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A Processor-Based OCR System 

A low-cost optical character  recognition (OCR) system can be realized by  means  of a document scanner connected to  a CPU 
through  an interface. The interface performs  elementary  image processing functions,  such  as  noisefiltering and thresholding  of 
the video image from  the scanner. The processor receives a  binary image  of  the  document,  formats  the  image  into  individual 
character patterns, and  classijies the  patterns one-by-one. A CPU implementation  is  highly jexible  and  avoids much  of  the 
development  and manufacturing  costs f o r  special-purpose, parallel circuitry typically used in commercial OCR. A 
processor-based recognition system has  been  investigated f o r  reading documents  printed  in  fixed-pitch conventional type  fonts, 
such  as occur in  routine  ofice  typing.  Novel,  eficient  methods  for  tracking a print line,  resolving it  into  individual character 
patterns, detecting  underscores,  and eliminating noise have been devised. A previously developed  classification  technique, 
based on decision trees,  has been extended in order to  improve reading  accuracy in  an environment of considerable  character 
variation, including  the  possibility  that  documents  in  the  same  font  style  may be produced using quite different print 
technologies. The  system  has been tested on typical  ofice  documents, and also on artijicial stress  documents, obtained f rom a 
variety of typewriters. 

Introduction 
Optical  character recognition (OCR)  can  be  implemented  at 
low cost by means of a document  scanner connected to a 
microprocessor through  an  interface.  The  interface  performs 
elementary  image processing  functions, such  as thresholding 
of the video signal from  the  scanner. In addition,  it synchro- 
nizes operation of the  scanner  and processor. The processor 
receives a binary  image of the  printed  information,  formats 
the  image  into individual character  patterns,  and classifies 
the  patterns one-by-one. 

Such  an  implementation avoids  much of the development 
and  manufacturing costs  for  special-purpose,  parallel cir- 
cuitry often  used  in  conventional OCR systems [ 11. It also 
permits inclusion of OCR in digital  image  systems  that 
already have scanners  and  CPU’s a t  low incremental cost. 
Certain office copiers and facsimile units  fall  into  this 
category, for example. 

This  paper describes  a CPU-based system for  the  reading 
of documents  printed in  conventional type  fonts with  uniform 
character spacing.  Fixed-pitch printing is typical, for  exam- 
ple, of office typing. 

Recognition of conventional (as opposed to stylized) print- 
ing by a processor-based system requires  the development of 
highly efficient segmentation  and classification algorithms. 
The system  described here  segments a majority of characters 
from a scanned  print line by means of measurements of pitch 
and baseline parameters.  This  information is also used as a 
reference for  more complex segmentation  methods  that  are 
applied  to horizontally or vertically touching images. The 
overall approach is  called a two-stage segmentation  and 
registration  scheme  (TSSRS). 

Classification is accomplished by inputting  the  character 
patterns  to a number of decision trees designed  for the 
particular  font being read.  Each decision tree is used to 
examine a subset of the  character  picture  elements  and  to 
produce  both a classification and a measure of the reliability 
of that classification. A pattern  may  either be identified 
immediately, if the overall confidence level is high, or else 
submitted  to a second stage in which it is shifted  locally, 
reclassified by the decision trees,  and identified on the basis 
of a  Bayesian decision algorithm using the various  reliability 
measures  furnished by the decision trees. 
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Recognition experiments were conducted using conven- 
tional typewritten  documents  as well as  stress  documents 
constructed  to pose difficulties in segmentation. 

Extension of the system into more  complex  environments 
is also possible. 

System  description 
A typical OCR system carries  out  four processing steps, i.e., 
scanning,  segmentation,  registration,  and recognition. The 
system contains corresponding compartments of hardware, 
as  illustrated in Fig. 1, a block diagram of the  entire  OCR 
system. The blocks of this  system  perform the following 
functions: 

Scanning and  preprocessing 

Sensor 
An optical  scanner is needed as  the  means for obtaining  bit 
images of each character  as  input  to  the  OCR system. The 
actual  scanner device could be a  self-scanned  photodiode 
array, a “bucket  brigade” device, a charge coupled device, or 
some other  type of scanner. Also  required are a  source of 
illumination and  an optical  system to image  the  characters 
on the  scanner. 

Thresholding circuit 
The  output of the  scanner is an  analog signal  corresponding 
to  the  amount of light reflected from  each pixel on the source 
document. A thresholding  circuit  determines  whether a pixel 
is to  be considered  black or white. A simple fixed threshold is 
adequate for high-quality  documents on  white paper, but a 
dynamic thresholding scheme is employed in most  advanced 
OCR systems which is capable of generating  reliable  binary 
images  despite  variations in document  print  quality.  Reliable 
and noise-free binary  character  images  facilitate  segmenta- 
tion, registration,  and recognition. 

Buffer 
Depending  on the  orientation  and size of the  scanner, some 
amount of image buffering is needed to  store a number of 
character images during  the  segmentation,  registration,  and 
recognition  steps. The buffer is typically  a random access 
read-write memory. 

Segmentation and registration  logic 
Segmentation  and registration are typically  performed in 
combination.  The associated logic finds the lines on the page, 
segments  the  character images (breaks  the  scanned  image 
into  separate,  distinct images of each  character), registers 
the  character  images (provides  proper positional information 
about  each  image for use by the recognition  logic), and 
supplies the  segmented  and registered images  to  the recogni- 
tion logic. 
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Figure 1 Components of an OCR system. 

Recognition  logic 

ClassiJication 
After  the  character  images have been properly  segmented 
and  registered,  the recognition logic attempts  to classify each 
image  into one of the predefined  symbol  classes  (e.g., an 
“A,” “B,” etc.). For  high-quality images  from  machine- 
printed office documents, a  recognition scheme based on a 
binary decision tree  appears  to provide acceptable per- 
formance. Details of this recognition scheme  are described 
later in the  paper.  The recognition logic may identify an 
image  as belonging to  one of the  character classes, or it may 
reject the  image  as unrecognizable. 

Error recovery 
Some  means  must be provided to  handle cases  where the 
recognition logic is unable to make a decision (a  “reject 
error”)  or  where  the logic makes the wrong decision (a 
“substitution  error”). 

