
David McAuley

Row-by-Row Dynamic Image Analysis of a Matrix of
Scanned Points

A practical image analysis algorithm is described that incorporates features to permit it to carry out its analysis on a
row-by-row basis, in contrast to a full image matrix basis. A sign$cant storage saving is realized, since the total image to be
scanned is substantially larger than that used by this method. The dynamic build-up of the image on a scan-by-scan or
row-by-row basis is carried out by a series of connectivity. pivot, chain set-up, and chaining algorithms used in conjunction with
a dynamic memory allocation strategy.

Introduction
This paper describes in some detail an image analysis
algorithm which incorporates several significant and impor-
tant features not associated with other image recognition and
analysis systems. These special features arise mainly because
of the method in which the analysis is carried out on a
row-by-row basis.

In commercial applications of image recognition systems
involving microprocessors, the design engineer is faced with
the problem of balancing throughput capability and hard-
ware costs. This usually translates into a trade-off between
memory size and 1 / 0 rates. In the discussion which follows,
we use the testing of a plasma display panel as the point of
reference. Such a panel consists of many crosspoints, each of
which can be used to display a picture element (pixel).
Current methods of testing display panels check each cross-
point to determine whether it can be switched on and off
(erased). Clearly the usability of a panel containing defective
cells depends on a good knowledge of the pattern of failed
crosspoints or cells.

In the case of the plasma display panel comprising 960
rows by 768 columns of addressable pixels, a total of 737 280
pixels must be considered. To obtain the required resolution,
and thus be able to differentiate the status (on/o@ of
adjacent pixels on the same line, each row has to be scruti-
nized independently of the others. Thus, the video informa-
tion on row l could be relevant to the video information on
row 960, yet the system can only see one row at a time. Since

the panel cannot be viewed in its entirety as a large 960 x
768 matrix, the “compressed” storage of the video informa-
tion is crucial.

In addition, to record the data after a single total scan of
the panel would involve several seconds of processing and
require a t least 92K bytes of memory [(960 x 768)/8”each
cell being represented by a single bit]. This time was
unacceptable, and thus an algorithm incorporating over-
whelming savings in storage and time had to be devised, thus
enabling video data to be recorded and analyzed dynamically
on a row-by-row basis.

In the design of a cost-effective solution to a practical
problem, the following method was devised. The panel is
scanned and a program is called by the control processor to
determine the acceptability of the panel on the basis of a
predetermined set of criteria. These criteria are used to
specify the number and proximities of allowable defective
cells on the panel. The allowable defects are also known as
cosmetic defects and they can appear as solitary failures or
as varying types and sizes of patterns under certain circum-
stances. The purpose of the cosmetic analysis software is
therefore to detect and analyze these solitary and/or clusters
of failing cells.

The following sections describe how this analysis is carried
out for the plasma panel. However, the author believes that
the algorithm, and adaptations of it, can be used in almost all

@ Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor. 367

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983 DAVID McAULEY

7
1

960
cells

I ' I I
I

-76X cells-

Plasma

Plasma

display

display

panel

' panel

Figure 1 Schematic of plasma display panel test rig. The camera
scans one row at a time.

1 x x x x 0 x x x x x

2 x "X x 1 x 0-0 x x
1 x x 0 x ,',', 1 x x

(d)

Figure 2 (a) Six rows of matrix constructed from a scanned image.
The zeros represent defective cells, while the Xs represent good ones.
(b)-(d) Illustration of the build-up of the matrix as each successive
row is scanned.

areas of image analysis and inspection, remembering that
cell elements with connecting entities (which would result in
the building-up of a picture) can be replaced with picture
elements. The same type of analysis is applicable to problems
in

pattern and character recognition,
document handling,
robotics, mechanized or automated handling, and test and
inspection (e.g., front-of-screen testing),
image analysis, and
image orientation.

While further work is required to fully substantiate this
belief, an example of a more complicated pattern type, an
object within an object, is shown at the end of this paper to be
just as easily detected and identified by the implemented
algorithm.

System analysis
Individual cell information is passed to the software via a
binary video signal from the camera (Fig. 1). This video
signal reflects the status of one row of cells, since the panel is
scanned one row at a time by means of a rotating mirror.
Typically, there may be 768 rows with each row comprising
960 cells, giving a total of 737 280 cells to be tested. Data
transfer is achieved by successive reads of a first-in/first-out
(FIFO) register where the binary video signal is held, with
each read accessing one eight-bit byte of information, or 120
reads of the FIFO register per row (8 x 120 = 960).

