
386

R. G. Casey
C. R. Jih

A Processor-Based OCR System

A low-cost optical character recognition (OCR) system can be realized by means of a document scanner connected to a CPU
through an interface. The interface performs elementary image processing functions, such as noisefiltering and thresholding of
the video image from the scanner. The processor receives a binary image of the document, formats the image into individual
character patterns, and classijies the patterns one-by-one. A CPU implementation is highly jexible and avoids much of the
development and manufacturing costs f o r special-purpose, parallel circuitry typically used in commercial OCR. A
processor-based recognition system has been investigated f o r reading documents printed in fixed-pitch conventional type fonts,
such as occur in routine ofice typing. Novel, eficient methods for tracking a print line, resolving it into individual character
patterns, detecting underscores, and eliminating noise have been devised. A previously developed classification technique,
based on decision trees, has been extended in order to improve reading accuracy in an environment of considerable character
variation, including the possibility that documents in the same font style may be produced using quite different print
technologies. The system has been tested on typical ofice documents, and also on artijicial stress documents, obtained f rom a
variety of typewriters.

Introduction
Optical character recognition (OCR) can be implemented at
low cost by means of a document scanner connected to a
microprocessor through an interface. The interface performs
elementary image processing functions, such as thresholding
of the video signal from the scanner. In addition, it synchro-
nizes operation of the scanner and processor. The processor
receives a binary image of the printed information, formats
the image into individual character patterns, and classifies
the patterns one-by-one.

Such an implementation avoids much of the development
and manufacturing costs for special-purpose, parallel cir-
cuitry often used in conventional OCR systems [11. It also
permits inclusion of OCR in digital image systems that
already have scanners and CPU’s a t low incremental cost.
Certain office copiers and facsimile units fall into this
category, for example.

This paper describes a CPU-based system for the reading
of documents printed in conventional type fonts with uniform
character spacing. Fixed-pitch printing is typical, for exam-
ple, of office typing.

Recognition of conventional (as opposed to stylized) print-
ing by a processor-based system requires the development of
highly efficient segmentation and classification algorithms.
The system described here segments a majority of characters
from a scanned print line by means of measurements of pitch
and baseline parameters. This information is also used as a
reference for more complex segmentation methods that are
applied to horizontally or vertically touching images. The
overall approach is called a two-stage segmentation and
registration scheme (TSSRS).

Classification is accomplished by inputting the character
patterns to a number of decision trees designed for the
particular font being read. Each decision tree is used to
examine a subset of the character picture elements and to
produce both a classification and a measure of the reliability
of that classification. A pattern may either be identified
immediately, if the overall confidence level is high, or else
submitted to a second stage in which it is shifted locally,
reclassified by the decision trees, and identified on the basis
of a Bayesian decision algorithm using the various reliability
measures furnished by the decision trees.

6 Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

R. G. CASEY AND C. R. JIH IBM .I. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983

Recognition experiments were conducted using conven-
tional typewritten documents as well as stress documents
constructed to pose difficulties in segmentation.

Extension of the system into more complex environments
is also possible.

System description
A typical OCR system carries out four processing steps, i.e.,
scanning, segmentation, registration, and recognition. The
system contains corresponding compartments of hardware,
as illustrated in Fig. 1, a block diagram of the entire OCR
system. The blocks of this system perform the following
functions:

Scanning and preprocessing

Sensor
An optical scanner is needed as the means for obtaining bit
images of each character as input to the OCR system. The
actual scanner device could be a self-scanned photodiode
array, a “bucket brigade” device, a charge coupled device, or
some other type of scanner. Also required are a source of
illumination and an optical system to image the characters
on the scanner.

Thresholding circuit
The output of the scanner is an analog signal corresponding
to the amount of light reflected from each pixel on the source
document. A thresholding circuit determines whether a pixel
is to be considered black or white. A simple fixed threshold is
adequate for high-quality documents on white paper, but a
dynamic thresholding scheme is employed in most advanced
OCR systems which is capable of generating reliable binary
images despite variations in document print quality. Reliable
and noise-free binary character images facilitate segmenta-
tion, registration, and recognition.

Buffer
Depending on the orientation and size of the scanner, some
amount of image buffering is needed to store a number of
character images during the segmentation, registration, and
recognition steps. The buffer is typically a random access
read-write memory.

Segmentation and registration logic
Segmentation and registration are typically performed in
combination. The associated logic finds the lines on the page,
segments the character images (breaks the scanned image
into separate, distinct images of each character), registers
the character images (provides proper positional information
about each image for use by the recognition logic), and
supplies the segmented and registered images to the recogni-
tion logic.

1
Scannmg

Enhancement

thmholding
Preproceshg and

Segmentation

a Recognition

I Output

Figure 1 Components of an OCR system.

Recognition logic

ClassiJication
After the character images have been properly segmented
and registered, the recognition logic attempts to classify each
image into one of the predefined symbol classes (e.g., an
“A,” “B,” etc.). For high-quality images from machine-
printed office documents, a recognition scheme based on a
binary decision tree appears to provide acceptable per-
formance. Details of this recognition scheme are described
later in the paper. The recognition logic may identify an
image as belonging to one of the character classes, or it may
reject the image as unrecognizable.

Error recovery
Some means must be provided to handle cases where the
recognition logic is unable to make a decision (a “reject
error”) or where the logic makes the wrong decision (a
“substitution error”).

Rejected patterns can be dealt with by allowing the
operator to enter the correct information or by storing the
entire character image with proper registration. Substitution
errors can be corrected in a postprocessing step which tests
characters in context.

Output to system
Once the characters have been properly classified, the infor-
mation is ready for use in the system. For example, in a
simple revision typing application, the recognized text may
be output on a Selectric typewriter. If the document contains
character classes other than those available on the particular
Selectric type element being used for printing the majority of
the classes, the system can stop printing and signal the
operator to change type elements and can identify the proper
type element number to use. 387

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983 n. G. CASEY AND c. R. J I H

388

coordinates

Search for blank scan
in neighborhood of
reference grids

Define valid segment
for non-touching
characters

U for touching characters

Search valid segment

region for touching
characters

Define left edge of
each image video
(horizontal scan is I complete) I

Measure baseline

of each video image = Extract data

Figure 2 Flowchart of TSSRS algorithm.

