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This  paper describes a byte-oriented binary transmission code and its implementation. This code is particularly well suited for 
high-speed local area networks and similar data links, where  the information format consists of packets, variable in length, 
from about a  dozen up to several hundred 8-bit bytes. The proposed transmission code translates each source byte into a 
constrained IO-bit binary sequence  which  has excellent performance parameters near the theoretical limits  for 8B/lOB codes. 
The maximum run length is 5 and the maximum  digital sum variation is 6. A single error in the  encoded bits can. at most, 
generate an error burst of length 5 in the decoded domain. A very simple implementation of the code has been accomplished by 
partitioning the coder into 5B/6B and 3B/4B subordinate coders. 

1. Introduction 
This paper presents a transmission code that is well suited for 
high-speed  local area networks and computer links. Such 
links require relatively simple and reliable transceivers at low 
cost, and  a good code choice can significantly contribute to 
this goal. The rapidly evolving  fiber optic technology is 
expected to penetrate this application. Except for some 
special situations, digital fiber optic links generally operate 
in binary on/off, rather  than  ternary mode (because of a 
better optical signal-to-noise margin and much simpler 
receiver circuits). For this reason we confine  ourselves to 
binary codes. 

A code that is free of dc, or one that has a constant dc 
component regardless of data patterns [I], provides many 
advantages for fiber optic and electromagnetic wire  links. 
High-gain fiber optic receivers  need an ac coupling stage 
near the front end. Also, control of transmitter level,  receiver 
gain, and equalization are simplified, and the precision of 
control is improved if these can be  based  on the average 
signal power (especially at the higher data rates). DC 
restoration circuits are  an alternate solution to the stated 
control problems, but the circuits tend to  lose  precision  with 
increasing data rates. 

Additional redundancy is required for reliable clock  recov- 
ery and for the coding of special control characters, e.g., to 
delimit the start and end of information packets. At high 
data  rates it is desirable to maintain a constant byte rate and 
to reduce the number of  logic circuits operating at the 
signaling rate, which  is sometimes set near the technology 
limits. These objectives can be met most readily if redun- 
dancy is added at a constant rate to each byte (in contrast to 
selective, pattern-dependent bit stuffing). A constant expan- 
sion factor also benefits other areas of a transmission system, 
such as error control, buffer  design  in gateways, address 
expansion or substitution, and clock design. 

Modern communications architectures transmit informa- 
tion  in the form of packets with a defined  field structure for 
addresses, information, and communication and error con- 
trol. The number of bits in each of these fields and in the 
entire packet is generally a multiple of eight bits.  Buffers and 
relevant interfaces are also byte oriented. In such systems a 
byte code has the advantage of a  natural affinity  with the 
packet boundaries and the byte rate clocks and is readily 
implemented with  lower-speed  logic on the parallel side of 
the system. Otherwise attractive binary codes, such as the 
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5B/6B  code  [2],  do not  readily  mesh  with  a  byte-oriented 
structure.  The  required  adaptations in the clocking area, a t  
interfaces,  and in the  packet  structure  are  awkward  and 
increase  the high-speed gate  count. 

With  these  considerations in mind,  and looking for  a fairly 
efficient code, one would first  tend to  examine  the possibility 
of an  8Bj9B code. However, to  realize  such a  code,  imple- 
mentation  and  performance  parameters  (other  than effi- 
ciency)  have to  be compromised to a degree which is inordi- 
nate in comparison with the results which can  be  obtained 
with 8B/10B codes. Pursuing overall  objectives similar  to 
ours, Kiwimagi [3] proposed a 4B/5B code with  fairly 
relaxed  performance  constraints.  Our  approach consolidates 
a 5B/6B  and a 3B/4B  code  into a compound 8B/10B code. A 
5B/6B  and a 3B/4B coder operating  separately have been 
described by Griffiths  [2]. We modified the code tables  to 
improve the  performance  parameters  and  to  facilitate imple- 
mentation; we also defined  a set of synchronizing, or  comma, 
characters,  and  other special non-data  characters which we 
describe  later.  Finally, we built and  operated a practical  and 
remarkably  simple  implementation of the  entire coder and 
decoder,  and  demonstrated  that  it  can be integrated in a 
relatively slow technology with straightforward  interfaces. 
This  paper is an  elaboration of a previous short  article on the 
identical code [4]. 

Section 2 of this  paper provides a  description of general 
coding constraints, as well as  a discussion of coding alterna- 
tives  which  led to  the  code  structure proposed here.  Section 3 
defines the proposed 8B/10B code in detail.  Section 4 
describes the  performance  parameters  and  features of the 
code. Finally,  Section 5 treats  the  implementation aspects. 

2. Channel constraints and coding alternatives 

Channel constraints 
As noted previously, the  stream of  signals transmitted down 
the  channel  must  be  constrained so that  enough  transitions 
for timing recovery and  little  or no dc spectral  components 
are present. 

A measure of the  energy at  and  near  dc is the digital sum 
variation or DSV [SI,  which  is obtained  as follows: Each 
channel symbol  (corresponding to a possible signal waveform 
during a unit  interval) is assigned an  algebraic  value  corre- 
sponding to  its dc component.  The DSV is defined as  the 
variation in the  running  sum of the encoded data  stream, i.e., 
the  maximum  minus  the  minimum value. For a binary,  or 
two-level, code, the 1 and 0 bits  are  generally assigned  values 
of + I and - 1, respectively. In the following, the  maximum 
DSV is  denoted by the  symbol u. Note  that  the  number of 
levels in the  running  sum is u + 1.  

Table 1 Examples of channel capacities C. 
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0 1 5 0.655 
0 2 5 0.803 
0 3 5 0.842 
0 4 5 0.850 

The run  length is defined as  the  number of identical 
contiguous  symbols  which appear in the signal stream.  For a 
binary code, the  run  length is the  number of contiguous 1 s or 
Os after encoding. What is of interest is the  shortest ( X )  and 
the longest ( Y )  run  lengths  that  appear.  These two parame- 
ters  are often given in the  form (& k )  where d = X - 1 and 
k = Y - 1 .  The (d, k )  representation gives the  minimum ( d )  
and  maximum ( k )  number of symbols between unequal 
symbols. For  a (0,3) code,  for example,  any symbol can  be 
followed by no more than  three contiguous  identical  symbols, 
for a maximum  run  length of 4. Codes  designed for  digital 
transmission  usually  have  a parameter d of 0. The  preferred 
codes for  magnetic recording, on the  other  hand, usually  have 
a parameter value d of 1 or  greater; i.e., the  minimum 
spacing between transitions is longer than a  symbol  interval. 

