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A DC-Balanced, Partitioned-Block, 8B/ 10B Transmission

Code

This paper describes a byte-oriented binary transmission code and its implementation. This code is particularly well suited for
high-speed local area networks and similar data links, where the information format consists of packets, variable in length,
Sfrom about a dozen up to several hundred 8-bit bytes. The proposed transmission code translates each source byte into a
constrained 10-bit binary sequence which has excellent performance parameters near the theoretical limits for 8B/10B codes.
The maximum run length is 5 and the maximum digital sum variation is 6. A single error in the encoded bits can, at most,
generate an error burst of length 5 in the decoded domain. A very simple implementation of the code has been accomplished by

partitioning the coder into 5B/6B and 3B/4B subordinate coders.

1. Introduction

This paper presents a transmission code that is well suited for
high-speed local area networks and computer links. Such
links require relatively simple and reliable transceivers at low
cost, and a good code choice can significantly contribute to
this goal. The rapidly evolving fiber optic technology is
expected to penetrate this application. Except for some
special situations, digital fiber optic links generally operate
in binary on/off, rather than ternary mode (because of a
better optical signal-to-noise margin and much simpler
receiver circuits). For this reason we confine ourselves to
binary codes.

A code that is free of dc, or one that has a constant dc
component regardless of data patterns [1], provides many
advantages for fiber optic and electromagnetic wire links.
High-gain fiber optic receivers need an ac coupling stage
near the front end. Also, control of transmitter level, receiver
gain, and equalization are simplified, and the precision of
control is improved if these can be based on the average
signal power (especially at the higher data rates). DC
restoration circuits are an alternate solution to the stated
control problems, but the circuits tend to lose precision with
increasing data rates.

Additional redundancy is required for reliable clock recov-
ery and for the coding of special control characters, e.g., to
delimit the start and end of information packets. At high
data rates it is desirable to maintain a constant byte rate and
to reduce the number of logic circuits operating at the
signaling rate, which is sometimes set near the technology
limits. These objectives can be met most readily if redun-
dancy is added at a constant rate to each byte (in contrast to
selective, pattern-dependent bit stuffing). A constant expan-
sion factor also benefits other areas of a transmission system,
such as error control, buffer design in gateways, address
expansion or substitution, and clock design.

Modern communications architectures transmit informa-
tion in the form of packets with a defined field structure for
addresses, information, and communication and error con-
trol. The number of bits in each of these fields and in the
entire packet is generally a multiple of eight bits. Buffers and
relevant interfaces are also byte oriented. In such systems a
byte code has the advantage of a natural affinity with the
packet boundaries and the byte rate clocks and is readily
implemented with lower-speed logic on the parallel side of
the system. Otherwise attractive binary codes, such as the
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5B/6B code [2], do not readily mesh with a byte-oriented
structure. The required adaptations in the clocking area, at
interfaces, and in the packet structure are awkward and
increase the high-speed gate count.

With these considerations in mind, and looking for a fairly
efficient code, one would first tend to examine the possibility
of an 8B/9B code. However, to realize such a code, imple-
mentation and performance parameters (other than effi-
ciency) have to be compromised to a degree which is inordi-
nate in comparison with the results which can be obtained
with 8B/10B codes. Pursuing overall objectives similar to
ours, Kiwimagi [3] proposed a 4B/5B code with fairly
relaxed performance constraints. Qur approach consolidates
a 5B/6B and a 3B/4B code into a compound 8§B/10B code. A
5B/6B and a 3B/4B coder operating separately have been
described by Griffiths [2]. We modified the code tables to
improve the performance parameters and to facilitate imple-
mentation; we also defined a set of synchronizing, or comma,
characters, and other special non-data characters which we
describe later. Finally, we built and operated a practical and
remarkably simple implementation of the entire coder and
decoder, and demonstrated that it can be integrated in a
relatively slow technology with straightforward interfaces.
This paper is an elaboration of a previous short article on the
identical code [4].

Section 2 of this paper provides a description of general
coding constraints, as well as a discussion of coding alterna-
tives which led to the code structure proposed here. Section 3
defines the proposed 8B/10B code in detail. Section 4
describes the performance parameters and features of the
code. Finally, Section 5 treats the implementation aspects.

2. Channel constraints and coding alternatives

® Channel constraints

As noted previously, the stream of signals transmitted down
the channel must be constrained so that enough transitions
for timing recovery and little or no dc spectral components
are present.

A measure of the energy at and near dc is the digital sum
variation or DSV [5], which is obtained as follows: Each
channel symbol (corresponding to a possible signal waveform
during a unit interval) is assigned an algebraic value corre-
sponding to its dc component. The DSV is defined as the
variation in the running sum of the encoded data stream, i.e.,
the maximum minus the minimum value. For a binary, or
two-level, code, the 1 and 0 bits are generally assigned values
of +1 and —1, respectively. In the following, the maximum
DSV is denoted by the symbol ». Note that the number of
levels in the running sumisz + 1.
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Table 1 Examples of channel capacities C.

d k v C

0 1 5 0.655
0 2 5 0.803
0 3 5 0.842
0 4 5 0.850

The run length is defined as the number of identical
contiguous symbols which appear in the signal stream. For a
binary code, the run length is the number of contiguous /s or
Os after encoding. What is of interest is the shortest (X)) and
the longest (Y') run lengths that appear. These two parame-
ters are often given in the form (d, k) where d = X — 1 and
k =Y — 1. The (d, k) representation gives the minimum (d)
and maximum (k) number of symbols between unequal
symbols. For a (0, 3) code, for example, any symbol can be
followed by no more than three contiguous identical symbols,
for a maximum run length of 4. Codes designed for digital
transmission usually have a parameter d of 0. The preferred
codes for magnetic recording, on the other hand, usually have
a parameter value d of 1 or greater; i.e., the minimum
spacing between transitions is longer than a symbol interval.

