400

J. M. WHITE AND G. D. ROHRER

Image Thresholding for Optical Character Recognition and
Other Applications Requiring Character Image Extraction

Two new, cost-effective thresholding algorithms for use in extracting binary images of characters from machine- or
hand-printed documents are described. The creation of a binary representation from an analog image requires such algorithms
to determine whether a point is converted into a binary one because it falls within a character stroke or a binary zero because it
does not. This thresholding is a critical step in Optical Character Recognition (OCR). It is also essential for other Character
Image Extraction (CIE) applications, such as the processing of machine-printed or handwritten characters from carbon copy
Jforms or bank checks, where smudges and scenic backgrounds, for example, may have to be suppressed. The first algorithm, a
nonlinear, adaptive procedure, is implemented with a minimum of hardware and is intended for many CIE applications. The
second is a more aggressive approach directed toward specialized, high-volume applications which justify extra complexity.

Introduction

One of the most significant problems in Optical Character
Recognition (OCR) is the conversion of nonideal analog
images into ideal binary images {1]. The original documents
which are scanned for characters are often dirty, multi-
colored, and produced by a variety of pens, markers, pencils,
or printer mechanisms. Characters are often smeared or
smudged, and are sometimes written with either very light
strokes that are difficult to detect or very heavy strokes that
tend to broaden and run together when imaged. The scan-
ning hardware, due to technology and cost limitations, may
have nonuniform illumination over the scan field, sensitivity
and dark current variations from element to element in the
sensing array, and nonideal resolution characteristics from
the lens and from crosstalk in the array.

A similar but more inclusive thresholding problem may be
called Character Image Extraction (CIE), which describes
the suppression of unwanted background patterns so that
only printed or handwritten characters may be captured as
electronic images. As with OCR, this process involves con-
verting nonideal analog images of characters into ideal ones,
but the binary images may be compressed for storage or

distribution, sorted, or used in computerized printing. The
CIE process is different from digital facsimile, where a
pseudo-gray-scale reproduction of the image is desired [2].
CIE output is binary, as opposed to multi-level gray scale,
and consists of black picture elements (pixels) where charac-
ter strokes are written and white pixels elsewhere. Pictorial
content and “noise” which do not conform to the criteria for
character strokes are eliminated. These images can be com-
pressed more efficiently than digital facsimile and, therefore,
are used for electronic distribution, sorting, and computer-
ized printing as well as for OCR.

To overcome the difficulties of character extraction, the
designer of a thresholding algorithm or circuit must use as
much a priori information about the character images as is
practical for the cost range of the equipment being designed.
For example, the width of a typical character stroke is about
0.2 mm, with some of the widest strokes up to about 1 mm.
(This stroke width encompasses most characters found in
CIE applications.) The overall size of a character ranges
from about 2.5 mm wide by 4.2 mm high (typewriter output)
to 6 mm by 9 mm for hand-printed characters. Except for

© Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

IBM J. RES. DEVELOP. ¢ VOL. 27 ¢ NO. 4 ¢ JULY 1983

dots on the “i” and “j” and for punctuation marks, charac-
ters are made of strokes which are ideally long, but narrow,
connected groups of black pixels. The thresholding circuits
should delete background levels which are changing over
regions larger than the character size. Maximum detectabil-
ity should occur for dimensions appropriate to the character
stroke. Ideally, this last maximization process should not be
done independently for each dimension in the two-dimen-
sional space. This double maximization would emphasize
dots and dot-like noise more than lines, which have high
spatial frequency components in only one direction.

The decreasing cost of digital image capture and process-
ing hardware, especially CCD-scanned (Charge Coupled
Device) photodiode arrays and memory chips, has made it
possible to consider approaches to thresholding that have not
been practical before. Interline pauses required by some
systems make digital thresholding more favorable than
strictly analog thresholding. The former can be contretled by
the system clock and time-independent digital memory,
whereas analog time constants are fixed and require uninter-
rupted operation.

State-of-the-art document scanning systems provide dis-
cretely sampled output on a rectilinear grid. One typical grid
is 240 pixels/inch (approximately 0.1 mm/pixel) both hori-
zontally and vertically. This provides an average of at least
two samples, or pixels, per stroke width—a condition which
guarantees that at least one sample will fall totally within the
stroke. This also produces 5.4 million pixels for a typical 8.5
by 11-inch sheet of paper or 1.0 million pixels for a typical
2.75 by 6-inch bank check. Processing this amount of data at
high speeds requires special real-time processing algorithms
in order to minimize hardware costs. The approaches we
have developed and tested, and which form the basis of this
paper, are thus significantly different from typical low-
speed, iterative digital processing of photographic or satellite
data [3].

The first approach is a dynamic threshold algorithm [4].
The black/white decision is determined by a threshold level
which is continually changed as the scanned gray-scale data
stream changes. The basic threshold calculation may be
represented (in each dimension) as a first-order difference
equation with a nonlinear coefficient. The nonlinear term
was heuristically determined, but was modeled after the
response of a resistor-capacitor-diode circuit. Not only does
this algorithm result in near-optimal image fidelity, it also
can be built with a very small amount of logic and memory
hardware and can be programmed with very few lines of code
if a microprocessor implementation is preferred. This ensures
low cost as well as high-speed performance. Although not
described in detail in this paper, a modification of the
dynamic threshold algorithm was created for calculating the

IBM J. RES. DEVELOP. @ VOL. 27 @ NO. 4 ¢ JULY 1983

threshold across a segmented scan field (with eight parallel
outputs from the scanning array). This modification was
simulated in software, not in real-time hardware, with suc-
cessful results in image quality.

