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Periodic Sequences with Optimal Properties for Channel
Estimation and Fast Start-Up Equalization

The problems of fast channel estimation and fast start-up equalization in synchronous digital communication systems are
considered from the viewpoint of the optimization of the training sequence to be transmitted. Various types of periodic
sequences having uniform discrete power spectra are studied. Some of them are new and may be generated with data sets
commonly used in phase modulation systems. As a consequence of their power spectra being flat, these sequences ensure
maximum protection against noise when initial equalizer settings are computed via channel estimates and noniterative
techniques. ‘

Introduction
Sequences (or “codes’) with good autocorrelation properties 2. Some limitation is imposed on the numerical values taken
have been studied in communications literature for over by the sequences.

twenty years because of their applications to radar and the
synchronization of communications systems [1, 2]. For a
current and more general reference on this subject, see
Alltop [3]. More recently, “training sequences” with similar
properties have been studied and used for fast start-up
equalization [4-7].

The first property is required to make these sequences as
nearly as possible “impulse-equivalent.” The second is due to
the requirement for peak amplitude limitation in all practical
implementations.

The main distinction among the many types of sequences
is whether they are periodic or not, since this affects the
definition of the autocorrelation function and the spectral
properties. In this paper we confine ourselves to the subject of
periodic sequences, because of their particular suitability for
fast start-up equalization. More precisely, we discuss com-
plex sequences having constant amplitude and zero autocor-
relation (CAZAC sequences) and compare their perform-
ance with the better known “maximal-length” sequences.

Telephone lines present large amounts of linear amplitude
and phase distortion. Fast turnaround is an important ele-
ment of modem performance since messages (especially on
multidrop lines) are often short and resynchronization is
required frequently. The use of training sequences permits
rapid equalization of the transmission channel without any
prior knowledge of signal distortions, provided that they are
not too extreme (e.g., they present no spectral nulls). Per-
forming equalization every time resynchronization is
required has the advantage of simplifying the overall control
and maintenance procedures. For example, in the case of
multidrop lines, it avoids the necessity of stocking the equal-
izer coefficients corresponding to each secondary modem
connected to the line, and hence it avoids the procedures for

The channel model
Let us consider a complex channel with additive white noise
and finite impulse response which is sampled at T intervals.
The channel input at time #7T is a complex number #,, and
the channel output y, is

setting and maintaining these coefficients in case of line Ny
changes or variations. V= 2 R, W, 8y
k=N,

All trainin uences share two properties: ]
raining sequences ¢ prop where r is a complex vector of length L = N, — N, + 1,

1. Their autocorrelation function is small, except at the defining the channel impulse response, and w, is a complex
origin. random variable with the expected values
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E(ww,) = o if n=m,

=0 if n # m,and

E(w,) =0 for all n.

This channel model can be considered as an idealization of a
quadrature-amplitude-modulated (QAM) sampled channel.

The spectrum of this idealized channel is given by

Ny

Z rkezu'fk r’
k=N,
a Fourier series of L coefficients, where f'is the frequency and
T is the sampling interval. Since the spectrum of a sampled
channel is a periodic function of f, it can be approximated as
closely as is needed by taking L large enough.

Training sequences for fast equalization

Fast start-up digital equalization requires rapid, accurate,
and dependable estimation of channel characteristics (repre-
sented by r,), and also rapid and hardware-implementable
calculation of the equalizer coefficients from the data fur-
nished by the estimation.

There are two main advantages to using a training
sequence for the purpose of estimating the channel charac-
teristics. The transmitted symbol is known to the receiver
(thus detection errors are eliminated), and the training
sequence can be chosen to have certain desirable properties.
Among these are that the estimation method is hardware-
implementable and that the process is insensitive to noise.

An important property of a training sequence is the length
of its period. In general, the longer period leads to the better
channel estimate. However, it is important to note that if
there is no noise and if the channel response is of finite
length, then it can be completely estimated using a training
sequence period equal to this length.

A well-known example of such a training sequence is the
sending of a single unit pulse every L-baud interval. The r,
are then estimated directly from the received signal. The
disadvantage of this training sequence is its low power and its
resultant sensitivity to noise.

