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Exclusive-OR Representations of Boolean Functions

With the goal of making exclusive-OR formulations of switching functions more readily available to designers for
implementation in LSI and VLSI technologies, we introduce the concept of an exclusive-OR space in which an exclusive-OR
normal form is defined to correspond to the conventional disjunctive normal form. A geometrical representation of
exclusive-OR space is described, and its various bases are listed and discussed.

Introduction

Many useful logical functions have a high degree of exclu-
sive-OR content (counters and parity functions, for exam-
ple), and one would expect them to exhibit a particular
economy of form when expressed as exclusive-OR sums
rather than in the more conventional disjunctive normal
form. In addition, it has been shown that switching functions
are more easily testable when expressed as exclusive-OR
sums using the Reed-Muller canonical form [1-3], so that
this realization can be important in the design of fault
tolerant computers. Expressing such functions as minimal
exclusive-OR sums is quite important when they are to be
implemented with LSI and VLSI technology, as, for exam-
ple, in appropriately designed Programmable Logic Arrays
(PLAS) or cellular logic arrays [4]. The problem of minimiz-
ing exclusive-OR sums is not a simple one, however, and
when the number of variables is large or when certain
variables must appear both in complemented and uncomple-
mented form, it appears that only heuristic methods, which
do not guarantee global minimization, are possible [4—-6].

Although the literature on modulo-two functions is exten-
sive (see, for example, Davio et al. [7]), discussions of their
representations and minimization methods are algebraic and
exhibit a high degree of mathematical sophistication. We
have found that very often geometrical representations are
easier to comprehend than algebraic ones and, because of
their more intuitive nature, can offer insights that may be
more useful for engineering applications. The purpose of this

paper, therefore, is to present a geometrical construction that
can be used to represent exclusive-OR functions in the same
way that the usual Boolean cube is used to represent ordinary
OR sums. We show how this exclusive-OR cube elucidates
the use of various bases that are available for exclusive-OR
representations, including bases in which variables can be
present in either all complemented, all uncomplemented, or
mixed form. It is our hope that this representation may help
to clarify the manipulation of logical functions, including
their minimization, and perhaps be suggestive of more potent
algebraic methods.

Exclusive-OR space

The minterms of the disjunctive normal form (DNF) provide
a basis for the space of Boolean functions expressed as
polynomials in the form of an OR-sum (V') of product (/)
terms. Analogously, one can define a set of terms to serve as a
basis of the vector space of Boolean functions expressed as
polynomials with an exclusive-OR () sum [8]. We call
these terms “onterms.” The onterms are those products of
the logical variables in which no variable appears in comple-
mented form. The word “basis” is used here in its strict
mathematical sense, to denote a set of linearly independent
elements which span a space. The exclusive-OR space is a
true vector space, in that the operations A and v are in fact
the modulo-two product and sum which comprise a field.
This is not true of the disjunction space, since the pair A and
V do not define a field, as neither is a group operation. A
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function expressed in the basis of onterms is said to be in
exclusive-OR normal form (ENF). Thus, the ENF of the
function @ v ab is given by

a~*ab = 1N a™ ab.

The terms 1, @, and ab are onterms. As we have indicated, we
call the space spanned by this basis the exclusive-OR space,
or simply the E-space, in contrast to the disjunction space
(D-space) spanned by the minterms of the DNF. Many
functions, such as the parity function, are more naturally
expressed in E-space, because they are either of a counting or
comparing nature.

These two spaces of functions of N variables may be
represented geometrically as N-cubes, hypercubes in N-
dimensional Euclidean space. While the use of such cubes for
D-space representation is widespread [9], the E-space cube
to be discussed here appears to be a new construction.
Three-dimensional examples of the D- and E-cubes are
illustrated in Fig. 1. The vertices of the E-cube are the
onterms. In both cubes, the higher-dimension subcubes rep-
resent the appropriate sum of their vertices. Thus, on the
E-cube, the square with vertices 1, a, b, and ab represents the
term 1 3 a ™ b M ab; ie., the term @b. The number of
complemented variables in a term represented by a subcube
of the E-cube is equal to the dimension of that subcube. To
represent a function as a sum of subcubes, we may think of
each subcube as possessing a binary value (0 or 1) deter-
mining whether its term appears in the polynomial. If a
subcube has a value of 1, its term is present in the polyno-
mial; a value of 0 means it is not.