The second algorithm is a unique combination of simple
algorithms that more fully utilizes the linear width and
connectedness of character strokes. Some of the simplicity of
the first thresholding algorithm is sacrificed, but typically
more of the pixels in the background region are made white.
This results in a more idealized output, and the improved
output is more noticeable when the scanned gray-scale data

are distorted or have dark background regions. Unlike other -

multi-operational algorithms that can achieve this idealized
output [5], the black/white decision in the second algorithm
is determined in only one processing pass of the scanned data.
This greatly reduces the complexity of the implementation
and allows the algorithm to be economically feasible for
high-speed imaging.

This algorithm is a label and search process. Before the
final black/white decision is made, the pixels lying near an
edge (sharp change in gray-scale data) are labeled. Pixels
located on the dark side of an edge are distinguished from
those on the light side. The light and dark sides of an edge are
identified by a sum of the differences calculation that is an
approximation of the Laplacian operator (two-dimensional
second derivative). The final black/white decision is based
on a search operation of the labeled image. Unlike the results
with our Dynamic Threshold and many other algorithms [6],
the sharp edge of a large background pattern is eliminated by
this algorithm since the other edge does not appear within the
specified distance. Pixels within a character stroke are made
black because associated edges can be found. The high
spatial frequency associated with the edge is not sufficient in
itself to cause a black/white transition in the output.

Dynamic Threshold Algorithm

® Functional description

The main objective of the Dynamic Threshold Algorithm is
to set a threshold for the binary (1 for black, 0 for white)
decision about a given pixel. The approach conceptually is to
compare the gray value of the pixel with some average of
gray values in some approximately character-size neighbor-
hood about the pixel. If the pixel is significantly darker than
the neighboring pixels, it is called black. Two difficulties
arise with the obvious approach of uniformly averaging the
gray values in a circular neighborhood. The first problem is
one of cost: Storing many lines of gray-level pixel data
becomes prohibitive. An averaging approach must be devel-
oped which does not require referral back and forth to other
lines of scan data. The second problem is one of performance:
If the contrast ratio of the character to the background is

401

J. M. WHITE AND G. D. ROHRER

402

(a)
Update toward
__—\—‘\ﬂi\[e—h_x
- ——————
Input
(ROM
address)
Read only memory Update
(ROM) toward ~————u-
output values black
«—Update toward (b)
white
Input
(ROM address)
ROM
output Update
values toward
black
—_—

Figure 1 Update functions f (upper curve) and g (lower curve)
provide the rate of response of the running average to changes in the
gray values input to the Dynamic Threshold Algorithm hardware.
Abscissas vary from —127 to + 128, representing the sign and the
seven most significant bits of the difference. Ordinate values vary
from 10 to —63.

high, then the threshold level should be increased by an
additional amount to reduce “noise” from dirt, smudges,
background printing, etc. Furthermore, the “average” must
adapt quickly after leaving a very dark character so that a
following lighter character will not be eliminated.

The solution to the storage requirement problem for
averaging is to use a “running” average instead of a true
average. To calculate a running average, y(n), from a stream
of sampled, digitized, raster-scanned gray values, u(n), a
fraction, f; of the input gray value is added to a complemen-
tary amount of the previous average, y(n — 1):

yim) =f-unm) + @A -f)-yn-1). ey

This equation can be expanded to show explicitly that y(n) is
a nonuniformly weighted average of the current and past
pixels:

W) =5 f- (= f) - uln — i). @)

i=0

(Note that, for negative arguments, u is taken to be the value

J. M. WHITE AND G. D. ROHRER

Bias toward
black

Output

Input (address)

Figure 2 Bias functions are used to offset the decision level and to
eliminate noisy backgrounds. Since the input is 6 bits (values 0 to 63)
and the output is 8 bits (0 to 255), a multiplication of approximately
four is included in the table, which scales the output to the range
covered by the average.

set in the history buffer when the thresholding system is
initialized.) However, to implement the running average, it is
instructive to rewrite Eq. (1) as

yy=ymn -1 +f- [un) —y@n -1l 3)

Thus, the average can be updated by adding to the previous
value a fraction of the difference between the current gray
pixel value and the prior average value. When implemented
in hardware, this latter expression for the running average
requires very few components.

Replacing the constant value fin Eq. (3) with a function f
gives a more versatile, nonlinear equation:

y(n) = y(n— 1) + flu(n) - y(n — D]. C))

Certain restrictions should be applied to the function f. It
should equal zero only when its argument is zero, and
otherwise it should have a value between zero and the value
of its argument. This will guarantee that the average never
exceeds the range of the input gray pixel values and that the
average will converge to the input value for uniformly gray
areas.

The nonlinearity permitted by the use of a function instead
of a multiplicative constant provides a solution to the second
problem described above; i.e., the average can be made to

IBM J. RES. DEVELOP. ¢« VOL. 27 ¢ NO. 4 « JULY 1983

11
Shift \ Read only L
1 - reg. - memory
[nitialize (ROM)
vertical 14
level /-
13 12
15
Initialize 6 l
horizontal k] L] COMPL. | h
level COMPL ADDER P ROM | ADDER] BUFFER ADDER ROM BUFFER
A ADDER]
2 3 4 \5

8

|——> SHIFT REGISTER

BUFFER

Figure 3 Components used to implement the Dynamic Threshold Algorithm. Inputs 13 and 14 are used to initialize the horizontal and vertical
averages at the beginning of each line and column, respectively. Input 1 is 6-bit gray scale data from the A /D converter connected to the scanning

array. Output 15 is the binary result of the thresholding.