® Theoretical limits

Coding with a (d, k) run length limit with a bound of v for
the DSV is an example of coding for an input-restricted
channel. Three criteria of conmsequence here are (1) the
channel capacity C (which represents the maximum coding
rate of bits per channel symbol), (2) the coder complexity,
and (3) the amount of error propagation. Table 1 lists
channel capacities C for a sample of (d, &, v) constraints.

A variety of formal methods exist for the construction of
such codes. References [5—13] may be used as an entry into
the literature. It is known that a code may always be
obtained as long as the desired coding rate does not exceed
the channel capacity. Moreover, even for the class of con-
straints discussed here, where the decoder must be state-
independent [5] to avoid infinite error propagation, it has
recently been proven [10] that a mapping with this property
is always attainable. Thus, theoretically, it is possible to
obtain a (0, 2, 5)-rate 4/5 code. However, a coder and
decoder with these parameters may not be practical because
coding complexity and error propagation must be considered,
as well as additional requirements, such as special signaling
sequences.

One way of classifying the complexity of a code is by the
number of information (source) bits that must be examined
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Table 2 Code complexity m for various code constraints.

d k v s w m
0 2 5 4 5 3
0 2 5 8 10 =2
0 3 5 8 10 1
0 4 5 4 2

Table 3 5B/6B Encoding.

Name ABCDEK Classifications D-1 abcdei DO abcdei

Bit encoding Disparity Alternate
D.0 00000 0 Lo04 L22'.L31'.E" + 011000 - 100111
D1 10000 0 LI13.F L22'-L3V.E" + 100010 — 011101
D2 01000 0 LI13.E L22’.L31'E’ 4+ 010010 — 101101
D3 11000 0 L22.F x 110001 ©
D4 00100 0 LI3.E L22.L31'sE’ + 001010 - 110101
D5 10100 0 L22.E x 101001 ©
D6 01100 0 L22.E x 011001 0
D7 11100 0 L31.D'sE’ - 111000 0 000111
D8 00010 0 LI3.E L22'+L31E"  + 000110 — 111001
D9 10010 0 L22.E' x 100101 0
D.I6 01010 0 L22.E x 010101 0
D.11 11010 O x 110100 0
D.12 00110 0 1L22.F x 001101 O
D.I13 10110 © x 101100 0
D14 01110 © x 011100 0
D.I5S 11110 0 L40 L22'.L3V.E' + 101000 - 01011}
D.16 00001 O L04, LO4.E L22'+L13.E — 011011 + 100100
D.17 10001 0 LI3.D'.E x 100011 0
D.18 01001 0 L13.D'«E x 010011 0.
D.19 11001 0 x 110010 0
D20 00101 0 LI3.D.E x 00101t 0
D21 10101 0O x 101010 0
D22 01101 O x 011010 0
D/K.23 11101 x L22.L13sE - 111010 + 000101
D.24 00011 0 LI3.D-E L13+D+E + 001100 - 110011
D25 10011 © x 100110 ©
D26 01011 © x 010110 0
D/K27 11011 x L22+113-E — 110110 + 001001
D.28 00111 0 x 001110 0
K28 00111 1 L22.K K — 001111 + 110000
D/K29 101U x L22'.L13sE - 101110 + 010001
D/K.30 01111 x L22'.L13E - 011110 + 100001
D31 11111 0 L40, L40«E L22.LI3<E - 161011 + 010100

by the coder in choosing a word when using a bounded delay
code [8, 9]. Suppose, for example, that the rate is s/w, where
s bits at a time are encoded into words of length w. A
parameter m may be used to represent the number of s-bit
groups that need to be examined in the coding process when
choosing a word for transmission. Consider the case of
m = 2,5 = 4,and w = 5. The value of m indicates that the
coding process requires at each step the examination of two
4-bit groups of data. Table 2 gives the minimum values of m
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for various constraints and rate 4/5. Note for example that at
least three 4-bit groups must be examined at each step for a
(0, 2, 5) code.

The code described here lies outside the framework dis-
cussed in References [5-12] since it is composed of sub-
blocks whose length and coding rate are not uniform. How-
ever, these variations are periodic, so the new code may be
viewed as a special case of a fixed-length code with s = 8 and
w = 10 for d = 0, k = 4, and v = 6 constraints.
Construction of such a fixed-length code may be done by first
obtaining a set of principal states, described as follows:
Given a finite state machine description of the channel
constraints, a principal state set for block encoding is one
where, from each member of the set, there are sufficient code
words terminating in states within the set. An algorithm for
finding such sets and associated code words is described in

[5].

A corresponding algorithm may be formulated for the
partitioned-block code discussed here. The difference is that
words used in the 5B/6B code must terminate in coding
states for the 3B/4B code, and vice versa. Partitioned-block
codes may thus be handled by a fairly straightforward
extension of the theory.

The coding technique discussed above may be viewed as
frameworks which deal with the structure and existence of
various mappings between unconstrained data and coder
output. However, the design of a code for a given application
involves a number of engineering tradeoffs which are per-
haps best understood by examining specific examples. To
clarify the reason for the design choice, some of the alterna-
tives that were considered are subsequently described.

® Coding alternatives

1. The partitioned-block code that was chosen has parame-
tersd = 0, k = 4, and v = 6, with a rate of 4/5 obtained
by combining a rate 5/6 and a rate 3/4 code. Error
propagation is limited to five bits. This means that an
isolated additive error in detection results in at most five
erroneous bits in the decoded data stream. Encoding
requires the examination of at most five source bits at a
time.