It should be noted that any p-dimensional subcube may
have its value complemented by complementing any of the p
pairs of parallel (p — 1)-dimensional subcubes it contains.
Thus, any p-dimensional subcube may be replaced by any of
these pairs. A line may be replaced by the pair of points that
bound it, a square by either of the two pairs of parallel lines it
contains, and a tesseract (4-cube) may be replaced by any of
the four pairs of parallel cubes it contains. Several well-
known devices in symbolic logic are actually representations
of these cubes. An example is the Karnaugh map, both in its
standard form [10] and as applied to exclusive-OR polyno-
mials in [11].

One major difference exists between the D- and E-cubes.
When a function is expressed on the D-cube, any vertex
contained in more than one of the subcubes composing the
function (as in the case of the vertex abc of the function ac
V bc) is simply assigned a value of 1 when the function is
projected into the minterm basis. In the case of the E-cube,
however, such an overlap may cause a cancellation of the
vertex. As an example of this, the function @b v @b (two
intersecting lines on the E-cube) does not contain the vertex
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Figure 1 (a) The E-cube; the entire cube represents the term abc.
(b) The D-cube; the entire cube represents the term 1.

ab, even though this vertex is contained in each line; i.e., ab
N ab = a % b. Only when an odd number of subcubes
containing the vertex have a value of 1 will that vertex have
the value 1 also. It is precisely this feature which provides the
richer structure of the E-cube and makes it interesting, both
in terms of variety of expressions for a single function and the
number of distinct bases of the space. E-space, in fact, has
several distinct types of bases, while D-space has only one. In
D-space, if any term in a sum corresponds to a subcube
containing a certain vertex, that vertex must be present and
have the value of 1 in the result. Since there can be no
cancellation of vertices in D-space and since there exist the
2" functions which represent the individual minterms, any 413
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Figure 2 Various bases in E-shape with the function a ~ b~ ¢ v
ab expressed in each of them. All vertices are labeled as in Fig. 1(a).
(a) The ENF basis. The function a v b V ¢ v ab is the
exclusive-OR sum of the indicated vertices (onterms). (b) The DNF
basis in E-space. The elements of this basis are the minterms. The
function @ v b~ ¢ - ab is written as abc v abc v abc ~ abc in
this basis, the exclusive-OR sum of three sides and an edge. (c) The
basis, CENF, is composed of all subcubes containing the vertex 1. In
this basis the function a ~v* b ~v* ¢ ~* ab is written ab v ¢, an edge
and the bottom face. (d) A MNF basis. The variables are of classes
enf in a, enf in b, and cenf in ¢. The function a v b ~ ¢ v ab is
written 1 v @ b ab V¢, an edge and four vertices. (¢) An HNF
basis. The variables are of classes dnf in a, enf in b, and cenf in ¢. The
function a v bV ¢V ab is written @ v ab v a¢ v ac, three edges
and a face.

basis for D-space must contain the single vertices; i.e., it must
have the minterms as a subset. Therefore, the vertices
provide the only basis for the D-cube.
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In addition to the ENF basis, however, E-space is also
spanned by the minterms [8]. In E-space, of course, the
minterms are not vertices, but are the set of all subcubes that
contain the vertex having all variables present (i.e., the
vertex abc in the case of the 3-cube). We call this basis the
DNF basis in E-space. The DNF basis is very useful, since all
of the minterms are disjoint. If fand g are minterms, then f
V g is precisely the same function as - g. The coefficients
of the minterms in disjunction space for an arbitrary function
are, therefore, also the coefficients of the elements of this
basis in E-space. This provides a useful method for transfer-
ring a function from its representation on the D-cube to a
representation on the E-cube. In a similar manner, one finds
that another basis in E-space is the set of all subcubes that
contain the vertex 1. These subcubes are represented by
terms that contain only complemented variables, so we call
them the “offterms.” The basis is referred to as the comple-
mented exclusive-OR normal form (CENF). Figure 2 gives
examples of five different bases for E-space and shows how
the function a ~v* b ~* ¢ °v* ab is represented in each basis.

