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Row-by-Row  Dynamic  Image  Analysis of a  Matrix of 
Scanned  Points 

A practical image analysis algorithm is described that incorporates features  to permit it to carry out its analysis on a 
row-by-row basis, in contrast to a full image matrix basis. A sign$cant storage saving is  realized, since  the total image to be 
scanned is  substantially larger than that used by this method. The dynamic build-up of  the  image on a scan-by-scan or 
row-by-row basis is carried out by a series of connectivity. pivot, chain set-up, and  chaining algorithms used in conjunction with 
a dynamic memory allocation strategy. 

Introduction 
This  paper describes  in some  detail  an  image  analysis 
algorithm which incorporates several  significant and impor- 
tant  features not  associated  with other  image recognition and 
analysis systems. These special features  arise mainly  because 
of the method in which the  analysis is carried  out on a 
row-by-row basis. 

In commercial  applications of image recognition  systems 
involving microprocessors, the design  engineer is faced  with 
the problem of balancing  throughput  capability  and  hard- 
ware costs. This usually translates  into a  trade-off  between 
memory  size and 1 / 0  rates. In the discussion which follows, 
we use  the  testing of a  plasma display panel as the point of 
reference. Such a  panel  consists of many crosspoints, each of 
which can be used to display  a picture  element (pixel). 
Current  methods of testing display  panels check  each cross- 
point to  determine  whether  it  can  be switched on and off 
(erased).  Clearly  the usability of a panel  containing defective 
cells depends on a good knowledge of the  pattern of failed 
crosspoints or cells. 

In the  case of the plasma  display  panel  comprising 960 
rows by 768  columns of addressable pixels, a total of 737  280 
pixels must be considered. To obtain  the  required resolution, 
and  thus  be  able  to  differentiate  the  status (on/o@ of 
adjacent pixels on the  same line, each row has  to  be  scruti- 
nized independently of the  others.  Thus,  the video informa- 
tion on row l could be relevant to  the video information on 
row 960, yet the system can only see one row at  a time.  Since 

the panel cannot be viewed in its  entirety  as a large  960 x 
768  matrix,  the “compressed” storage of the video informa- 
tion is crucial. 

In addition,  to record the  data  after a  single total scan of 
the  panel would involve several  seconds of processing and 
require a t  least  92K bytes of memory [(960 x 768)/8”each 
cell  being  represented by a  single bit].  This  time was 
unacceptable,  and  thus  an  algorithm  incorporating over- 
whelming  savings in storage  and  time  had  to be devised, thus 
enabling video data  to  be recorded and  analyzed  dynamically 
on a row-by-row basis. 

In the design of a cost-effective solution to a practical 
problem, the following method was devised. The panel is 
scanned  and a program is called by the  control processor to 
determine  the  acceptability of the panel on the basis of a 
predetermined set of criteria.  These  criteria  are used to 
specify the  number  and proximities of allowable  defective 
cells on the panel. The allowable defects  are  also known as 
cosmetic defects and  they  can  appear  as solitary failures or 
as varying  types and sizes of patterns  under  certain  circum- 
stances.  The purpose of the cosmetic analysis  software is 
therefore  to  detect  and  analyze these solitary  and/or  clusters 
of failing  cells. 

The following sections describe how this analysis is carried 
out for the plasma  panel.  However, the  author believes that 
the  algorithm,  and  adaptations of it,  can be used in almost  all 
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Figure 1 Schematic of plasma display panel test  rig. The  camera 
scans  one row at a  time. 
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Figure 2 (a)  Six rows of matrix  constructed  from  a  scanned  image. 
The zeros represent  defective cells, while the Xs represent good ones. 
(b)-(d)  Illustration of the  build-up of the  matrix  as  each successive 
row is scanned. 

areas of image analysis and inspection, remembering  that 
cell elements with  connecting entities (which would result in 
the  building-up of a picture)  can  be replaced  with picture 
elements.  The  same  type of analysis is applicable  to problems 
in 

pattern  and  character recognition, 
document  handling, 
robotics,  mechanized or automated  handling,  and  test  and 
inspection (e.g., front-of-screen testing), 
image analysis, and 
image  orientation. 

