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Address-Independent Routing for Local Networks

A routing methodology is introduced which permits messages to be propagated throughout a network without recourse to
destination or origin addresses. Two classes of networks, bidirectional trees and augmented rings, are analyzed from this point
of view. An optimality property is proved for the bidirectional tree, and three types of address-independent routing strategies
are derived. It is shown that augmented loops, a class of structures incorporating redundant links, may be rerouted to

compensate for the failure of any single node or link.

1. Introduction

A local network (LLN) is a means for interconnecting a set of
proximate digital devices. There are numerous examples of
such networks, often typified by an overall simplicity in
interconnection and protocol structure. Many LN’s are
based on ring, bus, or star topologies. But are these the only
alternatives to full circuit or packet switches? The topic of
this paper is an approach to the characterization of alterna-
tive structures from a graph-theoretic point of view.

Interest in interconnection structures is increasing due to
new technology and application areas. It is likely, for exam-
ple, that central processors, secondary storage modules, and
various other devices will communicate via what might be
termed input/output local networks utilizing transmission
lines operating at high speeds [1]. A desirable feature in such
systems is that messages or packets be subject to a minimum
amount of switching or forwarding delays. It is not clear that
ring or bus structures at one extreme, or full switching at the
other, are always the optimal alternatives.

This paper develops an approach to network characteriza-
tion based on a notion of limited addressing. More precisely,
the structures are assumed to be such that the route taken by
a message from a given intermediate node is either indepen-
dent of any address information contained in the message, or
is perhaps a function of a set of addresses considerably
smaller than the number of attached devices. Attention is
restricted to networks where the route traversed by a given
message is independent of such factors as congestion. The

structure of such LN’s may be regarded as being composed
of three layers. The first consists of the set of links connecting
the nodes. The second layer comprises the routing strategy
which determines the links traversed by a given message.
Finally, there is the transmission protocol, controlling such
factors as access, error recovery, and flow control. The paper
concentrates on the first two layers, namely, the connectivity
and routing, of the simplest networks of this type. In these
systems, the choice of paths taken by a message from a given
intermediate node is strictly a function of the link on which it
reaches this node: routing is address-independent. The net-
work nodes in this case may incorporate control logic, or they
may simply be connectors and amplifiers, in which case the
system may be viewed as a generalized bus structure.

Loops or rings, buses, and stars [1-6] are examples of
address-independent LN’s. Address independence, however,
also permits configurations of substantially greater generali-
ty. Examples considered here are tree structures and loop-
like systems. A principal result is that the bidirectional tree,
a structure with 2(N — 1) links, where N is the number of
nodes, has the property of requiring the minimum number of
links for an address-independently routed configuration
where the routing strategy is not that of the ring. The routing
possibilities of such trees are explored in detail, and four
distinct ones derived.

Also considered are a class of ring-like systems which
incorporate redundant paths. Here the routing problem
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encompasses modifications required to compensate for addi-
tions and /or failures of network nodes or links.

It is interesting to note that, from the point of view
developed here, buses may be considered equivalent to stars.
Fibernet [7] is an example of a network where this notion
appears most natural; the configuration is that of a star with
a central reflecting node, but the protocol used is that of a
bus (Ethernet [3]). Parenthetically, it is noted that buses are
examples of trees of depth one, with a routing strategy which
cannot be carried over to the general case.

The discussion is limited almost exclusively to graph-
theoretic aspects of the problem. This point of view limits a
comparison of the merits of the various structures to such
issues as the required number of links, average and maxi-
mum path length, and reconfigurability for purposes of
recovery.

2. A model

Let {V,},i = 0,---, N — 1, denote the set of nodes in the
network and {E ,.j} a set of directed edges, where E, ,; Tepresents
a path from ¥V, to ¥, which does not enter any intermediate
nodes. For simplicity, it is assumed that there is at most one
edge directed from any ¥, to each ¥,. The {¥}} and (E,}
jointly define a directed graph or digraph [8] G which
describes the network connectivity. Figure 1 illustrates this
notion for a loop and a star network.