—

adjust rapidly to large, high-contrast signals, and to have a
tendency to follow the black peaks of the character stroke
pixels. The peak-following characteristic is similar to that of
a rectification circuit, and in fact, the function fillustrated in
Fig. 1(a) is similar to the current-voltage characteristics of a
leaky diode. Other thresholding implementations [7] have
actually used diodes in a peak-following scheme, but the
analog approach does not allow fine tuning of the adaptation
rate and is not clock-controlled as is the digital approach.

Equation (4) only gives one-dimensional averaging.
Images are two-dimensional, and experience has shown that
two-dimensional averaging greatly enhances performance.
To achieve a two-dimensional running average, vertical
averages, z(n), are stored for each column of the image, and
as that column is reached, the vertical average is updated by
the horizontal average value y(n):

2(n) = z(n — Q) + gly(n) — z(n — D], (5)
where £ is the number of pixels in a scan line. Thus, we have a
vertical average of the horizontal average. The update func-
tion, g, shown in Fig. 1(b), operates more rapidly than the
first-stage, horizontal update for two reasons: The first stage
usually eliminates the extreme values; also, there is little
“look-ahead,” if any, in the vertical direction.

Since the running average is one-sided in that it only
averages over past pixels, it is desirable to store some number
N of scanned pixel values and use this delayed value,
u(n — N), in comparison with the dynamic threshold or
average z(n). We found that N = 8 was a good choice for
data scanned at 240 pixels/inch. This number is four times
the number of pixels in the narrowest of “typical” strokes. A
minimal additional improvement was observed when we also
added an entire line to the delay; i.e.,, N = 8§ + £

IBM J. RES. DEVELOP. o, VOL. 27 ¢,NO. 4 ¢, JULY 1983

One other feature is required to complete the Dynamic
Threshold Algorithm, and that is a bias between the gray
value of the pixel being compared, u(n — N), and the
two-dimensional average, z(#). Without bias, the threshold
decision would be determined by noise fluctuations in uni-
form areas. Additional amounts of bias are required to
guarantee the suppression of residual images of the specially
colored boxes used in many OCR forms. Color filtering of the
optical image eliminates most of the contrast from these
boxes, but due to the variety of inks which are used and the
tolerances which are specified to accommodate these inks,
biases of five to twenty percent may be required for some
applications.

The bias may be a function of the history, z(n), of the
localized pixel, u(n), or of both. In our implementation, the
biasing function, s, was based only on the localized pixel.
That is, A[u(n — N)] was compared with z(n). Figure 2
illustrates typical biasing functions. The dashed line indi-
cates the unbiased condition in which A[u(n)] is equivalent
to u(n). For those cases indicating a bias toward white, the
output decision will be white unless the pixel is definitely
darker than the neighborhood. Conversely, if the pixel is dark
on an absolute scale, then the output decision will be black
unless the pixel is relatively lighter than its neighborhood by
the indicated amount. Various bias curves are indicated and
were selectable for the various color drop-out modes of
operation.

& Implementation

The low cost of implementation makes the Dynamic Thresh-
old Algorithm potentially useful in many OCR applications.
Figure 3 is a block diagram of the implementation in
dedicated digital hardware. A flow diagram for a simple
microprocessor software implementation would be very simi-

403

J. M. WHITE AND G. D. ROHRER

404

(a)

(b)

Figure 4 Pseudo-gray reproduction of stress test document data as scanned.

0/23456789X1
MJz23454787x2
& TIrT——
0123%56789 x4
0123458789 X5

(a)

9156)¢

017341677 9X1
V/ Q345678 UL 2
o L3 Fb, ZT\3
clz3lr56 789 4
g\ 234956 2)37X5

(b)

Figure 5 Result of using the Dynamic Threshold Algorithm on data of Fig. 4. Insert is an enlargement of lower right numbers. Each pixel

corresponds to 1/240 inch in the original document.

lar. Several nonobvious manipulations of the data stream
were used to keep the number of parts to a minimum without
sacrificing quality.

The data from the analog-to-digital converter (ADC) was
6 bits per pixel, representing gray levels of 0 to 63. The
6-bit-wide data path is indicated by 1 in Fig. 3. The
subtraction of u(n) from y(n — 1) was performed by comple-
menting u(n) and adding it to y(#n), as indicated in blocks 2
and 3. The horizontal average y(n) was an 8-bit value,
ranging from 0 to 255. The six bits from block 2 were added
in block 3 as the most significant bits—in effect multiplying
u(n) by 4. This permitted the updating of history values by 1
part in 256, instead of 1 part in 64, so that very slow rates of
updating could be realized.

The carry bit from the adder (3 in Fig. 3) along with the
seven most significant bits were used to address ROM 4
which stored the function f. This incremental result from the

J. M. WHITE AND G. D. ROHRER

ROM was added to the buffered history value in block 5, and
the new value y(n) was passed to buffer 6.

