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Periodic  Sequences  with  Optimal  Properties  for  Channel 
Estimation  and  Fast  Start-up  Equalization 

The problems of fast channel estimation and fast start-up equalization in synchronous digital communication systems are 
considered from the viewpoint of the optimization of the training sequence to be transmitted.  Various  types of periodic 
sequences having uniform discrete power spectra are studied. Some of them are  new  and may be generated with data sets 
commonly used in phase  modulation  systems. As a consequence of their power spectra being flat, these sequences ensure 
maximum protection against noise  when initial equalizer settings are computed via channel estimates and noniterative 
techniques. 

Introduction 
Sequences (or “codes”) with good autocorrelation  properties 
have been studied in communications  literature for over 
twenty  years because of their  applications  to  radar  and  the 
synchronization of communications  systems [ 1,2]. For a 
current  and  more  general  reference on this  subject, see 
Alltop [ 31. More  recently,  “training sequences” with  similar 
properties  have been studied  and used for  fast  start-up 
equalization [4-71. 

Telephone lines  present large  amounts of linear  amplitude 
and  phase  distortion.  Fast  turnaround is an  important ele- 
ment of modem  performance since  messages  (especially on 
multidrop lines) are  often  short  and  resynchronization is 
required  frequently.  The  use of training sequences permits 
rapid  equalization of the transmission channel  without  any 
prior knowledge of signal distortions, provided that  they  are 
not  too extreme (e.g., they present no spectral nulls). Per- 
forming  equalization  every  time  resynchronization is 
required  has  the  advantage of simplifying the overall control 
and  maintenance procedures. For example,  in  the  case of 
multidrop lines, it avoids the necessity of stocking the  equal- 
izer coefficients corresponding to  each  secondary modem 
connected to  the line, and  hence  it avoids the  procedures for 
setting  and  maintaining  these coefficients in case of line 
changes  or  variations. 

All training sequences share two  properties: 

1. Their  autocorrelation  function is small, except at  the 
origin. 

2. Some  limitation is imposed on the  numerical values taken 
by the sequences. 

The first property is required  to  make  these  sequences  as 
nearly as possible “impulse-equivalent.” The second  is due  to 
the  requirement for peak  amplitude  limitation in all  practical 
implementations. 

The  main distinction among  the  many types of sequences 
is whether  they  are periodic or not, since  this affects the 
definition of the  autocorrelation  function  and  the  spectral 
properties. In this  paper we confine  ourselves to  the  subject of 
periodic  sequences,  because of their  particular  suitability  for 
fast  start-up  equalization. More precisely, we discuss  com- 
plex sequences  having constant amplitude and zero autocor- 
relation (CAZAC sequences) and  compare  their  perform- 
ance with the  better known “maximal-length” sequences. 

The channel model 
Let us consider  a  complex channel  with  additive  white noise 
and finite  impulse  response which is sampled at  T intervals. 
The  channel  input a t  time nT is a  complex number u,, and 
the  channel  output y ,  is 

N2 

Y n  = x rk’n-k + wn > (1) 
k = N ,  

where r is  a  complex  vector of length L = N, - Nl + 1, 
defining the  channel impulse response, and w, is a  complex 
random  variable  with  the  expected values 
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E(w,,z,,,) = a2 if n = m, 

= 0 if n f m,  and 

E(w,,) = 0 for all n. 

This  channel model can  be considered as  an  idealization of a 
quadrature-amplitude-modulated (QAM) sampled  channel. 

The  spectrum of this idealized channel is given by 
N2 x rkezrJkT, 

a Fourier series of L coefficients, where f is the  frequency  and 
T is the  sampling  interval.  Since  the  spectrum of a sampled 
channel is  a  periodic function  off,  it  can  be  approximated  as 
closely as is needed by taking L large enough. 

k = N ,  

Training sequences for fast equalization 
Fast  start-up  digital  equalization  requires  rapid,  accurate, 
and  dependable  estimation of channel  characteristics  (repre- 
sented by r"),  and  also  rapid  and  hardware-implementable 
calculation of the  equalizer coefficients from  the  data  fur- 
nished by the  estimation. 

There  are two main  advantages  to using  a training 
sequence for the purpose of estimating  the  channel  charac- 
teristics. The  transmitted symbol  is known to  the receiver 
(thus  detection  errors  are  eliminated),  and  the  training 
sequence  can  be chosen to have certain  desirable properties. 
Among  these  are  that  the  estimation  method is hardware- 
implementable  and  that  the process is insensitive to noise. 

An important  property of a training  sequence is the  length 
of its period. In general,  the longer  period leads  to  the  better 
channel  estimate. However, it is important  to  note  that if 
there is no noise and if the  channel response  is of finite 
length,  then  it  can be completely estimated using  a training 
sequence period equal  to  this length. 