Theoretical limits 
Coding  with  a (d ,  k )  run  length limit  with  a  bound of u for 
the DSV is an  example of coding for  an  input-restricted 
channel.  Three  criteria of consequence here  are  (1)  the 
channel  capacity C (which represents  the  maximum coding 
rate of bits per channel  symbol), (2) the coder  complexity, 
and  (3)  the  amount of error propagation. Table 1 lists 
channel  capacities C for  a sample of (d ,  k ,  u)  constraints. 

A variety of formal  methods exist  for the  construction of 
such codes. References [5-13]  may  be used as  an  entry  into 
the  literature.  It is known that a  code may always be 
obtained  as long as  the desired  coding rate does  not exceed 
the  channel  capacity. Moreover, even for the class of con- 
straints discussed here, where the decoder must be state- 
independent [SI to avoid infinite error  propagation,  it  has 
recently been proven [ 101 that a mapping  with  this property 
is always attainable.  Thus,  theoretically,  it is possible to 
obtain a (0,2;5)-rate  4/5 code. However,  a coder  and 
decoder  with these  parameters  may not be  practical because 
coding  complexity and  error  propagation  must  be considered, 
as well as  additional  requirements,  such  as special  signaling 
sequences. 

One way of classifying the complexity of a  code  is by the 
number of information  (source)  bits  that  must be examined 



Table 2 Code  complexity m for  various  code  constraints. 

d k u S W m 

0 2 5 4 5 3 
0 2 5 8 10 
0 3 5 8 10 1 

2 2  

0 4 5 4 5 2 

Table 3 5B/6B Encoding. 

Nome A B C D E K  Clasrlflcarrons D-I o b c d e r  DO o b c d e t  

Bir encodtng Dwporrry Alrernare 

D.0 00000  0 
D.l 10000  0 
D.2 01000  0 
D.3 I 1 0 0 0  0 
D 4  0 0 1 0 0  0 
D.5 10100  0 
D.6 01  IO0 0 
D.7 1 I 1 0 0  0 
D.X 00OIO 0 
D.9 10010  0 
D.10 0 1 0 1 0  0 
D.II I 1 0 1 0  0 
D l 2  00110  0 
D.13 10110  0 
D.14 0 1 1 1 0  0 
D.15 I l l 1 0  0 
D.16 0 0 0 0 1  0 
D.17 10001  0 
D.IX 01001  0 
D.19 11001  0 
D.20 00101  0 
D21 10101 0 
D.22 01 101 0 

D/K.23 I I 1 0 1  x 

D.24 0001  1 0 
0 . 2 5  I O 0 1  I 0 
D.26 0101  1 0 

Dt‘K.27 I 1 0 1  I x 

D.2X 0 0 1  I1 0 
K.28 001  1 I 1 

D/K.29 1 0 1  1 I x 
D/K.30 01  1 I I x 

D.31 I 1   I 1  I 0 

LO4 
~ 1 3 . ~ ’  

L22. E’ 
L13.E’ 

L13.E‘ 
L22. E’ 
L22.E’ 

L13.E’ 
L22  E‘ 
LZZ . E’ 

L22.E’ 

L40 
L04. L04-E 
L13.D’.E 
LIJ.D’.E 

L13.d.E 

L13.D-E 

L22.K 

L40, L40-E 

L22’.L13‘.E 
L13.D.E 

K 
L22‘.L13’.E 
L22’.Ll3’*E 
L22’.L13‘.E 

0 1 1 0 0 0  - 
100010  - 
0 1 0 0 1 0  - 
I 1 0 0 0 1  0 
0 0 1 0 1 0  - 
101001  0 
01 1001 0 
I I 1 0 0 0  o 
0 0 0 1 1 0  - 
100101  0 
0 l 0 l 0 I  0 
I 1 0 1 0 0  0 
001101  0 
101100  0 
01  I 1 0 0  0 
101000  - 
0 1 1 0 1 1  + 
100011  0 
0 1 0 0 1 1  0 
I lOOI0  0 
0 0 1 0 1 I  0 
101010  0 
0 1 1 0 1 0  0 
1 1 1 0 1 0  + 
0 0 1 1 0 0  - 
1 0 0 1 1 0  0 
0 1 0 1 1 0  0 
1 1 0 1 1 0  + 
0 0 1 1 1 0  0 
0 0 1 1 1 1  + 
101110  + 
0 1 1 1 1 0  + 
1 0 1 0 1 I  + 

1001 1 I 
0 l l 1 0 1  
101101  

110101  

0001  1 I 

111001  

0101 I I 

l 0 0 l 0 0  

000101  
11001  1 

0 0 l 0 O l  

I 1 0 0 0 0  
010001  
100001  
0 1 0 1 0 0  

by the coder  in  choosing a word  when using a bounded delay 
code [8,9].  Suppose, for example, that the rate is s/w, where 
s bits at a  time are encoded into words of length w. A 
parameter m may be used to represent the number of s-bit 
groups that need to be examined in the coding  process  when 
choosing a word for transmission. Consider the case of 
m = 2, s = 4, and w = 5. The value of m indicates that  the 
coding  process requires at each step  the examination of  two 
4-bit groups of data. Table 2 gives the minimum values of m 442 
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for various constraints and rate 415. Note for example that  at 
least three 4-bit groups must be examined at each step for a 
(0, 2, 5) code. 

The code described here lies outside the framework dis- 
cussed  in References [5-121 since it is composed of sub- 
blocks  whose length and coding rate  are not uniform. How- 
ever, these variations are periodic, so the new code may  be 
viewed as  a special case of a fixed-length code with s = 8 and 
w = 10 for d = 0, k = 4, and v = 6 constraints. 
Construction of such a fixed-length  code may be done by first 
obtaining a set of principal  states, described as follows: 
Given a finite state machine description of the channel 
constraints, a principal state set for block encoding is one 
where, from each member of the set, there are sufficient code 
words terminating in states within the set. An algorithm for 
finding such sets and associated code  words is described in 
PI. 

A corresponding algorithm may  be formulated for the 
partitioned-block code discussed here. The difference is that 
words  used  in the 5B/6B code must terminate in  coding 
states for the  3B/4B code, and vice versa. Partitioned-block 
codes  may thus be handled by a fairly straightforward 
extension of the theory. 

The coding technique discussed  above  may  be viewed as 
frameworks which deal with the structure and existence of 
various mappings between unconstrained data and coder 
output. However, the design of a code for a given application 
involves a number of engineering tradeoffs which are per- 
haps  best understood by examining specific examples. To 
clarify the reason for the design  choice, some of the  alterna- 
tives that were  considered are subsequently described, 

Coding alternatives 
1. The partitioned-block code that was  chosen has parame- 

ters d = 0, k = 4, and v = 6, with a rate of 4/5 obtained 
by combining a rate 516 and a rate 314 code. Error 
propagation is limited to five bits. This means that  an 
isolated additive error in detection results in at most five 
erroneous bits in the decoded data stream. Encoding 
requires the examination of at most  five source bits at a 
time. 