Rejected  patterns  can be dealt with by allowing the 
operator  to  enter  the  correct information or by storing  the 
entire  character  image with proper registration.  Substitution 
errors  can be corrected in a  postprocessing step which tests 
characters in context. 

Output to  system 
Once  the  characters have been properly classified, the infor- 
mation is ready for use in the system. For example, in a 
simple revision typing application,  the recognized text  may 
be  output on a Selectric  typewriter. If the  document  contains 
character classes other  than those  available on the  particular 
Selectric  type  element being  used for printing  the  majority of 
the classes, the system can  stop  printing  and signal the 
operator  to  change  type  elements  and  can identify the proper 
type  element  number  to use. 387 
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Figure 2 Flowchart of TSSRS algorithm. 

Segmentation 
Segmentation is a necessary and crucial step for OCR. Any 
error made in segmentation generally cannot be corrected in 
the following registration and recognition  processes.  In other 
words, segmentation errors directly affect the overall recog- 
nition performance. 

In the past, some OCR systems have  been  designed to 
detect a line of characters by means of a special mark at the 
beginning of the line. A simple segmentation algorithm was 
then used  with special recognition  logic (as in the IBM 1287 
optical reader). In some applications, overly  wide patterns 
were  simply rejected by the recognition  logic so that no 
segmentation of touching characters was required (as in the 
IBM 3886 machine). More sophisticated OCR machines 
have  been built to recognize omni-font, mixed-pitch docu- 
ments with variable line spacing [2]. For this type of 
machine, a sophisticated line finding method is required 
before a segmentation algorithm can be applied. 

In an office environment, most documents are currently 
machine-printed (e.g., typewritten) originals or electro- 

graphically generated copies containing a single font and a 
fixed character pitch. The documents usually  have relatively 
good print quality, and the text is arranged within an 
inherent systematic grid pattern defined by the fixed pitch 
and line spacing. 

Naturally,  the systematic grid pattern is an advantageous 
feature for character segmentation and registration. How- 
ever, it may  be distorted due to misalignment of the printing 
mechanism or because of nonuniform  magnification  in a 
copying  process. In addition to the regular segmentation 
problems of touching, broken, and skewed character images, 
the presence of underscores and subscripts or superscripts on 
office documents makes segmentation more  difficult.  If the 
recognition  logic is sensitive to character registration, the 
segmentation becomes crucial and must be accurate. Under 
this circumstance, it is clear that  an estimated fixed grid 
pattern is inadequate for the direct segmentation of a full 
page of characters; however, it can provide a useful refer- 
ence. Moreover, for  cost reasons, the  character segmentation 
and registration for OCR office applications must be simple 
enough so that they can be implemented in a microprocessor 
or hard-wired logic  with reasonable speed and accuracy. 
With these problems and requirements in  mind, the study of 
the segmentation and registration of  office documents 
becomes a challenging problem. 

TSSRS segmentation method 
A two-stage segmentation and registration scheme (TSSRS) 
was  developed  for this application [3,4]. Basically, the 
scheme involves  use of the inherent document pitch and 
measured baseline information, defined  in the following 
sections, in a flexible manner to perform the first-stage 
segmentation. (This takes care of all the nontouching charac- 
ters.) Second, special segmentation routines are applied to 
the boundary region of touching images. The segmentation 
region  is determined by the pitch and baseline.  Effective and 
precise character segmentation and registration can be 
achieved  using this two-stage scheme. The flow diagram of 
the TSSRS algorithm is  shown  in  Fig. 2. 

In this paper, horizontal segmentation means separation of 
the horizontal neighboring characters printed on one line. 
Similarly, vertical segmentation means the separation of a 
character from any images associated with the previous or 
the following print line. A column of  pixels  in the scanned 
image of a print line  is called a vertical scan (i.e., Z-Z  in  Fig. 
3). After the  characters have  been segmented and registered, 
each character image has a standard  raster, a two-dimen- 
sional dot matrix. The size of the raster is  chosen  in accor- 
dance with the pitch and the scanning resolution. For exam- 
ple,  in the experiments reported here, a character array 48 
rows  by 25 columns was  used for 10-pitch documents 
scanned at 0.1-mm resolution. 
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Baseline and pitch estimation 
In a given font design, each  character  has a specific vertical 
position relative to  an  imaginary  horizontal  line called the 
baseline. For example, the baseline of an  uppercase X is the 
bottom  horizontal “line” on which the  character  stands  (Fig. 
4). However, some  characters,  such  as  the lowercase j,  have  a 
descender below the baseline. 

In standard  printing or typing, the baselines of characters 
on one line are  made  to be collinear. Ignoring  the occasional 
character with  a descender,  one  can easily  visualize  a  “line” 
which fits to  the  bottom of most characters on the  same  print 
line. Such a “line” actually is the  averaged baseline  for the 
entire  sequence of characters. 

In  order  to  estimate  the baseline,  a  series of horizontal 
density  histograms  representing consecutive scans of the 
same  length across the  scanned  line of characters is gener- 
ated.  Each  frame  contains a plot of the  number of picture 
elements received by the  scanner  as a function of character 
or line height. The peak in the lower portion of the  histogram 
is used as  the  predicted location of the baseline. By averaging 
the  histograms for the  entire line, a baseline for  the  complete 
line can be predicted.  The skew is given as  the difference 
between  baselines of consecutive frames on the  same  scan 
line. 

Detailed baseline  detection is initiated by means of a 
“search window” composed of a few picture  elements  adja- 
cent  to  the expected  location of the baseline. As  the  scanning 
proceeds, the position of the lowest black  bit in the  search 
window is recorded  for each  vertical  scan.  The  average of the 
lowest black  bit positions over a number of scans is consid- 
ered  to  be  the local baseline. 

Once  the baseline has been calculated,  the  print line is 
separated  from neighboring  lines  using the known font 
dimensions. In addition, underscores can be detected, since 
their  distance below the baseline is determined. A band of 
sufficient height to  contain most of the  image  data for the 
line is defined along  the baseline. The  image  data in this 
band  are projected onto  the baseline (i.e., the  black pixels in 
each column are  counted).  The pitch is then  estimated,  after 
eliminating  atypical segments, by calculating  the  average 
center-to-center  distance of adjacent  segments. 

