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Bounce and Chaotic Motion in Impact Print Hammers

The basis of this paper is a lumped-parameter description of an impact printer actuator of the stored-energy type. All constants
necessary to describe the actuator and the ribbon/paper pack are derived from measurements. The equations of motion are
integrated both for single- and multiple-current pulse excitation. The numerical results show that for low repetition rates, each
impact is distinct and independent, but at higher rates the impacts interact. The interaction manifests itself initially as
flight-time and print-force variations: Strict periodicity of the actuator motion is lost, as shown in Poincaré plots for the
actuator motion, and randomness sets in. At extremely high repetition rates, the actuator “hangs up” and the backstop no
longer participates in the actuator dynamics. During settle-out the actuator motion is extremely sensitive to the timing of the
current excitation. This fact can, in principle, be exploited to achieve extremely fast cycle times. However, without knowledge

of the state of the actuator, as is commonly the case, this sensitivity is detrimental to print quality.

Introduction

At this time, impact printing is the most cost-effective way to
obtain hard copy computer output. Because of their greater
flexibility, dot matrix printers are becoming more popular
than printers which use fully formed characters. The analysis
presented in this paper applies to dot matrix actuators having
a single moving element; this excludes dot matrix actuators
with ballistic elements. In dot matrix printers of low to
medium throughput (up to about 500 characters per second)
the actuators are usually arranged in a cluster. The indenting
elements, commonly wear-resistant wires, are arranged in
one or more vertical columns. By moving these across a line,
characters are formed serially, from left to right or from
right to left depending on the motion of the carriage that
carries the serial print head. Thanks in part to the large
amount of energy delivered to the impacting element, typi-
cally one millijoule per dot, and the large forces generated,
~2.3 kilograms per dot (about five pounds per dot), impact
printers possess extraordinary ruggedness when compared to
non-impact printers, such as ink jet and electrophotographic
printers. The traditional disadvantages of impact printers,
such as low throughput, low print resolution, and high power
dissipation, are being offset by advances in the use of the
available hardware made possible by microprocessors.
Examples are print heads that do not waste time scanning
areas on the paper that are to be left blank and software that
allows a number of tradeoffs between speed and print

quality. The ability of impact printers to produce multiple
copies remains an advantage in many applications. Despite
these innovations, further advances in impact print hammer
technology are needed to offset their inherent disadvantages.
Printer actuator mechanisms must become faster, more
energy-efficient, and more versatile, preferably without giv-
ing up tolerance to variations in operating conditions (wire
travel, number of forms, etc.)

The broad issues concerning throughput and characteris-
tics of impact and non-impact printers were discussed in a
recent review by Myers and Wang [1], to which the reader is
referred for more information. The scope of the present
paper is more limited, but it deals in greater detail with an
important question that arises in impact printing: What
happens to an impact printer actuator and the print quality
when the frequency of actuation increases?

Various workers [1-3] in the field of impact printing have
dealt with the factors that limit performance in impact
actuators, It was found in general that performance is
limited by inefficient design of the magnetic circuit, leading
to overheating. There are also mechanical effects such as
unwanted resonance that limit the operating range of actua-
tors and print quality. These observations have shaped the
manner in which actuator design is now being approached.
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Figure 1 Impact actuator of the stored-energy type, showing the
retracted print wire in the (a) normal and (b) print positions.

Largely through a careful process of design iteration, accept-
able magnetic design can be arrived at, in some cases guided
by finite-element solutions to the magnetic field equations,
but rarely accounting for the effect of eddy currents. As far
as the mechanical design is concerned, the importance of the
mass and finite stiffness of print hammers of the lever type,
leading to such phenomena as double impact, is widely
recognized. In at least one design, “the whipping hammer”
[2], flexibility is cleverly exploited to reduce the contact time
of the indenter on the ribbon/paper pack in an engraved-
character line printer.

From these prior studies we may conclude that the behav-
ior of print hammers during the acceleration phase is rela-
tively well understood, whereas what happens after the
printer armature returns from the paper has been given
comparatively little attention. This is not surprising, because
the numerical effort and computer resources required to
compute magnetic fields and structural vibrations of print
hammers are vast. Hence, insight gained with these methods
was typically limited to the acceleration phase of the actua-
tor. That was adequate in low-speed line printers, but in
present dot matrix applications and in fast engraved-charac-
ter line printing, the actuator return and settle-out phases are
equally important. Therefore, the present paper deals pri-
marily with print hammers under repeated excitation, where
the return and settle-out phases have to be taken into
account.
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To keep the expense of numerical computation within
reasonable bounds, a lumped-parameter description of the
actuator is adopted. At first sight, such a description might
not seem to offer much hope for interesting results, but it
becomes clear shortly that the bounce phenomenon, com-
bined with forcing at high frequency, produces a response of
great complexity and significance. Even more importantly,
we contend that the simple model used here can explain
many of the ills actuators experience when forced hard.

