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Digital Simulation of Magnetic Czochralski Flow Under
Various Laboratory Conditions for Silicon Growth

Previous digital simulations have suggested that an axial magnetic field in the 0.1-T (1000-Gs) range can effectively suppress
convection in Czochralski growth of silicon. The present paper treats the matter more quantitatively by investigating the
convection in a variety of flow conditions corresponding to typical Czochralski growth of silicon on a laboratory scale.

introduction

An external magnetic field dampens melt convection during
Czochralski growth of silicon crystals, thereby hindering and
controlling the erosion of the silicon dioxide crucible by the
flowing melt. Usually the crucible and crystal are rotated
coaxially but in opposite directions (counter-rotation) to
smooth out thermal asymmetries, to control melt flow
against the crucible, and to control the shear rate at the
growth interface. A certain amount of dissolved oxygen in
the melt is desirable, and this is regulated by controlled
erosion from the silica crucible. Magnetic damping of flow is
one important way of facilitating the growth of silicon
crystals with controlled oxygen content. Various configura-
tions have been tried, but one which has been simulated with
existing digital codes [1] is the application of an axial
magnetic field, as described by Kim, Schwuttke, and
Smetana [2]. The present paper describes simulations of
Czochralski flow using four different strengths for the
applied axial field, viz., 0, 0.05, 0.1, and 0.2 tesla (T) [0, 500,
1000, and 2000 gauss (Gs)]. Flows with counter-rotation are
examined, as well as those in which neither crystal nor
crucible rotates. Also, two distinct values for the buoyancy
parameter are used, since available density data for molten
silicon are so scattered that the appropriate value of the
volumetric expansion coefficient is rather in doubt. Other
problem parameters are fixed at values appropriate to silicon
growth on a laboratory scale, as suggested to us by K. M.
Kim. These are listed in Table 1.

Low-buoyancy simulations with counter-rotation

With a volumetric expansion coefficient of 1.41 x 107 K™/,
a crucible rotation rate of 1.57 radians/s and a crystal
rotation rate of —2.31 radians/s, we obtained the meridional
circulation patterns shown in Fig. 1. In all four parts of this

Table 1 Silicon growth parameters.

Melt density: 2.33 gm/cm3

Specific heat: 975 J/kg-K (0.233 cal/gm-K)

Thermal diffusivity: 0.125 cm’/s

Viscosity: 7 x 107 Pa-s (0.7 centipoise)

Thermocapillarity coefficient: 14.9 cm/s-K

Emissivity: 0.318

Crucible radius: 7.62 cm

Crystal radius: 4.125 cm

Melt depth: 5.0 cm

Crystal temperature: 1685 K

Crucible temperature: 1773 K at the wall, decreasing linearly
with radius to 1723 K at the center of the bottom

Electrical conductivity: 1.25 x 10* (Q-cm) ™!

Magnetic permeability: 1.0
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Figure 1 Meridional circulation patterns for the simulations of
low-buoyancy flows with counter-rotation: a) B = 0; b) 8 = 0.05; c)
B = 0.1;and d) B = 0.2 T. The contour spacing = 0.5 cm’/s. The
shaded bars above the figure represent the solid boundary formed by
the growing interface.
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Figure 2 Current patterns for the simulation of low-buoyancy
flows with counter-rotation: a) B = 0.05;b) B = 0.1;andc) B = 0.2
T. Contour spacing = 0.2 cm’/ s. Shaded bars as in Fig. 1.

figure, and in all our other streamline plots, the contour
spacing is 0.5 cm’ /s. The shaded bars at the top of the figure
represent the solid boundary formed by the growing inter-
face. Figure 1 suggests that an applied field of 0.1 T (1000
Gs) substantially reduces the meridional circulation, and
increasing the field to 0.2 T (2000 Gs) produces little added
benefit.