Segmentation
Segmentation is a necessary and crucial step for OCR. Any
error made in segmentation generally cannot be corrected in
the following registration and recognition processes. In other
words, segmentation errors directly affect the overall recog-
nition performance.

In the past, some OCR systems have been designed to
detect a line of characters by means of a special mark at the
beginning of the line. A simple segmentation algorithm was
then used with special recognition logic (as in the IBM 1287
optical reader). In some applications, overly wide patterns
were simply rejected by the recognition logic so that no
segmentation of touching characters was required (as in the
IBM 3886 machine). More sophisticated OCR machines
have been built to recognize omni-font, mixed-pitch docu-
ments with variable line spacing [2]. For this type of
machine, a sophisticated line finding method is required
before a segmentation algorithm can be applied.

In an office environment, most documents are currently
machine-printed (e.g., typewritten) originals or electro-

graphically generated copies containing a single font and a
fixed character pitch. The documents usually have relatively
good print quality, and the text is arranged within an
inherent systematic grid pattern defined by the fixed pitch
and line spacing.

Naturally, the systematic grid pattern is an advantageous
feature for character segmentation and registration. How-
ever, it may be distorted due to misalignment of the printing
mechanism or because of nonuniform magnification in a
copying process. In addition to the regular segmentation
problems of touching, broken, and skewed character images,
the presence of underscores and subscripts or superscripts on
office documents makes segmentation more difficult. If the
recognition logic is sensitive to character registration, the
segmentation becomes crucial and must be accurate. Under
this circumstance, it is clear that an estimated fixed grid
pattern is inadequate for the direct segmentation of a full
page of characters; however, it can provide a useful refer-
ence. Moreover, for cost reasons, the character segmentation
and registration for OCR office applications must be simple
enough so that they can be implemented in a microprocessor
or hard-wired logic with reasonable speed and accuracy.
With these problems and requirements in mind, the study of
the segmentation and registration of office documents
becomes a challenging problem.

TSSRS segmentation method
A two-stage segmentation and registration scheme (TSSRS)
was developed for this application [3,4]. Basically, the
scheme involves use of the inherent document pitch and
measured baseline information, defined in the following
sections, in a flexible manner to perform the first-stage
segmentation. (This takes care of all the nontouching charac-
ters.) Second, special segmentation routines are applied to
the boundary region of touching images. The segmentation
region is determined by the pitch and baseline. Effective and
precise character segmentation and registration can be
achieved using this two-stage scheme. The flow diagram of
the TSSRS algorithm is shown in Fig. 2.

In this paper, horizontal segmentation means separation of
the horizontal neighboring characters printed on one line.
Similarly, vertical segmentation means the separation of a
character from any images associated with the previous or
the following print line. A column of pixels in the scanned
image of a print line is called a vertical scan (i.e., Z-Z in Fig.
3). After the characters have been segmented and registered,
each character image has a standard raster, a two-dimen-
sional dot matrix. The size of the raster is chosen in accor-
dance with the pitch and the scanning resolution. For exam-
ple, in the experiments reported here, a character array 48
rows by 25 columns was used for 10-pitch documents
scanned at 0.1-mm resolution.

R. G. CASEY AND C. R. JIH IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983

Baseline and pitch estimation
In a given font design, each character has a specific vertical
position relative to an imaginary horizontal line called the
baseline. For example, the baseline of an uppercase X is the
bottom horizontal “line” on which the character stands (Fig.
4). However, some characters, such as the lowercase j, have a
descender below the baseline.

In standard printing or typing, the baselines of characters
on one line are made to be collinear. Ignoring the occasional
character with a descender, one can easily visualize a “line”
which fits to the bottom of most characters on the same print
line. Such a “line” actually is the averaged baseline for the
entire sequence of characters.

In order to estimate the baseline, a series of horizontal
density histograms representing consecutive scans of the
same length across the scanned line of characters is gener-
ated. Each frame contains a plot of the number of picture
elements received by the scanner as a function of character
or line height. The peak in the lower portion of the histogram
is used as the predicted location of the baseline. By averaging
the histograms for the entire line, a baseline for the complete
line can be predicted. The skew is given as the difference
between baselines of consecutive frames on the same scan
line.

Detailed baseline detection is initiated by means of a
“search window” composed of a few picture elements adja-
cent to the expected location of the baseline. As the scanning
proceeds, the position of the lowest black bit in the search
window is recorded for each vertical scan. The average of the
lowest black bit positions over a number of scans is consid-
ered to be the local baseline.

Once the baseline has been calculated, the print line is
separated from neighboring lines using the known font
dimensions. In addition, underscores can be detected, since
their distance below the baseline is determined. A band of
sufficient height to contain most of the image data for the
line is defined along the baseline. The image data in this
band are projected onto the baseline (i.e., the black pixels in
each column are counted). The pitch is then estimated, after
eliminating atypical segments, by calculating the average
center-to-center distance of adjacent segments.

The scanning skew is the inclination of the measured
baseline of the actual scanned image from an imaginary
horizontal reference defined by the scanning mechanism. For
example, in Fig. 3, the inclination of the measured baseline
X-X with respect to the reference Y-Y is considered as the
scanning skew. The baseline X-X can be approximately
detected by the algorithm given above implemented in
software. Based on the measurement, any systematic line

Z
X - X: Measured baseline

Z - Z: Vertical scan
Y - Y: Horizontal reference

Figure 3 Sample scanned print line.

e

Baseline

Figure 4 Character baseline.

Baselines

Riser made two trlps to

Figure 5 Document grid defined by pitch and baseline.

skew can be detected and then corrected by proper software
preprocessing or by manual realignment of the document
against some horizontal reference. Normally, such a system-
atic skew detection procedure may only be applied to the first
line of a document. Afterwards, any minor line skew (possi-
bly nonlinear) or vertical offset of a character will be
detected and corrected by TSSRS.

Horizontal segmentation
Since there is an inherent grid pattern (Fig. 5) determined by
the pitch and the baseline on a single-font, fixed-pitch,
machine-printed document, the segmentation may seem to
be simply accomplished by following the grid. This approach
is called pitch segmentation.