2. Another possibility is a standard block code with no
look-ahead, with parametersd = 0,k = 3,v = 5,5 = 8,
w = 10, and m = 1. Here eight source bits must be
examined in choosing a code word. Error propagation is in
general eight bits. The modest improvement in run length
and DSV over Option 1 were not considered sufficient to
justify the increase in error propagation and the substan-
tially greater complexity of the coder and decoder.

3. A third possibility that was investigated is the construc-
tion of codes with words of length five. A bounded-delay
or variable-length code [9] with k = 4,0 = 5,5 = 4, and
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Figure 1 Block diagram of the 8B/10B encoder.

m = 2 turned out to be the best compromise among values
of k, v, error propagation, and complexity. The code may
be designed so that the maximum number of bits exam-
ined in coding is limited to 5. Error propagation is five bits
(as in the code actually chosen). The amount of circuitry
required for a coder and decoder is also comparable.
However, this code has several disadvantages arising from
the fact that there is little suitable redundancy available
for the mapping of special characters. Another disadvan-
tage arises from the variable-length look-ahead format,
which results in a requirement for padding at the end of
data packets.

3. The 8B/ 10B coding map

® General overview

Figure | shows a communications adapter interface consist-
ing of the eight data lines ABCDEFGH (note the uppercase
notation), a control line K, and a clock line BYTECLK
operating at the byte rate. The control line K indicates
whether the lines 4 through H represent data or control
information.

For encoding purposes, each incoming byte is partitioned
into two subblocks. The five binary lines ABCDE are
encoded into the six binary lines abcdei (note the lowercase
notation), following the directions of the SB/6B logic func-
tions and the disparity control. Similarly, the three bits FGH
are encoded into fghj.

The disparity of a block of data is the difference between
the number of Is and Os in the block; positive and negative
disparity numbers refer to an excess of /s and 0s, respec-
tively. For both the 6B = abcdei and 4B = fghj subblocks
the permitted disparity is either 0, +2, or —2. The coding

IBM J. RES. DEVELOP. e VOL. 27 e NO. 5 « SEPTEMBER 1983

rules require that the polarity of nonzero disparity blocks
alternates. For this purpose, no distinction is made between
6B and 4B subblocks; i.e., a surplus of two Is in a 6B block
can be compensated by two excess Os in either a 6B or a 4B
block and vice versa.

Nonzero disparity code points are assigned in complemen-
tary pairs to a single source data point. The encoding
functions generate one of them; if it violates the alternating
polarity rule, the complete subblock is inverted in the encod-
ing switch. Determination of disparity and polarity in the 6B
encoder is followed by the corresponding operations of the 4B
encoder, then the running disparity parameter is passed
along for encoding of the next byte. The majority of the
coded subblocks are of zero disparity and are, with some
exceptions, independent of the running disparity; i.e., they do
not have a complement.

The ten encoded lines abcdeifghj normally interface with
the serializer; the g-bit must be transmitted first and j last.

® Code definition

The 8B/10B encoding is accomplished by encoding the bits
ABCDE of the input byte into the line digits abcdei in a
5B/6B encoder following the coding plan and rules of Table
3, and the bits FGH in a 3B/4B encoder into the line digits
fghj as shown in Table 4.

5B/6B encoding The first column in Table 3, headed by
“Name,” gives the 32 decimal equivalents for the input lines
ABCDE, assuming A is the low-order bit and E the high-
order bit. For regular data (D.x) the line K must be held at 0;
a few code points can be part of special characters which are
recognizable as other than data; such code points are named
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Figure 2 Disparity vs time plot.

Table 4 3B/4B Encoding.

Name FGH K Classifications D-t fghy DO fghj
Bit encoding Disparity Alternate
D/K.x.04 000 x FLG'oH FeG’ + 0100 — rort
Dux.1 100 0 (F#G)oH x 1001 0
D.x.2 010 0 (F£G)eH' x 0101 ©
D/K.x.34 110 x FeG - 1100 0 0011
D/K.x.4 001 x FG' + 0010 — 1101
D.x.5 101 0 x 1010 0
D.x.6 011 0 x 0110 0
DxP7 11t 0 FeG, FoGeH ~ 1110 + 0001
D/Ky.A7TM 111 x  FeGeHe(8+4K)  FoG, FoGeH ~ 8111 + 1000
K.28.1 100 1 (F£G)oH' (F£G)+K + 1001 0 o110
K282 010 1 (F£G)H (F#G)+K + 0101 © 1010
K285 101 1 (F£G)eK + 1010 0 0101
K286 011 1 (F#£G)eK + 0110 0 1001

“ K.x is restricted to K.28,
b K.y is restricted to K.23, K.27, K.28, K.29, K.30.
€S = fesie(D~l1==)} OR fe'ei'a(D—1=+)}.

D/K.x or K.x and have an x or / in column K. To encode
special characters, the K line must be /.

In the “classification” columns, LO4 means that there are
no Is but four 0s in ABCD; LI3 means that there are one I
and three 0s in ABCD, etc. The letter “L” indicates that this
logic function or classification is part of the SB/6B encoder.
Analogous functions labeled “P” are defined for decoding
(Table 6). An accent to the right of a symbol is used to
represent complementation; E’ means the complement of E;
a dot ( - ) stands for the logical AND function.

In the column under the left “abcdei” heading there are
listed all the code points which are generated directly by the
5B/6B logic functions from the ABCDE inputs. The coding
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table was designed so that a2 minimal number of bits must be
changed on passing through the encoder, and so that the
changes which are required can be classified into a few
groups applicable to several code points. All the bits in Table
3 which require action by the 5B/6B logic functions (other
than complementation of the complete subblock) are in bold
type, assuming that the extra digit i’ is added with a normal
value of 0.