We shall now catalog the 3" bases for the E-space. We call
these bases the hybrid normal forms (HNFs). They can be
considered as combinations of the three “pure” bases, ENF,
CENF, and DNF. Within these hybrid bases, each variable
of the product terms must fall into one of the following three
classes:

dnf The class of variables which occur in all the terms
(either complemented or uncomplemented).

enf The class of variables which never occur comple-
mented in any term.

cenf The class of variables which never occur uncomple-
mented in any term.

It should be noted that an arbitrary function in E-space
may contain variables that are not members of any of these
classes; these classes are intended to classify all the variables
in a given basis. The subset of the HNF bases consisting of
those in which all variables are either class enf or cenf are
called mixed normal forms (MNFs). There are 2" such
MNFs. Figure 2(d) illustrates one such MNF and shows how
it is used to represent the function a ~* b ~ ¢ v ab.

The process of expressing a function in a given basis is
quite simple and can be thought of in terms of operators
symbolized: (basis). We shall consider here only the opera-
tor {ENF), which projects a function into the ENF basis.
The operators projecting into other bases are quite similar.
Consider a function corresponding to a certain set of sub-
cubes of the E-space cube. Each logical variable which
occurs in complemented form, and thus cannot be a class enf,
will be replaced by 1 exclusive-ORed with that variable.
Thus, the variable ¢ becomes 1 v ¢. Using the distributive
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law, the resulting function can be converted to a set of
onterms. For example, the function @ A b will become
(1 ¥ a) A (1 b), which finally becomes 1 v a v b V- ab.
Any duplicate terms created should be canceled (modulo
two).

A very useful result can be obtained by viewing every
MNF as an ENF with a simple change in variables (i.e.,
wherein all variables that are of the class cenf have been
complemented). For example, the function b v @ is in ENF
if @ is considered to replace a as a variable (a becoming the
complement of the new variable @). Since the subcubes of the
DNF basis are precisely those which are symmetric to the
CENF terms with respect to the center of the cube, similar
transformations from DNF to ENF and from DNF to CENF
are implied.

An operator that projects arbitrary functions into a given
HNF basis may be written as the product of operators, each
of which sends a given variable into its designated class. For
example, consider the basis wherein a and d are class cenf, &
is of class enf, and ¢ and e are of class dnf. If by (enf a) we
denote the operation which sends an arbitrary set of subcubes
into a set in which the variable a is of class enf and the other
variables are unchanged, then the operator which projects
into HNF can be written

(HNF) = (cenfa){enf b){dnf c){cenfd){dnfe).

These three types of single variable class transformations
correspond to the A, B, and C operators introduced by
Muller [12].

Consider now the three transformations (in permutation
notation):

Id, (1 aa),and (1 a a),

where Id is the identity transformation; the symbol 1 indi-
cates the absence of a variable in a term; and the operation (1
a a) means “replace the absent variable with the variable,
replace the variable with its complement, and replace the
complemented variable with 1.” With this notation, the
operator (cenf a) can be expressed as (1 aa) (enfa) (1aa),
the operator (enf a) can be expressed as (1 aa) (enfa) (1 a
a), and, obviously, {enf a) can be expressed as Id {enfa) Id.
These are similarity transformations of the (enf) operator. A
complete HNF operator can be written

(HNF) = ABC .. .-D{(ENF)D'...Cc'B'a",

where A, B, C, etc., are the proper permutation transforma-
tions of the individual variables.

Summary
We have seen that E-space presents a richer structure than
the more conventional D-space for expressing Boolean func-
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tions. While E-space possesses an analogous geometrical
structure, the N-cube, this structure has distinctly different
properties. The major difference is the canceling of the
intersection of parts which are on. This property results in an
abundance of bases for the space. These bases are found to be
fundamentally connected, through similarity transforma-
tions.
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