In fact, the rigid grid pattern is not sufficient to provide
adequate segmentation. The printing mechanism can easily
produce both systematic and local positional errors. Further
distortion may be caused by document aging and by copying 389

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983 R. G. CASEY AND C. R. JIH

Figure 6 Problems in horizontal segmentation: (a) connected
characters; (b) overhanging characters; and (c) zero overlap.

processes. Touching characters on a document may result
from poor print quality or from characters which are wider
than the standard pitch. At a typical resolution of 0.1 mm,
pitch segmentation can result in errors of up to three or four
pixels in positioning the character boundary. The classifier is
then required to identify partial character patterns or pattern
arrays containing portions of several characters. Such pat-
terns have a much higher error rate than well-segmented
characters. In the following paragraphs we discuss a method
for adjusting the pattern boundaries obtained by grid estima-
tion in order to accommodate local variations in positioning.

Touching character segmentation
A region in the image buffer consisting of three or four
vertical scans on each side of a pitch grid line is analyzed by
TSSRS in order to determine the best segmentation bounda-
ry. In an initial check, any blank scan found in this region
determines a valid segmentation point. If no blank scan is
found, then the two neighboring characters are considered to
be touching. Three types of touching may exist in the
segmentation region (see Fig. 6) : (a) touching with connect-
ing black strokes; (b) overhanging; and (c) barely touching
(overhanging with zero overlap scan).

Type (a) contact is the one most often encountered when
two adjacent wide characters touch at the serifs. Proper
segmentation can often be carried out simply by finding the
position where the pixel density of vertical scans is minimum.
This is called the minimum density search method. For
relationship (c), an AND of each vertical scan with the one
to its left yields an all-zero column where the "touching"
occurs. For type (b) (overhanging characters), there are
several ways to do the Segmentation. The one used by TSSRS
is considered to be the simplest and most straightforward.
First, the segmentation region is divided into several horizon-
tal zones, each eight pixels in height (see Fig. 7). Within each
zone, a set of contiguous vertical blank scans is sought. The
leftmost and rightmost of these blank scans are registered as
"L" and "R," respectively.

Sometimes only one such scan may be found. In this case,
"L" and "R" overlap. If no blank scan exists in the subdi-
vided zone, attempts to segment are abandoned and the pitch
grid is used as a default boundary.

After determining all the L's and R's in the segmentation
region, the rightmost L and the leftmost R are considered the
valid segmentation points for the left and the right charac-
ters, respectively. Since the segmentation is made at the edge
of a character, there is no registration problem, even if part
of the image of an adjacent character lies in the character
raster. An overhanging piece of image from a neighboring
character can be masked out using boundary information
obtained from the zones. If this method fails to find L and R
for some zone, the reference grid position is used for segmen-
tation.

The above method is more complicated than type (a) and
type (c) segmentations. However, an overhanging case sel-
dom occurs on Selectric-typed 10-pitch Courier 72 original
documents. One may expect such touching and overhanging
characters to occur more frequently on 12-pitch documents.

Vertical segmentation
Some OCR systems have been restricted to operate on a
single print line, on multiple lines with wide line spacing, and

sometimes even with timing marks. In such cases the prob-
lem of vertical segmentation can be ignored. However, in
office applications, the presence of lowercase characters,
symbols, underscores, and subscripts or superscripts on a
standard six-line-per-inch printed document creates the pos-
sibility that characters may touch the ones above or below, or
on a single line lowercase characters with long descenders
may touch underscores (Fig. 8). Vertical segmentation is
required in order to keep a character image free of pattern
components from adjacent lines or from its own underscore.

Baseline information is needed in order to assist in vertical
segmentation and to define the proper image buffer for
horizontal segmentation. Underscores can be detected and
masked out from the segmented character image if the
baseline position is known.

Besides providing line skew information, the current base-
line location, together with knowledge of the line spacing,
can be used to predict the location of the next line. The
predicted baseline location is accurately updated by TSSRS
based on the actual measurement. Through this adaptive
procedure, any cumulative error in line spacing can be
compensated. This is a very important feature for full page
segmentation.

Broken characters or characters with legitimate separated
components, like i, j, ;, etc., usually present some problems in
segmentation. For omni-font application, in an uncontrolled
environment, one has to detect the separate pieces (cells) and
assure that they are noise-free before combining them into a
character image. Fortunately, for single-font, fixed-pitch,
machine-printed documents, the baseline and the reference
grid coordinates, as used in TSSRS, form a net that more or
less frames the character, so that no further recombination is
required. Thus, TSSRS handles broken characters with little
extra effort. This ability is even more important when one is
dealing with electrophotographic copies of the original docu-
ment, on which more broken characters emerge.

In practice, TSSRS segments a t least 90% of the scanned
character images directly based on the reference coordinates
defined by the pitch and the baseline information. The
remaining 10% are mostly touching characters. The refer-
ence coordinates are used to define the confined segmenta-
tion region so that the method described above can be applied
locally.

Decision tree classification
In a decision process a number of actions are performed in
order to gain information needed to choose among alterna-
tives. If the process is sequential, then only one action is
performed at a time, and this action is selected on the basis of
the results of previous actions. Classification of pattern

Region of
segmentation Vertical scan

SI

S,. S, are vahd segments

Figure 7 Segmentation of overhanging characters.

....

..

....
..........

....

............
....

...
...

...

.....

..a.

.._.. ."
Figure 8 Vertically touching character patterns.

shapes into a set of class identifiers, as done in OCR, is an
example of a decision process. The typical commercial OCR
machine is nonsequential, however, employing a number of
subunits operating in parallel to extract information from
each input pattern. The same set of actions is performed on
every pattern, regardless of its shape. Some of the subunits
may a t times supply useless or redundant information, but
this has no effect on performance as long as the ensemble
provides sufficiently reliable classification. 39 1

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983 R. G. CASEY AND C. R. JIH

Figure 9 Decision tree. Interior nodes, shown as circles, indicate
which pixel is being tested. Leaves are shown as squares, with the
star indicating no decision (reject).