® Calculating the channel response in the absence of noise
In this section we assume that w, = 0 and that the transmit-
ted symbols u, come from a training sequence of peried L,
such that L is equal to the length of the channel response;
thatis,r, = 0ifn <N, orn>Ny,andL =N, - N, + 1.

Then the ith received signal can be written

Ny
X, = 9 u_r,. (2)

n=N,
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If L successive signals are observed, we shall obtain L
linear equations in L unknowns and so the 7, are in principle
known if and only if the matrix M = (u,_;) is nonsingular.
Note that the training sequence of the preceding subsection
corresponds to M = I, (the unit matrix of order L). Note
also that if the training sequence is started at the instant
i = 0, then the first x, satisfying (2) is Xy - Since we require
L observations, complete knowledge of the channel can
be obtained (N, + L — 1)-baud intervals after the start of
the training sequence, provided that it is continued during
N,-baud intervals.

We now consider the problem of finding the 7, from the set
of equations (2). The periodicity of the training sequence
permits a computationally efficient solution, since the matrix
M is a circulant matrix and matrix multiplication can be
replaced by periodic convolution. Thus (2) can be rewritten

X=ux*r, (3)
where x is the vector consisting of L samples of the received

signal, etc.

Denoting the discrete Fourier transform (DFT) of x by X,
etc., we have X = U x R and so r = IDFT (X/U) =
IDFT(V x X) or

r=v*Xx, (4)

where v is the IDFT (inverse discrete Fourier transform) of
V = 1/U. Since the components of U are the eigenvalues of
M, V exists if and only if M is nonsingular.

® Estimating the channel response in the presence of noise
If in (4) we replace x with y, wherey = x + wand wis a
vector of noise samples, then

F=v*xy=vsX+V*w, (5)
where f is the estimate of r given by the linear estimator v.
Because of the assumptions about the noise, we deduce

from (5) that E(f) = r, i.e., that the estimator v is unbiased
and that the mean square error (or error variance) is

E(Zm_r,ﬁ) = LY |yl 6)

We now derive the condition for minimizing (6) over all
training sequences of average unit power, i.e. all u, such that

Zlu,|2=L.

We have, by the DF T equivalent of Parseval’s formula,

1
ZIU,'I2= ZZ'V.IZ’

and since V, = 1/U,, we have
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1 .
~lu

2 lv

hence the error variance resulting from the use of the
sequence u is

azz
Also,
Sl =LY P =12

and it is easy to show that (7) is minimized when all the| U, |2
are equal,

)

1
I

lUP=L i=01,-L—1,

that is, when the sequence u has zero autocorrelation. The
error variance (7) then takes the value o”.

It is interesting to compare this result with the error
variance obtained when a maximal-length training sequence
taking the values + 1 and —1 is employed. Such a sequence is
characterized in the frequency domain by a DFT which has
U,=1,

luP=|uf = ={Uu, P=L+1

Its error variance therefore is

1 T L-1}\ 5, 2L
POV L) Ty
We see that, for large L, a maximal-length sequence is at a

3-dB disadvantage compared to a sequence with zero auto-
correlation.

® Effect of the training sequence on fast equalization

We now consider the effect of the training sequence on
calculating the equalizer coefficients. Mueller and
Spaulding [5] have shown that in the no-noise case, perfect
equalization at a discrete number of frequency points can be
achieved by the coefficients

1
¢, = IDFT % = IDFT . (8)

The same method can be applied to calculating the
coefficients in the presence of noise, provided that a suitable
training sequence is used. For if we calculate the coefficients
of the equalizer by the formula

U
¢=IDFT -, 9
7 ®

we must ensure that the denominator
Y=UxR+ W (10)

does not contain any zero terms.

Assuming that we have no information concerning R
(other than that it is nonzero), it is clear that the safest
training sequence is such that the U, have constant ampli-
tude, or in other words that u has zero autocorrelation.