A similar arrangement is used to perform the vertical
averaging. The only difference is that a shift register 7 and
buffer 8 are used to store the line of history values and
provide the delay 2. The resulting value z(n) is applied to one
side of an 8-bit comparator. The upper data path consists of
the shift register 7, which provides the delay N between the
average term and pixel under comparison, and the bias table,
ROM 9, which took a 6-bit input and provided a biased, 8-bit
output so that the upper channel would in effect also have the
4 times multiplication. Since the ROM had a 9-bit input, the
three extra inputs (two are shown as 10 and 11) could be used
to select eight different bias tables.

® Results
The Dynamic Threshold Algorithm has been tested with a
wide variety of documents. OCR statistics on thousands of

IBM J. RES. DEVELOP. » VOL. 27 « NO. 4 @ JULY 1983

300

(a)

250

200

150

50

Biased gray levels and average

0 i 1 | L 1

Biased gray values and dynamic threshold

300

250
200

150

(6] o

1300 1350 1400 1450 1500 1550 1600

Pixels along row 357 of document T931301

1
0 100 200 300 400

Column 1428 (top to bottom) of document T931303

Figure 6 Biased gray levels (solid curve) and two-dimensional running average (dotted curve) for the horizontal line (a) and the vertical
column (b) intersecting in the lower right “6” of Figs. 4 and 5. Intersection coordinates are 1428 and 357. Output of threshold is white when the

biased gray level is larger and is black when the average is larger.

characters scanned from “live application” documents and
thresholded using the Dynamic Threshold Algorithm hard-
ware compared favorably with results using prior thresh-
olding methods. For purposes of illustration, we have selected
three document samples which exemplify worst case prob-
lems (Figs. 4 and 5), a typical application (Fig. 8), and an
idealized image test pattern (Fig. 9).

Figure 4 is a computer/photocomposer pseudo-halftone
reproduction of the actual gray-scale data scanned from a
stress test document. The reading of all characters on this
document far exceeds the capabilities of most OCR
machines (some characters are too light, others are smudged,
erased, or marked over); in a number of instances the
minimal-hardware, Dynamic Threshold Algorithm fails.
However, it is instructive to see what the problems are and
how closely we border on a “failure.”

Figure 5 shows the output of the Dynamic Threshold
Algorithm operating on the data of Fig. 4. The “6” in the
bottom row of Fig. 5(b) is an example of a common
problem—the center of a loop is almost filled in but needs to
be open for best operation of the recognition logic. The gray
value in the center of the loop is actually darker than many of
the other character strokes, as can be seen in Fig. 6, which
shows the bias gray levels and average output values as they
would appear at the input of the comparator (12 in Fig. 3).
The opening of the 6 is located approximately at the intersec-
tion of column 1428 and row 357. (The document is 2048 by
384 pixels). The threshold dynamically shifts to capture the
opening of the 6 as desired.

IBM J. RES. DEVELOP. & VOL. 27 ¢ NO. 4 ¢ JULY 1983

If a dark area is roughly the size of a character, then it will
tend to remain dark. Even with biasing, which strongly
emphasizes contrast since these levels straddle the break in
the bias curve (Fig. 2), the center left row of characters [Fig.
4(a)] is not machine-readable. Figure 7(a) indicates that
there is not enough time for the vertical average to be
adjusted to such a dark background during the processing of
one character line, but if the problem line is replicated [as in
Fig. 7(b)], then the likelihood of detecting and reading the
characters is enhanced for the second line of characters in the
dark background.

Figure 8 is a composite of a form using a green “drop-out”
background with boxes to constrain the location of charac-
ters to be recognized and of segments of thresholded output.
The bias function of the Dynamic Threshold Algorithm does
ignore the residual contrast of the boxes against the white
paper. The area about the scanned characters is then free of
any “noise” which would reduce the effectiveness of the
recognition process.

Figure 9 is a portion of the IEEE Facsimile Test Chart,
which has been scanned and thresholded using the Dynamic
Thresholding Algorithm. In addition to demonstrating the
high resolution of the 240 pixel/inch system, the portion of
the face shows how the bias toward black (lower left part of
the curves in Fig. 2) retains the overall pictorial content of
the large dark areas. Were the bias toward white for all gray
values, then any large uniform area would appear as white
with only transition areas having black output pixels. This is,
of course, an option of the user and is controlled by the bias

405

J. M. WHITE AND G. D. ROHRER

406

300 @
250

200

150

100

0 100 200 300 400

100

50~

Biased gray values and dynamic threshold

0 1 1] 1
0 100 200 300 400 500

Column 252 (top to bottom) of document T931303

Figure 7 Biased gray levels (solid curve) and two-dimensional
average (dotted curve) along column 252 of Figs. 4 and 5. Excessive
overall darkening of a character-sized area results in a loss of
information (a), but replicating the dark line (b) shows that the
threshold tends to adapt as desired when the dark area is larger than
a single character dimension.

tables selected for use with a particular document. As shown
in Fig. 2, the bias tables which were used change from bias
toward black to bias toward white at 40 percent of full
scale.