2 .  Another possibility  is a  standard block  code  with no 
look-ahead, with parameters d = 0, k = 3, u = 5, s = 8, 
w = 10, and m = 1. Here eight source bits must be 
examined in  choosing a code word. Error propagation is in 
general eight bits. The modest improvement in run length 
and DSV over Option 1 were  not  considered  sufficient to 
justify the increase in error propagation and the substan- 
tially greater complexity of the coder and decoder. 

3. A third possibility that was investigated is the construc- 
tion of codes  with  words of length five. A bounded-delay 
or variable-length code [9] with k = 4, v = 5, s = 4, and 
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Figure 1 Blockdiagram of the 8B/10B encoder. 

m = 2 turned  out  to be the best compromise  among values 
of k,  u, error  propagation,  and complexity. The code may 
be designed so that  the  maximum  number of bits  exam- 
ined  in  coding is limited to 5. Error propagation is five bits 
(as in the code actually  chosen).  The  amount of circuitry 
required for a  coder and decoder is also comparable. 
However, this code has several disadvantages  arising  from 
the  fact  that  there is little  suitable  redundancy  available 
for  the  mapping of special characters.  Another disadvan- 
tage  arises  from  the variable-length  look-ahead format, 
which results in a requirement for padding at   the end of 
data packets. 

3. The 8B/ 106 coding map 

General overview 
Figure 1 shows a communications  adapter  interface consist- 
ing of the  eight  data lines  ABCDEFGH (note  the  uppercase 
notation), a control line K,  and a clock line  BYTECLK 
operating at  the  byte  rate.  The  control line K indicates 
whether  the lines A through H represent  data or control 
information. 

For encoding  purposes, each incoming byte is partitioned 
into two  subblocks. The five binary lines ABCDE  are 
encoded into  the six binary lines abcdei (note  the lowercase 
notation), following the  directions of the 5B/6B logic func- 
tions and  the  disparity control. Similarly,  the  three  bits FGH 
are encoded intofghj. 

The disparity of a block of data is the difference  between 
the  number of 1 s  and Os in the block; positive and negative 
disparity  numbers  refer  to  an excess of Is  and Os, respec- 
tively. For both the 6B = abcdei and 4B = fghj subblocks 
the  permitted  disparity is either 0, +2, or -2. The coding 

rules  require  that  the  polarity of nonzero disparity blocks 
alternates. For this purpose, no distinction is made between 
6B and 4B subblocks; i.e., a surplus of two I s  in a 6B block 
can be compensated by two excess Os in either a 6B or a 4B 
block and vice versa. 

Nonzero disparity code  points are assigned in complemen- 
tary  pairs  to a  single source  data point. The encoding 
functions generate one of them; if it violates the  alternating 
polarity rule,  the  complete subblock is inverted  in the encod- 
ing  switch. Determination of disparity  and polarity in the 6B 
encoder is followed by the corresponding operations of the 4B 
encoder, then  the  running  disparity  parameter is  passed 
along for  encoding of the next  byte. The  majority of the 
coded  subblocks are of zero disparity and  are, with some 
exceptions, independent of the  running disparity; i.e., they  do 
not have  a  complement. 

The  ten encoded  lines abcdeifghj normally interface with 
the  serializer;  the  a-bit  must  be  transmitted first and j last. 

Code definition 
The 8B/10B encoding is accomplished by encoding the bits 
ABCDE of the  input byte into  the line  digits abcdei in a 
5B/6B encoder following the coding  plan and  rules of Table 
3, and  the bits FGH in  a 3B/4B encoder into  the line  digits 
fghj  as shown in Table 4 .  

5B/6B encoding The first  column in Table 3, headed by 
“Name,” gives the 32 decimal equivalents  for the  input lines 
ABCDE,  assuming  A is the low-order bit  and  E  the high- 
order bit. For regular  data (D.x) the line K must be held at  0; 
a few code points can  be  part of special characters which are 
recognizable as  other  than  data; such  code  points are  named 443 
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Figure 2 Disparity vs time plot. 

Table 4 3B/4B Encoding. 

table  was designed so that a minimal  number of bits  must  be 
changed on  passing through  the  encoder,  and so that  the 
changes which are  required  can  be classified into a few 
groups  applicable  to several  code  points. All the  bits in Table 
3 which require  action by the 5B/6B logic functions (other 
than  complementation of the  complete subblock) are  in bold 
type, assuming  that  the  extra  digit “i” is added with  a normal 
value of 0. 

Btr encodmg Dtrparrly Allernore 

D/K x.@’ 
D.x I 

D.r 2 

D/K.x 3., 
D/K ~ . 4 ~  

D.x.5 

D.x.6 

D X  P7 
D/K y . A l h  

.K 2x. I 
K.28 2 
K.2X.5 
K 28 h 

F’.G‘.H’ F‘.G’ 

(F#G) .H’  
+ 0100 - 1 0 1 1  
X 1 0 0 1  n 

(FZG) .H’  x O l O I  0 

F-G - 1 1 0 0  o o n 1 1  
F’.G‘ + 0010 - 1 1 0 1  

x 1010 0 

x 0 1  I O  0 

F.G. F.G.H - I I I O  + n o n 1  
F.G.H.(S+K) F.G. F.C.H - 01 I I  + 1000 

(F#G).H‘ (FZG) .K + 1001 (1 0 1  10 

(F#G)*H‘  (F#G).K + 0101 0 1010 

( F # G ) . K  + I O I O  11 0 1 0 1  

(FZG) .K + 0 1  I O  o 1 0 0 1  

” K x i\ remtcted t u  K 28. 
K y i s  restr~cted to K.23. K 27. K.2X, K.29, K.30. 

S = Ic.t.(D-l=-)l OR le’.i’.(D-l=+)l 

D/K.x or K.x and have an x or 1 in  column K .  To encode 
special characters,  the K line  must  be 1 .  

In  the “classification” columns, LO4 means  that  there  are 
no 1s but  four Os in ABCD; L13 means  that  there  are  one 1 
and  three Os in ABCD,  etc.  The  letter “L” indicates  that  this 
logic function or classification is part of the 5B/6B encoder. 
Analogous functions labeled “P” are defined for decoding 
(Table 6). An accent  to  the  right of a  symbol is used to 
represent  complementation; E’ means  the  complement of E, 
a dot ( ) stands  for  the logical AND function. 

