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Exclusive-OR Representations of Boolean Functions 

With the  goal of  making  exclusive-OR  formulations  of switching functions more readily  available  to designers for  
implementation in L S I  and VLSI technologies, we introduce the concept of an exclusive-OR space in which an exclusive-OR 
normal form is deJined to correspond to the  conventional disjunctive normal form. A geometrical representation of 
exclusive-OR space is  described, and its various  bases  are listed and discussed. 

Introduction 
Many useful logical functions  have  a high degree of exclu- 
sive-OR content  (counters  and  parity functions,  for exam- 
ple), and  one would expect them  to  exhibit a particular 
economy of form when expressed as exclusive-OR sums 
rather  than in the more  conventional  disjunctive normal 
form. In addition, it has been shown that switching functions 
are  more easily testable when expressed as exclusive-OR 
sums using the  Reed-Muller  canonical  form [ 1-31, so that 
this realization can be important in the design of fault 
tolerant  computers. Expressing  such  functions as minimal 
exclusive-OR sums is quite  important when they  are  to  be 
implemented with LSI  and VLSI technology, as, for exam- 
ple, in appropriately designed Programmable Logic Arrays 
(PLAs) or cellular logic arrays [4]. The problem of minimiz- 
ing exclusive-OR sums is not  a  simple  one, however, and 
when the  number of variables is large or when certain 
variables must appear both in complemented and uncomple- 
mented  form, it appears  that only heuristic methods, which 
do not guarantee global minimization,  are possible [4-61. 

Although the  literature on modulo-two functions is exten- 
sive (see, for example, Davio et  al. [7]), discussions of their 
representations  and minimization methods  are  algebraic  and 
exhibit  a high degree of mathematical sophistication. We 
have  found that very often geometrical  representations  are 
easier  to  comprehend  than  algebraic ones and, because of 
their more intuitive  nature,  can offer insights that  may  be 
more  useful for engineering  applications. The purpose of this 

paper,  therefore, is to present  a  geometrical  construction that 
can be used to  represent exclusive-OR functions in the  same 
way that  the usual Boolean cube is used to  represent  ordinary 
OR sums.  We show how this exclusive-OR cube elucidates 
the use of various  bases that  are available  for  exclusive-OR 
representations, including bases in which variables can be 
present in either all complemented,  all uncomplemented, or 
mixed form.  It is our hope that  this  representation  may  help 
to clarify the  manipulation of logical functions,  including 
their  minimization,  and  perhaps  be suggestive of more  potent 
algebraic methods. 

Exclusive-OR space 
The  minterms of the disjunctive  normal form (DNF) provide 
a basis for the  space of Boolean functions expressed as 
polynomials in the  form of an  OR-sum (V) of product (A) 
terms. Analogously, one  can define  a  set of terms  to serve as a 
basis of the vector space of Boolean functions expressed as 
polynomials with an exclusive-OR (*) sum [8]. We  call 
these terms “onterms.” The  onterms  are those  products of 
the logical variables in which no variable  appears in  comple- 
mented  form.  The word “basis” is used here in  its strict 
mathematical sense, to  denote a  set of linearly  independent 
elements which span a space.  The exclusive-OR space is a 
true vector space, in that  the  operations A and -tc are in fact 
the modulo-two  product and  sum which comprise  a field. 
This is not true of the disjunction space, since the  pair A and 
V do not define  a field, as  neither is a group  operation. A 
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function expressed  in the basis of onterms is said  to  be in 
exclusive-OR normal  form  (ENF).  Thus,  the E N F  of the 
function Z tf a b  is given by 

The  terms  1, a, and  ab  are  onterms. As we have  indicated, we 
call  the  space  spanned by this basis the exclusive-OR  space, 
or simply the E-space, in contrast  to  the  disjunction  space 
(D-space)  spanned by the  minterms of the  DNF.  Many 
functions, such as the  parity function, are  more  naturally 
expressed in E-space, because they  are  either of a counting  or 
comparing  nature. 

These two spaces of functions of N variables  may  be 
represented  geometrically  as N-cubes, hypercubes in N- 
dimensional Euclidean space. While  the use of such  cubes  for 
D-space representation is widespread [9], the  E-space  cube 
to  be discussed here  appears  to  be a new construction. 
Three-dimensional examples of the D- and  E-cubes  are 
illustrated in Fig. 1. The vertices of the  E-cube  are  the 
onterms. In both cubes,  the higher-dimension subcubes rep- 
resent  the  appropriate  sum of their vertices. Thus, on the 
E-cube,  the  square  with vertices 1, a, b, and  ab represents  the 
term 1 tf a + b + ab; i.e., the  term Zb. The  number of 
complemented  variables in  a term represented by a subcube 
of the E-cube  is equal to the dimension of that  subcube.  To 
represent a function  as a sum of subcubes, we may  think of 
each  subcube  as possessing a binary  value (0 or I )  deter- 
mining whether  its  term  appears  in  the polynomial.  If  a 
subcube  has a value of 1,  its  term is present  in the polyno- 
mial: a value of 0 means  it is not. 