From this point of view, a bus network may be regarded as
a star network with a passive central reflecting node repre-
senting the bus structure. This model captures both the
possibility of contention between the attached nodes and the
lack of forwarding by these nodes. Fibernet [7] is an LN
configured this way; it uses the Ethernet bus protocol.

Given the graph G, a routing table may be used to describe
the set of links to be traversed by a message M,; whose origin
is ¥, and destination is V,. Perhaps the simplest routing
strategy is one where forwarding decisions at each node V,, k
# i, are independent of i and j. This means that a node ¥,
upon receiving a message M, along a link E ,, need not
determine the destination or origin addresses before forward-
ing M along a set of links {E kq}. That is, messages incoming
along a link £, are forwarded along a set of links {E kq},. If
there is no buffering at the nodes, an implication is in general
that at most one node can communicate at any given time,
since otherwise messages could interfere. An exception to
this rule occurs if the network is disjoint, that is, if it can be
viewed as two or more separate networks.

The following is a set of requirements for the above type of
routing, which will be termed address-independent:
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(b)

Figure 1 Examples of network graphs: (a) a loop or ring; (b) a star
or bus.

i. A message originating at a node ¥ is transmitted along a
set of links or edges {E, }°.

ii. A message entering a node V. on link E; is forwarded
along a set of edges {E, . If the set of edges {E,}, = &,
then ¥, will be termed a stop node for edge E,.

iii. There is no forwarding along the original edges {E,.j P.
That is, the members of this set do not appear in {E i }k for
any k given that node ¥, is communicating (i.e., originat-
ing a message).

iv. Propagation of all messages stops after they traverse a
finite number of links.

For most networks it is also desirable to have

v. The network be strongly connected: a message from any
node ¥, reaches all other nodes.

Another restriction, one which operates in practice, is that at
most one version of a message is forwarded along a given
link:

vi. Let {V,}, be the set of nodes traversed by a message
originating at node V,. Then an edge E,, appears in at
most one set {E, 1, for ¥, € {V,},, Vi.

Restriction (vi) avoids the situation where a decision must
be made concerning which version of a message to forward if
a message enters V; along more than a single path.

Another property of interest is that associated with the
possibility of acknowledgment. For example, if a message is
forwarded from ¥, to V,, it may be desirable to have
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propagation in the return direction. This property is dis-
cussed in more detail below in connection with tree topolo-
gies.

Address-independent routing can be viewed as a simple
form of broadcast mechanism. A given message M, reaches
the same set of nodes as M, , k # i. Broadcasting may also be
done in an address-dependent manner: stop nodes for M, for
example, may be made a function of i. This permits routing
strategies more general than those possible under address
independence, as discussed later in connection with tree
structures. Address dependence may also be used to avoid
broadcasting; here use of the destination address allows a
message to be restricted to a subset of the network, thus
permitting more than a single node to transmit at a given
time. A simple example of a system with address dependence
is a ring where the destination node V; rather than the
transmitting node ¥, removes messages M, from the net-
work.

The degree of address dependence worth incorporating in
an LN hinges on several factors, including the technology to
be used, the number of nodes attached, and the speed of the
transmission medium. Fiber optics, for example, permits the
implementation of various types of reflecting nodes which
may be viewed as yielding address-independent forwarding.
The number of attached devices, the traffic, and transmis-
sion bandwidths affect the delays that can be tolerated at
intermediate nodes, as well as the requirement for multiple
or nonblocking paths.