In the  column  under  the  left “abcdei” heading  there  are 
listed all  the  code points  which are  generated  directly by the 

444 5B/6B logic functions  from  the  ABCDE  inputs.  The coding 

When  the  inputs  meet  the logical  conditions  listed on the 
left  side  under  “bit encoding,” then  the bold type  bits  are 
changed  to  the values  shown  in the  left “abcdei” column; 
e.g., if LO4 holds, the b and c digits  are forced to I s ,  as shown 
for D.0 and D.16. The second entry in the “bit  encoding” 
column  for D.16 (LO4 E)  and D.31 (L40 e E )  applies to  the 
i-digit. For lines  with no classification entry,  the  ABCDE bits 
translate  unchanged  into abcde and  the  added i-bit  is  a 0. 

The  “alternate abcdei” column  to  the  right of Table 3 
shows the  complement  for those ABCDE  inputs which  have 
alternate code  points.  Individual 6B (and 4B) subblocks are 
complemented in conformity with the  disparity rules. At  all 
subblock boundaries  the  running  disparity is either + 1 or - 1 
and never 0 (see Fig. 2). 

The  column  “D - 1” indicates  the  required  running 
disparity  for  entry of the  adjacent subblock to  the  right. An x 
in the  “D - 1” column  means  that ( D  - 1) can be + or -. In 
this  code the  polarity of the  running  disparity a t  subblock 
boundaries is identical  to  the  polarity of the most recent 
nonzero disparity block. 

As an example for  encoding of the first  line D.0 of Table 3: 
If  the  running  disparity  matches ( D  - 1) = +, the  output of 
the encoder will be 01 1000; otherwise  the  entire subblock  is 
complemented  to 1001 1 1 .  

The “DO” column  indicates  the  disparity of the encoded 
subblock to  the  left, which is either 0, +2, or -2. The 
disparities  for  the  alternate code points on the  right side of 
Tables 3 and 4 are  exact  complements of those to  their left, 
and  are  not shown. 

As in bit  encoding, the encoder hardware  determines 
directly  from  the  ABCDE  and K inputs  the  disparity of a 
subblock. The respective  logic functions  for classification of 
code  words  in terms of disparity  requirements  are shown  in  a 
separate column  in Table 3. 

In  Table 3, line D.7, a pair of zero-disparity 6B subblocks 
(111000 and 00011 1 )  is assigned to a  single data point  with 
an  entry  disparity  constraint  similar  to those applicable  to 
nonzero-disparity  subblocks. This coding feature  reduces  the 
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maximum digital sum variation from eight to six and, 
combined with an analogous rule in the 3B/4B encoder for 
DjK.x.3 of Table 4 (1100 and OOll), eliminates all 
sequences of run length 6 and most of those with run length 
5 .  

The technique of assigning a pair of complementary 
zero-disparity subblocks to a single code  point  is also used 
uniformly for all 4B subblocks  which are part of a special 
character,  as shown  in Tables 4 and 5 for  K.28.1,  K.28.2, 
K.28.3,  K.28.5, and K.28.6. 

3B/4B encoding Table 4 follows the conventions and nota- 
tions of Table 3. In Table 4 some  lines  have  two entries in the 
column  for the classification of disparity; the left classifica- 
tion refers to the entry disparity D - 1 ,  and the right one to 
DO. 

The encoding of  D.x.P7 (primary 7) and D/K.y.A7 
(alternate 7) requires an explanation. The D/K.y.A7 code 
point  was introduced to eliminate the run length 5 sequence 
in digits eifsh. The A7  code replaces the P7 encoding 
whenever 

[ ( e  = i = 1 )  . ( D  - 1 = - )] OR 

[ (e  = i = 0) - ( D  - 1 = + )] OR 

( K  = 1) .  

Note that whenever K = 1, FGH = 11 1 is always translated 
intofghj = 01 11 or its complement. 

The D/K.y.A7 encoding can generate  a run length (RL) 5 
sequence across the trailing character boundary in the ghjab 
bits; however, this sequence is preceded by a run length of 
only 1 in digit5 with one exception. If the leading character 
is the special character K.28.7, a RL 5 sequence across the 
trailing character boundary is preceded by another RL 5 
sequence in cdeif. For the significance of these distinctions, 
see the section on special characters. 

The zero-disparity 4B subblocks of K.28.1,  K.28.2, 
K.28.5, and K.28.6 are handled similarly to D/K.x.3 with 
respect to complementation in order to generate some special 
characters with byte synchronizing or  comma properties. 

Special characters Special characters are defined here as 
extra code points beyond the 256 needed to encode a byte of 
data. They are generally used to establish byte synchroniza- 
tion, to mark the start and end of packets, and sometimes to 
signal control functions such as ABORT, RESET, SHUT- 
OFF, IDLE, and link diagnostics. The set of twelve special 
characters shown  in Table 5 can be generated by the coding 
rules  defined  in Tables 3 and 4. They all comply  with the 
general coding constraints of a maximum run length of 5 and 
a maximum digital sum variation of 6. 

Table 5 Special characters ( K  = 1) .  
_________ 

Name A B C D E F C H  K D - I  o b e d e r  / R h J  DO D - I  o b r d e r  / g h J  Do 

Abernore 

K.2H.0 001  I I 000 I - 001 I I I 
K 2 X I *  0 0 1 1 1  100 I - 0 0 1 1 1 1  

~ 2 x . 2  n o 1 1 1  0111 I - IIOIIII 

K . 2 8 3  0 0 1 l l  1 1 0  I -001III 

K . 2 8 4  00111  001 1 - 0 0 1 1 l l  

K.2X.5* 001II 1 0 1  I - 0 0 1 1 1 1  

K . 2 8 6  00111  011 I -00llll 
K . 2 8 7 * *  00111 I l l  I - 0 O l l l l  

0 + I  noon 

+ + I I O U O O  
+ + 1 1 0 0 0 0  

+ + I10000  

0 + I 10000  

+ + l 1 0 0 0 0  
+ + I 1 0 0 0 0  

0 + 110000 

1 0 1 1  0 
0110  - 
1010 - 
1100  - 
I 1 0 1  0 

0 1 0 1  - 

0111  0 

1001 - 

Table 6 6B/5B Decoding. 