The  scanning skew is the inclination of the  measured 
baseline of the  actual  scanned  image  from  an  imaginary 
horizontal  reference defined by the  scanning mechanism. For 
example, in Fig. 3, the inclination of the  measured baseline 
X-X with respect to  the reference Y-Y is considered as  the 
scanning skew. The baseline X-X  can  be  approximately 
detected by the  algorithm given above implemented in 
software. Based on  the  measurement,  any  systematic line 

Z 
X - X: Measured  baseline 

Z - Z: Vertical  scan 
Y - Y: Horizontal  reference 

Figure 3 Sample scanned print line. 
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Figure 4 Character baseline. 

Baselines 
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Figure 5 Document grid defined by pitch and baseline. 

skew can  be  detected  and  then  corrected by proper software 
preprocessing or by manual  realignment of the  document 
against  some horizontal reference.  Normally,  such a  system- 
atic skew detection procedure  may only be applied to  the first 
line of a document.  Afterwards,  any minor line skew (possi- 
bly nonlinear) or vertical offset of  a character will be 
detected  and  corrected by TSSRS. 

Horizontal segmentation 
Since  there is an  inherent grid pattern  (Fig. 5) determined by 
the pitch and  the baseline on a  single-font,  fixed-pitch, 
machine-printed  document,  the  segmentation  may seem to 
be simply  accomplished by following the  grid.  This  approach 
is called  pitch segmentation. 

In  fact,  the rigid grid pattern is not sufficient to provide 
adequate  segmentation.  The  printing  mechanism  can easily 
produce  both systematic  and local  positional  errors. Further 
distortion may  be  caused by document  aging  and by copying 389 
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Figure 6 Problems in horizontal segmentation: (a) connected 
characters;  (b) overhanging characters; and (c) zero overlap. 

processes. Touching  characters on  a document  may result 
from poor print  quality or from  characters which are wider 
than  the  standard  pitch.  At a typical resolution of 0.1 mm, 
pitch segmentation  can  result in errors of up  to  three  or  four 
pixels in  positioning the  character  boundary.  The classifier is 
then  required  to  identify  partial  character  patterns  or  pattern 
arrays  containing portions of several characters.  Such  pat- 
terns have  a much  higher  error  rate  than well-segmented 
characters.  In  the following paragraphs we discuss  a  method 
for adjusting  the  pattern  boundaries  obtained by grid  estima- 
tion in order  to  accommodate local variations in positioning. 

Touching  character segmentation 
A region in the  image buffer consisting of three or four 
vertical scans on each  side of a  pitch grid line is analyzed by 
TSSRS in order  to  determine  the best segmentation  bounda- 
ry. In  an  initial  check,  any  blank  scan found in this region 
determines a valid segmentation point.  If no blank  scan is 
found, then  the two neighboring characters  are considered to 
be touching. Three types of touching  may exist  in the 
segmentation region (see  Fig. 6 ) :  (a) touching with connect- 
ing black  strokes; (b) overhanging; and  (c) barely  touching 
(overhanging with zero  overlap scan). 

Type  (a)  contact is the  one most  often encountered when 
two adjacent wide characters touch at  the serifs. Proper 
segmentation  can often be  carried  out simply by finding the 
position where the pixel density of vertical  scans is minimum. 
This is called the  minimum  density  search method.  For 
relationship  (c),  an  AND of each vertical scan  with the  one 
to  its  left yields an  all-zero column  where the "touching" 
occurs.  For type  (b) (overhanging characters),  there  are 
several ways to  do  the Segmentation. The  one used by TSSRS 
is considered to be the simplest and most straightforward. 
First,  the  segmentation region is divided into several  horizon- 
tal zones, each eight pixels in height (see Fig. 7). Within  each 
zone,  a set of contiguous vertical  blank  scans is sought. The 
leftmost and  rightmost of these blank  scans  are registered as 
"L" and "R," respectively. 

Sometimes only one such  scan may be found. In  this case, 
"L" and "R" overlap. If no blank  scan exists in the subdi- 
vided zone, attempts  to  segment  are  abandoned  and  the pitch 
grid is used as a default  boundary. 

After  determining  all  the L's and R's in the  segmentation 
region, the  rightmost L and  the leftmost  R are considered the 
valid segmentation points for  the  left  and  the  right  charac- 
ters, respectively. Since  the  segmentation is made  at  the  edge 
of a character,  there is no registration problem, even if part 
of the  image of an  adjacent  character lies in the  character 
raster.  An overhanging piece of image  from a  neighboring 
character  can be masked out using boundary information 
obtained  from  the zones. If this method  fails to find L and R 
for  some  zone, the  reference grid position is used for  segmen- 
tation. 

The above  method is more complicated than  type  (a)  and 
type  (c)  segmentations. However, an overhanging case sel- 
dom occurs on Selectric-typed 10-pitch Courier  72 original 
documents.  One  may expect such touching and overhanging 
characters  to occur more  frequently on 12-pitch documents. 

Vertical segmentation 
Some  OCR systems  have been restricted  to  operate on a 
single print line, on multiple lines with wide line spacing,  and 



sometimes even with timing  marks. In such  cases  the prob- 
lem of vertical  segmentation  can  be ignored. However, in 
office applications, the presence of lowercase characters, 
symbols,  underscores, and  subscripts or superscripts on a 
standard six-line-per-inch printed  document  creates  the pos- 
sibility that  characters  may  touch  the ones  above or below, or 
on a single  line  lowercase characters with  long  descenders 
may  touch underscores (Fig. 8). Vertical  segmentation is 
required in order  to  keep a character  image  free of pattern 
components  from  adjacent lines or from its own underscore. 

Baseline information is needed  in order  to assist in vertical 
segmentation  and  to define the proper image buffer for 
horizontal  segmentation. Underscores can  be  detected  and 
masked out  from  the  segmented  character  image if the 
baseline position is known. 

Besides providing  line skew information,  the  current base- 
line  location, together with knowledge of the  line  spacing, 
can be used to predict  the location of the next  line. The 
predicted  baseline  location  is accurately  updated by TSSRS 
based  on the  actual  measurement.  Through  this  adaptive 
procedure, any  cumulative  error in line  spacing  can  be 
compensated. This is a very important  feature for full  page 
segmentation. 