The current patterns for the three simulations with mag-
netic fields are shown in Fig. 2. The meridional components
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Figure 3 Meridional circulation patterns for the simulations of
high-buoyancy flows with counter-rotation: a) B = 0; b) B = 0.05;
¢) B = 0.1;and d) B = 0.2 T. Contour spacing = 0.5 cm’/s.

of induced current density are defined in terms of the current
function ¥, according to

_eB(aw) . _ B[,
=\ ez ) L= "7 e )

where B is the applied field and o is the electrical conductivi-
ty. The induced current arises from the interaction of the
applied magnetic field with the fluid motion. In the case of
the meridional components, the source is the azimuthal flow.
For purposes of the numerical simulation, this is best
expressed in terms of the angular momentum per unit mass,
usually called the swirl, since this is a physically conserved
quantity. It is most often denoted by Q and is defined by @
= ry, where v is the azimuthal velocity. Specifically, the
current function is determined from

o (Law)  1(Pu)_1(s0
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subject to the boundary condition that , vanishes on the
periphery of the computational domain. All current plots in

this paper exhibit isolines of ; , with a contour spacing of 0.2
3
cm’/s.

High-buoyancy simulations with counter-rotation
Increasing the volumetric expansion coefficient by a factor of
ten leads to the more intense circulation patterns shown in
Fig. 3. Applying an 0.1-T (1000-Gs) axial field again yields a
relatively quiescent flow, but now increasing the field to 0.2
T (2000 Gs) leads to additional improvement. Current
patterns for these cases are shown in Fig. 4.

Low-buoyancy simulations without rotation

When neither the crystal nor crucible rotates, the flow is due
entirely to thermal and thermocapillary convection. With the
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Figure 4 Current patterns for the simulations of high-buoyancy
flows with counter-rotation: a) B = 0.05;b) B = 0.1;andc) B = 0.2
T. Contour spacing = 0.2 cm’/s.

volumetric expansion coefficient set to 1.41 x 107° K™, the
flow patterns of Fig. 5 were obtained. Since the 0.1-T
(1000-Gs) field effectively shuts off convection except for a
small, weak eddy near the edge of the crystal, the result for
0.2 T (2000 Gs) is not plotted.

Since there is no swirl, ¥, vanishes everywhere; i.e., the
induced current is purely azimuthal.
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Figure 5 Meridional circulation patterns for the simulations of
low-buoyancy flows without rotation: a) B = 0; b) B = 0.05; and ¢)
B = 0.1 T. Contour spacing = 0.5 cm3/s.

High-buoyancy simulations without rotation

With the volumetric expansion coefficient increased to 1.41
x 107* K, intense flow fields again result. Figure 6 shows
that, as in the case for high-buoyancy flows with counter-
rotation, a 0.1-T (1000-Gs) field reduces the circulation
considerably, but a 0.2-T (2000-Gs) field yields additional

improvement.
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Figure 6 Meridional circulation patterns for the simulations of
high-buoyancy flows without rotation: a) B = 0; b) B = 0.05;¢) B
= 0.1;and d) B = 0.2 T. Contour spacing = 0.5 cm’/s.
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Summary

The volume of melt which circulates in the meridional flow is
proportional to the difference between the maximum and the
minimum of the Stokes stream function, which therefore
provides a scalar measure of the convection strength. In Fig.
7, this quantity is plotted versus the magnetic field intensity
for each of the sixteen simulations just discussed. It illus-
trates that, whether or not counter-rotation is used, there is
little advantage in strengthening the field beyond 0.1 T
(1000 Gs) if the low value of the buoyancy coefficient is
correct. On the other hand, if the high value is more
appropriate, increasing the field to 0.2 T (2000 Gs) gives a
substantial further decrease in convection. The slopes of the
two corresponding curves suggest that still more improve-
ment could be obtained by passing to even higher field
intensities.
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Figure 7 Effect of magnetic field intensity on the strength of the
meridional circulation.
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