Integrated function algorithm

® Functional description

The second algorithm is intended for extracting characters
from complex images in an effective and rapid manner. The
main objective is to remove as much of the nonessential
background as economically feasible to allow for efficient
compression and subsequent handling of the binary image. In
some CIE applications this can be difficult to achieve

J. M. WHITE AND G. D. ROHRER

(a)

exmeonsness * K8
VIl 2Pv3 Mo ay2s0a @
Vo Ty '- Ty o (b)

. S s0 AF 5§ M y30 0

REPAIR ORDER

©

o< +
o< f

Figure 8 Sections of actual OCR document (a, c¢) with green
““drop-out” boxes surrounding the OCR regions, and (b, d) Dynamic
Threshold Algorithm output of corresponding areas.

g ’
woa
= e ,
% l; \\ § : ‘ , [|
//////////Imnn\\\\\\\\\i\\ lm!:‘ Mé -

Figure 9 Result of scanning IEEE Facsimile Test Chart with
Dynamic Threshold Algorithm. Reproduction of the large black
areas in the face section is accomplished by biasing the lower gray
values toward black; otherwise, all largely uniform areas would be
white.

because the contrast ratio of text to the background is
extremely small. For bank checks, as an example, a ratio of
less than 20% is not uncommon, while ratios within the
background alone can exceed 20%. This obviously restricts
the use of contrast as the sole measurement in thresholding.
Other measurements should be made and appropriately
weighted to generate a more idealized output. The Inte-
grated Function Algorithm, therefore, employs several mea-
surements to deal with these complex images. Width of the
text, sharpness of the text edges, and constant ratio all
contribute to the threshold decision process.

The Integrated Function Algorithm processes images in
the following fashion: First, digitized data from the raster
scanner are processed by gradient-like operators to identify
and label pixels in, or very close to, areas where sharp
changes exist in the gray-level image. These regions are
typically edges of text (characters) or background areas
having high contrast change. This localized edge information
is then interrogated to separate the text edges from those

IBM J. RES. DEVELOP. e VOL. 27 @« NO. 4 ¢ JULY 1983

belonging to extraneous background. The separation decision
is based on correlating these edges to character stroke
widths. Then, internal regions of the character strokes are
made black (binary 1) while all other areas are made white
(binary 0).

To accurately identify the pixels in the vicinity of an edge,
a measurement of the changes in gray-level values is used.
The measurement, defined as activity operator A (i, j), is the
absolute sum of approximated derivatives for both scan and
raster directions taken over a small area. The derivative, dx,
as proposed by Sobel [8], in the scan direction for the
gray-level u located at pixel i in raster j is

dx(i,j) =u(i — 1,j) — u(i + 1,). 6)
Similarly,
dy(”]) = u(i’j - 1) - u(i’j + 1) (7)

The change activity for one pixel, a(i, j), is defined in this
algorithm as the absolute sum of these Sobel derivatives:

a(i, j) =ldx@i,)| + ldy(,). (8)

To maximize the detectability of edges for most hand- and
machine-printed characters, the activity defined in Eq. (8) is
summed over nine pixels. The form of the activity operator
for one pixel, A, j), is then

AGjy= 2. 2 a(i+nj+m).
n=-10,1 m=-1,0,1 (9)
This operator takes on large values in the vicinity of
character edges and relatively lower values elsewhere. A
simple thresholding technique, therefore, is sufficient to pick
only those pixels lying close to character edges. One need not
be too concerned about incorrectly identifying some pixels.
Their positions are usually uncorrelated (not related to a
stroke edge), which results in their being removed or properly
labeled in the black/white process. Figure 10 shows the
histogram of A(i, j) values collected from a high-speed
scanner. The operator is well-behaved, as demonstrated in
the distributions for a uniform, black background to the very
busy background of a scenic bank check. Few pixels exceed
the value of 25 in all cases. 4 (i, j) behaves much the same in
the presence of text. This is shown in Fig. 11. Threshold
values between 15 and 24 are sufficient to separate most
background pixels from those in the vicinity of character
edges.

The next step is to label all identified edge pixels according
to the sign of an approximated Laplacian operator, ddxy.
Referring to Egs. (6) and (7), the operator for pixel (i,) is

ddxy(i,j) = dx(i + 1,j) — dx(i — 1,})

rdyG,j+ 1) —dy(i,j — 1). (10)

IBM J. RES. DEVELOP. & VOL. 27 & NO. 4 ¢ JULY 1983

250
(a)
200

150~

100 —

300 (b)

250

200

150

100

50

300
(©)

250

2001

150~

100~

50+

Number of pixels

Activity operator value

Figure 10 Activity operator histograms. Figures show activity
operator, 4(i, j), histograms for areas comprised of 2560 pixels, 20
by 128, at 240 pixels per inch. Gray-level data, u(i, j), is 6 bits per
pixel, representing values from 0 to 63. (a) Scanner background
(noise); (b) plain white paper; and (c) scenic background of a bank
check.

In terms of gray-level values, u, the operator simply is
ddxy(i,j) = u(i + 2,j) + u(i — 2,j)
+u(i,j+2)+u(i,j—2)
— 4. u(i,)). () 407

J. M. WHITE AND G. D. ROHRER

408

1500

1000

500

1500

00006000000000000~~00+0+00
000000000000000000000000000+000000+0000000+000000000000000000000000000
000000000000000000000000~-00000000000~--000000-00++00++00000000000000000
000+000000000000
00-0000-00000+00000000
0000000000000000000+00000000000000000000000000000000000000-00000+00000
0000000000000000000000+00—0 0000
00000000-00000000000-00000000++0000000000000000 0000000 0
000000000000000000000000000000000004000#000000000000000000000000000 -0~
0000000000060000000000000000000-000-0000000~-0+000000000000000000000000
0006000+00000+00000000000
000-0000~-0000+00000000
000-00+000000000
000000000000009-~-+~==00