3. Matrix representation of address-indepen-
dent routing

Address-independent routing schemes and their properties
may be framed in terms of routing matrices whose entries
denote the forwarding to be done for each edge or link in the
network graph. Formulation of such matrices in a convenient
form requires, however, a renumbering of the links. The
following is a convention for this purpose. Suppose the M
links {Ejk} are represented by a set {F,}, i = 0,1,--, M ~ 1,
where, for example, F, F, ---, F, ,, correspond, respectively,

to members of {on},j =0,1,-N—1: F, F

i+ i T
Fiyeio correspond to the set {E1 j}, and in general j = k if
F,€{E, }and F, € {E | withy = m. Let {F}}, denote the set
{E kj}, j=0,1,---. N — 1. A forwarding or transition matrix

Q = {g,! may then be defined where g; = 1if

1. F,is an edge entering a node ¥, from which F, emerges,
and

2. A message received along F, is forwarded along F, when
V, is not the transmitting node, with q; = 0 otherwise.

Let H, = {h,(i)} be the initial transmission vector for node
V,, where k(i) = 1 if F,is an edge leaving node V, that is

P. A. FRANASZEK

used to transmit a message initiated by V; and A,(i) = 0
otherwise. The transmission matrix Q may be modified in
accordance with restriction (iii) in order to obtain the routes
when V, is transmitting. Let Q(/) be the resulting matrix.
Then g, (i) = q;,if b, (/) = 0,and g, (i) = 0if (i) # Odue
to condition (iii) of Section 2.

H, denotes the first set of edges traversed during transmis-
sion from the originating node ¥, that is, the branches from
depth 0 in the path tree from node V,. H,Q""' (/) denotes the
branches from depth n — 1 in the tree. Let

V,N [H, + HQG) + - + HQ" ()] R(n), (1)

where R = 1 if a message from V reaches V, along a path
requiring n edges, and R = 0 otherwise. Restrictions (iv) and
(v) then correspond, respectively, to

H,QY =0,Vi (2
and
|[R(m — 1) =N, (3)

that is, all nodes are reached by paths requiring no more than
M — 1 edges.

As an example, consider the ring of Fig. 1, where F, = E,,
F,=E,andF,=E,;:

010
Q=]0 0 1]. 4)
1 00

Suppose node ¥V, emits a message. Then

H(1) = [100], &)
010

QM) =10 0 1], (6)
00 0

satisfying Eqs. (2) and (3).

4. Minimum number of links for non-loop routing
Note that the minimum number of directed links required for
a network connecting N nodes is N. Here the only routing
option is that of the ring, that is, a route which corresponds to
a cycle in the directed graph representing the network. Rings
may also be configured so that a given node is visited more
than once, as shown in Fig. 2. Here the number of links
M > N.

For some applications, it may be desirable, for reasons
beyond the scope of this paper, to avoid ring routing. What
then are the alternatives if one wishes to preserve address
independence? It is shown below that the minimum number
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of links required to connect N nodes in this case is
M=2(N-1).

Proposition 1

Suppose the number of directed links in an LN is M <
2(N — 1), where M is the number of links and NV the number
of nodes. Suppose further that the network is strongly
connected and routing is address independent. Then the
routing is such that each message M, traverses a cycle in G
containing all nodes.

Proof
M =< 2N — 3, so that there are at least three nodes {V'*}
which have a single entering link.

It is first shown that either all ¥, € {V'}} are on a routing
loop, or at least one such node, V¥, forwards messages
received on its entering link on outgoing links which are
disjoint from those it uses to transmit messages M,, V{V'*}.
In other words, the absence of such a routing loop implies
that some node ¥'* forwards no messages from ¥, € {¥V'*} to
any other members of this set. Suppose this is not true. Then
a message to V* from, say, V}, reaches V¥, is forwarded to,
say, V¥, and eventually goes around a loop, which it repeats
indefinitely. Note that outgoing links from V¥ may be
partitioned into two classes: those used to forward messages
entering V* on its single link and those it uses only for
messages M, Vj. The latter links will be termed private. If
no routing loop exists which connects all ¥, € {V'¥}, then a
new network G' may be obtained as follows: V'* is eliminated
along with its private links. Other links E,; are moved to V/,
the node from which the single link entering V* emanates.
The routing tables for G' are then such that the sequence of
nodes visited by any message M, i # a, is the same as in G,
except that V* does not appear. The new graph is fully
connected and routing is address independent. Note that
M* < 2(N — 1) — 3, since at least two links were eliminated
along with V*.