Broken characters or characters with legitimate  separated 
components, like i, j, ;, etc., usually present  some problems in 
segmentation. For omni-font application, in an uncontrolled 
environment, one  has  to  detect  the  separate pieces (cells) and 
assure  that  they  are noise-free  before  combining them  into a 
character image. Fortunately, for  single-font,  fixed-pitch, 
machine-printed  documents,  the baseline and  the  reference 
grid coordinates, as used in TSSRS,  form a net  that  more or 
less frames  the  character, so that no further recombination is 
required. Thus,  TSSRS handles  broken characters with little 
extra effort. This  ability is even more  important when one is 
dealing with electrophotographic copies of the  original docu- 
ment,  on which more broken characters  emerge. 

In  practice,  TSSRS  segments a t  least 90% of the  scanned 
character  images  directly based on the  reference  coordinates 
defined by the pitch and  the baseline information.  The 
remaining 10% are mostly touching  characters.  The refer- 
ence  coordinates  are used to define the confined segmenta- 
tion region so that  the method  described  above can  be applied 
locally. 

Decision tree classification 
In a decision process  a number of actions  are performed  in 
order  to  gain  information needed to choose among  alterna- 
tives. If the process is sequential, then only one action is 
performed at  a  time, and this action is selected  on the basis of 
the results of previous  actions.  Classification of pattern 
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Figure 7 Segmentation of overhanging characters. 
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Figure 8 Vertically touching character  patterns. 

shapes  into a set of class identifiers, as  done in OCR, is an 
example of a decision process. The typical commercial OCR 
machine is nonsequential, however, employing a number of 
subunits  operating in parallel to  extract information from 
each  input  pattern.  The  same  set of actions is  performed on 
every pattern, regardless of its  shape.  Some of the  subunits 
may a t  times supply useless or redundant  information,  but 
this has no  effect on performance  as long as the  ensemble 
provides sufficiently reliable  classification. 39 1 
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Figure 9 Decision tree. Interior  nodes,  shown as circles, indicate 
which  pixel  is  being tested. Leaves are shown as squares,  with the 
star  indicating no decision (reject). 

On the  other  hand, if classification is to  be  implemented by 
a  processor, then  operations  that  require  time,  but  fail  to 
assist in identifying an  input,  reduce  throughput. A sequen- 
tial mode, in which each  action is selected to  contribute 
maximal  information  to  the overall  process,  becomes much 
more  attractive. 

It is such a sequential  procedure  that  has been developed 
for office OCR. The ele*entary actions, or “tests,” of which 
the process is composed  consist of the  examination of the 
colors of individual pixels. The  procedure envisioned, there- 
fore, is one in which a sequence of pixels is examined, with 
the location of each  succeeding pixel determined on the basis 
of the colors  observed  in the pixels prkviously examined.  The 
process terminates when enough pixels have  been examined 
to  permit  reliable identification of the  input  pattern. 

The  procedure  just described can  be  represented  graphi- 
cally by a binary decision tree  (Fig. 9). It  contains a unique 
starting node, the root, which has no incoming branches,  and 
a set of terminal nodes, which  have no outgoing  branches. 
The  remaining  interior nodes each have  a single incoming 
branch  and two outgoing  branches. 

Each  terminal node contains a class identifier, or ID, while 
each  nonterminal node in the  tree  represents a pixel location. 
An outgoing branch is labeled with a white or black color 
value. The pixel specified by the root  node  is examined first, 
and  the  branch  corresponding  to  its observed  color is followed 
to  arrive  at a  successor  node,  which specifies the next pixel to 

be  examined,  and so on. The  path  thus  traced  through  the 
tree  depends on the  makeup of the  input  pattern.  The 
path-following process ends when a terminal node is reached, 
whereupon the  input is assigned the  ID found at  that node. 

The  tree is structured  and  the node parameters assigned so 
that only pixels useful for identifying the  pattern in question 
are  evaluated  as a path is traced  from  the root  node to a 
terminal node. Although  the  total  tree specifies many pixels, 
and is therefore  capable of recognizing  a variety of inputs, 
only a small  subset of these pixels need be  examined in order 
to  identify a particular  pattern. 

In principle,  a tree  that  sequentially examines the ele- 
ments of the  character  array  can  be  made  to recognize  with 
accuracy  as  great  as  that  achievable by any classifier. 
However,  a truly  optimal decision tree  may  require  an 
immense  amount of storage.  The  techniques developed in this 
investigation are  directed  toward  obtaining high perform- 
ance with only moderate  storage  requirements,  as discussed 
in the next  section. 

A  previous paper  described a procedure for the design of a 
decision tree on the  character pixels using  a  probabilistic 
model of the  pattern  variations within each  character  class 
[SI. The method  seeks to  maximize  the  information  gained 
by a tree of specified size. By means of this  technique  the 
designer can produce  a classifier to occupy  a prespecified 
amount of storage.  The basic tree design capability is taken 
as a starting point in the following discussion of classification 
using  a number of decision trees. 

Multiple decision trees 
Although in  principle a decision tree  can  be  constructed  to 
realize  any desired  classification logic, in practice  the imple- 
mentation of a sufficiently accurate  tree  may  call for an 
excessive amount of storage  space.  Figure 10 shows curves of 
estimated  and  actual  error  rate versus tree size  in an experi- 
ment  where pixel statistics were obtained  from  scanned 
typewritten  characters.  Note  that  the curves level off after a 
few hundred nodes. For  example, increasing the  tree size 
from 850 to 1800 nodes did not decrease  the  experimental 
error  rate  at  all.  The reason  for this behavior is the exponen- 
tial  growth  property of such trees. The  exact  rate of increase 
in path  length (i.e., the  number of pixels examined before a 
decision is made)  as  the  tree grows larger  depends on the 
degree of imbalance of the  tree. However, in experiments, 
doubling  tree size  resulted  in an  increase in average  path 
length in the  tree of slightly more  than a single pixel. 
Improving  a large  tree by appending pixels to  each  path is 
therefore very costly. 

An  alternative  approach  to  error  rate  reduction is to design 
more than  one  tree  and  to  combine decisions obtained  from 



all of them.  Empirically it  was  found that  three 1000-node 
trees yield an  average  total  path  length of 30-40 pixels, but 
occupy no more storage  than a  single tree  averaging 12-15 
pixels per path.  Since its  classification is based on an 
examination of more pixels, a multiple-tree  scheme offers 
hope for improving the trade-off of accuracy versus storage, 
at  the expense of additional  time  spent  examining pixels. 