The binary data can then be compared to a previously
generated mask of expected data in order to detect failing
cells within a row (parts of images in a different application).
When a defective cell is encountered, the main body of the
software is invoked, and it proceeds to analyze this cell with
respect to all other defective cells and with reference to the
specified criteria.

Since a large panel cannot be scanned or viewed in its
entirety, a method of "building up a picture" of the panel,
row by row, is used. Since defective cell data in one row may
be pertinent to defective cell data in the following row (not
yet scanned), a method of logging or storing this information
is required. Because of the size of the panel, and therefore the
number of possible defects, a dynamic memory allocation
strategy for recording failing cell data is incorporated in the
algorithm to avoid unnecessary saturation of storage.

An important feature of this algorithm is the ability to
recognize the connectivity of failing cells. This is accom-
plished by constructing a series of inter-relating tables and
pointers which can interpret the cell information and build
up a network of defective cells that can best be described as a
type of skew matrix [Fig. 2(a)].

Note that the panel is scanned one row at a time. Figures
2(b)-(d) represent the information which is available after
scanning rows 1 to 3, respectively. In the example shown,
after row 1 has been scanned, a solitary failing cell can be
detected. After row 2 has been scanned, a solitary cell and
two clusters of two adjacent failures can be detected (with
the previous solitary defect becoming one of a cluster of two).
Only after scanning row 3 does the algorithm (or the
program) detect a connection which links up the two clusters
of two, making (at this stage) a combined group of six
failures, along with the newly formed cluster of two. This
scanning is repeated until the entire panel is analyzed, or

until a failing cell violates one of the defined criteria, thus
rendering the panel unacceptable.

Criteria governing acceptability of the panel
Having established an algorithm which analyzes the cos-
metic defects and determines their connectivity, we need a
set of guidelines which monitor the acceptability of the panel.
These guidelines take the form of a predetermined set of
criteria which control the number of interconnected failing
cells allowable on the panel. The criteria are programmable;
i.e., the test engineer or programmer responsible can alter the
parameters of the criteria, such as the number of defects
allowed within any given area of the panel, or the number of
allowable clusters of two defective cells (three defective cells,
etc.), or the maximum number of allowable adjacent defec-
tive cells.

If any of these conditions are not satisfied, the software
“signals” the control processor, which in turn must decide
whether to fail the panel or to instigate further tests. In a
different application, the interconnected defective cells con-
stitute the image to be scanned, and/or the object to be
registered, identified, or analyzed.

System design
There are a multitude of permutations in which the defective
cells can appear on the panel. The algorithm therefore must
be robust (i.e., perform well in a variety of environments) and
capable of detecting even the most obscure pattern arrange-
ment. At this point it is appropriate to define several of the
system entities which are created and used within the
algorithm. These take the form of tables, which are outlined
briefly.

e Network table
This table is used in determining the “connectivity” of
defective cells, and characteristics relative to this feature are
logged in it. Each defective cell encountered therefore has a
network, table entry, and this also permits processing of
adjacent defects on the same row. The table format is shown
in Table 1.

e Node table
Each isolated group (two or more) of defective cells is treated
as a node in a connecting network. This information is logged
in the node table, which ensures the processing of the varying
number of clusters allowable; e.g., the criteria may allow
three groups of three defects; five groups of two, etc. Table 2
illustrates the format of the node table. The MAX table
entry is used by an out-ofrange algorithm which decides
whether the cluster of defects represented in the node table is
isolated from the current row of cells under scrutiny, thus
freeing up the node table (now flagged for deletion) for use
by other possible defective clusters, and storing the results in

IBM 1. RES. DEVELOP. VOL. 27 0 NO. 4 JULY 1983

Table 1 Network table format and definition.

ROW 2 bytes Row number of defective cell.

CELL 2 Cell/column number of defective
cell.

LHADJ 1 Set if preceding adjacent cell was
also defective.

c 1 2
c 2

Possible defective cell connections
2

c 3 2
in next row.

NODE 2 Address of node table for this par-
TABLE ticular defective cell.
POINTER

Table 2 Node table format and definition.

ROW 2 bytes Row number of defective cell.

CELL 2 Cell/column number of defective cell
(repeated as many times as there are
interconnected defects in this same
cluster).

~~

AA 2 Flags the last node in the table.

CNT 1 Number of defective cells in table.

MAX 2 Maximum row number of cells in ta-
ble.