While  further work is  required to fully substantiate  this 
belief, an  example of a  more  complicated pattern type, an 
object  within an  object, is shown at  the  end of this  paper  to be 
just  as easily detected  and identified by the  implemented 
algorithm. 

System  analysis 
Individual cell information is passed to  the  software via a 
binary video signal from  the  camera  (Fig. 1). This video 
signal reflects the  status of one row of cells, since the panel is 
scanned one row at  a time by means of a rotating  mirror. 
Typically, there  may  be  768 rows with each row comprising 
960 cells, giving a total of 737  280 cells to be tested.  Data 
transfer is achieved by successive reads of a  first-in/first-out 
(FIFO) register  where the  binary video signal is held,  with 
each  read accessing one  eight-bit  byte of information, or 120 
reads of the  FIFO register per row (8 x 120 = 960). 

The  binary  data  can  then be compared  to a previously 
generated mask of expected data in order  to  detect failing 
cells within  a row (parts of images in a  different application). 
When a  defective cell is encountered,  the main body of the 
software is invoked, and it  proceeds to  analyze  this cell with 
respect to all other defective cells and with  reference to  the 
specified criteria. 

Since a large panel cannot  be  scanned or viewed in its 
entirety, a  method of "building up a  picture" of the panel, 
row by row, is used. Since defective cell data in one row may 
be pertinent  to defective cell data in the following row (not 
yet scanned), a  method of logging or  storing this  information 
is required. Because of the size of the  panel,  and  therefore  the 
number of possible defects,  a dynamic memory  allocation 
strategy for recording  failing cell data is incorporated in the 
algorithm  to avoid unnecessary saturation of storage. 

An important  feature of this algorithm is the  ability  to 
recognize the connectivity of failing cells. This is accom- 
plished by constructing a  series of inter-relating  tables  and 
pointers which can  interpret  the cell information and build 
up a network of defective  cells that  can best be described as a 
type of skew matrix  [Fig.  2(a)]. 

Note  that  the panel is scanned  one row at  a  time. Figures 
2(b)-(d) represent the information which is available  after 
scanning rows 1 to 3, respectively. In the  example shown, 
after row 1 has been scanned, a  solitary  failing cell can be 
detected.  After row 2 has been scanned, a  solitary cell and 
two clusters of two adjacent  failures  can  be  detected  (with 
the previous solitary defect becoming one of a cluster of two). 
Only after scanning row 3  does the  algorithm (or the 
program)  detect a  connection which links up  the two clusters 
of two, making  (at  this  stage) a  combined group of six 
failures, along  with the newly formed  cluster of two. This 
scanning is repeated  until  the  entire panel is analyzed,  or 



until a failing cell violates one of the defined criteria,  thus 
rendering  the panel unacceptable. 

Criteria governing acceptability of the panel 
Having established an  algorithm which analyzes  the cos- 
metic  defects  and  determines  their connectivity, we need a 
set of guidelines which monitor the  acceptability of the panel. 
These guidelines take  the  form of a predetermined  set of 
criteria which control  the  number of interconnected failing 
cells  allowable  on the panel. The  criteria  are  programmable; 
i.e., the  test engineer or  programmer responsible can  alter  the 
parameters of the  criteria,  such  as  the  number of defects 
allowed  within any given area of the panel, or the  number of 
allowable clusters of two  defective  cells (three defective cells, 
etc.), or the  maximum  number of allowable adjacent defec- 
tive cells. 

If any of these conditions are not satisfied, the  software 
“signals” the  control processor, which in turn  must  decide 
whether  to fail the panel or to instigate  further tests. In a 
different application,  the interconnected defective cells con- 
stitute  the  image  to be scanned,  and/or  the object to  be 
registered,  identified, or  analyzed. 