Two problems must be dealt with in order  to classify using 
multiple  trees: 

1. The  tree design procedure  must be modified to  assure  that 
each  tree yields independent  information  about  the iden- 
tity of the  input  pattern. 

2. A rule  must be devised to specify classifier response when 
more than  one decision result is available. 

A simple extension has been made in order  to achieve the 
objective of tree independence. The  tree design program is 
adjusted  to select  a  different  root  node pixel for each  tree 
produced. The probability distribution of the  character 
classes  for the two  successor nodes to  the root  varies with the 
choice of the root pixel. Since  the  information value of the 
pixels considered  for  assignment to  the successor nodes is a 
function of this probability distribution,  the new root node 
produces a different  choice  for the successor pixels. This 
effect propagates  to lower levels of the  tree  as well. Although 
the method  does  not guarantee  that  each  tree will examine a 
completely  different  set of pixels in  response to a given input 
pattern, in tests  the frequency of repeated pixels has been less 
than 25%. Figure 1 1  shows the pixels examined for the 
character 4 in sample  trees designed by the above method. In 
general, we observe that not only are different pixels being 
tested,  but  also different areas of the  pattern.  The union of 
the pixels examined  constitutes a  broad sampling of the 
pattern  area. 

First-stage classi'cation 
When several trees  are used for  recognition of an  input 
pattern,  each  tree provides both  a decision as  to  the  identity 
of the  input  and  an  estimate of the probability of error for 
that decision. This information is used in an  initial  attempt  to 
classify the  pattern. If each decision tree yields the  same ID, 
and if each  estimated  error  rate is below a prespecified 
threshold t ,  then  the  input  character is labeled  with the 
proposed ID.  Otherwise, no decision is made  at  this  stage, 
and identification of the  input  character is deferred  to 
another  stage of classification, as described below. Thus,  any 
pattern  that gives rise to conflicting ID codes, or that yields 
too high an  error  estimate, is deferred. 

Parameter t ,  the threshold on estimated  error probability, 
can  be used to  control  the  rate of acceptances versus defer- 
rals. Using  typewritten  characters  as  input  to  three decision 
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rce w e  

Figure IO Actual  and  estimated  error  rate  as  a  function of the 
number of nodes in the  tree.  The  estimated  error for each of seven 
trees is computed  as  part of the design process on the  basis of the 
pixel probabilities in the  design  sample.  New  samples  were used to 
determine  the  actual  classification  error for each  tree. 
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Figure 11 Pixels  examined in recognizing  a  sample  character, 
where B indicates that a  black pixel was observed and W a  white 
one. 

trees  and a 0.5% threshold  value, the  rate of deferrals  has 
ranged  from 2% to 10%. This  procedure yielded an extremely 
low error  rate in the more than 90% of the  input  that is 
identified at  this  stage.  Indeed, in a  recognition test using 
over 200 000 inputs  (to be described later), no substitution 
errors were made  at  this  stage.  The unanimous-vote, low- 
error-estimate  test is a  screening  device that reliably  classi- 
fies easily identified patterns, while passing difficult samples 
along to a more complex classification procedure. 893 
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Figure 12 Multiple-tree decisions. (a) Input  pattern. This letter  is 
rather  thinner  than  characters  used  for design, which  results  not  only 
in  a  different  pixel  configuration,  but also in a slight misregistration. 
(b) Decisions over shifts of the input. The center element in each 
matrix contains the decision  for the unshifted  input.  Other decisions 
are obtained  by shifting the input one pixel in the direction  indicated 
by location  from the center. The number  beneath each decision  is the 
estimated probability of error  for the respective decision, multiplied 
by 10 000. 

In  experiments  with  multiple classifiers we have consis- 
tently used three decision trees. It is left  to  future investiga- 
tions to  establish  the trade-offs among  the  number of trees, 
the  speed of operation,  and  the recognition accuracy. If more 
decision trees  were used, then  the  unanimous vote rule would 
need to be modified, perhaps  along  the lines of the Bayesian 
procedure  to  be described later. 

Second-stage shift-and-retry 
Figure  12(a) shows a pattern  that failed the  unanimous vote 
requirement in a test using three decision trees. If the  pattern 
is translated by a small  amount  and reclassified by the  same 
trees,  the  resulting decisions convey additional  information 
about  the  identity of the  input  character.  Figure  12(b) shows 
the  results when this  shift-and-retry is done over the  eight 
possible one-pixel translations of the  pattern  from  its  initial 
box-registered position. With  the inclusion of the classifier 
outputs for the unshifted pattern,  there  are 27 different 
decision results, which are  arranged  as a collection of 3 x 3 
matrices in  Fig. 12(b).  The  estimated  error probability, 
indicating  the “confidence” associated with a  decision, is also 
exhibited. 

The figure  shows that when the  pattern is shifted by small 
amounts  and reclassified, a number of correct decisions  is 
produced by each  tree.  This  happens because inputs differ 
slightly from design samples in registration position or in 
local pixel configuration. A decision rule  can  be  implemented 
to assess the various  outcomes and  to  identify  the  input by 
means of a weighted  voting  scheme. 

A statistical decision rule using multiple classifications  is 
derived  in the Appendix. It is assumed  that  the collection of 
elementary  tree decisions  is mutually  independent  and  that 
the  estimated  error probabilities are  accurate  representations 
of the  true  error probabilities. A further simplification  in the 
rule is obtained by assuming  that when an  incorrect  ID is 
produced by a tree,  it is equally likely to belong to  any of the 
symbol classes. Without  this  last  assumption  it would be 
necessary to  store a large  matrix of confusion  probabilities 
for  each  tree.  We have experimented with intermediate 
schemes, such  as  storing  the most  likely  confusion ID along 
with the first  choice ID  at  each leaf node of a decision tree; 
however, the  resulting  performance improvement  does not 
seem  to  justify  the  extra cost  in storage  and CPU time. 