0000000000000-===om"=mew=== 000
000000000000——=++t++++-==000
0000000000-==++++00++++=~0000000000000000-~~~~~ 00000000000000000000000
0000000000 ~=++++4+++4++4+==000000000000--~+-~-———— 000000000000000000000C
000000000-~—++++==emt~===0000000000- -~~~ 4444 4+44+==-=0000000000000000000
00000000---+++4-——-cuuw= 0000000000-——=++t+++++++4+-==00000000000000000

—t+rt b b EEEE+4==00000000000000000
=+++++++=0000000000000000

00000000=~~++mm0=ttdm-—mn 0000000
00000000~==+++=00==++++++-=00000-
00000000~~++++t==00-=+++0+++=-0000- +++==00

00000000-=++++==000-=++0044+==00==—+++4aumm0fmum +44+++===00000000000
00000000===+++==000==+++++4+ 4~ —;&00*--00000000—--&¢¢&+&--0000000000
000000000=—=+++==000==+++ bttt t=—=-t4+4+====0000000000=¢ ¢+ +====00000~~~
000000000==4+++==00~=4+tt=—wt ++4++++++=~=-00000000000==~+++++$m—wc-mm +
0000000000=-4+4===0cattttbmm==tt+++++-——00000000000000—==++++trttttrit
NO000B000000=—=++tFbmm—btttttmmmmmmmmmmcol 000000000000000000~==+FrFrtétt+t
000000000000-~+++++++44++++==0000000000000000000000000000000~=~~==-v===
00000000000000==~+++++++-=~0000000000000000000000000000000000------~~
000000000000000--=-=--=~—= 00
00
00¢00 00000
00
--==000---00000-0000 0 0000 00]

500

Number of pixels

0to4 5t 14 15 to 24 25 and above

Activity operator value

Figure 11 Activity operator influenced by text edges. Scan size
and resolution are as described in Fig. 10. (a) Distribution of A(i, j)
values for text on a clean background; (b) text on a scenic bank
check.

Historically, this operator is not well behaved on typical
image data {9]. In this algorithm, however, ddxy is only
applied for those pixels having an activity operator value,
A(i, J), greater than or equal to a threshold, 7. This
effectively smooths ddxy because the Laplacian tends to be
stable in these areas.

This combination of A(i, j) and ddxy(i, j) is formed to
generate a three-level image in which only the sharpest edges
are identified and labeled. A pixel in the new image, S(i, j),
is defined as

0ifA(LJ)<T,

S@i,j) = { - if A, j) = Tand ddxy(i, j) < 0,

+ if A(i, j) = T and ddxy(i, j) = 0. (12)

The inequalities show that the sign of ddxy is the label
applied to the pixels near an edge. Pixels on the dark side of
an edge are labeled +, those on the light side are labeled —,
and all others are 0. Figure 12 shows a hand-written stroke
image labeled in this manner. The horizontal line underneath

J. M. WHITE AND G. D. ROHRER

D R R L S R R R A
R R Rl R R R

000-00000000-=00-000000 0000000~ ~=emmmrmmnmmma=focaneansamneonas
oo
00
00
0000000000600000000000000000606000000000000000000000000000000000000000
000600000000

Figure 12 Three-level edge-labeled image. Internal areas of the
character and machine-printed strokes are labeled + with the
exception of some pixels in the top of the “0.” These are still bounded
by edges. Noise has caused some pixels to be incorrectly labeled (top
of the image). These are uncorrelated and are not bounded by
edges.

the stroke is machine-printed. The internal areas of both
lines are + because they are darker than the background.

Elementary correlation techniques can now be applied to
the S image to create a final, binary black/white image. Any
pixel that is internal to a character stroke should be either 0
or + and bounded by ordered sequences as illustrated
below:

s =y, [SGL)

where the first and last ellipses indicate any combination of
+, —, and 0, and the inner ellipses represent any combina-
tion of + and 0. These internal pixels should be black in the
output image. Background pixels tend not to be bounded by
this ordered sequence and should be made white. For exam-
ple, they could be within two opposing changes in contrast:

ey =y A, e, [S(l,])

where each ellipsis is defined, respectively, as in the earlier
expression. All pixels with a — label should be made white.

=0or +],--, +, —, -,

=0o0r +],---, —, +, -,

Line width restrictions can be factored into this process to
further improve the output image. The bounded sequences
should be along some straight line passing through S(i, j).
The distance between character edges (— 4+, + —) along this

IBM J. RES. DEVELOP. VOL. 27 @ NO. 4 o JULY 1983

line could be calibrated to the line width restrictions, so that
wide, dark background areas can now be dropped from the
final image.

® Implementation

A block diagram showing the major processing functions for
this algorithm is presented in Fig. 13. All functions could be
realized in one or more microprocessors, depending on
processing time requirements. Calculation of the edge-
finding and labeling factors should be done in parallel for
efficient processing. The edge correlation for generating the
final image can be buffered in an economical fashion and
performed in another processor operating serially. For high-
speed applications parallel processing channels could be
used. Each channel has to overlap the adjacent channels by a
line width to ensure that no seams are created in the binary
image.

The algorithm was implemented in a special-purpose
processor. Digitized input from the A/D converter is identi-
cal to that described for the Dynamic Threshold Algorithm.
The derivatives, dx and dy, for each pixel are calculated with
two adders and enough RAM to hold two scan rasters of gray
levels. Operators ddxy and A are calculated in a similar
arrangement. The threshold, 7, is set to be a binary fraction
of A values and is bounded by 15 and 25. The threshold is
either increased or decreased depending on the number of A4
values between 15 and 25 in eight rasters.

