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Image  Thresholding  for  Optical  Character  Recognition  and 
Other  Applications  Requiring  Character  Image Extraction 

Two new, cost-effective thresholding algorithms for use in extracting binary images of characters from machine- or 
hand-printed documents are described. The creation of a binary representation from an analog image requires such algorithms 
to determine whether a point is converted into a binary one because it falls within a character stroke or a binary zero because it 
does not.  This thresholding is  a critical step in Optical Character Recognition (OCR). I t  is also essential for other Character 
Image Extraction (CIEJ applications, such  as the processing of machine-printed or handwritten characters from carbon copy 
forms or bank checks, where smudges and scenic backgrounds, for example,  may have to be suppressed. The first  algorithm,  a 
nonlinear, adaptive procedure, is implemented with a minimum of hardware and is intended for many CIE applications. The 
second is a more aggressive approach directed toward specialized, high-volume applications which justify extra  complexity. 

introduction 
One of the most  significant  problems in Optical  Character 
Recognition (OCR) is the conversion of nonideal analog 
images  into ideal binary  images [ 11. The  original  documents 
which are  scanned  for  characters  are often dirty,  multi- 
colored, and produced by a  variety of pens, markers, pencils, 
or printer  mechanisms.  Characters  are  often  smeared or 
smudged,  and  are sometimes written with either very light 
strokes  that  are difficult to  detect or very heavy strokes  that 
tend to broaden and run together when imaged. The  scan- 
ning hardware,  due  to technology and cost limitations,  may 
have  nonuniform  illumination over the  scan field, sensitivity 
and  dark  current  variations  from  element  to  element in the 
sensing array,  and nonideal  resolution characteristics  from 
the lens and  from crosstalk in the  array. 

A similar  but  more inclusive thresholding problem may  be 
called Character  Image  Extraction  (CIE), which describes 
the suppression  of  unwanted  background patterns so that 
only  printed or handwritten  characters  may  be  captured  as 
electronic  images. As with OCR,  this process involves con- 
verting nonideal analog  images of characters  into ideal ones, 
but  the  binary  images  may  be compressed  for storage or 

distribution,  sorted, or used in computerized printing. The 
CIE process is different from  digital facsimile, where a 
pseudo-gray-scale  reproduction of the  image is desired [2]. 
CJE  output is binary, as opposed to multi-level gray  scale, 
and consists of black picture  elements (pixels)  where charac- 
ter  strokes  are  written  and white pixels elsewhere. Pictorial 
content  and “noise” which do not conform to the  criteria for 
character  strokes  are  eliminated.  These  images  can  be com- 
pressed more efficiently than  digital facsimile and, therefore, 
are used for  electronic distribution, sorting, and  computer- 
ized printing  as well as for OCR. 

To overcome the difficulties of character  extraction,  the 
designer of a  thresholding algorithm or circuit  must  use  as 
much a  priori information  about  the  character  images  as is 
practical for the cost range of the  equipment being  designed. 
For example, the width of a typical character  stroke is about 
0.2 mm, with some of the widest strokes up to  about 1 mm. 
(This  stroke width  encompasses  most characters found in 
CIE applications.)  The overall  size of a character  ranges 
from  about 2.5 mm wide by 4.2 mm high (typewriter  output) 
to 6 mm by 9 mm for hand-printed  characters. Except  for 
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dots on the “i” and “j” and for punctuation  marks,  charac- 
ters  are  made of strokes which are ideally  long, but  narrow, 
connected groups of black pixels. The  thresholding  circuits 
should delete  background levels which are  changing over 
regions larger  than  the  character size. Maximum  detectabil- 
ity should occur  for dimensions appropriate  to  the  character 
stroke. Ideally, this  last  maximization process  should not be 
done  independently for each dimension in the two-dimen- 
sional  space. This  double  maximization would emphasize 
dots  and dot-like noise more than lines, which  have high 
spatial frequency components in only one direction. 

The  decreasing cost of digital  image  capture  and process- 
ing hardware, especially CCD-scanned  (Charge Coupled 
Device) photodiode arrays  and memory  chips, has  made  it 
possible to consider approaches  to thresholding that  have not 
been practical before. Interline pauses  required by some 
systems  make  digital  thresholding  more  favorable  than 
strictly  analog thresholding. The  former  can  be controlled by 
the  system clock and  time-independent  digital memory, 
whereas  analog  time  constants  are fixed and  require  uninter- 
rupted  operation. 