The Bayesian decision rule is one  that minimizes the 
probability of classification error  under  the  assumptions 
made.  It is implemented by computing a score for each  ID 
that  occurs in the list of tree decisions. The score for  the  Nth 
ID is 

sN x log [ 1  - %(AI + x [log P A j )  + K I ,  
j d , ( N )   j d 2 ( N )  

where 

ZI(N) is the index  set for decisions  favoring the  Nth ID, 
Z,(N) is the index set  for decisions  favoring  a  different ID, 
P,( j )  is the  estimated  error probability for  the j t h  deci- 

sion, and 
K is the log of the probability that  the j t h  decision, if 

incorrect,  actually was  in  response to a pattern 
belonging to  the  Nth class. 

The  quantity K,  according  to  our  assumptions, should  have 
the  value [ 1/N, - 1 1 ,  where N, is the  total  number of 
symbols  in the  alphabet  to  be recognized. In  practice, how- 
ever, K is treated  as a parameter.  Its effect is to assign the log 
of a fixed portion of the j t h  error probability to  the  score  for 
class N if the j th  decision is unequal  to N.  For  example, if K 
= 0, then  the  entire  error probability for  the j t h  decision is 
assigned to  the score for  class N.  In  experiments,  the 
probability values  were  normalized to  one million, and  the 
logarithms were computed  to  the  base two, so that  each  term 
in the score calculation is a number less than 20. Further- 



more, the values of log P, and log (1 - P,) were  rounded to 
the  nearest  integer  and stored as a table.  Then  it is necessary 
merely to place in each leaf of the decision tree  an index to 
the  appropriate row of the  table. 

The scores S, are used either  to  identify  the  input or to 
reject  it. The  input is rejected if the two largest scores  differ 
by an  amount less than a prespecified reject tolerance, D. 
Otherwise  the  ID having the  largest score is chosen. The 
reject tolerance provides the  system with a degree of control 
over the  substitution  rate.  Increasing D, Le., raising  the 
separation required  between the highest  score and  the  near- 
est contending score,  increases confidence in the decisions 
that  are  actually  made,  at  the cost of rejecting  additional 
inputs. 

The decision rule described  above has been effective on 
good-quality inputs. However, where  some of the  patterns 
input  to  the classifier have been mutilated by the  segmenter, 
by poor printing, or by other causes, it  can  err by assigning 
IDS  to  such  patterns instead of rejecting  them,  as would be 
desirable. The  errors  are  due in part  to  the  assumption of 
independence among  the decisions made by a given tree  as 
the  input  pattern is shifted. An erroneous decision will 
frequently be repeated,  and so a mutilated  pattern  can give 
rise to a set of scores that clearly  favor  one ID. 

In  order  to  help  reject  mutilated  characters without  affect- 
ing the recognition of undeformed characters, a  single  condi- 
tion has been added  to  the scoring rule  just described. An ID 
that would be  output  under  the preceding rule is  rejected by 
the classifier if one or more of the decision trees fails to list 
the  ID  among  its outcomes. 

The  error  rate improvement offered by the  multiple-tree, 
two-stage scheme is illustrated by an  experiment  (see Fig. 
13). Using a  well-segmented character  set,  the recognition 
accuracy of a  single decision tree of 3000 nodes was com- 
pared with that of three  trees,  each  containing 1000 nodes. 
The  reject  criterion for the single tree is a  threshold test on 
the  estimated  error probability.  For any given rejection rate, 
the two-stage procedure using multiple  trees yielded error 
rates lower by a factor of 5 or  more,  although both classifiers 
require  the  same  total  storage (3000 nodes each).  About 3% 
of the  inputs were deferred by the  multiple-tree  method, and 
since each  deferred  input is subjected  to 24 additional  tree 
decisions, the  time required  for the  multiple-tree  test is 
slightly more  than  three  times  the  time  required  for classifi- 
cation by the single large  tree. 

Experiments 

tnput documents 
The techniques  described  for segmenting  and classifying 
printed characters have been tested on documents compris- 
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Rejection  percentage 

Figure 13 Multiple-tree vs single-tree recognition. In the  recogni- 
tion  experiment, 55 000 typewritten  samples from five typewriters 
were tested. Characters  were  well  spaced  to eliminate segmentation 
errors.  Each  classifier  was allotted the same amount of storage. 
(Storage is proportional to the number of nodes  in the tree.) 

ing  more than 250 000 typewritten  characters in Courier 
10-pitch font.  The  documents  (Fig. 14) were  printed by ten 
different IBM Selectric  typewriters  from  master  magnetic 
cards, in order  to avoid typographical  errors.  In some  cases 
new print  elements were provided, but  where a type ball 
having the required symbol set was already in operation, it 
was  used for the  experiment.  New  carbon film ribbons  were 
provided, although in one  case a  different  ribbon  was inad- 
vertently used, yielding patterns of somewhat  inferior quality 
in  comparison  with the  other typewriters. 

The  documents  may be categorized into  three groups. One 
set  contained repetitive  sequences of characters  separated by 
spaces, assuring ideal segmentation  after scanning. These 
“alphabets,”  as printed by  five  of the  typewriters  (randomly 
chosen from  among  the  ten), provided approximately 500 
samples of each symbol for  use in designing the decision tree 
classifier. Since “period” and  “comma”  are  repeated on the 
88-symbol Courier  element,  and since  “underscore” is recog- 
nized during  the  segmentation process, the  total symbol set 
consisted of 85 character types. 

The  remaining two document groups  were used for test 
purposes. One  group  represents typical office correspondence 
and  memoranda, whereas the  other consists of character 395 
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Random 

Mr. Zarcos Querada 
64-530 Agna  Viva  Drive 
Jinja,  Uganda 

Dear Mr. Quezada: 

April 1, 1977 

Thermopylae  (of  which you are a charter member) is  epon- 
soring a "Youth  Night"  at  the A 6 B Lodge  in  Windsor, 
Ontario on September 2nd-, 1978. The  theme of this 
conclave  is  the  Reign  of  Cyrus  the  GreatI551-529BC1. 

The  King  xerxes  Foundation  for  the  Perpetuation  of 

Office text 

QUALIFY  EXAMINATION 

This is a document  fox  testing  the  segmentation  and  registra- 
tion  algorithm on touching  and  underscore  characters. 