It should be noted that  any  p-dimensional  subcube  may 
have its value  complemented by complementing  any of the p 
pairs of parallel ( p  - 1)-dimensional subcubes  it contains. 
Thus,  any  p-dimensional  subcube  may  be replaced by any of 
these pairs. A line  may  be replaced by the  pair of points that 
bound it, a square by either of the two pairs of parallel lines it 
contains,  and a tesseract  (4-cube)  may be replaced by any of 
the  four  pairs of parallel  cubes  it contains. Several well- 
known devices in symbolic logic are  actually  representations 
of these cubes. An example is the  Karnaugh  map,  both in its 
standard  form [ 101 and  as  applied  to exclusive-OR polyno- 
mials in [ 111. 

One  major difference  exists  between the D- and E-cubes. 
When a function is expressed on the D-cube, any  vertex 
contained in more  than  one of the  subcubes composing the 
function  (as in the case of the  vertex  abc of the  function ac 
V bc) is simply  assigned  a value of 1 when the  function is 
projected into  the  minterm basis. In the  case of the E-cube, 
however, such an overlap  may  cause a cancellation of the 
vertex. As an  example of this,  the  function ab + Zb (two 
intersecting lines on the  E-cube)  does not contain  the  vertex 

abc r 

abc c 

(b) 

Figure 1 (a) The  E-cube;  the entire cube  represents  the  term abc. 
(b) The  D-cube, the entire cube  represents  the  term 1. 

ab, even though  this vertex  is contained in each line; i.e., ab 
tf Zb = a tf b. Only when an odd number of subcubes 
containing  the  vertex have  a value of 1 will that  vertex have 
the value 1 also. It is precisely this  feature which provides the 
richer  structure of the  E-cube  and  makes  it interesting, both 
in terms of variety of expressions  for  a  single function  and  the 
number of distinct bases of the space.  E-space,  in fact,  has 
several distinct types of bases,  while  D-space has only one. In 
D-space, if any  term  in a sum corresponds to a subcube 
containing a certain vertex, that vertex must  be present and 
have the  value of 1 in the result. Since  there  can be no 
cancellation of vertices  in  D-space and  since  there exist the 
2N functions which represent  the individual minterms,  any 413 
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Figure 2 Various bases in E-shape  with the function a + b + c + 
ab expressed in each of them. All vertices  are  labeled as in Fig. 1 (a). 
(a) The ENF basis. The function a + b + c + ab is the 
exclusive-OR sum of the indicated vertices (onterms). (b) The DNF 
basis  in E-space. The elements of this ba_sis are the milterms. The 
function a + b + c + ab is  written as abZ + iibZ + iibc + abZ in 
this basis, the exclusive-OR sum of  three sides and  an edge. (c) The 
basis, CENF, is  composed of all subcubes containingihe vertex 1.  In 
this  basis  the  function a + b + c + ab is  written is6 + C, an edge 
and  the  bottom face. (d) A MNF basis. The variables  are of classes 
enf  in a, enf  in b, and cenf in c. The  function a + b +‘ c +’ ab is 
written 1 + a +‘ b + ab +C, an edge and  four vertices. (e) An HNF 
basis. The variables  are of classes dnf  in a, enf  in b, and cenf in c. The 
function a +‘ b + c + ab is  written ii + ab + ii? + aZ, three edges 
and a face. 

basis  for  D-space must  contain  the single  vertices; Le., it  must 
have the  minterms  as a subset.  Therefore,  the vertices 
provide the only  basis  for the D-cube. 414 
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In  addition  to  the ENF basis, however, E-space is also 
spanned by the  minterms [ 8 ] .  In E-space, of course, the 
minterms  are not  vertices, but  are  the  set of all  subcubes  that 
contain  the vertex  having all  variables present (i.e., the 
vertex abc in the  case of the 3-cube). We  call  this basis the 
D N F  basis in E-space. The   DNF basis  is  very  useful, since  all 
of the  minterms  are disjoint. I f fand g are  minterms,  thenf 
V g is precisely the  same  function  asf+ g. The coefficients 
of the  minterms in disjunction  space  for  an  arbitrary  function 
are,  therefore, also the coefficients of the  elements of this 
basis  in  E-space. This provides a  useful method for transfer- 
ring a function  from  its  representation on the  D-cube  to a 
representation on the E-cube. In a similar  manner,  one finds 
that  another basis in  E-space is the  set of all  subcubes  that 
contain  the  vertex 1. These  subcubes  are represented by 
terms  that  contain only complemented  variables, so we call 
them  the “offterms.” The basis is referred  to  as  the comple- 
mented exclusive-OR normal  form  (CENF).  Figure 2 gives 
examples of  five different  bases  for E-space  and shows how 
the  function a + b + c + ab is  represented  in each basis. 