State-of-the-art  document  scanning systems provide dis- 
cretely  sampled  output on a rectilinear grid. One typical  grid 
is 240 pixels/inch (approximately 0.1 mm/pixel) both hori- 
zontally and vertically. This provides an  average of a t  least 
two samples, or pixels, per stroke width-a condition which 
guarantees  that  at  least  one  sample will fall  totally within the 
stroke.  This  also produces 5.4 million pixels for a  typical 8.5 
by 1 1-inch sheet of paper or 1 .O million pixels for a  typical 
2.75 by 6-inch bank check.  Processing this  amount of data  at 
high speeds  requires special real-time processing algorithms 
in order  to minimize hardware costs. The  approaches we 
have developed and  tested,  and which form  the basis of this 
paper,  are  thus significantly  different from typical low- 
speed, iterative  digital processing of photographic or satellite 
data [ 31. 

The first approach is a dynamic  threshold  algorithm [4]. 
The  black/white decision is determined by a  threshold level 
which is continually  changed  as  the  scanned  gray-scale  data 
stream changes. The basic  threshold calculation  may  be 
represented (in  each  dimension)  as a  first-order  difference 
equation with a nonlinear coefficient. The  nonlinear  term 
was heuristically determined,  but was  modeled after  the 
response of a  resistor-capacitor-diode circuit.  Not only does 
this  algorithm result  in near-optimal  image fidelity, it also 
can be built  with a very small amount of logic and memory 
hardware  and  can be programmed with very few lines of code 
if a microprocessor implementation is preferred.  This  ensures 
low cost as well as high-speed performance.  Although not 
described in detail in this  paper, a modification of the 
dynamic  threshold  algorithm  was  created for calculating  the 
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threshold  across  a  segmented  scan field (with  eight parallel 
outputs  from  the scanning array).  This modification was 
simulated in software, not  in real-time  hardware, with  suc- 
cessful  results  in image  quality. 

The second algorithm is a unique combination of simple 
algorithms  that more  fully  utilizes the  linear width and 
connectedness of character strokes. Some of the simplicity of 
the first  thresholding algorithm is sacrificed, but typically 
more of the pixels in the background region are  made white. 
This results in a more idealized output,  and  the improved 
output is more  noticeable  when the  scanned  gray-scale  data 
are  distorted or have dark background regions. Unlike other 
multi-operational algorithms  that  can achieve this idealized 
output [ 5 ] ,  the  black/white decision in the second algorithm 
is determined in only one processing  pass of the  scanned  data. 
This  greatly reduces the complexity of the  implementation 
and allows the  algorithm  to  be economically  feasible  for 
high-speed imaging. 

This  algorithm is a  label and  search process. Before the 
final black/white decision is made,  the pixels lying near an 
edge  (sharp  change in gray-scale  data)  are labeled.  Pixels 
located on the  dark side of an  edge  are distinguished from 
those on the light side. The  light  and  dark sides of an  edge  are 
identified by a sum of the differences calculation  that is an 
approximation of the  Laplacian  operator (two-dimensional 
second derivative). The final black/white decision is based 
on a search  operation of the labeled  image. Unlike  the  results 
with our Dynamic  Threshold  and many other  algorithms [ 6 ] ,  
the  sharp  edge of a large background pattern is eliminated by 
this  algorithm since the  other  edge does not appear within the 
specified distance. Pixels  within  a character  stroke  are  made 
black  because  associated  edges can be found. The high 
spatial frequency  associated  with the  edge is not sufficient in 
itself to  cause a black/white  transition in the  output. 

Dynamic Threshold Algorithm 

Functional description 
The main  objective of the  Dynamic  Threshold  Algorithm is 
to set  a  threshold  for the  binary (1 for  black, 0 for  white) 
decision about a given pixel. The  approach conceptually is to 
compare  the  gray value of the pixel with some average of 
gray values  in some  approximately  character-size neighbor- 
hood about  the pixel. If the pixel is significantly darker  than 
the neighboring pixels, it is called  black.  Two difficulties 
arise with the obvious approach of uniformly averaging  the 
gray values in a circular neighborhood. The first  problem  is 
one of cost: Storing  many lines of gray-level pixel data 
becomes prohibitive. An  averaging  approach must be devel- 
oped which does not require  referral  back  and  forth  to  other 
lines of scan data.  The second  problem is one of performance: 
If the  contrast  ratio of the  character  to  the background  is 40 1 
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Figure 1 Update functions f (upper curve) and g (lower curve) 
provide the  rate of response of the running average to changes in the 
gray values input to  the Dynamic Threshold Algorithm hardware. 
Abscissas vary from - 127 to + 128, representing the sign and  the 
seven  most significant bits of the difference. Ordinate values vary 
from 10 to -63. 

high, then  the threshold level should be increased by an 
additional  amount  to  reduce “noise” from  dirt,  smudges, 
background printing,  etc.  Furthermore,  the  “average”  must 
adapt quickly after leaving  a very dark  character so that a 
following lighter  character will not be eliminated. 