Nome a b c   d e  1 Decodrng class Dlsporlry class A B  c D E K D- I  DO 

~- ~ 

D.0 01 1000 P22.b.c.(e=i) 
D.0 1001 I I P22*b'.c'.(e=i) 

D l  0 1 1 1 0 1  P31.i 

D.2 101 101 P31.i 
D.2 010010 P13.i' 

D.4 001010 P13.I' 
D.3 110001 

D.4 110101  P31.i 

D.6 011001 

D.I lonolo P13.i' 

D.S 101001 

~ . 7  I 11000 
D . 7  0001 I I PI3.d.c.1 
D.8 0001 10 Pl3.i '  
D.X I I1001 P31.i 
~9 I O O I O I  
D.10 010101 
D.II 1 1 o i n n  
D.12 001  101 
D.13 101 100 

D . I S  10 I on0 P ~ z . ~ . c . ( ~ = I )  
D.14 0 1 1 1 0 0  

D I S  o I o I I I ~22.a'-c'.(e=i) 
D.16 01 101 I P22.b.c.(e=i) 
D.16 100100 PZZ.b'.c'.(e=i) 
~ . 1 7  1ono1 I 
D I X  nIoo11 

~ . 2 0  n o  I O  I I 
~ 2 1  lnlo1n 

D l 9  110010 

D.22 0 I 1 0  I O  
D / K 2 3  I I 1 0 1 0  
D / K Z ~  O O O I O I  ~ 1 3 . e '  

DZ4 I 1 0 0 1  I a.b.e.i 
D.24 001 100 a'.b'.e'.l' 

~ 2 6  olo11n 
D.ZS I 00 I 1 n 

D / K ~  I 10 I 1 0  
D / K . 2 1  001001 P13.e' 

D.28 00  I I I 0  
K 2X 001 I1 I c.d.e.i 
K.2X I 10000 c'*d'.e'.l' 

D/K.29  10 1 I I O  
D / K . 2 9  01 000  I P13.e' 

D /K .30  100001 P13-e' 
D /K .30  0 I 1 I I O  

D . ~ I  In101 I P ~ z . = . c . ( ~ = , )  
D.31 010100 P22.a'.cf.(e=i) 

P22.e'.l' 
p22.e.i 
~ 1 3 . i '  
P3I.r 
P13.i' 
P31 . I  

P13.i' 
P31.1 

P22.e'.i' 

P22.c.i 
P22.C.I 

P Z Z . ~ ' . ~ '  

P31 .e 
P13.e' 
~22.e' . i '  
P22.e.1 

ooooo  n + - 
oonoo o - + 
10000 0 + - 
olono n + - 
10000 0 - + 
01000  0 - + 
I 1 0 0 0  0 x 0 
00100  0 + - 
0 0 1 0 0  0 - + 
01100  0 x 0 

1 1 1 0 0  0 + 0 
ll100 0 - 0 

00010  0 + - 
1 0 0 1 0  0 x 0 

Inion o X o 

00010  n - + 

oIn1o n X 0 
1 1 0 1 0  n X o 
n u l l o  o X 0 
10110 0 x 0 
0 1 1 1 0  0 x 0 
1 1 1 1 0  0 + - 
1 1 1 1 0  0 - + 
00001 0 + - 
00001 n - + 
In001 o X n 
n1ool o X o 
Ilnol o X n 

10101 0 X n 
00101 0 x 0 

0 1 1 0 1  0 x 0 
1 1 1 0 1  x - + 
1 1 1 0 1  x + - 
0 0 0 1  I 0 - + 
n o 0 1 1  o + - 
1 0 0 1 1  o X n 
n1oll o X o 
1 1 0 1 1  x - +  
I 1 0 1 1  x + - 
00111  0 x 0 
OOl11 1 - + 
0 0 1 1 1  1 + - 
10111 x ~ - + 
01111 X - + 
1 0 1 1 1  x + - 
0 1 1 1 1  x + - 
1 1 1 1 1  n - + 
1 1 1 1 1  0 + - 

The first group of eight special characters K.28.x, Table 5 ,  
can be  recognized as other than data by observing that 
abcdei = 001 11 1 or 110000. In data we  never have c = d 
= e = ~ .  
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The second group of four special characters K.x.7, Table 
5 ,  is characterized by eifghj = 101000 or 010111. The 
distinction from data is the encoding of FGH into 0111 or 
1000, where 1110 or 0001 would  be  used for data. 

Commas and packet  delimiters A comma [ 141 indicates 
the proper byte boundaries and can be  used for instantaneous 
acquisition or verification of byte synchronization. To be 
useful, the comma sequence must be singular and must occur 
with a uniform alignment relative to the byte boundaries. In 
the absence of errors, the comma must not occur in any other 
bit positions, neither within characters nor through overlap 
between characters.  Three  characters in this code (K.28.1, 
K.28.5, K.28.7) have comma properties. They are marked 
with an asterisk in Table 5 ,  and the singular sequence is 
printed in  bold type. These three  characters are also most 
suitable delimiters to mark the start and end of an informa- 
tion packet. 

The singular comma in this code is a sequence of run 
length (RL) 2 or more ending with digit b followed  by a RL 5 
sequence in digits cde$ where this second sequence is  not 
permitted to be the RL 2 2 sequence of another comma. In 
other words, if two or three RL 2 2/RL 5 sequences overlap, 
only the first and third are recognized as commas. This rule 
is necessary because in some situations the K.28.7 comma is 
followed  by another RL 5 sequence in digits ghjab. 

A sequence of contiguous K.28.7 characters would gener- 
ate alternating RL 5 sequences of 1 s  and Os, which is  not 
useful for character synchronization and is  poor for bit-clock 
synchronization. For this reason, no adjacent K.28.7 charac- 
ters are allowed. Despite this restriction, the K.28.7 comma 
is often preferred over the other two because in the synchro- 
nized state no single error can generate a  valid K.28.7 from 
data. 

Idle sequence We must distinguish between communica- 
tions links which maintain byte synchronization from packet 
to packet and those which do not. It is desirable to maintain a 
high transition density during the idle state to ease the 
acquisition of bit synchronism by the receiver  clock. There- 
fore, when byte synchronism is  not maintained between 
packets, a sequence of alternating 1 s  and Os is suitable and 
can be generated by the encoder with either a D.21.5 or a 
D.10.2 input. 

packet has ended with  positive or negative disparity, respec- 
tively (see Fig. 2). 

If byte synchronism is carried forward from packet to 
packet, it is useful to fill the packet gap with characters other 
than data.  A steady stream of K.23.7,  K.27.7 or K.29.7 
characters generates sixty transitions for every 100-digit 
interval. Each character is recognizable as other than data, 
but byte synchronism cannot be acquired from this idle 
sequence unless a comma character is inserted every now and 
then. As an alternative, a sequence of contiguous K.28.5 
commas generates a transition for 50% of the digit intervals. 

4. Code evaluation 

Digital sum variation and disparity 
The maximum DSV between arbitrary points  in this code is 
6. Sometimes the DSV  is quoted with reference to specific  bit 
positions, such as the end of a  character, and a lower  figure 
usually results. The maximum DSV  between any two i / f  or 
j / a  bit boundaries is 2. 