On the other hand, if classification is to be implemented by
a processor, then operations that require time, but fail to
assist in identifying an input, reduce throughput. A sequen-
tial mode, in which each action is selected to contribute
maximal information to the overall process, becomes much
more attractive.

It is such a sequential procedure that has been developed
for office OCR. The ele*entary actions, or “tests,” of which
the process is composed consist of the examination of the
colors of individual pixels. The procedure envisioned, there-
fore, is one in which a sequence of pixels is examined, with
the location of each succeeding pixel determined on the basis
of the colors observed in the pixels prkviously examined. The
process terminates when enough pixels have been examined
to permit reliable identification of the input pattern.

The procedure just described can be represented graphi-
cally by a binary decision tree (Fig. 9). It contains a unique
starting node, the root, which has no incoming branches, and
a set of terminal nodes, which have no outgoing branches.
The remaining interior nodes each have a single incoming
branch and two outgoing branches.

Each terminal node contains a class identifier, or ID, while
each nonterminal node in the tree represents a pixel location.
An outgoing branch is labeled with a white or black color
value. The pixel specified by the root node is examined first,
and the branch corresponding to its observed color is followed
to arrive at a successor node, which specifies the next pixel to

be examined, and so on. The path thus traced through the
tree depends on the makeup of the input pattern. The
path-following process ends when a terminal node is reached,
whereupon the input is assigned the ID found at that node.

The tree is structured and the node parameters assigned so
that only pixels useful for identifying the pattern in question
are evaluated as a path is traced from the root node to a
terminal node. Although the total tree specifies many pixels,
and is therefore capable of recognizing a variety of inputs,
only a small subset of these pixels need be examined in order
to identify a particular pattern.

In principle, a tree that sequentially examines the ele-
ments of the character array can be made to recognize with
accuracy as great as that achievable by any classifier.
However, a truly optimal decision tree may require an
immense amount of storage. The techniques developed in this
investigation are directed toward obtaining high perform-
ance with only moderate storage requirements, as discussed
in the next section.

A previous paper described a procedure for the design of a
decision tree on the character pixels using a probabilistic
model of the pattern variations within each character class
[SI. The method seeks to maximize the information gained
by a tree of specified size. By means of this technique the
designer can produce a classifier to occupy a prespecified
amount of storage. The basic tree design capability is taken
as a starting point in the following discussion of classification
using a number of decision trees.

Multiple decision trees
Although in principle a decision tree can be constructed to
realize any desired classification logic, in practice the imple-
mentation of a sufficiently accurate tree may call for an
excessive amount of storage space. Figure 10 shows curves of
estimated and actual error rate versus tree size in an experi-
ment where pixel statistics were obtained from scanned
typewritten characters. Note that the curves level off after a
few hundred nodes. For example, increasing the tree size
from 850 to 1800 nodes did not decrease the experimental
error rate at all. The reason for this behavior is the exponen-
tial growth property of such trees. The exact rate of increase
in path length (i.e., the number of pixels examined before a
decision is made) as the tree grows larger depends on the
degree of imbalance of the tree. However, in experiments,
doubling tree size resulted in an increase in average path
length in the tree of slightly more than a single pixel.
Improving a large tree by appending pixels to each path is
therefore very costly.

An alternative approach to error rate reduction is to design
more than one tree and to combine decisions obtained from

all of them. Empirically it was found that three 1000-node
trees yield an average total path length of 30-40 pixels, but
occupy no more storage than a single tree averaging 12-15
pixels per path. Since its classification is based on an
examination of more pixels, a multiple-tree scheme offers
hope for improving the trade-off of accuracy versus storage,
at the expense of additional time spent examining pixels.

Two problems must be dealt with in order to classify using
multiple trees:

1. The tree design procedure must be modified to assure that
each tree yields independent information about the iden-
tity of the input pattern.

2. A rule must be devised to specify classifier response when
more than one decision result is available.

A simple extension has been made in order to achieve the
objective of tree independence. The tree design program is
adjusted to select a different root node pixel for each tree
produced. The probability distribution of the character
classes for the two successor nodes to the root varies with the
choice of the root pixel. Since the information value of the
pixels considered for assignment to the successor nodes is a
function of this probability distribution, the new root node
produces a different choice for the successor pixels. This
effect propagates to lower levels of the tree as well. Although
the method does not guarantee that each tree will examine a
completely different set of pixels in response to a given input
pattern, in tests the frequency of repeated pixels has been less
than 25%. Figure 1 1 shows the pixels examined for the
character 4 in sample trees designed by the above method. In
general, we observe that not only are different pixels being
tested, but also different areas of the pattern. The union of
the pixels examined constitutes a broad sampling of the
pattern area.

First-stage classi'cation
When several trees are used for recognition of an input
pattern, each tree provides both a decision as to the identity
of the input and an estimate of the probability of error for
that decision. This information is used in an initial attempt to
classify the pattern. If each decision tree yields the same ID,
and if each estimated error rate is below a prespecified
threshold t , then the input character is labeled with the
proposed ID. Otherwise, no decision is made at this stage,
and identification of the input character is deferred to
another stage of classification, as described below. Thus, any
pattern that gives rise to conflicting ID codes, or that yields
too high an error estimate, is deferred.

Parameter t , the threshold on estimated error probability,
can be used to control the rate of acceptances versus defer-
rals. Using typewritten characters as input to three decision

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983

rce w e

Figure IO Actual and estimated error rate as a function of the
number of nodes in the tree. The estimated error for each of seven
trees is computed as part of the design process on the basis of the
pixel probabilities in the design sample. New samples were used to
determine the actual classification error for each tree.

u..m Y !dl...
..8.

"
Y

... g....... g
y

U....
U..."

..g.
..6 u 6 e,.

u, u ...

..e. "
Y... .. ,., ..,. ... I,,. .,..

U

..g.