To limit the amount of hardware and to reduce processing
time required to do the edge correlation, the edge search is
limited to two directions, x and y. A line or raster store of the
S image provides the data necessary to test for the ordered
sequences in the x direction. Data for the sequence test in the
y direction are accumulated through keeping a history of the
most recent edge sequence for each pixel. Only the sequence
type (1 for +, — and O for —, +) and the number of rasters
since it occurred (binary coded run-length) need to be stored.
This search matrix is shown on a typical S image in Fig. 14.
The basic criterion for making a pixel black requires that the
pixel be bounded by edges only in one direction.

More accurate decisions can be made with little added
expense by expanding the decision matrix to include two
edge tests for each direction (double search decision matrix).
Here a four-pixel cluster (2 by 2) is evaluated simultaneously
with the edge search in the two rows and columns that
contain the cluster. The pixels must be bounded in both rows
or both columns to be made black.

The Integrated Function Algorithm was implemented
using the double search decision matrix. This further enabled
us to remove much of the nonessential background from busy
or complex images.

IBM J. RES. DEVELOP. o VOL. 27 « NO. 4 o JULY 1983

Al j)

Y
A/D u(i, j) | |dxti.)| {dx, dv T S(i, jj| |Edge
> | {line | Mdv(i, j)f fline | | o line | Janalysis
store store store

[

ddxy(i, j)

Lt

Figure 13 Block diagram of the Integrated Function system.

0000000000000000000000000==++000++=~~000000030000000000000000000000000
ooooooooooooooooooooooooo--++oo+‘+---ooooooooooooooooooooooooooooooooo
0000000000000000000000000-~++00 0000000000000 0 00
0000000000000000000000000——1 ++00+—--000000000000000600000000000000000
00000000000000000000000000 00p}+ +-==000000000000000000000000060000000
00000000000000000000000000-~++ +}0j+ +~--00000000000000000000000000000000
00000000000000000000000000~~++00 000000000000000000000000000000000
00000000000000000000000000-—++00+++—~000000000000000000000000000000000
0000000000000000000000000 0=~~+++0+ +-==00000000000000000000000000000000
00000000000000000000000000===++00l+~-000000000000000000000000000000000
00000000000000000000000000===+++0f +~-0000j00000000000000000000000000000
000000000000000000000000000-—++0[0]+ +~-000000000000000000000006060000000
000000000000000000000000000~-++0+|+ +~-000000000000000000000000000000000
000000000000000000000000600—~++ ol+ +~-000000000000000000000000000000000
000000000000000000000000000~~++0j0k +--000000000000060600000000000000000
000000000000000000000000000~=++ lt*—--00000000000000000000000000000000
000000000000000000000000000=~++0l++ +=-00000000 0000000 00
000000000000000000000000000-—++0 ++---oooooooooooooooooooooooooooooooo
000000000000000000000000000-—++0jg}+ + I
000000000000000000000000000~——+ +00 + +-~00000000000000000000000000000000

Figure 14 Decision matrix positioned on an internal pixel S(i, j)
of a typical stroke image. The edge search is limited to two directions
and eight pixels. This is sufficient to define character line widths up
to 1 mm for a scanner resolution of 240 pixels per inch.

® Results

To evaluate the effectiveness of removing background, we
tested the algorithm with a variety of scenic bank checks.
The gray-level images of these checks were collected from a
high-speed scanner (low signal-to-noise ratio). Thus, in addi-
tion to the busy backgrounds, these gray levels contained
distortions created by the scanner hardware.

Figure 15 shows small portions of bank check images
produced by two versions of the algorithm. The 120/240-
pixel images illustrate the benefits of using the double search
decision matrix. (The 240-pixel output represents the single
row/column search matrix.) Considerably more of the back-
ground is dropped from the output in the 120/240-pixel
images. The four pixels in the 2 by 2 cluster in the double
matrix images are made either all black or all white, leading
to a 120-pixel output resolution. This shows that much of the
character shapes can be maintained through a reduction in
resolution. The double search matrix can also be used to
produce binary images at the scan resolution.

Figure 16 shows a scenic bank check and its 120-pixel
binary image produced by the Integrated Function system

409

J. M. WHITE AND G. D. ROHRER

410

Original 120/240 pixels 240 pixels

ng,v_h ‘. _(EK,_JZ #,‘Qs %iﬁ‘ (5' él,-,_ﬂ #{Qk
SRS AN

Figure 15 Binary images produced by Integrated Function Algo-
rithm thresholding. Originals (left) were scanned at 240 pixels per
inch, creating gray-level images of 128 by 512 pixels. Center images
(120/240 pixels are 120-pixel-per-inch binary images produced
from 240-pixel-per-inch gray levels. Binary images on right (240
pixels per inch) are produced from the same set of gray levels
without the 2:1 reduction feature.

:'; - - -"vsov: - ki
e
$§ o
Ay - 7
D'p?n}:"w ;
[R vy B
o _W - soLLans 3
— G Nava Coll e
B - e~
n 23‘."'5579': ":,OOOU___‘_B-?E?__E"" L ae _.-’OD.QOD_QO!BSU-"' e

Figure 16 Binary image of a scenic bank check. Document (origi-
nal at top) was scanned at 240 pixels per inch creating a gray-level
image of 660 by 1440 pixels. The binary image (below) produced by
the Integrated Function Algorithm is 120 pixels per inch.

with the double search decision matrix. Although the back-
ground contains marked changes in contrast, much of it has
been removed. Some of the background, however, does
correlate with normal stroke widths and is retained. This can
be readily seen in the upper right corner of the image.