The solution to  the  storage  requirement problem  for 
averaging is to use  a “running”  average  instead of a true 
average.  To  calculate a running  average, y (n ) ,  from a stream 
of sampled,  digitized,  raster-scanned  gray values, u(n), a 
fraction,f, of the  input  gray value is added  to a  complemen- 
tary  amount of the previous average, y ( n  - 1): 

y ( n )  = f . u(n) + ( 1  - f) - y (n  - 1) .  ( 1 )  

This  equation  can be expanded  to show explicitly that y ( n )  is 
a  nonuniformly  weighted average of the  current  and past 
pixels: 

m 

y (n )  = Zf. ( 1  - f ) i  - u(n - i). 
i = O  

(Note  that, for  negative arguments, u is taken  to be the  value 

Input (address) 

Figure 2 Bias functions are used to offset the decision level and to 
eliminate noisy backgrounds. Since  the input is 6 bits (values 0 to 63) 
and  the  output is 8 bits (0 to 255), a multiplication of approximately 
four is included in the table, which scales the  output  to  the  range 
covered by the average. 

set in the history  buffer  when the thresholding  system is 
initialized.) However, to  implement  the  running average, it is 
instructive  to  rewrite Eq. ( 1 )  as 

Thus,  the  average  can  be  updated by adding  to  the previous 
value  a fraction of the difference  between the  current  gray 
pixel value and  the prior average value. When  implemented 
in hardware,  this  latter expression for the  running  average 
requires very few components. 

Replacing  the  constant  valuefin Eq. (3) with a functionf 
gives a more versatile,  nonlinear equation: 

A n )  = Y ( n  - 1) +fEu(n )  - Y ( n  - 1)l. (4) 

Certain restrictions  should be applied to  the  function f. It 
should equal zero  only  when its  argument is zero, and 
otherwise it should  have  a value between  zero and  the value 
of its  argument.  This will guarantee  that  the  average never 
exceeds the  range of the  input  gray pixel values and  that  the 
average will converge to  the  input value  for  uniformly gray 
areas. 

The nonlinearity permitted by the  use of a  function instead 
of a multiplicative constant provides a solution to  the second 
problem  described  above; i.e., the  average  can  be  made  to 
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Figure 3 Components  used to implement the Dynamic  Threshold  Algorithm.  Inputs 13 and 14 are used  to initialize  the  horizontal  and  vertical 
averages at the beginning of each  line and  column,  respectively.  Input 1 is 6-bit gray  scale data from the A/D converter  connected to the scanning 
array. Output 15 is the  binary result of the  thresholding. 

adjust rapidly to  large,  high-contrast signals, and  to have  a 
tendency to follow the black  peaks of the  character  stroke 
pixels. The peak-following characteristic is similar  to  that of 
a  rectification circuit,  and in fact,  the  functionfillustrated in 
Fig. 1 (a) is similar  to  the  current-voltage  characteristics of a 
leaky  diode. Other  thresholding  implementations [7] have 
actually used diodes in a  peak-following scheme,  but  the 
analog  approach does  not allow fine tuning of the  adaptation 
rate  and is not clock-controlled as is the  digital  approach. 

Equation  (4) only gives one-dimensional averaging. 
Images  are two-dimensional, and experience has shown that 
two-dimensional averaging  greatly  enhances  performance. 
To achieve  a  two-dimensional running  average, vertical 
averages, z(n),  are stored for each  column of the  image,  and 
as  that  column is reached,  the  vertical  average is updated by 
the horizontal average value y ( n ) :  

z (n)  = z (n  - II) + g [ y ( n )  - z (n  - II)], ( 5 )  

where Q is the  number of pixels in  a scan line. Thus, we have  a 
vertical average of the horizontal average.  The  update  func- 
tion, g, shown in Fig. l(b),  operates  more rapidly than  the 
first-stage,  horizontal update for two reasons: The first stage 
usually eliminates  the  extreme values;  also, there is little 
“look-ahead,” if any, in the vertical direction. 

Since  the  running  average is one-sided in that  it only 
averages over past pixels, it is desirable  to  store  some  number 
N of scanned pixel values and use this delayed  value, 
u(n - N ) ,  in comparison with the  dynamic threshold or 
average z(n).  We found that N = 8 was  a good choice  for 
data  scanned a t  240  pixels/inch. This  number is four  times 
the  number of pixels in the  narrowest of “typical”  strokes.  A 
minimal  additional improvement  was  observed  when we also 
added  an  entire line to  the  delay; i.e., N = 8 + II. 