When the inputs meet the logical conditions listed on the
left side under “bit encoding,” then the bold type bits are
changed to the values shown in the left “abedei” column;
e.g., if L04 holds, the b and ¢ digits are forced to Is, as shown
for D.0 and D.16. The second entry in the “bit encoding”
column for D.16 (LO4 - E) and D.31 (L40 - E) applies to the
i~digit. For lines with no classification entry, the ABCDE bits
translate unchanged into abcde and the added i-bit is a 0.

The “alternate abcdei” column to the right of Table 3
shows the complement for those 4BCDE inputs which have
alternate code points. Individual 6B (and 4B) subblocks are
complemented in conformity with the disparity rules. At all
subblock boundaries the running disparity is either +1or —1
and never 0 (see Fig. 2).

The column “D — 1” indicates the required running
disparity for entry of the adjacent subblock to the right. An x
inthe “D — 1” column means that (D — 1) canbe + or —. In
this code the polarity of the running disparity at subblock
boundaries is identical to the polarity of the most recent
nonzero disparity block.

As an example for encoding of the first line D.0 of Table 3:
If the running disparity matches (D — 1) = +, the output of
the encoder will be 011000; otherwise the entire subblock is
complemented to 100111.

The “D0” column indicates the disparity of the encoded
subblock to the left, which is either 0, +2, or —2. The
disparities for the alternate code points on the right side of
Tables 3 and 4 are exact complements of those to their left,
and are not shown.

As in bit encoding, the encoder hardware determines
directly from the ABCDE and K inputs the disparity of a
subblock. The respective logic functions for classification of
code words in terms of disparity requirements are shown in a
separate column in Table 3.

In Table 3, line D.7, a pair of zero-disparity 6B subblocks
(111000 and 000111) is assigned to a single data point with
an entry disparity constraint similar to those applicable to
nonzero-disparity subblocks. This coding feature reduces the
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maximum digital sum variation from eight to six and,
combined with an analogous rule in the 3B/4B encoder for
D/K.x.3 of Table 4 (/100 and 0011), eliminates all
sequences of run length 6 and most of those with run length
5.

The technique of assigning a pair of complementary
zero-disparity subblocks to a single code point is also used
uniformly for all 4B subblocks which are part of a special
character, as shown in Tables 4 and 5 for K.28.1, K.28.2,
K.28.3, K.28.5, and K.28.6.

3B/4B encoding  Table 4 follows the conventions and nota-
tions of Table 3. In Table 4 some lines have two entries in the
column for the classification of disparity; the left classifica-
tion refers to the entry disparity D — 1, and the right one to
DO.

The encoding of D.x.P7 (primary 7) and D/K.y.A7
(alternate 7) requires an explanation. The D/K.y.A7 code
point was introduced to eliminate the run length 5 sequence
in digits eifgh. The A7 code replaces the P7 encoding
whenever

[e=i=1).-(D-1=-)]OR
[e=i=0).(P-1=+)]OR
(K = 1).

Note that whenever K = 1, FGH = 111 is always translated
into fghj = 0111 or its complement.

The D/K.y.A7 encoding can generate a run length (RL) 5
sequence across the trailing character boundary in the ghjab
bits; however, this sequence is preceded by a run length of
only 1 in digit £, with one exception. If the leading character
is the special character X.28.7, a RL 5 sequence across the
trailing character boundary is preceded by another RL $
sequence in cdeif. For the significance of these distinctions,
see the section on special characters.

The zero-disparity 4B subblocks of K.28.1, K.28.2,
K.28.5, and K.28.6 are handled similarly to D/K.x.3 with
respect to complementation in order to generate some special
characters with byte synchronizing or comma properties.

Special characters  Special characters are defined here as
extra code points beyond the 256 needed to encode a byte of
data. They are generally used to establish byte synchroniza-
tion, to mark the start and end of packets, and sometimes to
signal control functions such as ABORT, RESET, SHUT-
OFF, IDLE, and link diagnostics. The set of twelve special
characters shown in Table 5 can be generated by the coding
rules defined in Tables 3 and 4. They all comply with the
general coding constraints of a maximum run length of 5 and
a maximum digital sum variation of 6.
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Table § Special characters (K = 1).

NG

abcdei fghj DO
Alternate

Name ABCDEFGH K D-f abedei fghj DO D-

K.28.0 00111 000 1 - 001111 0100 0 + 110000 1011 0
K.28.1* 00111 100 1 - 001111 1001 + + 110000 6110 -
K.28.2 00111 010 1 - 001111 0101 + + 110000 1010 -
K.28.3 00111 110 ) - 001111 0011 &+ + 110000 1106 -
K.28.4 00111 001 1 — 001111 0010 O + 110600 1101 ©
K.28.5* 00111 101 1 — 001111 3010 + + 110000 0101 -
K.28.6 001t 011 1 — 001111 0110 + + 110000 100! -
K.28.7* 00111 111 1 — Q01§11 160G ¢ + 110000 0111 O
K.23.7 ritor it - 111010 1000 © + 000101 0111 O
K.27.7 FLOTY 110} - 110110 1060 0 + 001001 0111 0
K.29.7 10111 111 1 - 101110 1000 © + 010601 0111

K.30.7 o1l 111 — 011110 1000 0 + 100001 0111 O

* Singular comma (for byte synchronization),
4 K.28.7 must not be contiguous to another K.28.7.

Table 6 6B/5B Decoding.