FSCELL 2 First cell number detected in a cluster
of two or more (used to indicate where
on the panel the defective cluster is sit-
uated).

a more compact log table. The node table need not be large.
(The table currently in use enables the handling of clusters of
up to five defects, but this can be expanded if necessary.) The
interaction between the network table and the node and scan
tables is outlined briefly later.

e Pivot table
The pivot table processes information relating to the number
of failing cells allowable within any given area of the panel
(this number is specified in the criteria). 369

DAVID McAULEY

Figure 4 Pivot algorithm.

Table 3 Pivot table format and definition

ROW 2 bytes Row number of defective cell
(pivot row).

CELL 2 Cell/column number of defec-
tive cell (pivot column).

CNT 1 Number of defective cells
within this area.

ROWRANGE 2 Upper row limit for the area.

CELL RANGE 2 Upper cell limit for the area.

IMAGINARY 2 This flag is set if the pivot table
entry has been constructed
around a defect which does not
exist at that particular coordi-
nate on the panel. However, the
pivot entry has to be made at
this point because there is no
guarantee that any 100-mm-
square defective area will be
aligned with a defective cell as
its corner pivot.

PIVOT FLAG

Each defect encountered forms the corner pivot of an area
which is bounded geometrically by a discrete displacement
from the pivot (for example 100 mm x 100 mm square). In
other applications this might represent the expected size of
the object to be labeled. Figure 3 illustrates five defects with
each defect forming the corner pivot of an area five cells by
five cells square. For exampIe, the row and column ranges
which fall within the jurisdiction of pivot P1 are 1 to 5 and 7
to 11, respectively, with three defects in this area (P l , P2,
and P4) and so on. It can also be seen from this diagram that
the pivot itself can be processed if it lies within another
pivot's area, e.g., P2 and P4.

The pivot table is illustrated in Table 3 and the pivot
operation is briefly outlined in Fig. 4.

Scan table
The scan table holds details concerning complete areas of
failing cells; it facilitates the linking of several of these areas
in order to scan the affected area and apply the appropriate
test patterns.

Table 4 outlines the format and defines the entries of the
scan table. The forward-chain (CHAINFI, CHAINF2,
CHAINF3) and backward-chain (CHAINB1, CHAINB2,
CHAINB3) entries are used in linking up connecting groups
of failing cells, as discussed in the next section. Each scan
table currently allows the linking of three other scan tables
(but once again this can be expanded, if necessary).

Fast fail, connectivity, and chain set-up algo-
rithms
These algorithms are used during scan and during cosmetic
operations. The only difference is that during scan, the panel
fail routines are disabled and chain set-up is included. Also,
the defective cells are not stored, since during scan, whole
areas of failing cells are analyzed, which would be wasteful
of time and storage. Instead, the failing cell coordinates are
updated each time, as necessary. To simplify the explanation
of the steps involved, the current defective cell under scrutiny
is called the NEW (see Fig. 5) and the defective cell
connected to it on the previous row is called the OLD. Some
other definitions are also required.

When we say that the left-hand (LH) adjacent cell is
defective, we mean the cell immediately to the left of the
current cell under scrutiny on the same row; similarly, the
right-hand (RH) adjacent cell means the cell immediately to
the right on the same row. This meaning is also illustrated in
Fig. 5. In this example N E W has a L H adjacent defective
cell, and OLD has a R H adjacent defective cell. On the other
hand it can also be said that N E W is R H adjacent to a
previously scanned defect.

The fast fail, connectivity, and chain set-up algorithm is
outlined briefly in flowchart/tree diagram form in Fig. 6 .

Chaining algorithm
Having constructed the individual scan tables and set up the
chain addresses and other defective cell information, we
require a method of linking these scan tables, or groups of
failing areas, in order to analyze the defective portion of the
panel.

This method of linking is called the chaining algorithm.
Before this algorithm is described in flowchart/tree diagram
format, consider first the defective area of cells outlined in
Fig. 7(a). This illustrates the layout of the defects and how
they are connected to one another. This diagram shows that a
link can be traced from one defect to any other in this
example.

Now consider Fig. 7(b), which details the connectivity or
network characteristics of this particular panel. Figure 7(c)
shows how the cosmetic analysis program partitions this area
into individual groups of varying shapes and sizes row by
row. Each area illustrated in this diagram is represented by a
unique scan table in the system.

Continuing from this, Fig. 7(d) illustrates how the individ-
ual groups or tables are linked to one another. In order to
complete the analysis for the entire area, we must progress
down the panel, but also be able to retreat through the panel
and gradually exhaust all of the possible routes or connec-
tions to and from all defective areas.

Figure 7(e) summarizes even further by representing each
defective area as a node in a tree diagram. Only after every
branch in the tree has been traversed and each node
processed is the analysis complete for this group of failing
cells.