The new graph G' also has at least three nodes each with a
single entering link. These are either connected via a routing
loop or a new graph G* may be obtained in the same manner.
Eventually, either a loop is found or a graph with three nodes
and three links is obtained. This is necessarily connected by a
ring.

It is now shown that if a network is obtained which has a
ring of the above form, then all remaining nodes are on this
ring.

The ring contains at least three nodes with a single
entering link. All messages M, entering one of these nodes
are forwarded on the ring. Thus a message M, is propagated
indefinitely unless V; is also on the loop, Vi.
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Figure 2 A generalized ring.

Finally, it is shown that all nodes in the original network
lie on a ring. Let V'* be a node to be added to G in a process
reversing the above elimination procedure. The resulting
network G*™' still contains a ring. To see why this is so,
consider links which were affected by the removal of V¥ to
obtain G* from G*~'. These include the link entering vV,
private links from V'*, and a set of links from ¥* which were
relocated. The routing table for G is such that messages are
forwarded simultaneously on the relocated links. Thus, at
most one can be part of the loop in G*, and adding V¥ to
obtain G*~' preserves the ring. This ring connects all nodes in
G* ' except possibly ¥V¥*. But there are at least two nodes in
G"" besides V'* which have a single entering link. Thus V'* is
also on the ring. OJ

Section 5 discusses various properties of the bidirectional
tree, a structure for which M = 2(N — 1), that is, a structure
of the minimum complexity for which non-ring routing is
feasible.

5. Tree networks

An example of a network with M = 2(N — 1) links, the
minimum for non-ring address-independent routing, is a
bidirectional tree or bitree. Figure 3 illustrates a bitree with
five nodes. Stars and, as noted above, buses are from a
graph-theoretic point of view examples of a bidirectional tree
of depth one.

Tree structures arise naturally if there are no redundant
paths; in this case the connectivity from any node V, to other
nodes in the LN is a tree of directed links. Matching each
link with one in the reverse direction yields a complete
network with the advantage of symmetry.
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Figure 3 A bidirectional tree.

Another property of interest is that associated with clock
synchronization. Suppose, for example, that each node has a
clock, synchronized to some global master. If there are no
redundant links, timing information is propagated along a
tree. Nodes which are neighbors on this tree are in close
synchronism. A bitree ensures that all transmissions are to
nodes which are neighbors from the viewpoint of clocking.

The question of routing is now considered. The following
proposition gives a limit to the degrees of freedom in routing
for such structures.

Proposition 2

Consider an address-independently routed network with a set
of nodes {V,}. Let {¥}, be the subset of nodes such that each
member has a single entering and a single exiting link. Then
{V}, has at most one member which is not a stop node for its
entering link unless the routing strategy is that of a ring.

Proof

Consider two nodes, V.V E { V,.}L, and suppose that neither
is a stop node for its incoming link. A message originating at
V, will reach ¥, and return to V; i.e., there is a cycle or loop
in the routing strategy. Thus at most one node in {V,},_
forwards messages received on its incoming link. {J

In a bidirectional tree, the leaves comprise the set of nodes
with a single entering and exiting link. If the routing strategy
is not that of a ring, then Proposition 2 indicates that at most
one of these is not a stop node. For convenience, this node, if
it exists, will be termed the root.

Consider the problem of non-ring routing from some
intermediate node V). It is desirable that V follow some
overall forwarding pattern. A message received along a link
E,.j can be forwarded on, for example,
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. Alllinks E,, r=1,2,--.
- All links E, except £ .
. The link E, leading to the root.

. All links E,, except that leading to the root.

[ =P eI =

The routing may vary depending on whether V¥ is above
(rootwards) or below V.

Proposition 3

Let G be a bitree with a root ¥,. A message reaching a node
V;along a downward link is not transmitted upward from ¥,
if routing is not that of the ring and is address independent.