System design 
There  are a multitude of permutations in which the defective 
cells can  appear on the panel. The  algorithm  therefore must 
be robust (i.e., perform well in a variety of environments) and 
capable of detecting even the most obscure  pattern  arrange- 
ment.  At this  point it is appropriate  to define  several of the 
system entities which are  created  and used  within the 
algorithm.  These  take  the form of tables, which are outlined 
briefly. 

e Network table 
This  table is used in determining  the “connectivity” of 
defective cells, and  characteristics relative to  this  feature  are 
logged in it.  Each defective cell encountered  therefore has  a 
network,  table  entry,  and  this also permits processing of 
adjacent  defects on the  same row. The  table  format is shown 
in Table 1. 

e Node table 
Each isolated group  (two or more) of defective  cells is treated 
as a  node in a  connecting  network. This  information is logged 
in the node table, which ensures  the processing of the varying 
number of clusters allowable;  e.g., the  criteria  may allow 
three  groups of three defects; five groups of two, etc.  Table 2 
illustrates  the  format of the node table.  The MAX table 
entry is used by an out-ofrange algorithm which decides 
whether  the  cluster of defects  represented in the node table is 
isolated from  the  current row  of cells under  scrutiny,  thus 
freeing up  the node table (now flagged  for deletion) for  use 
by other possible defective clusters,  and  storing  the results in 
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Table 1 Network table  format and definition. 

ROW 2 bytes Row number of defective cell. 

CELL 2 Cell/column number of defective 
cell. 

LHADJ 1 Set if preceding adjacent cell was 
also defective. 

c 1  2 
c 2  

Possible defective cell connections 
2 

c 3  2 
in next row. 

NODE 2 Address of node table for this par- 
TABLE  ticular defective cell. 
POINTER 

Table 2 Node  table  format and definition. 

ROW 2 bytes Row number of defective cell. 

CELL 2 Cell/column number of defective cell 
(repeated  as many times as  there  are 
interconnected defects in this same 
cluster). 

~~ 

AA 2 Flags the last node in the  table. 

CNT 1 Number of defective cells in table. 

MAX 2 Maximum row number of cells in ta- 
ble. 

FSCELL  2 First cell number detected in a cluster 
of two or more (used to indicate where 
on the panel the defective cluster is sit- 
uated). 

a  more compact log table.  The node table need not be  large. 
(The  table  currently in use enables  the  handling of clusters of 
up  to five defects, but this can  be expanded if necessary.) The 
interaction between the network table  and  the node and  scan 
tables is outlined briefly later. 

e Pivot table 
The pivot table processes information relating  to  the  number 
of failing  cells  allowable  within any given area of the panel 
(this  number is specified in the  criteria). 369 
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Figure 4 Pivot algorithm. 

Table 3 Pivot table format  and  definition 

ROW 2 bytes Row number of defective cell 
(pivot row). 

CELL 2 Cell/column number of defec- 
tive cell (pivot column). 

CNT 1 Number of defective cells 
within  this area. 

ROWRANGE 2 Upper row limit  for the area. 

CELL RANGE 2 Upper cell limit for the area. 

IMAGINARY 2 This flag  is set if the pivot table 
entry has been  constructed 
around  a defect which  does  not 
exist at that  particular  coordi- 
nate  on  the panel. However, the 
pivot  entry has to be  made at 
this  point because there  is no 
guarantee  that  any 100-mm- 
square defective area  will be 
aligned with  a defective cell as 
its corner  pivot. 

PIVOT FLAG 

Each  defect  encountered  forms  the  corner pivot of an  area 
which is bounded  geometrically by a discrete  displacement 
from  the pivot (for example  100  mm x 100  mm  square). In 
other  applications  this  might  represent  the expected  size of 
the  object  to  be labeled. Figure 3 illustrates five defects  with 
each  defect forming the  corner pivot of an  area five cells by 
five cells square.  For exampIe, the row and  column  ranges 
which fall within the  jurisdiction of pivot P1  are 1 to 5 and 7 
to  11, respectively, with  three  defects in this  area ( P l ,  P2, 
and  P4)  and so on. It  can  also  be seen from  this  diagram  that 
the pivot itself can  be processed if it lies within another 
pivot's area, e.g., P2  and P4. 

The pivot table is illustrated in Table 3 and  the pivot 
operation is briefly outlined  in  Fig. 4. 