We now evaluate the error due to periodic random data,
i.e., a random vector of length L and average power = 1
repeatedly transmitted. This approximates the transmission
of random data similarly to the way in which ¢, approximates
the “true” optimal coefficients ¢_,, obtained with an infinite
random sequence.

opt®

We shall use the notation

L-1
2 2
lef a3 lel,
i=0
and denote the data vector by d. We first observe that the
error variance due to ¢, is

2
1L—l o

T2

LZIR]

2 2
Ey Al x o =
Writing ¢ = ¢, + Ac we have the error variance due to ¢
2 2 1 2
=lef x o +EE(iAc*r*d|),

2 2 2 . .
=|el* x ¢ + | ac * r[*, since d is assumed random, and

2
, or

=|e, + acl x o’ +|a
~le P x o +]acf x o +|acHrf,

since the correlation between ¢, and Ac is small. Assuming
that the signal-to-noise ratio is large, this becomes

~|eP x o® +|ncHrf
Now from (8) and (9) it follows that

1
ac = IDFT (— — £-])

R Y
and so
1)1 U 2
S I
| ae*r| L(R Y)
| 2 1 w 2
3 UR+W §Z|ﬁ|
for W <<< UR. Hence,
1. E( W]
E AE(|ac*r|l)y ==Y ————=
; |UR,|
L-1 2
=3 T an
i< |UR,|

In the particular case of a channel with small amplitude
distortion, that is, with |[R,| ~ 1, E, is minimized when
|Uf = Lforalli,and
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L~

min p _
u El_

=

il
<

i

As before, if u is a maximal-length sequence instead of a
zero autocorrelation (ZAC) sequence, E, will be multiplied
by the factor 2L /L + 1.

Since the expressions (10) and (11), unlike the expression
(6), depend on the R, we conclude that statistical knowledge
about the channel could be used to reduce the error variance
by predistorting the training sequence to compensate for the
expected channel characteristics, as indicated in [5]. How-
ever, such sequences would not have the ZAC property and
are therefore outside the scope of this paper.

Other desirable properties of training sequences
The preceding section demonstrated the advantages of the
ZAC property of training sequences for estimating or equal-
izing an unknown or “reasonably flat” sampled channel. If
no restrictions are placed on the values taken by the sequence
we obtain an infinity of such sequences for any period L, for
it is sufficient to calculate the IDFT of an arbitrary L-
sequence of unit phase vectors.

We have already pointed out the desirability of the
constant amplitude property. Other desirable properties (de-
pending on the application) are the following:

1. L = 2* most suitable for fast Fourier transform process-
ing.

2. Sequences taking only real values.

3. Sequences taking a minimum number of values.

4. Sequences taking values in a predetermined signaling
set.

Maximal-length sequences satisfy the above properties
except for (1) but they do not have the ZAC property.
However, they can be modified to acquire the ZAC property
by the addition of a suitably chosen constant.

For example let u be a maximal-length sequence taking
the values +1 and ~1, and let z be a complex constant. The
DFT of uis

U,=1, |UF=IU,P==|U_[=L+1

On the other hand, the DFT of the vectorz = (z, 2, -+, 2) is
Z,= 1z, Z,=2Z2,=-=2Z,,=0.

The DFT of u + z, which is U + Z, will have constant
amplitude, and u + z will have the ZAC property, if
|1 + Lz|* = L + 1. Hence, any complex constant z satisfying
—1 + 2Re(z) + L|z|* = 0 will do. The choice of z will
therefore also depend on Properties (2), (3), and (4).
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For example, if z is chosen to be real,

1z +1ID)

=T
then Property (2) will be preserved, but neither constant
amplitude (CA) nor Property (4) will hold.

On the other hand, if z is chosen purely imaginary,
2f = —1/L,

then the CA property will be preserved, but not Properties
(2) nor (4).

The only known “ideal” CAZAC sequence satisfying all
these propertiesis +1 +1 +1 —1.

Unfortunately, it is likely that no other CAZAC sequence
taking only the values +1 and —1 exists. This has been
proven by Turyn [8] for all L < 12 100.

The most important class of CAZAC sequences are the
so-called polyphase sequences, whose elements are roots of
unity. It has been shown that such sequences exist for all
periods L [9, 10]. If L is odd, an L-phase sequence can be
constructed; if L is even, 2L phases are needed.