......... g...... 8
y

u-8. w
Y...I).
Y . . . L u U
::? "U ::;: &..e. ... Y I).pB...... 88.I) y

" Y

y ...
Tree I Tree 2 Trec 3 All trees

Figure 11 Pixels examined in recognizing a sample character,
where B indicates that a black pixel was observed and W a white
one.

trees and a 0.5% threshold value, the rate of deferrals has
ranged from 2% to 10%. This procedure yielded an extremely
low error rate in the more than 90% of the input that is
identified at this stage. Indeed, in a recognition test using
over 200 000 inputs (to be described later), no substitution
errors were made at this stage. The unanimous-vote, low-
error-estimate test is a screening device that reliably classi-
fies easily identified patterns, while passing difficult samples
along to a more complex classification procedure. 893

R. G. CASEY AND C. R. JIH

..... ,.. 0a

I Tree I ’I K N 7

m i
20

20 20 4
K K N

Tree 2
(b)

q
Tree 3

Figure 12 Multiple-tree decisions. (a) Input pattern. This letter is
rather thinner than characters used for design, which results not only
in a different pixel configuration, but also in a slight misregistration.
(b) Decisions over shifts of the input. The center element in each
matrix contains the decision for the unshifted input. Other decisions
are obtained by shifting the input one pixel in the direction indicated
by location from the center. The number beneath each decision is the
estimated probability of error for the respective decision, multiplied
by 10 000.

In experiments with multiple classifiers we have consis-
tently used three decision trees. It is left to future investiga-
tions to establish the trade-offs among the number of trees,
the speed of operation, and the recognition accuracy. If more
decision trees were used, then the unanimous vote rule would
need to be modified, perhaps along the lines of the Bayesian
procedure to be described later.

Second-stage shift-and-retry
Figure 12(a) shows a pattern that failed the unanimous vote
requirement in a test using three decision trees. If the pattern
is translated by a small amount and reclassified by the same
trees, the resulting decisions convey additional information
about the identity of the input character. Figure 12(b) shows
the results when this shift-and-retry is done over the eight
possible one-pixel translations of the pattern from its initial
box-registered position. With the inclusion of the classifier
outputs for the unshifted pattern, there are 27 different
decision results, which are arranged as a collection of 3 x 3
matrices in Fig. 12(b). The estimated error probability,
indicating the “confidence” associated with a decision, is also
exhibited.

The figure shows that when the pattern is shifted by small
amounts and reclassified, a number of correct decisions is
produced by each tree. This happens because inputs differ
slightly from design samples in registration position or in
local pixel configuration. A decision rule can be implemented
to assess the various outcomes and to identify the input by
means of a weighted voting scheme.

A statistical decision rule using multiple classifications is
derived in the Appendix. It is assumed that the collection of
elementary tree decisions is mutually independent and that
the estimated error probabilities are accurate representations
of the true error probabilities. A further simplification in the
rule is obtained by assuming that when an incorrect ID is
produced by a tree, it is equally likely to belong to any of the
symbol classes. Without this last assumption it would be
necessary to store a large matrix of confusion probabilities
for each tree. We have experimented with intermediate
schemes, such as storing the most likely confusion ID along
with the first choice ID at each leaf node of a decision tree;
however, the resulting performance improvement does not
seem to justify the extra cost in storage and CPU time.

The Bayesian decision rule is one that minimizes the
probability of classification error under the assumptions
made. It is implemented by computing a score for each ID
that occurs in the list of tree decisions. The score for the Nth
ID is

sN x log [1 - %(AI + x [log P A j) + K I ,
j d , (N) j d 2 (N)

where

ZI(N) is the index set for decisions favoring the Nth ID,
Z,(N) is the index set for decisions favoring a different ID,
P,(j) is the estimated error probability for the j t h deci-

sion, and
K is the log of the probability that the j t h decision, if

incorrect, actually was in response to a pattern
belonging to the Nth class.

The quantity K, according to our assumptions, should have
the value [1/N, - 1 1 , where N, is the total number of
symbols in the alphabet to be recognized. In practice, how-
ever, K is treated as a parameter. Its effect is to assign the log
of a fixed portion of the j t h error probability to the score for
class N if the j th decision is unequal to N. For example, if K
= 0, then the entire error probability for the j t h decision is
assigned to the score for class N. In experiments, the
probability values were normalized to one million, and the
logarithms were computed to the base two, so that each term
in the score calculation is a number less than 20. Further-

more, the values of log P, and log (1 - P,) were rounded to
the nearest integer and stored as a table. Then it is necessary
merely to place in each leaf of the decision tree an index to
the appropriate row of the table.

The scores S, are used either to identify the input or to
reject it. The input is rejected if the two largest scores differ
by an amount less than a prespecified reject tolerance, D.
Otherwise the ID having the largest score is chosen. The
reject tolerance provides the system with a degree of control
over the substitution rate. Increasing D, Le., raising the
separation required between the highest score and the near-
est contending score, increases confidence in the decisions
that are actually made, at the cost of rejecting additional
inputs.

The decision rule described above has been effective on
good-quality inputs. However, where some of the patterns
input to the classifier have been mutilated by the segmenter,
by poor printing, or by other causes, it can err by assigning
IDS to such patterns instead of rejecting them, as would be
desirable. The errors are due in part to the assumption of
independence among the decisions made by a given tree as
the input pattern is shifted. An erroneous decision will
frequently be repeated, and so a mutilated pattern can give
rise to a set of scores that clearly favor one ID.

In order to help reject mutilated characters without affect-
ing the recognition of undeformed characters, a single condi-
tion has been added to the scoring rule just described. An ID
that would be output under the preceding rule is rejected by
the classifier if one or more of the decision trees fails to list
the ID among its outcomes.

The error rate improvement offered by the multiple-tree,
two-stage scheme is illustrated by an experiment (see Fig.
13). Using a well-segmented character set, the recognition
accuracy of a single decision tree of 3000 nodes was com-
pared with that of three trees, each containing 1000 nodes.
The reject criterion for the single tree is a threshold test on
the estimated error probability. For any given rejection rate,
the two-stage procedure using multiple trees yielded error
rates lower by a factor of 5 or more, although both classifiers
require the same total storage (3000 nodes each). About 3%
of the inputs were deferred by the multiple-tree method, and
since each deferred input is subjected to 24 additional tree
decisions, the time required for the multiple-tree test is
slightly more than three times the time required for classifi-
cation by the single large tree.