One  other  feature is required  to complete the  Dynamic 
Threshold  Algorithm,  and  that is a  bias between the  gray 
value of the pixel being compared, u(n  - N ) ,  and  the 
two-dimensional  average, z(n).  Without bias, the threshold 
decision would be  determined by noise fluctuations  in  uni- 
form  areas.  Additional  amounts of bias are required to 
guarantee  the suppression of residual images of the specially 
colored boxes used in many OCR forms.  Color  filtering of the 
optical  image  eliminates most of the  contrast  from these 
boxes, but  due  to  the  variety of inks which are used and  the 
tolerances which are specified to  accommodate these  inks, 
biases of five to twenty  percent may  be required  for some 
applications. 

The  bias  may be a  function of the history, z (n) ,  of the 
localized pixel, u(n) ,  or of both.  In our implementation,  the 
biasing function, h, was  based only on the localized pixel. 
That is, h [ u ( n  - N ) ]  was compared with .z(n).  Figure 2 
illustrates  typical biasing  functions. The  dashed line  indi- 
cates  the unbiased  condition  in which h[u(n ) ]  is equivalent 
to u(n) .  For those  cases indicating a bias  toward white, the 
output decision will be white  unless the pixel is definitely 
darker  than  the neighborhood.  Conversely, if the pixel is dark 
on an  absolute  scale,  then  the  output decision will be black 
unless the pixel is relatively lighter  than  its neighborhood by 
the  indicated  amount. Various  bias  curves are  indicated  and 
were selectable for the various color drop-out modes of 
operation. 

Implementation 
The low cost of implementation  makes  the  Dynamic  Thresh- 
old Algorithm potentially  useful in many  OCR applications. 
Figure 3 is a block diagram of the  implementation in 
dedicated  digital  hardware. A flow diagram for  a  simple 
microprocessor software  implementation would be very simi- 403 
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Figure 4 Pseudo-gray  reproduction of stress  test  document data as  scanned. 

Figure 5 Result of using the Dynamic  Threshold  Algorithm on data of Fig. 4. Insert is an enlargement of lower right numbers.  Each  pixel 
corresponds  to 1/240 inch in the  original  document. 

lar.  Several nonobvious manipulations of the  data  stream 
were used to  keep  the  number of parts  to a minimum without 
sacrificing quality. 

The  data  from  the analog-to-digital  converter (ADC) was 
6  bits  per pixel, representing  gray levels of 0 to 63. The 
6-bit-wide data  path is indicated by 1 in Fig. 3. The 
subtraction of u(n) fromy(n - 1) was performed by comple- 
menting u(n) and  adding  it  to y (n ) ,  as  indicated in blocks 2 
and 3. The  horizontal  average y ( n )  was an  8-bit value, 
ranging  from 0 to 255. The six bits  from block 2  were added 
in block 3 as  the most  significant bits-in effect multiplying 
u(n) by 4. This  permitted  the  updating of history  values by 1 
part in 256, instead of 1 part in 64, so that very slow rates of 
updating could be realized. 

The  carry bit from  the  adder  (3 in Fig. 3)  along with the 
seven most significant  bits  were  used to  address ROM 4 

404 which stored the function$ This  incremental  result  from  the 

ROM was added  to  the buffered  history  value  in block 5, and 
the new value y ( n )  was passed to buffer 6. 

A similar  arrangement is used to perform the  vertical 
averaging.  The only difference is that a shift register 7 and 
buffer 8 are used to  store  the line of history  values and 
provide the  delay Q. The resulting  value z(n) is applied to  one 
side of an  8-bit  comparator.  The  upper  data  path consists of 
the  shift  register 7, which provides the delay N between the 
average  term  and pixel under comparison, and  the  bias  table, 
ROM 9, which took a 6-bit  input  and provided a  biased,  8-bit 
output so that  the  upper  channel would in effect also have the 
4 times multiplication. Since  the ROM had a 9-bit  input,  the 
three  extra  inputs  (two  are shown as 10 and 11) could be used 
to select eight different  bias tables. 