Proof

V' is the root of a subtree G', which may be viewed as a single
supernode with its own internal routing. It follows from
Proposition 2 that this supernode is a stop for its single
entering link. O

Propositions 2 and 3 determine which of the above possi-
bilities (a) through (d) may be combined into address-
independent routes. If V, is rootward (above) V;, then only
(b) and (d) are possible; they are also equivalent. If V is
below ¥, then (a), (b), and (c) are possible. This yields a
total of four address-independent routing methods, including
that of the ring.

Routing of the form (a), corresponding to an address-
independent star network, cannot be used for trees of depth
greater than one because of unlimited message propagation.

Four routing possibilities are as follows:
Type 1: (loop or ring routing). A type 1 routing matrix for

the tree shown in Fig. 3 (there are several possibilities,
depending on the order of tree branches) is

[0 01 0 0 0 0 0
0000O0T1O0°0O
0 000O0OT1 O
0 000O0GO0GO 1
Gr =6 1 0000 0 0 @
100000000
00010000
0000100 0]

Type 2: Here a message from a node V, is propagated
rootward; i.e., routing (c) is used. After reaching the root,
routing (d) is used; that is, the message is propagated on all
downward links. For a network proposal using this form of
routing, see Reference [5]. The type 2 routing matrix for the
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network shown in Fig. 3 is given by

[0 0 1 1 0 000

000 0O0O0O0 O
000 0O0O0TO OO

U= 1 90000 0f ®)
11000000
001000
00001000

A network design incorporating type 2 routing is described
in Reference [6].

Type 3: Here the forwarding at each node is (b): a message
touches each node just once. The routing matrix for the
example of Fig. 3 is given by

[0 01 1 0 0 0 0]
00000000
00000000
00000000
%e =6 1 0000 0 0 ©)
10000000
00011000
0010100 0]

Type 4: Here a message traversing an upward link is
forwarded using strategy (a). A message traversing a down-
ward link is forwarded using strategy (d). Note that a given
node may receive a particular message more than once on a
given link. The type 4 routing matrix is given by

[0 01 1 00 0 0]
00000000
00000000
00000000
%=l L 00000 0 (10)
11000000
00111000
(0011100 0]

It is interesting to consider which of the routing possibili-
ties is compatible with a network in which the nodes have no
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internal buffering. Note that type 4 routing cannot be used in
this case, since a given message can traverse a given link
more than once, a violation of property (vi) of Section 2.
Types 2 and 3 routing are compatible with bus protocols; for
systems using such protocols, these may be regarded as a
means of reducing the maximum distance required for
message travel.

Two parameters of interest in a network are the longest
path and the maximum number of links traversed by a given
message. The latter parameter is related to the probability of
transmission error. The occurrence of such errors in systems
without forward error correction generally requires retrans-
mission even in the case where the destination node receives
the message correctly. The longest path determines the
propagation delays and is especially important for network
reliability due to such factors as timing jitter propagation.

The longest paths and maximum number of links traveled
are given below for the three routing options. D represents
the maximum depth of the tree and /V the number of nodes. It
is interesting to note that type 3 routing minimizes both
parameters.

Type 1: Longest path: 2(NV — 1). Total travel: 2(NV - 1),
Type 2: Longest path: 2D. Total travel: D + (N —~ 1),
Type 3: Longest path: =<<2D. Total travel: (¥ — 1),
Type 4: Longest path <2D. Total travel <D(N + 1).

Additional routing possibilities exist if address dependence
is permitted. For example, dependence on the origin address
permits option (a), the bus forwarding strategy, to be used on
the first visit of a message to an intermediate node. Destina-
tion dependence permits the restriction of a message to a
subset of the tree containing the path between origin and
destination. A simple version of the latter is to have the
address of, say, V, as viewed from V, composed of a combina-
tion of tree level and identifier, with the tree level describing
how far the message must be propagated toward the root.