OPQRSTUVWXYZ 
ABCDEFGHIJKLMN- 

abcdefghijklmn 

AFXnUw  u/TMWyAmHN 

AfFXnUwu/-- TMliyFmHN 

istration  problem. 

Please  fill  in  the  blank "jgf"""' . 
f l l !  [ I 1  This 1s really a tough  segmentation  and reg- 

Underscore and segmentation test 

Figure 14 Sample  documents  for  recognition  tests. 

sequences containing  all possible adjacent  character pairs, 
plus special stress  documents  containing heavy underscoring 
and difficult segmentation combinations. Thus,  the recogni- 
tion results  may  be used to  estimate  performance on typical 
office documents, as well as  to  detect special  problem  cases 
for  the recognition  system. 

Scanning of the documents 
All  documents were scanned a t  0.1-mm resolution (250 
pixels per inch)  and stored on magnetic  tape  after  thresh- 
olding. The  scanner was a 64-pixel column of silicon diode 
sensor  elements,  swept  horizontally  across the  document.  It 
was programmed  to  scan  one  print line, then  step down 
one-sixth of an inch  (the  standard  line  spacing  at  10-pitch)  to 
scan  the next line. This open-ended operation  caused  the 
print lines to  creep  up in the field of  view as  the  document 
was traversed.  In  practice, a feedback  scanning mode would 
be used to avoid this. The baseline position estimated  during 
the process of segmenting a print  line would be employed  in 396 
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order  to  set  the  scanner  parameters  to  scan  the following line. 
The  lack of such correction  was  not  a  serious  problem  in this 
experiment, however. Its effects were  minimized by careful 
manual  alignment of the first print  line on each  document 
scanned. Nevertheless,  baseline  skews of up  to  20 pixels from 
start  to  end of a print  line were observed. 

As scanned  onto  magnetic  tape,  each  print line  occupied  a 
record of approximately  10 000 bytes. These records, read 
off the  tape  one  at a time,  constituted  the  input  to  the 
segmentation  and classification  routines. 

Segmentation and registration 
Individual  characters were segmented by the  TSSRS  meth- 
od. The 64-pixel-high window containing a text  line  also 
frequently held  portions of the lines  above and below. In a 
number of cases there was touching  contact between two 
lines, and  there was frequent overlap  between adjacent 
characters within  a line. Nevertheless, segmentation was 
generally successful and no patterns were  rejected as unseg- 
mentable,  although several of the  eventual recognition errors 
were attributable  to missegmentation. 

Each  character  pattern was  registered so that its  bounding 
rectangle was centered in the  standard 48 x 25  array 
presented to  the classifier. 

Decision tree design 
Figure 15 illustrates  the pixel statistics  gathered  from 500 
samples of each  character. As is typical of printing in  a  single 
font, many pixels are  either always black or always white  for 
the  entire  sample of a given symbol. However, these pixels 
are considered during design as "highly reliable" rather  than 
"perfectly reliable," in order  to  assure  that a number of 
redundant pixels are  examined before the  pattern is identi- 
fied [5]. This is achieved by estimating  the probability that a 
given pixel will be black a t  a future  occurrence of the symbol 
as ( B  + l)/(N + 2),  where Nis  the  number of samples (500 
in this  case)  and B is the  number of samples for which the 
pixel was  black. 

Three decision trees were  designed for  the  Courier  font, 
each  containing 2000 nodes. The choice of a tree size of 2000 
nodes was  made  as a  trade-off among  implementational  and 
performance considerations. A tree node requires  four bytes 
of data in a typical  processor  memory. The first two  bytes 
contain  the  coordinates of the pixel to  be  examined.  The 
second byte  pair holds the  address of the next  node to  be 
tested. This  address plus either two or four bytes is entered if 
the pixel is black.  A flag bit  in the second byte  pair 
determines  whether  the  skip is  two or four bytes.  A decision 
node is indicated by a flag bit in the first  two  bytes, and 
requires only  two  bytes. The first byte  contains  the flag plus  a 
7-bit  entry  into  an  error probability table.  The second byte 
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contains an 8-bit ID. Thus, a tree of N test nodes is stored in 
6 N  + 2 bytes. The  three 2000-node trees designed  for the 
present experiment  require 36 kilobytes of storage with this 
implementation. 

Classification 
Segmented  patterns were input in ordinary  reading sequence 
to  the  three-tree classifier. The  reject  parameters, t and D, 
for this  experiment were ones which had given good results  in 
past  work  with typewritten  inputs.  The  unanimous vote 
requirement at  the first stage resulted in the identification of 
about 98% of the  characters. No substitution  errors were 
incurred in this portion of the classifier. The  remaining 2% of 
the  segmented  patterns were classified in the second stage 
(local-shift-and-retry), where  a character was rejected if its 
Bayes score was an insufficient amount  higher  than  that of 
the next best candidate ID. All reject  and  substitution  errors 
occurred in this stage. 

The results are  tabulated in Tables 1 and 2. Table 1 shows 
a  breakdown by typewriter.  It is here  that  the effect of a 
nonfilm ribbon appears.  The corresponding typewriter con- 
tributes  almost one-half of the  total  errors. However, the 
overall rate of one reject in 21 000 characters  and one 
substitution per 42 000 characters is still in the  acceptable 
range for such a  system. The breakdown of the  performance 
data by document  group  [Table 21 shows even better recogni- 
tion accuracy for  those documents  representative of corre- 
spondence  typewriting. The  error  rates on this  part of the 
data, if sustained in practice,  indicate  that on average 25 
documents  containing 2000 characters  apiece could be read 
without error before  a  reject had  to  be identified manually. 
Fifty  such  documents would be  read before  a substitution 
error  occurred. 

The nonfilm ribbon does not appear  to have caused 
difficulty on the  typical  text class of data. Most errors 
occurred  among  the pseudorandom character  strings.  Under- 
scores  were  not  a  problem  in detection nor  in their effects 
upon  neighboring characters.  Sample  error  patterns  are 
shown in Fig. 16. 

Conclusion 
The  automatic recognition of typewritten  text using decision 
tree classifiers has been described. The  text is assumed  to  be 
printed a t  a fixed pitch; however, it  may be in a  conventional 
font style  and  may  include underscoring. 