Results 
The  Dynamic  Threshold  Algorithm  has been tested  with  a 
wide variety of documents. OCR statistics on thousands of 
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Figure 6 Biased gray levels (solid curve) and two-dimensional running average (dotted curve) for the horizontal line (a) and the vertical 
column (b) intersecting in the lower right “6” of Figs. 4 and 5. Intersection coordinates are 1428 and 357. Output of threshold is white when the 
biased gray level is larger and is black when the average is larger. 

characters  scanned  from “live application”  documents  and 
thresholded  using the  Dynamic  Threshold  Algorithm  hard- 
ware  compared favorably  with  results  using  prior thresh- 
olding  methods. For purposes of illustration, we have  selected 
three  document  samples which exemplify  worst case prob- 
lems  (Figs. 4 and 5 ) ,  a  typical application  (Fig. 8), and  an 
idealized image  test  pattern  (Fig. 9). 

Figure 4 is a computer/photocomposer pseudo-halftone 
reproduction of the  actual  gray-scale  data  scanned  from a 
stress  test  document.  The  reading of all  characters on this 
document  far  exceeds  the  capabilities of most OCR 
machines (some characters  are too light,  others  are  smudged, 
erased, or marked over); in a number of instances  the 
minimal-hardware,  Dynamic  Threshold  Algorithm fails. 
However, it is instructive  to see what  the problems are  and 
how closely we border on a “failure.” 

Figure 5 shows the  output of the  Dynamic  Threshold 
Algorithm  operating on the  data of Fig. 4. The “6” in the 
bottom row  of Fig. 5(b) is an  example of a  common 
problem-the center of a loop is almost filled in but needs to 
be open for best operation of the recognition logic. The  gray 
value in the  center of the loop is actually  darker  than  many of 
the  other  character strokes, as  can  be seen in Fig. 6, which 
shows the  bias  gray levels and  average  output values as  they 
would appear  at  the  input of the  comparator (1 2 in Fig. 3). 
The opening of the 6 is located approximately at  the intersec- 
tion of column 1428 and row 357. (The  document is 2048 by 
384 pixels). The threshold dynamically  shifts  to  capture  the 
opening of the 6 as desired. 

If a dark  area is roughly the size of a character,  then  it will 
tend to  remain  dark. Even with  biasing, which strongly 
emphasizes contrast since these levels straddle  the  break in 
the bias curve  (Fig. 2), the  center  left row of characters  [Fig. 
4(a)] is not machine-readable.  Figure  7(a) indicates that 
there is not  enough time for the vertical average  to  be 
adjusted  to such  a dark background during  the processing of 
one  character line, but if the problem  line is replicated [as in 
Fig. 7(b)],  then  the likelihood of detecting  and reading the 
characters is enhanced for the second line of characters in the 
dark  background. 

Figure 8 is a  composite of a form using a  green “drop-out” 
background  with boxes to constrain the location of charac- 
ters  to be recognized and of segments of thresholded output. 
The bias  function of the  Dynamic  Threshold  Algorithm does 
ignore the residual contrast of the boxes against  the white 
paper.  The  area  about  the scanned characters is then  free of 
any “noise” which would reduce  the effectiveness of the 
recognition process. 

Figure 9 is a  portion of the  IEEE Facsimile Test  Chart, 
which has been scanned  and thresholded  using the  Dynamic 
Thresholding  Algorithm. In addition  to  demonstrating  the 
high  resolution of the 240 pixel/inch system,  the portion of 
the  face shows how the bias toward black  (lower  left part of 
the curves  in  Fig. 2) retains  the overall  pictorial content of 
the  large  dark  areas.  Were  the bias toward white for all  gray 
values, then any large uniform area would appear  as  white 
with only transition  areas having  black output pixels. This is, 
of course, an option of the user and is controlled by the  bias 405 
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Figure 7 Biased gray levels (solid curve)  and two-dimensional 
average (dotted curve) along column 252 of  Figs. 4 and 5. Excessive 
overall darkening of a character-sized area results in a loss of 
information (a),  but replicating the  dark line (b) shows that  the 
threshold tends to  adapt  as desired when the  dark  area is larger  than 
a single character dimension. 

tables selected  for  use  with a particular  document. As shown 
in Fig. 2, the  bias  tables which were  used change  from  bias 
toward black to  bias  toward  white a t  40 percent of full 
scale. 