A well-known example of such a training  sequence is the 
sending of a single  unit pulse  every L-baud  interval.  The r,, 
are  then  estimated directly from  the received signal.  The 
disadvantage of this  training  sequence is its low power and  its 
resultant sensitivity to noise. 

0 Calculating the channel response in the absence of noise 
In this section we assume  that wn = 0 and  that  the  transmit- 
ted  symbols u,  come  from a training  sequence of period L, 
such  that L is equal  to  the  length of the  channel response; 
t h a t i s , r , , = O i f n < N , o r n > N , , a n d L = N , - N ,  + I .  

Then  the  ith received signal can  be  written 
N2 

x i  = x ui-,,rn. (2) 
n=N, 
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If  L successive signals are observed, we shall  obtain L 
linear  equations in L unknowns and so the  r,,  are in  principle 
known if and only if the  matrix M = ( u ~ - ~ )  is  nonsingular. 
Note  that  the  training  sequence of the preceding  subsection 
corresponds to M = I, (the unit matrix of order  L).  Note 
also  that if the  training  sequence is started at  the  instant 
i = 0, then  the first x, satisfying (2) is xN2. Since we require 
L observations, complete knowledge of the  channel  can 
be  obtained (N2 + L - 1)-baud  intervals  after  the  start of 
the  training sequence, provided that  it is continued  during 
N,-baud intervals. 

We now consider the problem of finding the r,, from  the set 
of equations (2). The periodicity of the  training  sequence 
permits a computationally efficient solution,  since the  matrix 
M is a circulant  matrix  and  matrix multiplication can be 
replaced by periodic  convolution. Thus (2) can be rewritten 

x = u * r ,  (3) 

where x is the vector  consisting of L samples of the received 
signal,  etc. 

Denoting the  discrete  Fourier  transform  (DFT) of x by X ,  
etc., we have X = U x R and so r = I D F T  ( X I U )  = 

IDFT( Y x X )  or 

r = v * x ,  (4) 

where v is the  IDFT (inverse discrete  Fourier  transform) of 
V = 1/U. Since  the  components of U are  the eigenvalues of 
M, Vexists if and only if M is nonsingular. 

Estimating the channel response in the presence of noise 
If in (4) we replace x with y, where y = x + w and w is  a 
vector of noise samples, then 

i = v * y = v * x + v * w ,  ( 5 )  

where i is the  estimate of r given by the  linear  estimator v. 

Because of the  assumptions  about  the noise, we deduce 
from (5) that E(?) = r, i.e., that  the  estimator v is unbiased 
and  that  the  mean  square  error (or error  variance) is 

We now derive  the condition  for  minimizing (6)  over all 
training sequences of average unit power, i.e. all u, such  that 

x ] u ; 1 2  = L. 
i 

We have, by the  DFT equivalent of Parseval's formula, 

and  since y. = I/U;, we have 427 
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hence the  error  variance  resulting  from  the  use of the 
sequence u is 

Also, 

~ l V , 1 2  = L x I u i 1 2  = L2,  

and  it is easy  to show that (7) is minimized when all  the 1 Vi l 2  
are  equal, 

1q.l’ = L i = 0, 1, ..-, L - 1, 

that is, when the  sequence u has  zero  autocorrelation.  The 
error  variance (7) then  takes  the  value (r2. 

Assuming that we have  no  information  concerning R 
(other  than  that  it is nonzero), it is clear  that  the  safest 
training  sequence is such  that  the U, have constant  ampli- 
tude,.or in other words that u has  zero  autocorrelation. 

We now evaluate  the  error  due  to periodic random  data, 
i.e., a random vector of length L and  average power = 1 
repeatedly  transmitted.  This  approximates  the transmission 
of random  data  similarly  to  the way in which c, approximates 
the  “true”  optimal coefficients cOpt, obtained with an infinite 
random sequence. 

We  shall  use  the notation 

i=O 

and  denote  the  data vector by d. We first  observe that  the 
error  variance  due  to c, is 

It is interesting  to  compare  this  result  with  the  error 
variance  obtained when  a maximal-length  training  sequence 
taking  the values + 1 and - 1 is employed. Such a sequence is 
characterized in the frequency domain by a D F T  which has 

u, = 1, 

I u l ( 2 = ( u 2 ( 2 = . . . = ( u L - , ( 2 = L + 1 .  
Its  error  variance  therefore is 

We see that,  for  large L, a maximal-length  sequence is a t  a 
3-dB  disadvantage  compared  to a sequence  with  zero  auto- 
correlation. 