In dot matrix printing, high repetition rates, of the order of
1 kHz and faster, can only be achieved when one foregoes the
luxury of waiting for complete settle-out. Re-firing of the
actuator during the settle-out phase entails larger flight-time
variations, but large flight-time variations, of the order of
200 microseconds (us) peak to peak, are commonly accepted
in the industry as long as the impact forces are adequate.
This is in contrast with engraved-character line printers, in
which there is virtually no tolerance for incomplete settle-
out. The reason is that in the latter the hammer must strike a
rapidly moving fully formed character on a print belt at a
very precise location and time. The belt moves past a platen
and its speed can, in some printers, exceed 10 m/s. Severe
print quality degradation, such as clipping of the printed
characters, occurs when the flight time varies more than a
few tens of microseconds. In dot matrix printing, on the other
hand, the relative motion between the hammer and the paper
is only a fraction of a meter per second, making flight-time
variations relatively harmless.

In both forms of impact printing, the consequence of
bounce is always reduced print quality. In engraved-charac-
ter line printers, it is misregistration and slur; in dot matrix
printers, it is nonuniform print density and even missing dots.
In the remainder of this paper we shall limit ourselves to a
discussion of dot matrix printing, concentrating on a stored-
energy actuator.

The stored-energy actuator

One of the fastest types of actuator is the stored-energy
actuator, also known as a “no-work” actuator. In this type of
actuator (see Fig. 1), the armature or, in some actuators, a
flexing beam, is stressed by a permanent magnet. A coil is
arranged in such a way that, when energized with a current
of appropriate sense and magnitude, the armature is
released, thus striking the ribbon and paper. The force due to
the permanent magnet and the “bucking coil” and that due
to the spring are shown in Fig. 2 for various current levels.
When the armature is close to the backstop (position is
shown by labeled vertical line in figure), the force on the
armature is very sensitive to the coil current. Consequently,
much less control can be exerted when the armature is
released. When one compares the reflection of the spring
force (dashed line in lower half of Fig. 2) with the magnetic
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force at zero current, it becomes evident that the force to fire
the hammer from rest depends on the small difference
between the spring force and the net magnetic force.

The permanent magnet recaptures the armature upon
returning. Meant to be short, the capturing phase still has
some finite duration, during which the actuator settles out.
Fast actuators invariably suffer from bounce, although it can
be minimized with the use of damping materials, such as
hysteretic polymers, and by eddy-current and active damp-
ing.

Mathematical model

The simplest description of a stored-energy actuator is given
by Newton’s law for an armature represented by a mass
point. This may seem too simplistic at first, but in practice
many print hammers, thanks to great care in designing a
light and stiff structure, behave nearly as rigid bodies, if not
as mass points. Actuators that can be described as mass
points represent an ideal structure in the sense that spurious
structural modes are ruled out by definition.

If we assume that the armature displacement x is positive
towards the ribbon and paper and that the armature mass is
denoted by m, the equation of motion is

F, = mx, (1)

where F, is the sum of all forces acting on the armature and %
is the second derivative of x with respect to time (i.e., the
acceleration). The initial conditions to Eq. (1) are not known
a priori. However, the state x(0), a static equilibrium, can be
found by an iteration on x such that F, = 0. At rest, the
armature compresses the backstop and the Hertz contact
force is in equilibrium with the spring and permanent
magnet forces.

The total force on the armature is further broken down as
F=F, +F+F +F +F, 2)

where F_ is the net magnetic force exerted by the permanent
magnet and the coil, F, is the armature spring force, £, is the
force exerted by the ribbon/paper pack on the armature, F,
is the Hertz contact force mentioned before, and F, is the
viscoelastic force at the backstop. Note that some of the
individual forces may be negligible or equal to zero over part
of the range of displacement. Measurements of this force at
various coil current levels I show that the expression

(A, — B,I)’
VX

fits the data very well when K, 4, and B_ are suitably
chosen. The forces F and F,, the maximum magnetic force,
are measured (as is regrettably still customary) in pounds, x
in inches, and I, the coil current, in amperes. (Editor’s note:

F,=F, - 3
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Figure 2 Solid curves show the net magnetic force F, vs. the
displacement distance at various coil currents (0, 0.5, 1, 1.5, and 2
amps). Also shown are the linear spring force F, (——) and its
reflection (---). At zero current, return of the armature from any
displacement is ensured since the net force on the armature at zero
current always drives the armature against the backstop. The double
vertical lines indicate the relative positions of the backstop, ribbon/
paper pack, and platen. Note that the position of the backstop has
been arbitrarily set at 0.002 in. (51 um).