Integrated function algorithm 

0 Functional description 
The second algorithm is intended  for  extracting  characters 
from complex images in an effective and  rapid  manner.  The 
main objective  is to remove as  much of the nonessential 
background  as economically  feasible to allow  for efficient 
compression and  subsequent  handling of the  binary  image. In 

406 some CIE applications  this  can  be difficult to  achieve 

Figure 8 Sections of actual  OCR document (a, c) with green 
"drop-out" boxes surrounding the  OCR regions, and  (b, d) Dynamic 
Threshold Algorithm output of corresponding areas. 

n 
Figure 9 Result of scanning IEEE Facsimile Test Chart with 
Dynamic Threshold Algorithm. Reproduction of the  large black 
areas in the face section is accomplished by biasing the lower gray 
values toward black; otherwise, all largely uniform areas would  be 
white. 

because the  contrast  ratio of text to the  background is 
extremely small. For bank checks, as  an  example, a ratio of 
less than 20% is not  uncommon, while ratios within the 
background alone can exceed 20%. This obviously restricts 
the  use of contrast  as  the sole measurement in  thresholding. 
Other  measurements should be  made  and  appropriately 
weighted to  generate a more idealized output.  The  Inte- 
grated  Function  Algorithm,  therefore, employs  several  mea- 
surements  to  deal with  these  complex  images. Width of the 
text,  sharpness of the  text edges, and  constant  ratio  all 
contribute  to  the threshold decision process. 

The  Integrated  Function  Algorithm processes images in 
the following fashion: First, digitized data  from  the  raster 
scanner  are processed by gradient-like  operators  to  identify 
and label pixels in, or very close to, areas where sharp 
changes exist  in the gray-level image.  These regions are 
typically  edges of text  (characters) or background  areas 
having high  contrast  change.  This localized edge  information 
is then  interrogated  to  separate  the  text edges from those 
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belonging to  extraneous  background.  The  separation decision 
is based on correlating  these  edges  to  character  stroke 
widths. Then,  internal regions of the  character  strokes  are 
made black (binary 1) while all  other  areas  are  made white 
(binary 0). 

To  accurately  identify  the pixels in the vicinity of an edge, 
a measurement of the  changes in gray-level  values is used. 
The  measurement, defined as  activity  operator A ( i , j ) ,  is the 
absolute  sum of approximated derivatives  for  both scan  and 
raster  directions  taken over a small  area.  The derivative, dx, 
as proposed by Sobel [8], in the  scan  direction for the 
gray-level u located at  pixel i in ras ter j  is 

d x ( i , j )  = u(i - 1 , j )  - u ( i  + 1 , j ) .  ( 6 )  

Similarly, 

dy( i , j )  = u ( i , j  - 1 )  - u ( i , j  + 1 ) .  (7) 

The  change  activity for one pixel, a( i ,  j ) ,  is defined in this 
algorithm  as  the  absolute  sum of these Sobel derivatives: 

a ( i , j )  = I d x ( i , j )  I + I d y ( i , j )  I. (8) 

To  maximize  the  detectability of edges  for  most hand-  and 
machine-printed  characters,  the activity  defined  in Eq. (8) is 
summed over nine pixels. The  form of the  activity  operator 
for one pixel, A ( i , j ) ,  is then 

A ( i , j )  = x x a(i + n.j + m).  
(9) n=-I,O.l m=-1.0.1 

This  operator  takes on large values in the vicinity of 
character edges and relatively lower values  elsewhere. A 
simple thresholding  technique,  therefore, is sufficient to pick 
only those pixels lying close to  character edges. One need not 
be too  concerned about incorrectly  identifying some pixels. 
Their positions are usually uncorrelated  (not  related  to a 
stroke  edge), which results  in their being removed or properly 
labeled in the  black/white process. Figure 10 shows the 
histogram of A ( i ,  j )  values  collected from a high-speed 
scanner.  The  operator is well-behaved, as  demonstrated in 
the  distributions  for a uniform,  black  background  to  the very 
busy background of a  scenic bank  check. Few pixels exceed 
the  value of 25 in all cases. A(i ,  j )  behaves much  the  same in 
the presence of text.  This is shown in Fig. 11. Threshold 
values between 15 and 24 are sufficient to  separate most 
background pixels from those  in the vicinity of character 
edges. 

The next step is to label all identified edge pixels according 
to  the sign of an  approximated  Laplacian  operator, ddxy. 
Referring  to Eqs. (6) and (7), the  operator for pixel ( i , j )  is 

ddxy( i , j )  = dx(i  + 1 , j )  - dx(i  - 1 , j )  

+ d y ( i , j  + 1) - d y ( i , j  - 1). (10) 
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Figure 10 Activity  operator  histograms.  Figures show activity 
operator, A ( i ,  j ) ,  histograms  for  areas  comprised of 2560 pixels, 20 
by 128, a t  240 pixels per inch. Gray-level data, u ( i , j ) ,  is 6 bits  per 
pixel, representing  values  from 0 to 63. (a)  Scanner  background 
(noise); (b) plain  white  paper;  and  (c)  scenic  background of a  bank 
check. 