Scan  table 
The  scan  table holds details concerning  complete areas of 
failing cells; it facilitates  the linking of several of these  areas 
in order  to  scan  the affected area  and  apply  the  appropriate 
test  patterns. 

Table 4 outlines the  format  and defines the  entries of the 
scan  table.  The  forward-chain  (CHAINFI,  CHAINF2, 
CHAINF3)  and  backward-chain  (CHAINB1,  CHAINB2, 
CHAINB3)  entries  are used  in  linking up connecting groups 
of failing  cells, as discussed in the next  section. Each  scan 
table  currently allows the linking of three  other  scan  tables 
(but once again  this  can be expanded, if necessary). 

Fast fail, connectivity, and chain  set-up algo- 
rithms 
These  algorithms  are used during  scan  and  during cosmetic 
operations. The only difference is that  during  scan,  the  panel 
fail routines  are disabled and  chain  set-up is  included. Also, 
the defective  cells are not stored, since during  scan, whole 
areas of failing cells are  analyzed, which would be wasteful 
of time  and  storage.  Instead,  the  failing cell coordinates  are 
updated  each  time,  as necessary. To simplify the  explanation 
of the  steps involved, the  current defective  cell under  scrutiny 
is called the  NEW  (see Fig. 5) and  the defective cell 
connected to  it on the previous row is called the  OLD.  Some 
other definitions are  also required. 

When we say  that  the  left-hand  (LH)  adjacent cell  is 
defective, we mean  the cell immediately  to  the left of the 
current cell under  scrutiny on the  same row; similarly,  the 
right-hand (RH)  adjacent cell means  the cell immediately  to 
the  right on the  same row. This  meaning is also  illustrated in 
Fig. 5. In this  example N E W  has a L H  adjacent defective 
cell, and OLD has a R H  adjacent defective cell. On the  other 
hand  it  can  also  be  said  that N E W  is R H  adjacent  to a 
previously scanned defect. 



The  fast fail,  connectivity, and  chain  set-up  algorithm is 
outlined briefly in flowchart/tree  diagram  form in Fig. 6 .  

Chaining algorithm 
Having  constructed  the individual scan  tables  and  set  up  the 
chain addresses and  other defective cell information, we 
require a  method of linking these  scan  tables, or groups of 
failing areas, in order  to  analyze  the defective  portion of the 
panel. 

This method of linking is called the chaining  algorithm. 
Before this  algorithm is described  in flowchart/tree  diagram 
format, consider first the defective area of cells  outlined in 
Fig. 7(a).  This  illustrates  the  layout of the  defects  and how 
they  are connected to  one  another.  This  diagram shows that a 
link can be traced  from  one  defect  to  any  other in this 
example. 

Now  consider  Fig. 7(b), which details  the connectivity or 
network characteristics of this  particular panel. Figure  7(c) 
shows how the cosmetic analysis  program  partitions this area 
into individual groups of varying shapes  and sizes row by 
row. Each  area  illustrated in this  diagram is represented by a 
unique  scan  table in the system. 

Continuing  from this, Fig. 7(d)  illustrates how the individ- 
ual groups or tables  are linked to  one  another.  In  order  to 
complete  the  analysis for the  entire  area, we must progress 
down the panel, but  also be able  to  retreat  through  the panel 
and  gradually  exhaust all of the possible routes  or connec- 
tions to  and  from  all defective areas. 

Figure  7(e)  summarizes even further by representing  each 
defective area  as a node in a tree  diagram.  Only  after every 
branch in the  tree  has been  traversed and  each node 
processed is the  analysis complete  for this  group of failing 
cells. 

As with the previous algorithm,  some  clarifying is needed 
before referring  to  the  flowchart/tree  diagram of Fig. 8, 
which outlines the  chaining  algorithm briefly. During  the 
linking  cycle it is possible that several areas could be omitted 
from  the processing due  to  the  route  taken  through  the 
tables.  If we then  arrive  at a terminal node and have also 
exhausted  the  backward  chains,  but  other unprocessed areas 
remain, we must have  some  method of re-entering  the cycle 
and completing the analysis. This is achieved by building  a 
backward-chain  address  queue.  This  queue holds the 
addresses of the  backward pointers in the network and  can be 
accessed if we get lost while in the process of reaching a 
terminal node,  having exhausted  all of the  backward  chains. 
This  situation  arises  quite  often if a  scan table  has two or 
more  backward pointers.  Only  when the  queue is empty  can 
we be sure  that  the  job is complete. 