A segmentation method that locally adjusts  segmentation 
points  predicted from  measurement of character pitch has 
been shown to work well for typewritten  inputs.  The method 
copes with both touching lines and  touching  characters,  and 
it  recognizes  underscores during  operation. 
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1599730 0498400  039972 079-*****.9*****92 
32- 39.9510 059.710 75...99720049996500399994 OI33331ii59*9640 
53- 29*995100001419950 
34-  189.99754457999820 

7+..*37P  02199930  119.94 0000 075950 
157766520  015531 015651 

35- 04899.9999999.940 
069940 

36- 025199599.99730 
039440 

37-  002467765310 
019930 

38- 
039710 

0110 

IS-  :E??%?????:: 

0 2 ~ 3 6 0  039aso  $936  069940  0511950 

Figure 15 Pixel statistics. Each  digit  represents the relative  fre- 
quency  of  black  values  for the  corresponding  pixel.  Actual  percent- 
ages  obtained  from 500 samples of each character were  divided by 
10, then rounded  down. A blank  denotes that no black  was  observed, 
an  asterisk, no white. 

Table 1 Recognition errors listed by typewriter. 

Type- No. of No. of Errors 
writer documents characters 

Rejections Substi- 
tutions 

13 20,845 

9 1 
10 2 

- 
- 

Totals 130 208,450 10 5 

Table 2 Recognition errors listed by document  type. 

Document No. of No. of Errors 
type documents characters 

Rejections Substi- 
futions 

Random 30 88,110 I 3 
character 

Office 80 1 13,460 2 1 
text 

Underscore 20 6,220 1 1 

The decision trees  are applied in a  two-stage scheme  that 
permits easily  identified patterns  to  be quickly classified on 
the basis of a  single  pass through  each  tree.  Patterns not 397 
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sor). Estimates of the  reading  rates  obtainable with commer- 
cial processors range  up  to several hundred  characters per 
second. Since  the system may be implemented in any com- 
puter having an  attached  scanner,  and since its design 
requires only a moderate  amount of data collection and is 
largely automatic,  the  method  appears highly  suited either  to 
personalized applications or to low-cost recognition of fixed- 
pitch  fonts. 

... ..... .... ... ... ..... ..... ........ ............... .........  ................. ....... ............. ........... 

Decision=N  Decision= f 

Re,jects Substitutions 
..... ..... ....... ..... ........ ............ .......... ......... ........... ............ ............. ........... ............ ............. ............. .............. ............. ............ ........... .......... ... .... 

............ ............... ............... .............. . . . . . . .  ....... ....... .... .... 
..a* 

..a. .... ... ..a. 

............. .............. ............... ....... . . . . . .  . . . . .  
I.  I.. 
I. I.. . . . . .  

..I. 

..I 
11.1 
.a. 

..I ... . . . . .  . . . . .  

....... .................... ..................... ................. ... ... ... ... . . .  . . . .  
."...e.... ........... ...... . . .  

... .... ... ........ ... ... . . . . . . .  ... ................ .................. . . . . .  ..... ... ..... ........ .......,..... ............. 
Correct 

Figure 16 Sample recognized characters. The first choice decision 
for the  two  rejected  characters  shown  was actually correct,  but the 
patterns  were  rejected  on  the  basis of low difference  between scores 
for first  and  second choices. Noise pixel  groupings that caused 
incorrect  registration  are circled. 

classified with assurance by the  initial  stage  are  shifted  to a 
number of neighboring positions and reclassified by the 
decision trees. A  weighted voting scheme  makes  the final 
identification. 

The decision trees  are designed automatically using statis- 
tics gathered  from identified sample  character  patterns.  The 
design method  permits specification of the  number of deci- 
sion trees  to be used and  the size of the trees.  Typically, a few 
hundred  examples of each  character  are  scanned for tree 
design.  However, as few samples  as  one per character have 
been used  with  surprisingly good results. 

Reading  accuracy of the  segmentation  and classification 
methods in combination  has been  tested  using  conventional 
office typing  as well as special stress  documents  constructed 
to  make recognition more difficult. Error rates on the 
conventional text were  two  rejections and  one  substitution 
per 50 000 inputs, in an  experiment involving ten  typewrit- 
ers. 

The  OCR system has been developed with the objective of 
398 implementing  it by a processor (for  example, a  microproces- 
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Appendix: Bayesian weighting of multiple tree 
decisions 
Let X = { X , ,  X,, .... X m }  be m tree decision outcomes, where 
X, = (c,, e,) ,  c, is a class label, and e, is the probability that 
this decision is  incorrect. Let C,, C,, .... C, be  the  set of 
possible class  labels. We  assume  that  the classes are equi- 
probable a priori and  that  the individual tree outcomes are 
statistically independent. 

By Bayes' Rule, 
m 

Letting S ,  be the  logarithm of this expression, we obtain 

S,  = x log ( 1  - ej) 
J,(M 

+ x [log ej + log pr(c,l c,)] + constant, (2) 
J&V 

where 

J , ( N )  = indexesj  such  that cj = C,, 

J,(N) = indexesj such that c, # C, , 
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and  the  constant  indicated  represents  the  logarithm of the 
denominator of (l), which does not  depend on N .  

S ,  represents  the likelihood that a sample belonging to  the 
Nth  class was input. In practice, only the  value of N that 
maximizes this  quantity is  sought; Le., only relative values of 
S,  are of interest,  and so the  constant  may  be  dropped  from 
(2). 

The probabilities ej are  estimated  during design of the 
decision tree,  and so are  immediately available. The  quantity 
Pr(cjl C,) represents  the probability that  the  tree chooses 
class j when the  input  actually belongs to  class N .  This 
quantity  may  be  estimated  either  from  the known distribu- 
tion of class probabilities at  the  terminal nodes or else by 
testing  the  tree on identified  samples. A third  alternative is 
simply to divide the  error probability among  the  contending 
classes, which corresponds  to  an  assumption of both equal a 
priori probabilities and a uniform distribution of classes a t  
the  terminal node  when an  error occurs. In this  case 
Pr(cjI C,) = 1 / (N  - 1).  As an expedient, log P r ( c j )  C,) 
may  be replaced by an  arbitrary  constant K ,  which  is then 
chosen experimentally  to  maximize  the recognition rate.  This 
replacement yields the  formula given in the  text. 
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