Name abcdei Decoding class Disparity class ABCDEK D-1 DO
DO 011000 P22dbeca(e=i) P22+e’si’ 00660 0+ -
D.0 100111 P22sb’ec’s(e=i) P22.esi 00000 0 - +
D.I 100010 P13.i P13.i 10000 0+ —
D.1 011101 P3l.i P31ei 10000 0 - +
D2 010010 P13.{ P13+ 01000 0 + -
D2 101101 P31« P31.i 03000 0 - +
D3 110001 11000 6 x O
D4 001010 PI3.i P13.i 00100 0 + —
D4 110101 P31. P31ei 00100 0 - +
D5 101001 10100 0 x 0
D6 011001 01100 0 x ©
D.7 111000 P3ted'se’si’ 15100 0 -0
D.7 000111 Pl3edecsi Pl3edeeei 11100 ¢ + 0
D8 000110 P13.i P13.i 00010 0 + —
D8 111001 P3iei P31ei 00010 0 ~ +
D9 100101 10010 0 x O
D16 010101 01010 0 x O
D.1l 110100 11010 6 x O
D12 001101 00110 0 x O
D13 101100 10110 0 x O
D.14 011100 01110 0 x ©
D.15 101000 P22easce(e=i) P22+e’si’ 1110 0+ -
D.1S 010111 P22ed’ec’s(e=i) P22eeei 11110 0 ~ +
D16 011011 P22sbece(e=i) P22eesi 00001 0 ~ +
D.16 100100 P224sb'ec’e(e=i) P22ee’ei’ 00001 0 + -
D.17 100011 10001 0 x O
D.1§ 010011 01001 0 x 0
D.19 110010 11001 0 x ©
D20 001011 00101 0 x O
D21 101010 10101 0 x ©
D22 011010 01101 0 x O
D/K23 111010 P31ee 11101 x - +
D/K.23 000101 Pl3ee’ Pl3.e tt1or x4+ -
D.24 001100 a'sb'ee’si P22.¢’si 0001 0 + —
D.24 (10611 aebeesi P22eesi 00011 0 - +
D.25 100110 10011 0 x O
D26 010110 01011 0 x O
D/K.27 1101190 P3lec o1t x - +
D/K.27 001001 P13¢’ P13.¢’ 1ot1 x  + -
D.28 001110 00111 0 x O
K.28 001111 cedeesi P22.esi 00111 1 - +
K28 110000 c+d'«e’si’ P22.+¢’si’ 00181 1+ —
D/K.29 101110 P3l.e 10111 x ° — +
D/K.29 010001 Pi3ee’ Pi3ee o111 x4+ -
D/K.30 011110 P3l.e 01111 x  — +
D/K.30 180001 Pl13.¢’ P13ee 01111 x  + —
D31 101011 P22eaece(e=i) P22-esi 111 o - +
D31 010100 P22+a'«c's(e=i) P22+¢’si 11111 0 + -

The first group of eight special characters K.28.x, Table 5,
can be recognized as other than data by observing that
abcdei = 001111 or 110000. In data we never have ¢ = d
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The second group of four special characters K.x.7, Table
5, is characterized by eifghj = 101000 or 010111. The
distinction from data is the encoding of FGH into 0111 or
1000, where 1110 or 0001 would be used for data.

Commas and packet delimiters A comma [14] indicates
the proper byte boundaries and can be used for instantaneous
acquisition or verification of byte synchronization. To be
useful, the comma sequence must be singular and must occur
with a uniform alignment relative to the byte boundaries. In
the absence of errors, the comma must not occur in any other
bit positions, neither within characters nor through overlap
between characters. Three characters in this code (K.28.1,
K.28.5, K.28.7) have comma properties. They are marked
with an asterisk in Table 5, and the singular sequence is
printed in bold type. These three characters are also most
suitable delimiters to mark the start and end of an informa-
tion packet.

The singular comma in this code is a sequence of run
length (RL) 2 or more ending with digit b followed bya RL 5
sequence in digits cdeif, where this second sequence is not
permitted to be the RL = 2 sequence of another comma. In
other words, if two or three RL = 2/RL 5 sequences overlap,
only the first and third are recognized as commas. This rule
is necessary because in some situations the K.28.7 comma is
followed by another RL S sequence in digits ghjab.

A sequence of contiguous K.28.7 characters would gener-
ate alternating RL 5 sequences of Is and 0s, which is not
useful for character synchronization and is poor for bit-clock
synchronization. For this reason, no adjacent K.28.7 charac-
ters are allowed. Despite this restriction, the K.28.7 comma
is often preferred over the other two because in the synchro-
nized state no single error can generate a valid K.28.7 from
data.

Idle sequence We must distinguish between communica-
tions links which maintain byte synchronization from packet
to packet and those which do not. It is desirable to maintain a
high transition density during the idle state to ease the
acquisition of bit synchronism by the receiver clock. There-
fore, when byte synchronism is not maintained between
packets, a sequence of alternating Is and Os is suitable and
can be generated by the encoder with either a D.21.5 or a
D.10.2 input.

For an exact balance between the number of /s and 0s, the
ending disparity must be carried forward and the new packet
should start only after any even-numbered encoded digit.
However, a start on an odd-numbered digit will degrade the
noise margin by a negligible amount if the packets are
several bytes long, and if the running disparity of the idle
sequence is constrained to —1, 0, or +1, by starting the
sequence with a 0 or a /, depending on whether the previous
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packet has ended with positive or negative disparity, respec-
tively (see Fig. 2).