As  mentioned earlier, the  term disparity designates the 
difference between the number of 1 and 0 bits  in a defined 
block of digits, or the instantaneous deviation from the 
long-term average value of the running digital sum.  All 6B 
and 4B  subblocks  individually, and the complete IO-bit 
characters, have a disparity of either 0 or k 2;  i.e., each valid 
character in the 10B alphabet either has five I s  and five Os or 
six 1 s  and four Os or four 1 s  and six Os. 

It is instructive to plot the disparity as  a function of time or 
digit intervals as is done in  Fig.  2, where each 1 bit is marked 
by a line segment extending over one digit interval and rising 
at a 45O angle; conversely, a 0 bit is represented by a falling 
line.  As an example, starting at the circled + 1 disparity 
value on the leftmost j / a  bit boundary, a 110100 digit 
pattern would lead along the upper contour to disparity 
= +1  at  the i/f bit boundary. All data characters and 
special characters of Tables 3, 4, and 5 are represented in 
Fig.  2. The bold lines depict the comma sequence in its two 
complementary manifestations. 

From the diagram it is immediately evident that the 
maximum DSV between arbitrary points is  6. Since the 
disparity is bounded, the code  is free of any dc component. 

For an exact balance between the number of 1 s  and Os, the 
ending disparity must be carried forward and the new packet 
should start only after any even-numbered  encoded digit. 
However, a start on an odd-numbered digit will degrade  the 
noise margin by a negligible amount if the packets are 
several bytes long, and if the running disparity of the idle 
sequence is constrained to - 1, 0, or + 1, by starting  the 
sequence with a 0 or a 1, depending on whether the previous 

Run length 
An examination of  Fig. 2 shows that  RL 5 sequences are only 
possible starting with  bit  positions c,  e, g, and j .  However, 
inspection of Table 3 shows that the 6B alphabet does  not 
include any code  points for which a = b = c = d, and that 
c = d = e = i is  confined to the K.28.x special characters. 
These added constraints render impossible any RL 5 
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sequence  starting withj   and limit those starting with c to  the 
comma sequences  listed  in Table 5. The  RL 5 data  sequence 
starting with e is eliminated  through  the  alternate code point 
D.x.A7 of Table 4, which in turn is the sole generator of the 
RL 5 sequence  starting with g. Note, however, that  this 
sequence is always preceded by RL 1 except  when  overlap- 
ping with  the K.28.7 comma. 

Beyond the  extremes in the  run  length,  the  clustering of 
sequences of maximum or near-maximum run length is also 
of interest.  The  data  sequence  with  the lowest transition 
density, which can  be  maintained indefinitely, has  an aver- 
age of 30  transitions  per 100-digit  interval. 

Error detection 
The first aspect  to  be considered  is the exploitation of the 
code redundancy  for  error checking. The second area  to  be 
explored is how errors in the  line  code  interact  and affect 
error  detection by cyclic redundancy checks applied  to  the 
unencoded  digits. 

Error checking using redundancy of SB/lOB code We  are 
not concerned  here  with  the  correctness of individual  charac- 
ters, only  with the validity of entire packets. Each  packet 
starts  and  ends  with a delimiter. For packets defined  in this 
way, the  start  and  end  characters  each  contain  at  least  one 
nonzero-disparity  subblock, which prevents disparity viola- 
tions arising  from  errors  to  be  carried  forward  into  another 
packet.  The difference between the  number of 1s and Os in a 
valid packet is 0, +2, or -2. In general, unless a delimiter 
has been complemented exactly by noise, any  error  pattern in 
a packet  for which the  number of erroneous 1 s  is  not equal  to 
the  number of erroneous Os can  be  detected. Beyond this 
general  rule,  many  other  errors  are  detected  as well, because 
of the  alternating  disparity rules,  especially if the  error digits 
are  far  apart.  Still  other  errors  do not change  the  number of 
1 s  or Os but  generate illegal characters  outside  the defined 
alphabet  and  thus  are  detected. 

To  implement  the  error  detection  scheme, five checks  are 
required: (1) all  6B  and  4B subblocks of a packet have to 
have either 0, +2, or -2  disparity,  (2)  nonzero  disparity 
blocks must  alternate in  polarity, (3)  D.7 and  D/K.x.3  must 
follow the  disparity rules, (4) a  valid packet  must have the 
specified delimiters a t  both ends,  and (5) in addition,  the 
following conditions are violations of coding rules  and  can  be 
attributed  to  errors: 

a = b = c = d ,  

P13 e' - i', 

P31 - e - i, 
f = g = h = j ,  

e = i = f =   g =  h, 

i # e = g = h = j ,  

IBM J. RES. DEVELOP. VOL. 27 NO. 5 SEPTEMBER 1983 

(e = i # g = h = j )  (c = d = e)', 

P31' . e . i' . g' . h' . j ' ,  

P 1 3 ' . e ' . i . g . h . j .  

Note  that undefined 6B  and 4B  subblocks give a fairly 
precise  location of an error. For violations of the  disparity 
rules, the location of an  error  can be bounded  within  a range 
which depends on the  data  pattern.  Locating  errors  may  be 
useful in support of forward  error correction  schemes. 

In the  paragraph on commas we claimed  that with the 
receiver  in character synchronism, no single digit error  can 
generate  the K.28.7 delimiter (0011111000 or complement) 
from encoded data.  To verify this  claim, consider that no 
data code  points  have c = d = e = i ;  therefore, a t  least  one 
digit  error is needed to  generate abcdei = 001 I 1  1,  e.g., from 
001 I10 or 001 101. Moreover, fghj = 1000 in  data  requires 
that e = i = 0; however, none of those  6B subblocks which 
can  be  changed by a single  error  into 001 11 1 meet this 
requirement;  therefore, a  second error is  needed  in the  4B 
subblock,  e.g., a change  from fghj = 1010 to 1000. The 
converse is also true: no single error  can  transform K.28.7 
into a data code  point. 

The simplest error  patterns which may  escape  detection by 
the code are a single erroneous 1 complemented by a single 
erroneous 0. Such  complementary  errors, when confined to a 
single  subblock, may simply change  it  into  another valid code 
point. Single  errors in  subblocks change  the  disparity.  Thus  it 
is possible that a complementary  pair of digit errors  can 
change  the  disparity of two subblocks in conformance  with 
the  alternating  polarity  rule,  such  that  the  errors  are  not 
detectable by the code. 