Writing c = c, + AC we have the  error  variance  due  to c 

= I C ( 2 ~ ( r 2 + - E ( ( a c * r * d ) 2 ) ,  

= I c 1’ x (r2 + 1 Ac * r 12, since d is assumed  random,  and 

= l c , + ~ c ( ~ ~ ( r ~ + ~ A C * r ~ ~ , O r  

~ ~ ~ , ~ ~ x ( r ~ + ) a c ) ~ x ~ ~ + ~ ~ c * r ) ~ ,  

since the  correlation between c, and AC is small.  Assuming 
that  the signal-to-noise ratio is large,  this becomes 

= ~ ~ , , ) ~ x a ~ + ( a c * r ( ~ .  

I 

L 

Effect  of the training  sequence on fast equalization 
We now consider the effect of the  training  sequence on 
calculating  the  equalizer  coefficients.  Mueller  and 
Spaulding [5] have  shown that in the no-noise case, perfect 
equalization at  a discrete  number of frequency points can  be 
achieved by the coefficients 

U 1 
X R 

C, = IDFT - = IDFT - . (8) 

The  same method can be applied  to  calculating  the 
coefficients in the presence of noise, provided that a suitable 
training  sequence is used. For if  we calculate  the coefficients 
of the  equalizer by the  formula 

c = I D F T -  
U 
Y ’  (9) 

we must  ensure  that  the  denominator 

Y = U x R + W  (10) 

does  not contain  any  zero  terms. 

Now from (8) and (9) it follows that 

AC = I D F T  - - - (k “y) 
and so 

for W << UR. Hence, 

In  the  particular  case of a channel with  small amplitude 
distortion,  that is, with 1 Ri 1 = 1, E ,  is minimized when 
I V ,  l 2  = L for all i, and 
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As before, if u is a maximal-length  sequence  instead of a 
zero  autocorrelation  (ZAC) sequence, E ,  will be multiplied 
by the  factor 2LIL + 1. 

Since  the expressions (10) and (1 I) ,  unlike the expression 
( 6 ) ,  depend on the Ri, we conclude that  statistical knowledge 
about  the  channel could be used to  reduce  the  error  variance 
by predistorting  the  training  sequence  to  compensate  for  the 
expected channel  characteristics,  as  indicated in [5]. How- 
ever, such sequences would not have  the  ZAC  property  and 
are  therefore  outside  the scope of this  paper. 

Other desirable properties of training sequences 
The preceding  section demonstrated  the  advantages of the 
ZAC  property of training sequences for  estimating or equal- 
izing an unknown or “reasonably flat”  sampled  channel. If 
no  restrictions  are  placed on the  values  taken by the  sequence 
we obtain  an infinity of such sequences  for any period L, for 
it is sufficient to  calculate  the  IDFT of an  arbitrary L- 
sequence of unit  phase vectors. 

We have already pointed out  the  desirability of the 
constant  amplitude  property.  Other  desirable properties (de- 
pending  on the  application)  are  the following: 

1. L = 2k, most suitable  for  fast  Fourier  transform process- 

2. Sequences  taking only real values. 
3. Sequences  taking a minimum  number of values. 
4. Sequences  taking values  in  a predetermined signaling 

ing. 

set. 

Maximal-length sequences satisfy  the above properties 
except for (1) but  they  do not have  the  ZAC property. 
However, they  can  be modified to acquire  the  ZAC property 
by the  addition of a suitably chosen constant. 

For  example  let u be a maximal-length  sequence  taking 
the values + 1 and - 1, and let z be a  complex constant.  The 
D F T  of u is 

u o = l ,  ~ u l ~ 2 = ~ u 2 ~ 2 = ’ . . = ~ u , _ l ~ 2 = L + 1 .  

z, = Lz, 2, = - - ... = zL-l = 0. 
On  the  other  hand,  the D F T  of the vector z = (z, z, ..., z)  is 

The  DFT of u + z, which is U + 2, will have  constant 
amplitude,  and u + z will have the  ZAC  property, if 
I 1 + Lz 1’ = L + 1. Hence,  any complex constant z satisfying 
- 1 + 2Re(z) + L I z l2 = 0 will do. The choice of z will 
therefore  also depend on Properties (2), (3), and (4). 
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For  example, if z is chosen to  be  real, 

-1 f 
Z =  

L 

then  Property (2) will be preserved, but  neither  constant 
amplitude  (CA) nor Property (4) will hold. 

On the  other  hand, if z is  chosen purely  imaginary, 

z2 = - l /L ,  

then  the  CA  property will be preserved, but not Properties 
(2) nor (4). 

The only known “ideal”  CAZAC  sequence satisfying all 
these  properties is + 1 + 1 + 1 - 1. 

Unfortunately,  it is likely that no other  CAZAC sequence 
taking only the values + 1 and - 1  exists. This  has been 
proven by Turyn [8] for  all L 5 12 100. 