Current  cell 13 OLD cell X ,  connected 

under cxam~na t~on  to NEW cell 13 and 

situated  on  the 

cell 13 on thc 

same row. cell 8 on the 1 adjacent to OLD 

same row 

Figure 5 Definitions  of  adjacency in scan table. 

Table 4 Scan table definition (each entry  is  two bytes). 

CHAIN F1-3 

CHAIN B1-3 

MAX/MIN ROW-CELL 

#CHF 

#CHB 

DUPFLG 

QUEBCK 

These are the addresses  of  the 
scan tables which  will be directly 
accessed and  “chained  to”  when- 
ever a link  between the tables is 
discovered. 

These are  the  addresses  of  the 
scan  tables  which  already  have 
been  linked  to  the  current table, 
but  which  may  not  necessarily  re- 
sult in continuous  chaining  until 
termination of the  link.  Therefore 
it  may  be  necessary  to  “retreat 
through  the chain” until  termina- 
tion of the  link  is completed. 

These are  the  maximum row  and 
cell numbers  and  minimum  row 
and cell numbers  within  the table. 
They  are  updated each time a de- 
fective cell is  encountered  and  pro- 
vide  the  coordinates  within  which 
the failing area lies. 

This holds the number of forward- 
chain  addresses. 

This holds the number  of  back- 
ward-chain  addresses. 

This flag  is  set to avoid  duplicate 
processing  of the defective cell 
area. 

This flag indicates whether or not 
the scan table address  has  been 
stacked  on  the  backward-chain 
address queue. 

Pivot algorithm 
The function of the pivot operation is to process and  analyze 
the cell data on the basis of the  criteria which specify the 
number of defects allowable  within any given square  area of 
the panel. The basic pivot operation has  already been illus- 
trated  diagrammatically in  Fig. 3, but  there is an  additional 
procedure which forms  an  important  part of the pivot 
process. 37 1 

IBM J. RES. DEVELOP. VOL. 27 NO. 4 JULY 1983 DAVID McAULEY 





27 28 29 IO 31 12 

x x x x x x  
x x x x x x  

x x x x x x  
x x x x x x  

x x x x x x  
x x x x x x  

:&xxxxxxx 0 0 0 0 0 x x x x x x x x x x  
x x o o o o x x x x x x x x x  

0 3 1 1 x 0 x x x x x x x  
g x x  ) x x x x x x x x  

Figure 7 (a)-(e) Defect connectivity  tracing  illustrated (see text). Forward  chaining  is  depicted  by  an  up  arrow;  backward  chaining  by a down 
arrow. 

Consider Fig. 9 as representing the cross  section of a panel 
with criteria constraints defined as ". . . no more than four 
defects allowable within any area four cells by four cells 
square."  In another application this could  be interpreted as 
the bounds of an object. 

It can be seen from the left-hand side of Fig. 9 that the 
existing pivots (defects) P1, P2,  P3, P4, and P5 do  not trap 
the  error in the panel, since the defective area is bounded by 
Row 2 Column 4 (not a valid corner pivot), Row 2 Column 7 
and Row 5 Column 4, Row 5 Column 7. 

To circumvent this problem, therefore, a set of what are 
called imaginary pivots must be constructed. These are 
detailed in the figure and are created as normal pivot tables 
in the system, with a flag setting to indicate their unique 
status (see Table 3 for outline of  pivot table  format). 

The imaginary pivot tables are created because there is  no 
guarantee that any defective area will be aligned with a 
defective cell as its corner pivot. Therefore, a dummy pivot is 
constructed around a defect which  does  not  exist at  that 
coordinate on the panel. This dummy or imaginary pivot  is 
determined by the intersecting point of two traces. 