As with the previous algorithm, some clarifying is needed
before referring to the flowchart/tree diagram of Fig. 8,
which outlines the chaining algorithm briefly. During the
linking cycle it is possible that several areas could be omitted
from the processing due to the route taken through the
tables. If we then arrive at a terminal node and have also
exhausted the backward chains, but other unprocessed areas
remain, we must have some method of re-entering the cycle
and completing the analysis. This is achieved by building a
backward-chain address queue. This queue holds the
addresses of the backward pointers in the network and can be
accessed if we get lost while in the process of reaching a
terminal node, having exhausted all of the backward chains.
This situation arises quite often if a scan table has two or
more backward pointers. Only when the queue is empty can
we be sure that the job is complete.

Current cell 13 OLD cell X , connected

under cxam~na t~on to NEW cell 13 and

situated on the

cell 13 on thc

same row. cell 8 on the 1 adjacent to OLD

same row

Figure 5 Definitions of adjacency in scan table.

Table 4 Scan table definition (each entry is two bytes).

CHAIN F1-3

CHAIN B1-3

MAX/MIN ROW-CELL

#CHF

#CHB

DUPFLG

QUEBCK

These are the addresses of the
scan tables which will be directly
accessed and “chained to” when-
ever a link between the tables is
discovered.

These are the addresses of the
scan tables which already have
been linked to the current table,
but which may not necessarily re-
sult in continuous chaining until
termination of the link. Therefore
it may be necessary to “retreat
through the chain” until termina-
tion of the link is completed.

These are the maximum row and
cell numbers and minimum row
and cell numbers within the table.
They are updated each time a de-
fective cell is encountered and pro-
vide the coordinates within which
the failing area lies.

This holds the number of forward-
chain addresses.

This holds the number of back-
ward-chain addresses.

This flag is set to avoid duplicate
processing of the defective cell
area.

This flag indicates whether or not
the scan table address has been
stacked on the backward-chain
address queue.

Pivot algorithm
The function of the pivot operation is to process and analyze
the cell data on the basis of the criteria which specify the
number of defects allowable within any given square area of
the panel. The basic pivot operation has already been illus-
trated diagrammatically in Fig. 3, but there is an additional
procedure which forms an important part of the pivot
process. 37 1

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983 DAVID McAULEY

27 28 29 IO 31 12

x x x x x x
x x x x x x

x x x x x x
x x x x x x

x x x x x x
x x x x x x

:&xxxxxxx 0 0 0 0 0 x x x x x x x x x x
x x o o o o x x x x x x x x x

0 3 1 1 x 0 x x x x x x x
g x x) x x x x x x x x

Figure 7 (a)-(e) Defect connectivity tracing illustrated (see text). Forward chaining is depicted by an up arrow; backward chaining by a down
arrow.

Consider Fig. 9 as representing the cross section of a panel
with criteria constraints defined as ". . . no more than four
defects allowable within any area four cells by four cells
square." In another application this could be interpreted as
the bounds of an object.

It can be seen from the left-hand side of Fig. 9 that the
existing pivots (defects) P1, P2, P3, P4, and P5 do not trap
the error in the panel, since the defective area is bounded by
Row 2 Column 4 (not a valid corner pivot), Row 2 Column 7
and Row 5 Column 4, Row 5 Column 7.

To circumvent this problem, therefore, a set of what are
called imaginary pivots must be constructed. These are
detailed in the figure and are created as normal pivot tables
in the system, with a flag setting to indicate their unique
status (see Table 3 for outline of pivot table format).

The imaginary pivot tables are created because there is no
guarantee that any defective area will be aligned with a
defective cell as its corner pivot. Therefore, a dummy pivot is
constructed around a defect which does not exist at that
coordinate on the panel. This dummy or imaginary pivot is
determined by the intersecting point of two traces.

The first trace is backward from the first pivot and the
second is upward from a second pivot which has a greater row
number than the first, but a lesser column or cell number.
The point or cell of intersection of these two traces is called
the imaginary pivot. If the length of either trace is greater
than the dimension of the defective area specified in the
criteria, the imaginary pivot need not be constructed.

It can also be seen from Fig. 9 that duplication of
imaginary pivot entries may take place (11, 3/5 is an
imaginary pivot constructed from the traces of P1 and P3 or
P5). To avoid unnecessary duplication and consequently a
longer processing time and additional storage allocation, an
imaginary pivot directory is set up in the system. This
directory holds the coordinates of all the actual and imagi-
nary pivots and is updated as necessary, as the panel is
scanned row by row.