If byte synchronism is carried forward from packet to
packet, it is useful to fill the packet gap with characters other
than data. A steady stream of K.23.7, K.27.7 or K.29.7
characters generates sixty transitions for every 100-digit
interval. Each character is recognizable as other than data,
but byte synchronism cannot be acquired from this idle
sequence unless a comma character is inserted every now and
then. As an alternative, a sequence of contiguous K.28.5
commas generates a transition for 50% of the digit intervals.

4. Code evaluation

® Digital sum variation and disparity

The maximum DSV between arbitrary points in this code is
6. Sometimes the DSV is quoted with reference to specific bit
positions, such as the end of a character, and a lower figure
usually results. The maximum DSV between any two i/f or
Jj/a bit boundaries is 2.

As mentioned earlier, the term disparity designates the
difference between the number of I and 0 bits in a defined
block of digits, or the instantaneous deviation from the
long-term average value of the running digital sum. All 6B
and 4B subblocks individually, and the complete 10-bit
characters, have a disparity of either 0 or *2; i.e., each valid
character in the 10B alphabet either has five Is and five Os or
six Is and four Os or four /s and six 0s.

It is instructive to plot the disparity as a function of time or
digit intervals as is done in Fig. 2, where each ] bit is marked
by a line segment extending over one digit interval and rising
at a 45° angle; conversely, a 0 bit is represented by a falling
line. As an example, starting at the circled +1 disparity
value on the leftmost j/a bit boundary, a 110100 digit
pattern would lead along the upper contour to disparity
= +1 at the i/f bit boundary. All data characters and
special characters of Tables 3, 4, and 5 are represented in
Fig. 2. The bold lines depict the comma sequence in its two
complementary manifestations.

From the diagram it is immediately evident that the
maximum DSV between arbitrary points is 6. Since the
disparity is bounded, the code is free of any dc component.

® Run length

An examination of Fig. 2 shows that RL 5 sequences are only

possible starting with bit positions ¢, e, g, and j. However,

inspection of Table 3 shows that the 6B alphabet does not

include any code points for which @ = b = ¢ = d, and that
= d = ¢ = i is confined to the K.28.x special characters.

These added constraints render impossible any RL 5
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sequence starting with j and limit those starting with c to the
comma sequences listed in Table 5. The RL 5 data sequence
starting with e is eliminated through the aiternate code point
D.x.A7 of Table 4, which in turn is the sole generator of the
RL 5 sequence starting with g. Note, however, that this
sequence is always preceded by RL 1 except when overlap-
ping with the K.28.7 comma.

Beyond the extremes in the run length, the clustering of
sequences of maximum or near-maximum run length is also
of interest. The data sequence with the lowest transition
density, which can be maintained indefinitely, has an aver-
age of 30 transitions per 100-digit interval.

® Error detection
The first aspect to be considered is the exploitation of the
code redundancy for error checking. The second area to be
explored is how errors in the line code interact and affect
error detection by cyclic redundancy checks applied to the
unencoded digits.

Error checking using redundancy of 8B/10B code We are
not concerned here with the correctness of individual charac-
ters, only with the validity of entire packets. Each packet
starts and ends with a delimiter. For packets defined in this
way, the start and end characters each contain at least one
nonzero-disparity subblock, which prevents disparity viola-
tions arising from errors to be carried forward into another
packet. The difference between the number of /s and Osina
valid packet is 0, +2, or —2. In general, unless a delimiter
has been complemented exactly by noise, any error pattern in
a packet for which the number of erroneous /s is not equal to
the number of erroneous 0s can be detected. Beyond this
general rule, many other errors are detected as well, because
of the alternating disparity rules, especially if the error digits
are far apart. Still other errors do not change the number of
Is or Os but generate illegal characters outside the defined
alphabet and thus are detected.

To implement the error detection scheme, five checks are
required: (1) all 6B and 4B subblocks of a packet have to
have either 0, +2, or —2 disparity, (2) nonzero disparity
blocks must alternate in polarity, (3) D.7 and D/K.x.3 must
follow the disparity rules, (4) a valid packet must have the
specified delimiters at both ends, and (S5) in addition, the
following conditions are violations of coding rules and can be
attributed to errors:

a=b=c=d,
Pi3.e -1,

P31l -e.i,
f=g=h=]
e=1i=f=g=h,
ite=g=h=]j
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e=i*xg=h=j)-(c=d=e¢),
P3l' ce-i'"~g K- j,
P13 .¢.i-g-h-j

Note that undefined 6B and 4B subblocks give a fairly
precise location of an error. For violations of the disparity
rules, the location of an error can be bounded within a range
which depends on the data pattern. Locating errors may be
useful in support of forward error correction schemes.

In the paragraph on commas we claimed that with the
receiver in character synchronism, no single digit error can
generate the K.28.7 delimiter (0011111000 or complement)
from encoded data. To verify this claim, consider that no
data code points have ¢ = d = e = i; therefore, at least one
digit error is needed to generate abcdei = 001111, e.g., from
001110 or 001101. Moreover, fghj = 1000 in data requires
that e = i = 0; however, none of those 6B subblocks which
can be changed by a single error into 001111 meet this
requirement; therefore, a second error is needed in the 4B
subblock, e.g., a change from fghj = 1010 to 1000. The
converse is also true: no single error can transform K.28.7
into a data code point.

The simplest error patterns which may escape detection by
the code are a single erroneous 1 complemented by a single
erroneous 0. Such complementary errors, when confined to a
single subblock, may simply change it into another valid code
point. Single errors in subblocks change the disparity. Thus it
is possible that a complementary pair of digit errors can
change the disparity of two subblocks in conformance with
the alternating polarity rule, such that the errors are not
detectable by the code.