Cyclic redundancy checks (CRCJ with 8BIlOB code Sin- 
gle  errors (or short  error  bursts) in the encoded  line digits of a 
block code can  generate a  longer error  burst  in  the decoded 
message. For the  8B/10B code proposed here,  the effects of 
line  digit  errors  are  always confined to  the  6B or 4B 
subblocks  in which they  occur  and  generate  error  bursts no 
longer than 5 or 3 respectively (from a single line  digit  error). 
This derives from  the  fact  that  each  6B or 4B subblock  is 
uniquely decodable on the basis of just  the  digit values 
belonging to  that subblock and without any  reference  to 
disparity or other  extraneous  parameters.  The only excep- 
tions are  the special characters K.28.1, K.28.2, K28.5, 
K.28.6, for which the decoding of the fghj bits is dependent 
on the abcdei bits.  However, adverse effects from  this  are 
limited because special characters usually appear only at  
specified slots  with  respect to  the  packet  boundaries  and 
usually are not covered by the CRC. 

From  the preceding paragraph  one  can conclude that  the 
CRC used with  this code  should detect a t  least any  combina- 447 
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+F +F4 

-F4 
+G +G4 

-G4 
+H +H4 

+K 
-H4 

-K4 

-SBYlECLK 

Figure 4 Encoder: 3B/4B classification, S function. 

+ND-IS6 

+LIS  +PDOSG 
+K -PDOSG 

+(FOG) +NLJ-IS4 
+NDOS4 

+PD- I S4 

+PDOS4 
-PDOS4 

Figure 5 Encoder:  disparity  classifications. 

tion of double errors in the line digits if it is to make a 
significant impact on the combined guaranteed level  of error 
detection. A double error in the line digits generates, in the 
worst case, two error bursts of 5 each, after decoding. Fire 
codes are well suited for this application. Peterson and Brown 
[ 15, Theorem 81 show  how to specify generator polynomials 

for  cyclic  codes  with the capability of detecting two error 
bursts. With 16 check bits,  two bursts of combined length 10 
or less can be detected in packets as long as 142 bytes;  24 
check bits can accomplish the same thing for packets as long 
as 36 862 bytes. 

A CRC can generally detect any single error burst of a 
length which  does  not  exceed the number of check bits. With 
the  8B/10B code described here, any single error burst of 
length 15 or less  in the encoded digits cannot grow to more 
than 16 bits after decoding. Similarly, error bursts of length 
25 and 35 in the encoded bits translate into error bursts no 
longer than 24 and 32 bits, respectively, after decoding. 

In summary, for all packet lengths of practical interest, 
one can conclude that a 24-bit or longer Fire code  combined 
with the inherent error detection capability of 8B/10B 
mapping can detect any combination of up to three additive 
errors in the line digits, provided that the beginning and end 
of the packets have  been correctly established. 

In practice, however,  it  is  difficult to provide guaranteed 
error protection. This is because the distance properties of 
error detection codes do not apply to such conditions as 
incorrect detection of packet boundaries or the insertion of 
spurious channel bits. Here, a CRC may  be  viewed as 
providing  for the detection of errors with a given probability. 
An n-bit CRC, if properly designed, reduces the probability 
of undetected errors by roughly a factor of  2"'. For n = 16, 
this is  in the order of  1.5 x The 8B/10B code detects 
substantially more than half of the random error patterns  as 
noted  above, so that the resulting overall probability of 
undetected errors becomes  less than for a 16-bit CRC. 
This may be quite adequate for fiber optic transmission, 
which  is  expected to have  very good noise properties. 

5. implementation aspects 
An 8B/10B encoder and a matching serializer, deserializer, 
and decoder were built and operated as  part of an experimen- 
tal fiber optic link operating at a signaling rate of 200 MHz. 
The encoder and decoder were implemented with BMECL 
10 000 series circuits [ 161; and although tested at only 20 
Mbytes/s, a maximum speed almost  twice as fast can be 
projected  with  allowance  for  worst-case gate delays.  All flip 
flops (FF) shown are of the positive-edge-triggered  type. 

Logic circuits for the encoder 
The encoder is  clocked by a byte rate clock (+SBYTECLK) 
derived from the transmitter and serializer clocks. The  data 
source buffer (not shown)  responds after each positive transi- 
tion of +SBYTECLK with a new byte,  while at the same 
time the encoded bits abcdei in the  output register (Fig. 7, 
shown  on the facing page) are being updated. A 0.6-byte 
cycle later,  the source bits FGHK are read into FFs (Fig. 4) 



on the positive transitions of -SBYTECLK,  and  the encoded 
bits fghj  (Fig. 8) are  updated.  This  staggered  transfer is 
made possible because of the  partitioned  structure of the 
code; it simplifies the design of the  serializer  and  the 
deserializer. 

Figure 3  shows the  generation of some of the basic 
classifications of Table 3 from  the encoder inputs.  For  an 
explanation of the  letter  notations  refer  to  Section 3. 

The  circuits of Fig.  4 generate  the classifications of Table 
4. The F, G, H,  and K inputs  are buffered to allow  a serializer 
interface with the  staggered  timing  mentioned  earlier.  As 
illustrated in Fig. 4, -PDL6 or -NDL6 is at  the down level 
if the  running  disparity following the i-bit is positive or 
negative, respectively. Signals  PDL6  and  NDL6  are gener- 
ated in  Fig. 6 .  

Figure 5 implements  the  disparity classifications of both 
Tables 3 and 4. All  inputs  are  from Figs.  3 and 4, or the  data 
source, except for  (L13 - D - E),  which can  be  found in  Fig. 
7. The mnemonics for  the  outputs  are  as follows: P for 
“positive,” N for “negative,” S for  “sender” (as  distinct  from 
similar decoder functions on the receiving end), “ D  - 1” and 
“DO” refer  to  the respective columns in Tables 3 and  4,  the 
number “6” associates  a function with 5B/6B encoding and 
Table 3, the  number “4” with 3B/4B encoding and  Table 4. 
As examples, +PD-lS6 is at the  up level for  any  input 
which has a  plus  sign in the “ D  - 1” column of Table 3, 
+NDOS4 is at   the  up level for  any  input with  a minus sign  in 
the “DO” column of Table 4. 

The  upper FF in  Fig.  6  keeps track of the  running  disparity 
at  the  end of the i-bit, and  the lower FF does the  same  for  the 
j-bit.  The  gates  to  the  right  make  the decision whether  the 
alternate, complemented  code  points of Tables 3 and 4 apply 
(on  the  basis  of  the  running  disparity  and  the 
“D - 1” entry  disparity classifications of Fig. 5 ) .  The  gates 
to the  left  determine how to  update  the  FFs,  taking  into 
account  the DO disparity of the subblock  being  encoded, 
complementation,  and  the  running  disparity  at  the  end of the 
previous  subblock. As seen  on the transmission  link (L), 
+ PDL4 is at  the  up level for a positive running  disparity a t  
the  end of thej-bit. 