Consider an extension of the right-hand side of Fig. 9. This
would represent the worst possible case of a defective cell
pattern with regard to pivot and imaginary pivot table
allocation. Assume, for the moment, that all allowable
defects (e.g., 16) in any sub-area were arranged in this
diagonal fashion. The number of pivot tables required would 373

IBM J. RES. DEVELOP. 0 VOL. 27 NO. 4 JULY 1983 DAVID McAULEY

II

o""""." *=....... 1

,

Figure 8 Forward- and backward-chaining algorithm.

be 16 (for the existing defects) + 15 t 14 + 13 + 12
+ - . - + 1 (for the imaginary pivots).

374

DAVID McAULEY

Therefore, a total of 136 tables would be required. Thus,
the memory allocation for the pivot operation is dependent on

Figure 9 Imaginary pivot formation illustrated (see text).

the criteria. In summary, if no more than x defects are
allowed within any given area, then the number of pivot
tablesrequiredisx + (x - 1) + (x - 2) + - - + 1 .

Note that the pivot operation routines are called immedi-
ately after a defective cell is encountered in Fig. 4. On exit
from the pivot operation, assuming the criteria have not been
violated, control is passed to the scan and cosmetic routines.

Complex applications
While many algorithms are available for complex patterns
and applications, e.g., Kruse [l] or Danielsson [2] , the
algorithm described here has been used in detecting complex
patterns. For example, Fig. 10 shows a pattern consisting of
two separate areas, one within the other. It turns out that the
technique is not only capable of detecting this type of
pattern, but is also capable of determining its topology:

74 pixels within rows 2 to 12, and columns 2 to 19.
22 pixels within rows 5 to 8 and columns 7 to 14.

The algorithms do detect one area or object within the other,
on a row-by-row basis, no matter what the alignment may be.
While more rigorous experimentation is required for a
generalized conclusion to this claim, indications are that the
approach taken in this paper is very powerful in identifying
complex shapes, yet it is simple and economical of space.

Conclusion
The algorithms described provide a solution for image analy-
sis to the problem posed by the implementation of a row-
by-row linear scanning application. This problem arises
when the image to be analyzed cannot be viewed in its
entirety but must be built up on a scan-by-scan basis, from
which a mirror image is created in the processor memory and
subsequently analyzed, an obviously time-consuming and
costly method (in terms of storage capacity, a variable
depending on the size of the image). Additional timing
constraints (imposed by the very nature of the application,
e.g., real time) may render the method undesirable if not
impossible.

In these instances, a method which analyzes the image
data on a row-by-row basis is essential. This paper has

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983

described how this analysis is carried out. Algorithms are
outlined which are capable of detecting the topology of
solitary pixels as well as patterns of connected pixels in an
image of any shape or size. The image can be reconstructed
and analyzed dynamically without having the entire image
presented for analysis a t one time. The algorithms have been
implemented and have been in use for several years for
practical as well as experimental purposes. It is believed that
the concepts presented, as well as the algorithms themselves,
can be adapted and expanded to cover a wide range of image
processing problems requiring economical solutions.

References
1. B. Kruse, “A Fast Stack-Based Algorithm for Region Extraction

in Binary and Nonbinary Images,” Proceedings of EUSIPCO
Conference, August 1980, M. Kunt and F. de Coulon, Eds.,
North-Holland Publishing Co., Amsterdam, 1980, pp. 169-173.

2. Per-Erik Danielsson, “An Improved Segmentation and Coding
Algorithm for Binary and Nonbinary Images,” IBM J . Res.
Develop. 26,698-707 (1982).

I

Received August 12, 1982; revised April 7 , I983

David McAuley IBM United Kingdom, P.O. Box 30,
Greenock. Renfrewshire PA 16 OAH, Scotland. Mr. McAuley is a
senior associate test design engineer working on automatic image
inspection and analysis systems and disk file systems. He joined IBM

Figure 10 Example of an object within an object properly identi-
fied by the implemented technique (see text).

United Kingdom in Greenock in 1978 after graduation from college
and has worked on various test equipments, logic testers, and
software support systems. In 1980, he developed the software system
architecture and design for the plasma display panel automatic
tester scanner and was subsequently assigned to work in Kingston,
New York, for a year. Mr. McAuley received a B.Sc. in Computer
Science from Paisley College of Technology, Paisley, Scotland, in
1978. He received an IBM special contributions award in 1979 for
work on a keyboard logic tester.

D

b

D

I IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY I 1983

375

DAVID McAULEY