In terms of gray-level  values, u, the  operator simply is 

ddxy( i , j )  = u(i + 2, j )  + u(i - 2 , j )  

+ u ( i , j  + 2 )  + u ( i , j  - 2) 

- 4 * u ( i , j ) .  (11) 407 
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Figure 11 Activity operator influenced by text edges. Scan size 
and resolution are  as described in Fig. 10. (a) Distribution of A ( i , j )  
values for text on a clean background; (b)  text on a scenic bank 
check. 

Historically, this  operator is not well behaved  on  typical 
image  data [9]. In  this  algorithm, however, ddxy is only 
applied  for  those pixels having an  activity  operator value, 
A(i,  j ) ,  greater  than or equal  to a threshold, T. This 
effectively smooths  ddxy because the  Laplacian  tends  to be 
stable in these  areas. 

This combination of A(i,  j )  and  ddxy(i, j )  is formed  to 
generate a  three-level image in which only the  sharpest  edges 
are identified and labeled.  A pixel in the new image, S ( i , j ) ,  
is defined as 

S ( i , j )  = - if A ( i , j )  2 Tand  ddxy(i , j)  < 0, I 
(+ i fA( i , j )  2 Tandddxy( i , j )  I O .  (12) 

The inequalities show that  the sign of ddxy is the label 
applied to  the pixels near  an edge.  Pixels  on the  dark  side of 
an  edge  are labeled +, those on the light side  are labeled -, 
and  all  others  are 0. Figure 12 shows a hand-written  stroke 
image labeled in this  manner.  The  horizontal line underneath 408 
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Figure 12 Three-level edge-labeled image. Internal  areas of the 
character and machine-printed strokes are labeled + with the 
exception of some pixels in the top of the "0." These are still bounded 
by edges. Noise has caused some pixels to be incorrectly labeled (top 
of the image). These are uncorrelated and are not bounded by 
edges. 

the  stroke is machine-printed.  The  internal  areas of both 
lines are + because they  are  darker  than  the  background. 

Elementary  correlation techniques can now be applied to 
the S image  to  create a  final, binary  black/white image. Any 
pixel that is internal  to a character  stroke should be either 0 
or + and bounded by ordered sequences as  illustrated 
below: 

... , - , +, ..., [ S ( i , j )  = Oor +], ..., +, -, ..., 
where  the first and  last ellipses indicate  any combination of 
+, -, and 0, and  the  inner ellipses represent  any  combina- 
tion of + and 0. These  internal pixels should be black in the 
output  image. Background pixels tend  not to  be bounded by 
this ordered sequence and should be  made white. For  exam- 
ple, they could be within  two opposing changes in contrast: 

... , - , +, ..., [ S ( i , j )  = Oor + I , . . . ,  -, +, ..., 
where each ellipsis is defined, respectively, as in the  earlier 
expression.  All pixels with  a - label  should be made white. 

Line width  restrictions can be factored  into  this process to 
further improve the  output image. The bounded  sequences 
should be  along some straight line  passing through S( i ,  j ) .  
The  distance between character edges (- +, + -) along  this 
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line  could be calibrated  to  the  line width  restrictions, so that 
wide, dark  background  areas  can now be dropped  from  the 
final image. 

Implementation 
A block diagram showing the  major processing functions for 
this  algorithm is presented in Fig. 13. All functions could be 
realized  in one or more microprocessors, depending on 
processing time  requirements.  Calculation of the edge- 
finding and  labeling  factors should be  done in parallel  for 
efficient processing. The  edge  correlation for generating  the 
final image  can  be buffered  in an economical  fashion and 
performed in another processor operating serially.  For  high- 
speed applications parallel  processing channels could be 
used. Each  channel  has  to  overlap  the  adjacent  channels by a 
line  width to  ensure  that no seams  are  created in the  binary 
image. 

The  algorithm was implemented in  a  special-purpose 
processor. Digitized input  from  the  A/D  converter is identi- 
cal  to  that described for  the  Dynamic  Threshold  Algorithm. 
The derivatives, dx and dy, for each pixel are  calculated with 
two adders  and  enough  RAM  to hold two  scan  rasters of gray 
levels. Operators ddxy and A are  calculated in a similar 
arrangement.  The threshold, T, is set  to be a binary  fraction 
of A values and is bounded by 15 and 25. The threshold is 
either increased or decreased  depending on the  number of A 
values  between 15  and  25 in eight  rasters. 