We  shall now catalog  the 3N bases for  the E-space. We  call 
these bases the hybrid normal forms (HNFs).  They  can  be 
considered as  combinations of the  three  “pure” bases, ENF,  
CENF,  and  DNF.  Within  these  hybrid bases, each  variable 
of the  product  terms  must  fall  into  one of the following three 
classes: 

dnf 

enf 

cenf 

The  class of variables which occur in all  the  terms 
(either complemented or  uncomplemented). 

The  class of variables which never occur  comple- 
mented in any  term. 

The class of variables which never occur  uncomple- 
mented in any  term. 

It should be noted that  an  arbitrary function  in  E-space 
may  contain  variables  that  are not members of any of these 
classes; these classes are  intended  to classify all  the  variables 
in  a given basis. The  subset of t he   HNF bases  consisting of 
those in which all variables  are  either  class enf or cenf are 
called mixed normal  forms  (MNFs).  There  are  2N  such 
MNFs.  Figure  2(d)  illustrates  one  such MNF  and shows how 
it is used to  represent  the  function a + b + c + ab. 

The process of expressing  a function in  a given basis is 
quite simple and  can  be  thought of in terms of operators 
symbolized: (basis).  We  shall consider here only the  opera- 
tor ( E N F ) ,  which projects a function  into  the E N F  basis. 
The  operators projecting into  other bases are  quite  similar. 
Consider  a function corresponding to a certain  set of sub- 
cubes of the E-space  cube. Each logical variable which 
occurs in  complemented form,  and  thus  cannot  be a  class  enf, 
will be replaced by 1 exclusive-ORed  with that  variable. 
Thus,  the  variable Z becomes 1 + c. Using  the  distributive 
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law, the resulting function  can  be converted to a  set of 
onterms.  For  example,  the  function ii A 5 will become 
(1 + a )  A (1 + b) ,  which finally becomes 1 + a + b + ab. 
Any duplicate  terms  created should be canceled (modulo 
two). 

A very  useful  result can  be  obtained by viewing every 
MNF  a s   an   ENF with  a  simple change in variables (i.e., 
wherein all  variables  that  are of the  class cenf  have been 
complemented).  For  example,  the  function b + Z is  in E N F  
if Z is considered to  replace a as a variable (a  becoming the 
complement of the new variable Z). Since  the  subcubes of the 
D N F  basis are precisely  those  which are  symmetric  to  the 
C E N F  terms  with respect to  the  center of the  cube,  similar 
transformations  from D N F  to ENF  and from D N F  to  CENF 
are implied. 

An operator  that projects arbitrary  functions  into a given 
H N F  basis may  be  written  as  the  product of operators,  each 
of which sends  a given variable  into  its  designated class. For 
example, consider the basis wherein a and  dare  class cenf,  b 
is of class  enf,  and c and e are of class dnf. If by (enf a )  we 
denote  the  operation which sends an  arbitrary  set of subcubes 
into a set in which the  variable a is of class  enf and  the  other 
variables  are  unchanged,  then  the  operator which  projects 
into H N F  can  be  written 

( H N F )  = (cenfa)(enfb)(dnfc)(cenfd)(dnfe). 

These  three  types of single variable class transformations 
correspond to  the A, B, and C operators  introduced by 
Muller [ 121. 

Consider now the  three  transformations (in permutation 
notation): 

Id, ( 1  a ii), and (1  5 a) ,  

where Id is the  identity  transformation;  the symbol 1 indi- 
cates  the  absence of a variable in a term;  and  the  operation (1 
a ii) means  “replace  the  absent  variable  with  the variable, 
replace  the  variable with its  complement,  and  replace  the 
complemented variable with 1.” With  this  notation,  the 
operator  (cenf a ) can  be expressed as (1  a Z) (enf a ) ( 1  Z a ) ,  
the  operator  (enf a )  can be expressed as ( 1  Z a )  (enf a )  ( 1  a 
a),  and, obviously, (enf a ) can  be expressed as Id (enf a ) Id. 
These  are  similarity  transformations of the  (enf)  operator. A 
complete H N F  operator  can be written 

- 

( H N F )  = ABC - - - D (ENF)  D-l - C- lB- lA- l ,  

where A,  B, C, etc., are  the proper permutation  transforma- 
tions of the individual  variables. 

Summary 
We have  seen that E-space  presents a richer  structure  than 
the  more conventional D-space  for expressing Boolean func- 

tions. While E-space possesses an analogous geometrical 
structure,  the  N-cube,  this  structure  has distinctly  different 
properties. The  major difference is the canceling of the 
intersection of parts which are on. This  property results  in an 
abundance of bases  for the  space.  These bases are found to be 
fundamentally  connected,  through  similarity  transforma- 
tions. 
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