Experiments

tnput documents
The techniques described for segmenting and classifying
printed characters have been tested on documents compris-

0.020

0.015 I
0.010 I

0.01 0.02 0.03 0.04 0.05

Rejection percentage

Figure 13 Multiple-tree vs single-tree recognition. In the recogni-
tion experiment, 55 000 typewritten samples from five typewriters
were tested. Characters were well spaced to eliminate segmentation
errors. Each classifier was allotted the same amount of storage.
(Storage is proportional to the number of nodes in the tree.)

ing more than 250 000 typewritten characters in Courier
10-pitch font. The documents (Fig. 14) were printed by ten
different IBM Selectric typewriters from master magnetic
cards, in order to avoid typographical errors. In some cases
new print elements were provided, but where a type ball
having the required symbol set was already in operation, it
was used for the experiment. New carbon film ribbons were
provided, although in one case a different ribbon was inad-
vertently used, yielding patterns of somewhat inferior quality
in comparison with the other typewriters.

The documents may be categorized into three groups. One
set contained repetitive sequences of characters separated by
spaces, assuring ideal segmentation after scanning. These
“alphabets,” as printed by five of the typewriters (randomly
chosen from among the ten), provided approximately 500
samples of each symbol for use in designing the decision tree
classifier. Since “period” and “comma” are repeated on the
88-symbol Courier element, and since “underscore” is recog-
nized during the segmentation process, the total symbol set
consisted of 85 character types.

The remaining two document groups were used for test
purposes. One group represents typical office correspondence
and memoranda, whereas the other consists of character 395

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983 R. G. CASEY AND C. R. JIH

l Y . y f $ H [j D z E 0 1 R l J s ~ d M t b ! C L , 2 U I _ X

) 6 4 ' P K A m r 3 ? z a O / ; B : 7 p (n k 9 x T v u g " s r

- C - l F i Q + h ? N V q o 8 W a 5 c # e G l Y . y f $ H [j D

Z E O I R l J S w d M t b ! c L , 2 U I _ X) 6 4 ' P K A m r)

? r a O / ; B : 7 p (n k 9 x T v u g ' s " 1 P i o * h t

Well-spaced - for design statistics

00136AF FLSajtS $*&IXn$ $"Gav[F Fd.3Uw0 OUz6d!L Lv7j"b' *XfX*b" "]7vL!d
d6zUOrU U).dF[v vaG"$nX XIU*$tj jaSLFA6 6310 11247BG GMTbkU/ /[SJYo/
/]Hbw@G Ge.4Vx1 1V+7elM Mw8k]c[[YlY[cI IkBwM(e e7+VlxV V4,eG@w wbHl/oY
YJ5[/uk kbTMGB? 7421 22358CH HNUClv 96KZp 'Icx?lL HfSSWy2 2W-8f)N
Nx91'da JZ*Z@d '19xNlf f8-WZyW WS$fH?x XCI' pZ 2x68 vl lcUNHC8 8532
3346901 IOVdmw= =?7Laq= =OJdy:I Ig/6Xz3 3X.9gr0 OyAmOe? ?aIa?eO OmAyOfg
99.X3ZX X6/gI:y ydJO=qa aL7?=wm mdVOID3 9643 4457PEJ JPWenxC E:BE!brS

Random

Mr. Zarcos Querada
64-530 Agna Viva Drive
Jinja, Uganda

Dear Mr. Quezada:

April 1, 1977

Thermopylae (of which you are a charter member) is epon-
soring a "Youth Night" at the A 6 B Lodge in Windsor,
Ontario on September 2nd-, 1978. The theme of this
conclave is the Reign of Cyrus the GreatI551-529BC1.

The King xerxes Foundation for the Perpetuation of

Office text

QUALIFY EXAMINATION

This is a document fox testing the segmentation and registra-
tion algorithm on touching and underscore characters.

OPQRSTUVWXYZ
ABCDEFGHIJKLMN-

abcdefghijklmn

AFXnUw u/TMWyAmHN

AfFXnUwu/-- TMliyFmHN

istration problem.

Please fill in the blank "jgf"""' .
f l l ! [I 1 This 1s really a tough segmentation and reg-

Underscore and segmentation test

Figure 14 Sample documents for recognition tests.

sequences containing all possible adjacent character pairs,
plus special stress documents containing heavy underscoring
and difficult segmentation combinations. Thus, the recogni-
tion results may be used to estimate performance on typical
office documents, as well as to detect special problem cases
for the recognition system.

Scanning of the documents
All documents were scanned a t 0.1-mm resolution (250
pixels per inch) and stored on magnetic tape after thresh-
olding. The scanner was a 64-pixel column of silicon diode
sensor elements, swept horizontally across the document. It
was programmed to scan one print line, then step down
one-sixth of an inch (the standard line spacing at 10-pitch) to
scan the next line. This open-ended operation caused the
print lines to creep up in the field of view as the document
was traversed. In practice, a feedback scanning mode would
be used to avoid this. The baseline position estimated during
the process of segmenting a print line would be employed in 396

R. G. CASEY AND C. R. JIH

order to set the scanner parameters to scan the following line.
The lack of such correction was not a serious problem in this
experiment, however. Its effects were minimized by careful
manual alignment of the first print line on each document
scanned. Nevertheless, baseline skews of up to 20 pixels from
start to end of a print line were observed.

As scanned onto magnetic tape, each print line occupied a
record of approximately 10 000 bytes. These records, read
off the tape one at a time, constituted the input to the
segmentation and classification routines.

Segmentation and registration
Individual characters were segmented by the TSSRS meth-
od. The 64-pixel-high window containing a text line also
frequently held portions of the lines above and below. In a
number of cases there was touching contact between two
lines, and there was frequent overlap between adjacent
characters within a line. Nevertheless, segmentation was
generally successful and no patterns were rejected as unseg-
mentable, although several of the eventual recognition errors
were attributable to missegmentation.

Each character pattern was registered so that its bounding
rectangle was centered in the standard 48 x 25 array
presented to the classifier.

Decision tree design
Figure 15 illustrates the pixel statistics gathered from 500
samples of each character. As is typical of printing in a single
font, many pixels are either always black or always white for
the entire sample of a given symbol. However, these pixels
are considered during design as "highly reliable" rather than
"perfectly reliable," in order to assure that a number of
redundant pixels are examined before the pattern is identi-
fied [5]. This is achieved by estimating the probability that a
given pixel will be black a t a future occurrence of the symbol
as (B + l)/(N + 2), where Nis the number of samples (500
in this case) and B is the number of samples for which the
pixel was black.