The most important class of CAZAC sequences are  the 
so-called polyphase sequences, whose elements  are roots of 
unity. It  has been shown that  such sequences  exist for all 
periods L [9, IO]. If L is odd,  an  L-phase  sequence  can  be 
constructed; if L is  even, 2L phases are needed. 

A very important special case consists of sequences of 
length n = m2, whose elements  are  mth roots of unity [ l ,  21, 
since  these satisfy most nearly  Properties (3) and (4). Among 
these, the sequences of length 22k also  satisfy  Property (1). 

For  example,  four-phase sequences of length 16, eight- 
phase sequences of length 64, etc., can easily be  constructed. 
The  construction of mk+l-phase sequences of length  m2k+1 
has  also been  achieved [ 1 11. This allows the  construction of 
four-phase  sequences of length 8, eight-phase sequences of 
length 32, etc., in particular.  This  construction is described  in 
the Appendix. 

The following properties permit  the  generation of many 
other sequences, some of which may be preferable to the 
original constructions. 

If ui is a CAZAC sequence, then so are 

u k t i ,  where k is any  integer; 
0 cui, where c is any complex constant; 

ui Wik , where k is any  integer  and W is an  nth root of 1 ; 
0 i i i  , where ii denotes complex conjugation;  and 
0 q., the   DFT of ui. 

Conclusion 
CAZAC sequences are useful for  channel  estimation  and 
fast  start-up  equalization.  They  are shown to be optimal 429 
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under certain assumptions. The most important members of 
this family are the polyphase sequences of lengths that  are a 
power  of 2 because of their suitability for fast Fourier 
tranform processing. 

This paper discusses the use of periodic training sequences 
for channel estimation and fast start-up equalization, both of 
which are important in modem applications. A model of a 
quadrature-amplitude-modulated (QAM) channel is de- 
fined. It is then shown that in the presence of  noise, error 
variance of the channel estimate depends on the training 
sequence used. It is also  shown that, under certain assump- 
tions, the  error variance is  minimized by training sequences 
possessing the zero-autocorrelation (ZAC) property. Analo- 
gous results are obtained for the error variance of equalizer 
coefficients calculated from a single period of the training 
sequence. The results obtained with ZAC sequences provide 
a 3-dB advantage when compared with those obtained with 
maximal-length sequences. 

Other desirable properties of training sequences are fur- 
ther discussed. It is  shown that a family of ZAC sequences 
can be obtained from a maximal-length sequence by the 
addition of a complex constant. One member of this family, 
which also has the CA property, is called the CAZAC 
sequence. Previously  published results about polyphase 
sequences,  which are also CAZAC, are summarized, and  the 
construction of a family of mk+I-phase sequences of lengths 
mZk+l is  given  in the Appendix. The section ends with a set of 
properties permitting the generation of related CAZAC 
sequences. The last of these, which is less well known,  may  be 
restated as follows: A sequence is CAZAC if and only  if its 
DFT is CAZAC. 

Appendix 
The construction of rnk+l-phase CAZAC sequences of length 
L = m2kfl  ( k  1 1) is shown  below. 

The existence of m-phase sequences of length m for m odd 
and 2m-phase sequences for m even  is  known [9]. 

Let u,, uI, ..., be such a sequence. We then form a 
sequence of length L = r n Z k + l  by enumerating, row  by  row, 
the matrix zij = u ~ ( ~ ~ ~ )  W”, where 

i = 0, 1, ..., M - I M = mk+l, 

j = 0, 1, ..., N - 1 N = mk, 

and Wis a primitive Mth root of unity. 

This sequence is  obviously CA and mk+‘-phase; we have to 
show that it is ZAC. 

We observe that the first  column of the above matrix is 
430 simply the sequence u repeated N times. It is easy to show 

that its DFT is 

u,, o,o, ..., 0, VI, o,o, ..*,o, .*e, um-L,o, 0, ***,o, 
M -  1 M -  1 M -  1 

where U is the  DFT of u and  the  M - 1 indicates the number 
of zeros  in the row.  Also, it is easily shown that  the  DFT of 
the nth column  is the above sequence rotated n places to the 
right. Hence the product of the DFTs of the columns is zero, 
and therefore the columns are orthogonal in pairs. It follows 
that the autocorrelation coefficients A, of the sequence 
obtained by enumerating this matrix row  by  row are zero for 
all I # 0 mod  N. 

It remains to be  shown that A, = 0 also when l = 0 mod N, 
except  when I = 0 mod MN. 

Let I = cNwhere c # 0 mod M. Then 

i j  

iJ 

We now have two cases to consider: 

1. c # 0 mod m; then the first of the above  two factors is 

2. c = 0 mod  m; then the second factor is zero, since W‘is an 
zero, since u is a ZAC sequence. 

Nth root of unity, and W‘ # 1 since c # 0 mod M. 

This completes the proof. 
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