Cyclic redundancy checks (CRC) with 8B/10B code Sin-
gle errors (or short error bursts) in the encoded line digits of a
block code can generate a longer error burst in the decoded
message. For the 8B/10B code proposed here, the effects of
line digit errors are always confined to the 6B or 4B
subblocks in which they occur and generate error bursts no
longer than 5 or 3 respectively (from a single line digit error).
This derives from the fact that each 6B or 4B subblock is
uniquely decodable on the basis of just the digit values
belonging to that subblock and without any reference to
disparity or other extraneous parameters. The only excep-
tions are the special characters K.28.1, K.28.2, K28.5,
K.28.6, for which the decoding of the fghj bits is dependent
on the abcdei bits. However, adverse effects from this are
limited because special characters usually appear only at
specified slots with respect to the packet boundaries and
usually are not covered by the CRC.

From the preceding paragraph one can conclude that the
CRC used with this code should detect at least any combina-
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tion of double errors in the line digits if it is to make a
significant impact on the combined guaranteed level of error
detection. A double error in the line digits generates, in the
worst case, two error bursts of 5 each, after decoding. Fire
codes are well suited for this application. Peterson and Brown
[15, Theorem 8] show how to specify generator polynomials
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for cyclic codes with the capability of detecting two error
bursts. With 16 check bits, two bursts of combined length 10
or less can be detected in packets as long as 142 bytes; 24
check bits can accomplish the same thing for packets as long
as 36 862 bytes.

A CRC can generally detect any single error burst of a
length which does not exceed the number of check bits. With
the 8B/10B code described here, any single error burst of
length 15 or less in the encoded digits cannot grow to more
than 16 bits after decoding. Similarly, error bursts of length
25 and 35 in the encoded bits translate into error bursts no
longer than 24 and 32 bits, respectively, after decoding.

In summary, for all packet lengths of practical interest,
one can conclude that a 24-bit or longer Fire code combined
with the inherent error detection capability of 8B/10B
mapping can detect any combination of up to three additive
errors in the line digits, provided that the beginning and end
of the packets have been correctly established.

In practice, however, it is difficult to provide guaranteed
error protection. This is because the distance properties of
error detection codes do not apply to such conditions as
incorrect detection of packet boundaries or the insertion of
spurious channel bits. Here, a CRC may be viewed as
providing for the detection of errors with a given probability.
An n-bit CRC, if properly designed, reduces the probability
of undetected errors by roughly a factor of 27". For n = 16,
this is in the order of 1.5 x 107>, The 8B/10B code detects
substantially more than half of the random error patterns as
noted above, so that the resulting overall probability of
undetected errors becomes less than 10~° for a 16-bit CRC.
This may be quite adequate for fiber optic transmission,
which is expected to have very good noise properties.

5. Implementation aspects

An 8B/10B encoder and a matching serializer, deserializer,
and decoder were built and operated as part of an experimen-
tal fiber optic link operating at a signaling rate of 200 MHz.
The encoder and decoder were implemented with ®MECL
10 000 series circuits [16]; and although tested at only 20
Mbytes/s, a maximum speed almost twice as fast can be
projected with allowance for worst-case gate delays. All flip-
flops (FF) shown are of the positive-edge-triggered type.

® Logic circuits for the encoder

The encoder is clocked by a byte rate clock (+SBYTECLK)
derived from the transmitter and serializer clocks. The data
source buffer (not shown) responds after each positive transi-
tion of +SBYTECLK with a new byte, while at the same
time the encoded bits abcdei in the output register (Fig. 7,
shown on the facing page) are being updated. A 0.6-byte
cycle later, the source bits FGHK are read into FFs (Fig. 4)
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on the positive transitions of —SBYTECLK, and the encoded
bits fghj (Fig. 8) are updated. This staggered transfer is
made possible because of the partitioned structure of the
code; it simplifies the design of the serializer and the
deserializer.

Figure 3 shows the generation of some of the basic
classifications of Table 3 from the encoder inputs. For an
explanation of the letter notations refer to Section 3.

The circuits of Fig. 4 generate the classifications of Table
4. The F, G, H, and K inputs are buffered to allow a serializer
interface with the staggered timing mentioned earlier. As
illustrated in Fig. 4, —PDL6 or —NDLG is at the down level
if the running disparity following the i-bit is positive or
negative, respectively. Signals PDL6 and NDL6 are gener-
ated in Fig. 6.

Figure 5 implements the disparity classifications of both
Tables 3 and 4. All inputs are from Figs. 3 and 4, or the data
source, except for (L13 - D - E), which can be found in Fig.
7. The mnemonics for the outputs are as follows: P for
“positive,” N for “negative,” S for “sender” (as distinct from
similar decoder functions on the receiving end), “D — 1" and
“DO” refer to the respective columns in Tables 3 and 4, the
number “6” associates a function with SB/6B encoding and
Table 3, the number “4” with 3B/4B encoding and Table 4.
As examples, +PD—1S56 is at the up level for any input
which has a plus sign in the “D — 1” column of Table 3,
+ND0S4 is at the up level for any input with a minus sign in
the “D0” column of Table 4.

The upper FF in Fig. 6 keeps track of the running disparity
at the end of the i-bit, and the lower FF does the same for the
J-bit. The gates to the right make the decision whether the
alternate, complemented code points of Tables 3 and 4 apply
(on the basis of the running disparity and the
“D — 1” entry disparity classifications of Fig. 5). The gates
to the left determine how to update the FFs, taking into
account the DO disparity of the subblock being encoded,
complementation, and the running disparity at the end of the
previous subblock. As seen on the transmission link (L),
+PDL4 is at the up level for a positive running disparity at
the end of the j-bit.