The first trace is backward from the first pivot and the 
second is upward  from a second pivot  which has a greater row 
number than  the first, but a lesser  column  or  cell number. 
The point  or  cell of intersection of these two traces is called 
the imaginary pivot. If the length of either trace is greater 
than  the dimension of the defective area specified  in the 
criteria,  the imaginary pivot  need  not  be constructed. 

It can also be  seen  from  Fig. 9 that duplication of 
imaginary pivot entries may take place (11, 3/5 is an 
imaginary pivot constructed from the traces of P1 and P3 or 
P5). To avoid unnecessary duplication and consequently a 
longer  processing time and additional storage allocation, an 
imaginary pivot directory is set up in the system. This 
directory holds the coordinates of all the actual and imagi- 
nary pivots and is updated as necessary, as  the panel is 
scanned row  by  row. 

Consider an extension of the right-hand side of Fig. 9. This 
would represent the worst  possible case of a defective  cell 
pattern with regard to pivot and imaginary pivot table 
allocation. Assume,  for the moment, that all allowable 
defects (e.g., 16) in any sub-area were arranged in this 
diagonal fashion. The number of  pivot tables required would 373 
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Figure 8 Forward- and backward-chaining  algorithm. 

be 16 (for  the existing defects) + 15 t 14 + 13 + 12 
+ - . - + 1 (for  the  imaginary pivots). 
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Therefore, a total of 136 tables would be  required.  Thus, 
the memory  allocation  for the pivot operation is dependent on 

Figure 9 Imaginary pivot formation  illustrated (see text). 

the  criteria.  In  summary, if no more  than x defects  are 
allowed within any given area,  then  the  number of pivot 
tablesrequiredisx + (x - 1) + (x - 2 )  + - - + 1 .  

Note  that  the pivot operation  routines  are called immedi- 
ately  after a  defective cell is encountered in Fig. 4. On exit 
from  the pivot operation,  assuming  the  criteria have  not  been 
violated, control is passed to  the  scan  and cosmetic  routines. 

Complex  applications 
While  many  algorithms  are  available  for complex patterns 
and  applications, e.g., Kruse [ l ]  or Danielsson [ 2 ] ,  the 
algorithm described here  has been used in detecting complex 
patterns.  For  example, Fig. 10 shows a pattern consisting of 
two separate  areas,  one within the  other.  It  turns  out  that  the 
technique is not only capable of detecting  this  type of 
pattern,  but is also capable of determining its topology: 

74 pixels within rows 2 to 12, and  columns 2 to 19. 
22 pixels within rows 5 to 8 and  columns 7 to 14. 

The  algorithms  do  detect  one  area or object within the  other, 
on a  row-by-row basis, no matter  what  the  alignment  may be. 
While  more rigorous experimentation is required  for  a 
generalized conclusion to  this  claim, indications are  that  the 
approach  taken in this  paper is very powerful in identifying 
complex shapes, yet it is simple and economical of space. 

Conclusion 
The  algorithms described provide a  solution  for image  analy- 
sis to  the problem posed by the  implementation of a row- 
by-row linear  scanning  application.  This problem arises 
when the  image  to  be  analyzed  cannot be viewed in its 
entirety  but  must be built  up on  a  scan-by-scan basis, from 
which a mirror image is created in the processor memory and 
subsequently analyzed,  an obviously time-consuming and 
costly  method  (in terms of storage  capacity, a variable 
depending  on the size of the  image).  Additional  timing 
constraints (imposed by the very nature of the  application, 
e.g., real  time)  may  render  the method undesirable if not 
impossible. 

In these  instances,  a  method which analyzes  the  image 
data on a row-by-row basis is essential. This  paper  has 
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described how this  analysis is carried  out.  Algorithms  are 
outlined which are  capable of detecting  the topology of 
solitary pixels as well as  patterns of connected pixels in an 
image of any  shape  or size. The  image  can  be  reconstructed 
and  analyzed  dynamically without  having the  entire  image 
presented for analysis a t  one  time.  The  algorithms have been 
implemented  and have been in use for  several years  for 
practical  as well as  experimental purposes. It is believed that 
the  concepts  presented,  as well as  the  algorithms themselves, 
can be adapted  and  expanded  to cover a  wide range of image 
processing  problems requiring economical  solutions. 
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