Three decision trees were designed for the Courier font,
each containing 2000 nodes. The choice of a tree size of 2000
nodes was made as a trade-off among implementational and
performance considerations. A tree node requires four bytes
of data in a typical processor memory. The first two bytes
contain the coordinates of the pixel to be examined. The
second byte pair holds the address of the next node to be
tested. This address plus either two or four bytes is entered if
the pixel is black. A flag bit in the second byte pair
determines whether the skip is two or four bytes. A decision
node is indicated by a flag bit in the first two bytes, and
requires only two bytes. The first byte contains the flag plus a
7-bit entry into an error probability table. The second byte

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY I 983

contains an 8-bit ID. Thus, a tree of N test nodes is stored in
6 N + 2 bytes. The three 2000-node trees designed for the
present experiment require 36 kilobytes of storage with this
implementation.

Classification
Segmented patterns were input in ordinary reading sequence
to the three-tree classifier. The reject parameters, t and D,
for this experiment were ones which had given good results in
past work with typewritten inputs. The unanimous vote
requirement at the first stage resulted in the identification of
about 98% of the characters. No substitution errors were
incurred in this portion of the classifier. The remaining 2% of
the segmented patterns were classified in the second stage
(local-shift-and-retry), where a character was rejected if its
Bayes score was an insufficient amount higher than that of
the next best candidate ID. All reject and substitution errors
occurred in this stage.

The results are tabulated in Tables 1 and 2. Table 1 shows
a breakdown by typewriter. It is here that the effect of a
nonfilm ribbon appears. The corresponding typewriter con-
tributes almost one-half of the total errors. However, the
overall rate of one reject in 21 000 characters and one
substitution per 42 000 characters is still in the acceptable
range for such a system. The breakdown of the performance
data by document group [Table 21 shows even better recogni-
tion accuracy for those documents representative of corre-
spondence typewriting. The error rates on this part of the
data, if sustained in practice, indicate that on average 25
documents containing 2000 characters apiece could be read
without error before a reject had to be identified manually.
Fifty such documents would be read before a substitution
error occurred.

The nonfilm ribbon does not appear to have caused
difficulty on the typical text class of data. Most errors
occurred among the pseudorandom character strings. Under-
scores were not a problem in detection nor in their effects
upon neighboring characters. Sample error patterns are
shown in Fig. 16.

Conclusion
The automatic recognition of typewritten text using decision
tree classifiers has been described. The text is assumed to be
printed a t a fixed pitch; however, it may be in a conventional
font style and may include underscoring.

A segmentation method that locally adjusts segmentation
points predicted from measurement of character pitch has
been shown to work well for typewritten inputs. The method
copes with both touching lines and touching characters, and
it recognizes underscores during operation.

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983

10- 0
11- 0000000000011100 17710
12- 049940 0 .
14- 050999999...999%0 000000000100 000l00

06.950 0330

15- 013335469.*05420 31~44769ES1001607:D
18.9'0 039930

16- 0 O l m 9 S O O ..**.**..*?7%839*9940
oaa.920 069960

17- 079940 $9 *.e.* 999,9999999*.,82
0199710 069960
049361 0699600

18- 069930 059...96447999985369.940
19- 069930 053~9510011998300n5995

069950 OS9360

a0 - 17.9?0 069960
069950 O?B*820 059950 03995 18.020 059460

21- 069930
22-

OP%l 039930 02996 039971 059960

25-
069930 0299~0 omasa 02936 049960 O:WO
Oh9950

24-
25- 000

069930
069930

059560 0398X ~935 "79330 059950
055961 039170 2995

a6- 1540 069930 023961 039820 2995 339710 059360
i9-20 059950

27- 39930 069930
21- 49950 069930

0?9961 039650 2995 C5S98?000017996410
039361 039130 2395 079.%544699.9971

29- 49960
30- 499710 179920

0699JO 0495610 0598300 033% 08*****39999****3?
31- 39.620 28.620 575.33730 049973000399962 3959933993***~950

1599730 0498400 039972 079-*****.9*****92
32- 39.9510 059.710 75...99720049996500399994 OI33331ii59*9640
53- 29*995100001419950
34- 189.99754457999820

7+..*37P 02199930 119.94 0000 075950
157766520 015531 015651

35- 04899.9999999.940
069940

36- 025199599.99730
039440

37- 002467765310
019930

38-
039710

0110

IS- :E??%?????::

0 2 ~ 3 6 0 039aso $936 069940 0511950

Figure 15 Pixel statistics. Each digit represents the relative fre-
quency of black values for the corresponding pixel. Actual percent-
ages obtained from 500 samples of each character were divided by
10, then rounded down. A blank denotes that no black was observed,
an asterisk, no white.

Table 1 Recognition errors listed by typewriter.

Type- No. of No. of Errors
writer documents characters

Rejections Substi-
tutions

13 20,845

9 1
10 2

-
-

Totals 130 208,450 10 5

Table 2 Recognition errors listed by document type.

Document No. of No. of Errors
type documents characters

Rejections Substi-
futions

Random 30 88,110 I 3
character

Office 80 1 13,460 2 1
text

Underscore 20 6,220 1 1

The decision trees are applied in a two-stage scheme that
permits easily identified patterns to be quickly classified on
the basis of a single pass through each tree. Patterns not 397

R. G. CASEY AND C . R. JIH

. . I
.I..

... ,..

.... 0 a,.. ,,#.:

sor). Estimates of the reading rates obtainable with commer-
cial processors range up to several hundred characters per
second. Since the system may be implemented in any com-
puter having an attached scanner, and since its design
requires only a moderate amount of data collection and is
largely automatic, the method appears highly suited either to
personalized applications or to low-cost recognition of fixed-
pitch fonts.

...

Decision=N Decision= f

Re,jects Substitutions
.....

............
..a*

..a.a.

.............
I. I..
I. I..

..I.

..I
11.1
.a.