Figure 7 shows the actual transformation of the five input
bits ABCDE into the six abcdei output bits according to
Table 3. The gates to the left of the XOR (exclusive-or) gates
bring about all the bold type bit changes of Table 3. Figure 8
shows the 3B/4B encoding according to Table 4.

® Logic circuits for the decoder
The logical functions for the decoder and their classifications
are defined in Tables 6 and 7. The implementation of these
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tables in logic circuitry is very similar to encoding, but
simpler, because it does not depend on the disparity. For
decoding, the i- and j-bits are dropped and some of the
remaining bits are complemented as indicated by bold 0 and
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Table 7 4B/3B Decoding, K function.

Name fghj Decoding class Disparity class FGH K¢ D-1 DO

D/K.x.0 0100 fap'sf foh’sj 000 x -
D/K.x.0 1011 fehej Fohaj 000 x +
D/Kx.1 1001 160 x x O
K.28.1 0110 c'ed’ve'si’o(hs£)) 100 1 0
D/Kx2 0101 010 x x O
K.282 1010 c'vd ee’si’ e (hj) 010 1 0
D/K.x.3 1100 fogeh'sj 110 x 0
D/K.x.3 0011 f'ag'ehsj flog'ehej 110 x 0
D/K.x4 0010 flog/ei 001 x -
D/K.x.4 1101 fegej fogej 001 x +
D/K.x.5 1010 101 x x ©
K285 0101 c ed'ee’si’«(he)) 101 1 [}
D/K.x.6 0110 011 x x 0
K.28.6 1001 c'edee’eio(hstj) 0t1 1 0
Dx7 {110 fegeh 1o - 4+
Dx.7 0001 feg'en’ fog'oh’ 111 0 + -
D/K.x.7 0111 gehej gehej 111 x
D/Kx7 (000 gen’sj g'eb’ej’ 1t x

€K = (e=d=e¢=i) OR (P13+¢/«iegehsj) OR (P3leeei’eg’sh’sj’) .

1 entries in the tables. The disparity classifications of Tables
6 and 7 are needed only for error checking. Note that correct
decoding of zero-disparity subblocks is dependent on signal
polarity; i.e., the signal polarity between encoder and decoder
cannot be arbitrarily changed.

® Logic circuit performance requirements

All the encoder and decoder circuits operate at the byte rate.
To estimate the maximum tolerable gate delay, we look at a
critical delay path. We use two gate delays for the XOR
function, two gate delays from FF clock input to output, and
one gate delay for the FF set-up time. It is assumed that valid
input appears at the encoder input some two gate delays after
the rising transition in + SBYTECLK. It takes another three
gate delays to generate L/3 in Fig. 3. Following the longest
path for L3 in Fig. 7 to the data input of the e-FF together
with the ri:quired set-up time adds another five delays. The
total amounts to ten gate delays, which must be less than one
byte interval.

There are other paths of equal length. The critical delay
paths can be reduced to nine or eight gate delays with a
moderate increase in circuit count; e.g., L3 of Fig. 3 can be
generated from ABCD with two, rather than three, logic gate
delays using five 4-way gates. As an approximate rule one
can state that the gate delays for the encoder and decoder
should not exceed one digit interval; as an example, 10-ns
technology can be used for data rates up to 10 Mbytes/s
attached to a serial link operating at a digit rate of 100
MHz.
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o Circuit count

For the circuit count, each XOR gate is counted as three
gates. The gate count for the encoder (Figs. 3—8) is 89 gates
and 17 FFs; the decoder required 79 gates and 9 FFs; error
checking takes 44 gates and 2 FFs. Counting each FF as six
gates results in a total of 380 gates for the encoder, decoder,
and error checking. At low and medium data rates, where the
gate delays are much less than a digit interval, some trivial
design changes can significantly reduce the circuit count. For
one, if the total encoding and decoding time delays are only a
fraction of a byte, ten buffer FFs at the output of the decoder
and the encoder buffers of Fig. 7 or Fig. 8, or both, can be
eliminated. Second, the remaining FFs can perhaps be
implemented as 3-gate latches after some modifications in
the clocks. Therefore, at low byte rates, an encoder and
decoder without error checking can be implemented with 168
gates and seven latches for a gate count total of 189 gates.
With a complete set of error-checking circuits, the lower
limit on the gate count is about 244.

The circuit count for the serializer, deserializer, and
associated clocks for our experimental 200-MHz link
amounts to 30 gates and 34 edge-triggered FFs for an
equivalent total gate count of 234 high-speed gates.

6. Conclusion

For packet transmission over local area networks or com-
puter links, the 8B/10B coding format described yields a
near-optimum combination of relevant properties such as
coding efficiency, complexity, digital sum variation, run
length, error propagation, and suitability for ring or point-
to-point topologies. These desirable attributes are, to a large
extent, a consequence of the partitioned code structure. Itis a
binary code, the preferred transmission mode for fiber optic
links for this kind of application, and it is compatible with the
byte structure, which is ubiquitous in computer networks.

An implementation of a coder and decoder with emitter-
coupled logic required a total of only 380 logic gates with
gate delays up to one-tenth of a byte-clock interval.

Although the code was developed with high-speed fiber
optic links in mind, it should also benefit lower-speed links
over copper wire, which quite often run with 1B/2B codes
currently. If such links are crosstalk-limited, the lower
signaling rate of the 8B/10B code provides significant
improvements in the signal-to-noise margin, because of lower
attenuation and higher crosstalk impedance at the reduced
rate. Finally, the difference in speed requirements in the
serial and parallel sections of a communications adapter
using this code is reduced, which in turn makes single-
technology, single-chip implementations possible more often
than with other codes.
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