To  limit  the  amount of hardware  and  to  reduce processing 
time  required  to  do  the  edge  correlation,  the  edge  search is 
limited to two directions, x and y .  A  line or raster  store of the 
S image provides the  data necessary to  test for the  ordered 
sequences in the x direction. Data for the  sequence  test in the 
y direction  are  accumulated  through keeping a history of the 
most recent  edge  sequence for each pixel. Only  the sequence 
type  (1  for +, - and 0 for -, +) and  the  number of rasters 
since  it  occurred  (binary coded run-length) need to  be  stored. 
This  search  matrix is  shown  on  a typical S image in Fig. 14. 
The basic criterion  for  making a pixel black requires  that  the 
pixel be bounded by edges only in one direction. 

More  accurate decisions can  be  made  with  little  added 
expense by expanding  the decision matrix  to  include  two 
edge  tests for each direction (double  search decision matrix). 
Here a four-pixel cluster  (2 by 2) is evaluated simultaneously 
with the  edge  search in the two rows and  columns  that 
contain  the  cluster.  The pixels must  be bounded in both rows 
or both columns  to be made black. 

The  Integrated  Function  Algorithm  was  implemented 
using the  double  search decision matrix.  This  further  enabled 
us to remove much of the nonessential background  from busy 
or complex  images. 

I 

A/D T dr, dy dr(i. j )  u(i. j ,  

store 
analysis line 

+ store  store 

Edge S(i. j )  
+ - line - dx(i. j )  - line 

LD' ddnfi .  j )  

Figure 13 Block diagram of the  Integrated  Function  system. 
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Figure 14 Decision matrix positioned  on an internal pixel S(i ,  j )  
of a typical  stroke  image.  The  edge  search is limited  to  two directions 
and  eight pixels. This is  sufficient to define character line  widths  up 
to 1 mm for a scanner  resolution of 240 pixels per inch. 

00000000000000000000ooooooo"++~++" -ooooooooooooooooooooooooooooooo  

Results 
To  evaluate  the effectiveness of removing background, we 
tested the  algorithm with  a variety of scenic bank checks. 
The gray-level images of these checks  were  collected from a 
high-speed scanner (low signal-to-noise ratio).  Thus, in addi- 
tion to  the busy  backgrounds, these  gray levels contained 
distortions created by the  scanner  hardware. 

Figure 15 shows small portions of bank  check  images 
produced by two versions of the  algorithm.  The  120/240- 
pixel images  illustrate  the benefits of using the  double  search 
decision matrix.  (The 240-pixel output  represents  the single 
row/column  search  matrix.) Considerably more of the back- 
ground is dropped from  the  output in the 120/240-pixel 
images. The  four pixels in the 2 by 2 cluster in the  double 
matrix  images  are  made  either  all black or all white, leading 
to a 120-pixel output resolution. This shows that much of the 
character  shapes  can  be  maintained  through a reduction  in 
resolution. The  double  search  matrix  can  also be used to 
produce binary  images at  the  scan resolution. 

Figure  16 shows a  scenic bank check and  its 120-pixel 
binary  image produced by the  Integrated  Function system 409 
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Original 120/240 pixels 240 pixels 

Figure 15 Binary images produced by Integrated Function Algo- 
rithm thresholding. Originals (left) were scanned at 240 pixels per 
inch, creating gray-level images of 128 by 512 pixels. Center images 
(1 20/240 pixels are 120-pixel-per-inch binary images produced 
from 240-pixel-per-inch gray levels. Binary images on right  (240 
pixels per inch) are produced from the  same set of gray levels 
without the 2:l reduction feature. 
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Figure 16 Binary image of a scenic bank check. Document (origi- 
nal at top) was scanned at 240 pixels per inch creating  a gray-level 
image of 660 by 1440 pixels. The binary image (below) produced by 
the  Integrated Function Algorithm is 120 pixels per inch. 

with the  double  search decision matrix.  Although  the  back- 
ground  contains  marked  changes in contrast,  much of it  has 
been removed. Some of the  background, however,  does 
correlate with normal  stroke  widths  and is retained.  This  can 
be readily  seen  in the  upper  right  corner of the  image. 

Summary 
The conversion of nonideal analog  images  into digitized 

410 images is  a  significant  problem. Text  (characters)  must  be 
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extracted  from  unclear  backgrounds in  a cost-effective man- 
ner. This  paper  has described  two  solutions to  this problem. 
The  Dynamic  Threshold  Algorithm provides near-optimal 
performance  and  can  be built  with  a very small amount of 
hardware.  The  test  results  indicate  that  this  algorithm is 
appropriate  for  many  CIE applications. By sacrificing some 
simplicity, the  Integrated  Function  Algorithm is capable of 
producing more idealized output  from very busy or complex 
documents.  Scenic bank-check images have been used to 
illustrate  the  background removal  capabilities. 
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