Summary
The conversion of nonideal analog images into digitized
images is a significant problem. Text (characters) must be

J. M. WHITE AND G. D. ROHRER

extracted from unclear backgrounds in a cost-effective man-
ner. This paper has described two solutions to this problem.
The Dynamic Threshold Algorithm provides near-optimal
performance and can be built with a very small amount of
hardware. The test results indicate that this algorithm is
appropriate for many CIE applications. By sacrificing some
simplicity, the Integrated Function Algorithm is capable of
producing more idealized output from very busy or complex
documents. Scenic bank-check images have been used to
illustrate the background removal capabilities.

Acknowledgments

We remember with appreciation the support of the late
Georg Gaebelein in the OCR activity, and we would like to
thank co-inventors R. L. Melamud and J. D. Nihart for their
contributions to the Dynamic Threshold Algorithm and
G. A. Davidson for providing the software to model and test
the Integrated Function concept. D. G. Abraham provided
assistance in the modeling and testing of the Integrated
Function Algorithm, and S. J. Skocz collected the images for
Figs. 15 and 16. F. C. Mintzer reproduced Figs. 4, 5, and 9
for us on an electronic photocomposer at the IBM Thomas J.
Watson Research Center in Yorktown Heights, NY.

References

1. J. R. Hicks and J. C. Eby, Jr., “Signal Processing Techniques in
Commercially Available High-Speed Optical Character Reading
Equipment,” J. SPIE (Society of Photo-Optical Instrumentation
Engineers) 180 (Real-Time Signal Processing II), 205-216
(1979).

2. J. M. White, “Recent Advances in Thresholding Techniques for
Facsimile,” J. Appl. Photographic Engr. 6, 2, 49-57 (April
1980).

3. H. C. Andrews, Digital Image Processing, IEEE Catalog No.
EHO 133-9, Institute of Electrical and Electronics Engineers,
New York, 1978.

4. R. L. Melamud, J. D. Nihart, and J. M. White, “Dynamic
Threshold Device,” U. S. Patent 4,345,314, August 17, 1982.

5. Y. Yasuda, M. Dubois, and T. S. Huang, “Data Compression for
Check Processing Machines,” Proc. IEEE 68, 7, 874—885 (July
1980).

6. K. Y. Wong, “Multi-function Auto Thresholding Algorithm,”
IBM Tech. Disclosure Bull. 21, 7, 3001-3003 (December
1978).

7. R. E. Penny, “Dynamic Threshold Setting Circuit,” IBM Tech.
Disclosure Bull. 18, 6, 1962-1965 (November 1975).

8. R. O. Duda and P. E. Hart, Pattern Recognition and Scene
Analysis, John Wiley & Sons, Inc., New York, 1973, p. 271.

9. P. T. Cahill, R. J. R. Knowles, O. Tsen, T. Lowinger, and
R. Pouapinya, “Evaluation of Edge Detection Algorithm
Applied to Nuclear Medicine Images,” Proceedings of the Fifth
International Conference on Pattern Recognition, December
1980, pp. 1296—1300.

Received November 18, 1982; revised February 18, 1983

Gene D. Rohrer IBM Information Products Division, 1001
W. T. Harris Boulevard, Charlotte, North Carolina 28257. Mr.
Rohrer is manager of the Advanced Technology Department at the

IBM J. RES. DEVELOP. ® VOL. 27 ¢ NO. 4 e JULY 1983

Charlotte laboratory. The department is currently engaged in proj-
ects for the banking industry. His previous experience includes the
development of various recognition systems for IBM document
processors as well as the advanced development of image systems.
He also worked on the design and development of signal processing
algorithms and control systems for a large variety of electromechani-
cal devices. Mr. Rohrer received a B.S. in electrical engineering
from North Carolina State University in 1967 and an M.S. in
electrical engineering from Syracuse University in 1970. He is a
member of Eta Kappa Nu, Phi Kappa Phi, and the Institute of
Electrical and Electronics Engineers.

James M. White IBM Information Products Division, 1001
W. T. Harris Boulevard, Charlotte, North Carolina 28257. Dr.
White is a member of the Advanced Technology Department in the
Charlotte laboratory, where he is involved in the capture and use of

IBM J. RES. DEVELOP. « VOL. 27 @ NO. 4 ¢ JULY 1983

conventional and electronic images. He was graduated witha B.S. in
physics from the Georgia Institute of Technology in 1967, obtained
an M.S. in applied physics from Stanford University in 1969, spent
two years at the U. S. Army electronics laboratory in Fort
Monmouth, New Jersey, and then returned to Stanford and com-
pleted his Ph.D. thesis in 1973. He started his professional career at

" the IBM Thomas J. Watson Research Center, Yorktown Heights,

New York, where he spent two years working on integrated optics,
then made major contributions in the design and testing of a
CCD/photodiode scanner array, a document capture system, a
gray-scale image processing algorithm, and the application of new
printing technologies for images. In 1978 Dr. White transferred to
the Charlotte location and is currently working on projects related to
check reader/sorters. Dr. White is a member of Tau Beta Pi and
Sigma Pi Sigma, and a senior member of the Institute of Electrical
and Electronics Engineers.

411

J. M. WHITE AND G. D. ROHRER

