 1,0, 1) and in this case the set O(sg; 54, €*)
= @.If T, is the nth time that port 1 observes the token,
there exists 6 > 0 such that P{X(T,,) = s(')|X(T"), ey
X(T,)} = & by the argument in Example 5. The successive
times T, at which e* is the trigger event in state s, (and there
is a transition to state s;) are regeneration points for the
process {X(¢) : t = 0}.

Next observe that

T,-T, , =R+ +Ry+L,+-+ 1Ly,

n-1—

where L, is distributed as L. Thus,

T = U,

< —,

n :é, n

whereU, = R, + -+ Ry + L, + -+ + Ly,. By the strong
law of large numbers

=1
Therefore,

rl'HL<OC> a.s.

n—e N

and the expected time between regeneration points is finite.

5. Concluding remarks

Most discrete-event simulations can be modeled within the
GSMP framework. In some stochastic systems, however, it is
possible to define a system state which maintains sufficient
information to determine the quantities of interest and to
specify an algorithm for generating sample paths of the
associated stochastic process, but the process does not have a
GSMP representation. As an example, suppose that the state
of the collision-free bus network at time ¢ is defined to be

X)) = (W), U@), V),

where W(t) and U(¢) are as in Example 3, V,(?) is the
number of ports to the left observed by port j to have set their
flip-flop and V(¢) = (V, (1), ---, Vu(t)). The process
{X(#) : t = 0} has a finite state space, S. It does not appear to
be possible, however, to specify an event set E such that
{X(2) : t = 0}is a GSMP with state space S and event set E.
For example, suppose that E is the set of events: “end of
transmission by port j,” “end of a wait for R(j) + T,”
“setting of flip-flop by port j,” “observation by port j of start
of transmission,” “observation by port j of end of transmis-
sion,” “observation by port j of setting of flip-flop by port to
the left,” and “observation by port j of resetting of flip-flop
by port to the left,” j = 1,2, ---, N. Then {X(¢) : ¢ = 0} fails
to be a GSMP because there are states for which it is not
possible to determine whether or not the event “observation
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by port j of setting of flip-flop by port to the left” or the event
“observation by port j of resetting of a flip-flop by port to the
left” is active. (Select i, jand kwith ]l <i<j<k=<N
and take s = (W, -, Wy, Uy, -~ Uy, v, -+ uy) Withw, = 3,
w, = 1, and v, = 1.)
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