6. Loop-like systems

Consider the graph shown in Fig. 4. This is a ring with
additional links which permit bypassing a failing node or
link. The original loop links (e.g., link 0 from node 0 to node
1) will be termed the primary links and the others (e.g., link
1 from node O to node 2) will be termed skip links. More
formally, there are N nodes V,,i = 0, 1,---, N — 1. (Note
that N > 2.) From cach V; there is a link to ¥V}, and ¥V},
where j(i) = ({ + 1) mod N and k({) = (i + 2) mod N. The
link to j(7) is a primary link and the other a skip link. This
structure will be termed an augmented loop.

Augmented loops are examples of systems with redundant
paths. The routing problem is more general here in that, in
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Figure 4 An augmented loop network.

addition to routing under normal conditions, there are ques-
tions concerning routing modification to recover from node
or link failures.

Address-independent routing of the form described in
Section 2 requires that any set of directed links which forms
a loop (as determined by the routing matrix Q) contains
either a stop node or the originating node.

Perhaps the simplest routing conforming to this condition
is that where there are no stop nodes for primary links and all
nodes are stops for skip links. Here skip links serve as
auxiliary paths for checking the correctness of transmission.
This will be termed standard ring routing. The forwarding
matrix Q for the example of Fig. 4 is given by

— g

0 01 1 00
0 0 00 0O
0 0 0 0 1 1
Qst = (11)
0 00 06 00
1 1.0 0 00
0 0 0 0 0 OJ

An alternative is to have no stops for the skip links and every
node a stop for the primary links.

Consider the problem of rerouting when the ith node or jth
link fails. Here routing must bypass the failing element while
otherwise maintaining complete connectivity. It is shown
below that the augmented loop may be routed in an address-
independent manner so as to bypass any single failing node or
link.
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Suppose a skip link fails. Here no rerouting is necessary. If
the ith node fails, then the jth node, j = (i @ 1) may
forward messages from the skip link associated with the
(i © 1) node, where @ and © represent mod N addition and
subtraction, respectively.

The case of failure of a primary link is somewhat more
complex. For messages entering V, on the primary link, let
P’ P,and P' — S, represent their forwarding from ¥, on
the primary and skip links, respectively, and let §' — P,
S'— S, represent such forwarding of messages entering on
the skip link. A set of routing tables which serve to bypass the
primary link from a node ¥, for ¥V odd and even are given
below.

Bypass for N odd (N > 2)

Here all nodes may be configured as stop nodes for primary
links, with no nodes being stops for skip links: S — S,
P’ — @, Vj. The matrix Q for the example of Fig. 4 is given
by

[0 0 0 0 0 0

000011

000000
Q= (12)
110000

0000O0O
(0001 1 0 0,

Bypass for N even (N > 2}

1. 8'—=pP, j=i®1iO2

2P =P, j=i®2i®3..,i03
3.P—S, j=901i02

4.8 =58, j=1i®2,i®4,,i04

Figure 5 shows an example with N = 4and i = 0.

Another question of interest is how to add or delete nodes
while maintaining full communication. Suppose it is desired
to add a node between ¥, and V, ;. This may be done by the
following sequence of steps:

1. Reroute as though the primary link from ¥, has failed.
Disconnect this link and connect the primary link to and
from the new node.

2. Reroute to the standard loop arrangement with the proto-
col adjusted to failure of the skip links. Reconnect the skip
links to incorporate the new mode.

3. Return to standard routing.

Deletion of a node may be done in an analogous fashion.
7. Conclusion

Conditions were given for address-independent routing in
networks where routes are not a function of the system state.
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It was shown that a bidirectional tree yields the minimum
number of links if a subset of these links do not form a
routing loop or ring. Four general routing strategies were
derived for the bidirectional tree, and their properties were
briefly discussed. Issues associated with systems which have
redundant paths were considered via the analysis of aug-
mented loop configurations. It was shown that, by suitable
rearrangement of routes, it is possible to recover from the
failure of any single node or link while preserving addressing
independence in the forwarding mechanism.
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