Figure 7 shows the  actual  transformation of the five input 
bits ABCDE  into  the six abcdei  output bits according  to 
Table 3. The  gates  to  the  left of the XOR (exclusive-or) gates 
bring about all the bold type  bit  changes of Table 3. Figure 8 
shows the  3B/4B encoding according  to  Table 4. 

Logic circuits for the  decoder 
The logical functions  for  the decoder and  their classifications 
are defined in Tables 6 and 7. The  implementation of these 

- 
-NDLG 

Figure 6 Encoder:  control of complementation. 

Figure 7 5B/6B encoding.  Note: E = XOR. 

I -a 

-b 

“c 

-d 

-e 

-d 

Figure 8 3B/4B encoding. Note: E = XOR. 

-Y 

-8 

-h 

-i 

tables in logic circuitry is  very similar  to encoding, but 
simpler, because it does not depend on the  disparity.  For 
decoding, the i- and  j-bits  are  dropped  and some of the 
remaining bits are complemented as  indicated by bold 0 and 449 
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Table 7 4B/3B Decoding, K function. 

Name J g h ,  Decodrng c l a s  Disporrtycloss F G H  K e D - l  DO 

D/K.x.O 0 IO0 f‘.h’.j‘ f’.h‘.j’ 

D/K.x.O I01 I f . h . j  
000 x + - 

f.h.j 000 x - + 
D/K.x . l  I O 0  1 

K.2X.1 01 I 0  c’.d’*e‘.i’.(h#j) 
100 x x 0 

1 0 0  I 0 

D / K x . 2  0101  010 x x 0 
K.28 2 I 0   I 0  c’.d’.e’.i‘.(h#j) 010 I 0 

D/K.x.3 I 1  00 l.g.h’.j‘ 

D/K.x.3 00 I I f‘.g’.h.j 
1 1 0  x - 0 

f‘*g‘.h-j I 1 0  x + 0 

D/K.x.4 00 I 0  f‘.g‘.j’ 001 x + - 
D/K.x.4 1 1 0 1  f.g.j 1.g.j 001 x - + 
D/K.x.S 10 I O  

K.28 S 0 I O  I c’.d’.e’.i’.(h#)) 

D/K x.6 0 I I O  

K 2X 6 I001 c’.d’.e’.i’.(h#j) 

I O 1  x x 0 

1 0 1  I 0 

0 1 1  X x o 
O l l  1 0 

D.x.7 I I 10 1.g.h 

D x.7 000 I f‘.g’.h’ 
1 1 1  0 - + 

f’.g‘.h‘ I l l  0 + - 
1 1 1  x - + 

g’.h‘.)’ I l l  x + - 
D/K x . 7  0 1  I 1  g.h.j g - h - j  
D/K.x.7 1000 g’.h’.j‘ 

Circuit count 
For the circuit count, each XOR gate is counted as  three 
gates. The gate count for the encoder (Figs. 3-8)  is 89 gates 
and 17 FFs; the decoder required 79 gates and 9 FFs; error 
checking takes 44 gates and 2 FFs. Counting each FF as six 
gates results in a total of 380 gates for the encoder, decoder, 
and error checking. At low and medium data rates, where the 
gate delays are much  less than  a digit interval, some trivial 
design changes can significantly reduce the circuit count. For 
one, if the total encoding and decoding time delays are only a 
fraction of a byte, ten buffer FFs at  the output of the decoder 
and the encoder buffers of Fig. 7 or Fig.  8, or both, can be 
eliminated. Second, the remaining FFs can perhaps be 
implemented as 3-gate latches after some  modifications in 
the clocks. Therefore, at low byte rates, an encoder and 
decoder without error checking can be implemented with  168 
gates and seven latches for a  gate count total of 189 gates. 
With a complete set of error-checking circuits, the lower 
limit on the gate count is about 244. 

K = (c=d=e=i) OR (PI3.d.i.g.h.j) OR (P31.e.(.g’.h’.j’), 

1 entries in the tables. The disparity classifications of Tables 
6  and 7 are needed  only  for error checking. Note that correct 
decoding of zero-disparity subblocks is dependent on signal 
polarity; Le., the signal polarity between encoder and decoder 
cannot be arbitrarily changed. 

Logic circuit performance requirements 
All the encoder and decoder circuits operate at the byte rate. 
To estimate the maximum tolerable gate delay, we  look at a 
critical delay path. We use  two gate delays for the XOR 
function, two gate delays from FF clock input to output, and 
one gate delay for the FF set-up time. It is assumed that valid 
input appears at  the encoder input some two gate delays after 
the rising transition in +SBYTECLK. It takes another three 
gate delays to generate L13 in  Fig.  3.  Following the longest 
path for LI 3 in  Fig. 7 to the  data input of the e-FF together 
with the required set-up time  adds another five delays. The 
total amounts to ten gate delays, which must be  less than one 
byte interval. 

There are other paths of equal length. The critical delay 
paths can be reduced to nine or eight gate delays with a 
moderate increase in circuit count; e.g., L13 of Fig. 3 can be 
generated from ABCD with  two, rather  than  three, logic gate 
delays using five 4-way gates. As an approximate rule one 
can state  that  the gate  delays for the encoder and decoder 
should not exceed one digit interval; as an example, 10-ns 
technology can be  used  for data rates up to 10 Mbytesls 
attached to a serial link operating at a digit rate of 100 

450 MHz. 

The circuit count for the serializer, deserializer, and 
associated clocks  for our experimental 200-MHz link 
amounts to 30 gates and 34 edge-triggered FFs for an 
equivalent total  gate count of 234  high-speed gates. 

6. Conclusion 
For packet transmission over  local area networks or com- 
puter links, the 8B/10B coding format described yields a 
near-optimum combination of relevant properties such as 
coding  efficiency,  complexity, digital sum variation, run 
length, error propagation, and suitability for  ring or point- 
to-point topologies. These desirable attributes  are, to a large 
extent, a consequence of the partitioned code structure. It is a 
binary code, the preferred transmission mode for fiber optic 
links for this kind of application, and it is compatible with the 
byte structure, which  is ubiquitous in computer networks. 

An implementation of a coder and decoder  with emitter- 
coupled  logic required a total of only 380 logic gates with 
gate delays up to one-tenth of a byte-clock interval. 

Although the code  was  developed  with  high-speed  fiber 
optic links  in mind, it should also benefit  lower-speed  links 
over copper wire,  which quite often run with 1B/2B codes 
currently. If such links are crosstalk-limited, the lower 
signaling rate of the 8B/10B code provides significant 
improvements in the signal-to-noise margin, because of  lower 
attenuation and higher crosstalk impedance at the reduced 
rate. Finally, the difference in  speed requirements in the 
serial and parallel sections of a communications adapter 
using this code is reduced, which  in turn makes single- 
technology, single-chip implementations possible  more often 
than with other codes. 
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