..I

.......
."...e....

...,.....
Correct

Figure 16 Sample recognized characters. The first choice decision
for the two rejected characters shown was actually correct, but the
patterns were rejected on the basis of low difference between scores
for first and second choices. Noise pixel groupings that caused
incorrect registration are circled.

classified with assurance by the initial stage are shifted to a
number of neighboring positions and reclassified by the
decision trees. A weighted voting scheme makes the final
identification.

The decision trees are designed automatically using statis-
tics gathered from identified sample character patterns. The
design method permits specification of the number of deci-
sion trees to be used and the size of the trees. Typically, a few
hundred examples of each character are scanned for tree
design. However, as few samples as one per character have
been used with surprisingly good results.

Reading accuracy of the segmentation and classification
methods in combination has been tested using conventional
office typing as well as special stress documents constructed
to make recognition more difficult. Error rates on the
conventional text were two rejections and one substitution
per 50 000 inputs, in an experiment involving ten typewrit-
ers.

The OCR system has been developed with the objective of
398 implementing it by a processor (for example, a microproces-

R. G. CASEY AND C. R. JIH

Acknowledgment
The authors owe a debt of gratitude to G. Farmer of IBM,
who initiated the project and gave it fervent support. Kwan
Wong of I B M s Research Division managed the project in its
later stages and is providing a testing ground for it in his
Document Analysis System, currently under development.
Technical assistance was provided a t various stages by R. N.
Ascher, R. Findlay, and J . Kellner. T. Cassada of IBM
Lexington, Kentucky, tested some of the methods reported
here in his own work and supplied useful feedback and ideas.
Finally, G. Nagy, of the University of Nebraska, helped to
formulate the original decision tree approach to classifica-
tion.

Appendix: Bayesian weighting of multiple tree
decisions
Let X = { X , , X,, X m } be m tree decision outcomes, where
X, = (c,, e,) , c, is a class label, and e, is the probability that
this decision is incorrect. Let C,, C,, C, be the set of
possible class labels. We assume that the classes are equi-
probable a priori and that the individual tree outcomes are
statistically independent.

By Bayes' Rule,
m

Letting S , be the logarithm of this expression, we obtain

S, = x log (1 - ej)
J,(M

+ x [log ej + log pr(c,l c,)] + constant, (2)
J&V

where

J , (N) = indexesj such that cj = C,,

J,(N) = indexesj such that c, # C, ,

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983

and the constant indicated represents the logarithm of the
denominator of (l), which does not depend on N .

S , represents the likelihood that a sample belonging to the
Nth class was input. In practice, only the value of N that
maximizes this quantity is sought; Le., only relative values of
S, are of interest, and so the constant may be dropped from
(2).

The probabilities ej are estimated during design of the
decision tree, and so are immediately available. The quantity
Pr(cjl C,) represents the probability that the tree chooses
class j when the input actually belongs to class N . This
quantity may be estimated either from the known distribu-
tion of class probabilities at the terminal nodes or else by
testing the tree on identified samples. A third alternative is
simply to divide the error probability among the contending
classes, which corresponds to an assumption of both equal a
priori probabilities and a uniform distribution of classes a t
the terminal node when an error occurs. In this case
Pr(cjI C,) = 1 / (N - 1). As an expedient, log P r (c j) C,)
may be replaced by an arbitrary constant K , which is then
chosen experimentally to maximize the recognition rate. This
replacement yields the formula given in the text.

References
1 . G . Balm, “An Introduction to Optical Character Reader Consid-

erations,” Pattern Recognition 2, 151 (1970).
2. R. B. Hennis et ai., “The IBM 1975 Optical Page Reader,” (three

papers) IBM J. Res. Develop. 12,346 (1968).
3. C . R. Jih, “Segmentation Method for Fixed Pitch, Machine

Printed Documents,” IBM Tech. Disclosure Bull. 23, 1194
(August 1980).

4. C. R. Jih, “Optical Character Recognition Using Baseline Infor-
mation,” U. S. Patent No. 4,251,799, February 17, 1981.

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983

5. R. G . Casey and G. Nagy, “Decision Tree Design Using a
Probabilistic Model,” IEEE Trans. Info. Theory IT-29, (1983, in
press).

Received December 15, 1982; revised February 24,1983

Richard G. Casey IBM Research Division, 5600 Cottle
Road, Sun Jose, California 95193. Dr. Casey has worked primarily
in pattern recognition, particularly optical character recognition,
since joining IBM in 1963. Until 1970, he carried out projects in this
area at the Thomas J. Watson Research Center in Yorktown
Heights, New York. After transferring to San Jose, he worked
initially on the analysis of data bases, but returned to the character
recognition area in 1975, soon after completing a one-year assign-
ment for IBM in the United Kingdom. Dr. Casey received a B.E.E.
from Manhattan College in 1954 and an M S . and Eng.Sc.D. from
Columbia University, New York, in 1958 and 1965. From 1957 to
1958, he was a teaching assistant at Columbia University, and from
1958 to 1963 he investigated radar data processing techniques at the
Columbia University Electronics Research Laboratories. While on
leave of absence from IBM in 1969, he taught at the University of
Florida.

Chentung Robert Jih IBM General Products Division, 5600
Cottle Road, Sun Jose, California 95193. Dr. Jih is a development
engineer, responsible for developing advanced suspension technolo-
gies for future DASD files. In 1974, he joined IBM in the Advanced
Technology Department of the Office Products Division in San Jose
as a staff engineer, developing acoustic scanners. From 1976 to 1979,
he was in charge of OCR technology development for office applica-
tions, working jointly with the IBM Research Division, San Jose. In
1980 and 1981, Dr. Jih was engaged in evaluating and developing
speech recognition technologies for office system applications with
the IBM Thomas J. Watson Research Center in Yorktown Heights,
New York. In 1981, he transferred to his present position in the
General Products Division, San Jose. Dr. Jih received a B.S. in
mechanical engineering from the National Taiwan University in
1968 and an M S . and a Ph.D. in mechanical engineering from the
University of California at Berkeley in 1971 and 1974, respectively.
He is a member of Sigma Xi.

R. G . (

399

>ASEY AND C. R. JIH