A very important special case consists of sequences of
length n = m’, whose elements are mth roots of unity [1, 2],
since these satisfy most nearly Properties (3) and (4). Among
these, the sequences of length 2% also satisfy Property (1).

For example, four-phase sequences of length 16, eight-
phase sequences of length 64, etc., can easily be constructed.
The construction of m**'-phase sequences of length m™*'
has also been achieved [11]. This allows the construction of
four-phase sequences of length 8, eight-phase sequences of
length 32, etc., in particular. This construction is described in
the Appendix.

The following properties permit the generation of many
other sequences, some of which may be preferable to the
original constructions.

If u,is a CAZAC sequence, then so are

® u, .., where k is any integer;

® cu,, where c¢ is any complex constant;

® u W™  where k is any integer and W is an nth root of 1;
® i, where u denotes complex conjugation; and

® U, the DFT of u,

Conclusion
CAZAC sequences are useful for channel estimation and
fast start-up equalization. They are shown to be optimal
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under certain assumptions. The most important members of
this family are the polyphase sequences of lengths that are a
power of 2 because of their suitability for fast Fourier
tranform processing.

This paper discusses the use of periodic training sequences
for channel estimation and fast start-up equalization, both of
which are important in modem applications. A model of a
quadrature-amplitude-modulated (QAM) channel is de-
fined. It is then shown that in the presence of noise, error
variance of the channel estimate depends on the training
sequence used. It is also shown that, under certain assump-
tions, the error variance is minimized by training sequences
possessing the zero-autocorrelation (ZAC) property. Analo-
gous results are obtained for the error variance of equalizer
coefficients calculated from a single period of the training
sequence. The results obtained with ZAC sequences provide
a 3-dB advantage when compared with those obtained with
maximal-length sequences.

Other desirable properties of training sequences are fur-
ther discussed. It is shown that a family of ZAC sequences
can be obtained from a maximal-length sequence by the
addition of a complex constant. One member of this family,
which also has the CA property, is called the CAZAC
sequence. Previously published results about polyphase
sequences, which are also CAZAC, are summarized, and the
construction of a family of m**'-phase sequences of lengths
m**is given in the Appendix. The section ends with a set of
properties permitting the generation of related CAZAC
sequences. The last of these, which is less well known, may be
restated as follows: A sequence is CAZAC if and only if its
DFT is CAZAC.

Appendix
The construction of m**'-phase CAZAC sequences of length
L = m**' (k = 1) is shown below.

+

The existence of m-phase sequences of length m for m odd
and 2m-phase sequences for m even is known [9].

Let u,, u,, ---, u__, be such a sequence. We then form a
o ¥ m—1 vel q
sequence of length L = m**' by enumerating, row by row,
the matrix z,; = w4, W', where

i=0,1,-M—-1 M=m",

j=011a"'yN“‘1 N=mk,

and W is a primitive Mth root of unity.

+

This sequence is obviously CA and m**'-phase; we have to

show that it is ZAC.

We observe that the first column of the above matrix is
simply the sequence u repeated NV times. It is easy to show

that its DF T is
U(), 07 0’"" 0, U]? 0, 09"'a09 "y Um_.poy 0,"’,0,
M-1 M-1 M1

where Uis the DFT of # and the M — 1 indicates the number
of zeros in the row. Also, it is easily shown that the DFT of
the nth column is the above sequence rotated n places to the
right. Hence the product of the DF Ts of the columns is zero,
and therefore the columns are orthogonal in pairs. It follows
that the autocorrelation coefficients 4, of the sequence
obtained by enumerating this matrix row by row are zero for
alt/ # 0 mod V.

It remains to be shown that 4, = 0 also when / = O mod N,
except when / = 0 mod MN.

Let / = ¢N where ¢ # 0 mod M. Then

4,= Z Zij%ivej
i

_ =y (i+c)j
- Z U; w ui+t w ’

iLj

M-1 N-1 .
- (z )(z W)

i=0 j=0

We now have two cases to consider:

1. ¢ # 0 mod m; then the first of the above two factors is
zero, since u is a ZAC sequence.

2. ¢ = 0 mod m; then the second factor is zero, since W*is an
Nth root of unity, and W* # 1 since ¢ # 0 mod M.

This completes the proof.
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