SI metric conversion values appear in parentheses next to
these values, and as separate axes in the figures.) Figure 2
shows the magnetic force F, at various current levels in
relation to the armature spring force F,, given by

s s

B
F,=B, — —(x — b), 4
) (x - b) 4
with constants A4, and B, provided by experiment. The
parameter b is the position of the backstop, which in this
paper is arbitrarily set to 0.002 inches (51 gm).

Several authors (see for example Dauer [4]) have mea-
sured the characteristics of substrates (ribbon and single- or
multi-part forms). For dot matrix printing, Wang and Hall
[5] have found that

x — x \*7
Heo (<79

x —8.3 X - Xx 11
T H(—%) (7) ( _ ) ] )

where E is a constant that can be interpreted as a character-
istic ribbon/paper stiffness, and 4, is the area of the indenter
of the ribbon/paper pack; i.e., in a wire matrix printer it is
the cross-sectional area of the wire; x, is the position of the
armature at which it just touches the ribbon/paper pack
from an arbitrarily chosen origin, 4 is the ribbon/paper pack

F,= — (4E,)
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Figure 3 Hammer motion resulting from single-pulse excitation.
The horizontal lines indicate the relative positions of the backstop at
0.002 in. (51 pm), the ribbon/paper pack at 0.008 in. (203 pm), and
the platen at 0.015 in. (381 um).
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Figure 4 Total force on the armature as a function of time for
single-pulse excitation.

thickness, and X is the first derivative of x with respect to
time (i.e., the velocity). This expression describes the “paper
force™ very well as long as there is no mechanical failure of
the ribbon/paper and the paper has not been indented before.
Also, the subtle effects of relative humidity and plastic
memory have been neglected. The function H(x) is the unit
step function and x___is the maximum indentation of the

max

printing substrate. Note that there can be local maxima.

Upon returning from the paper, the armature hits the
backstop, whose primary purpose is to bring the armature
to rest and to provide well-defined initial conditions for sub-
sequent actuations. There are two radically different ap-
proaches to achieve rapid settle-out. The first approach relies
on the hysteresis exhibited by some elastomers. Backstops
made of such material undergo rather large deformation,
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typically of the order of 0.001 in. (25 um), while the forces
remain rather small (a few pounds). Settle-out on elastomers
happens with few rebounds. Some actuators lack compliant
backstops. Instead we may find backstops made of steel,
often coated with chromium for wear resistance. Settle-out
against this type of backstop shows many more rebounds of
successively smaller amplitude. Especially when the actuator
is of stored-energy type, the frequency of bounce during
settle-out can be very high. Thus, while the energy dissipated
per bounce may be only moderate, the fact that there are
many bounces at gradually increasing frequency causes the
average energy dissipation to be high. It is not always clear
what the source of energy dissipation is for hard backstops.
Often, the question is left unanswered and a coefficient of
restitution is adopted. Several mechanisms can account for
the observed dissipation. The most important ones are (a)
damping due to mechanical radiation [6], (b) eddy-current
damping, and (c) magnetomechanical damping [7].

During observations of the actuator being described here,
the rebound speeds of the armature were significantly lower
than those predicted by known coefficients of restitution
observed for impacting steel bodies; see Goldsmith [8]. It
became clear very quickly that cause (c) alone could not
explain the observed energy loss. To account for the observed
behavior, the following model was adopted. First, there is the
classical Hertz contact force

F,=k|b - x[", (6

where k follows from the radii of curvature and Young’s
moduli of the contacting bodies. Then, there is a viscoelastic
force F, given by

F,= —%x|b — x|"H(b - x), @)

in which the constant £ can be viewed as a damping coeffi-
cient. Hunt and Crossley [9] arrived at a similar expression.
Equation (7) allows the forces on the backstop to remain
finite, while ensuring the correct change in kinetic energy
after impact. Radiation damping mimics the effect of Eq. (7)
in the sense that a point on a beam that undergoes a local
impact leaves the impact point with diminished velocity
while the total kinetic energy of the beam is conserved.
Damping under those conditions can then take place remote-
ly, such as by friction at a clamping location.

So far, the coupling between the mechanics and magnetics
of the actuator has been excluded from the discussion.
Strictly speaking, Faraday’s law should complement the
equations of motion. Most hammer-driving circuits, how-
ever, are not much affected by the reluctance changes of a
stored-energy printer actuator. At most, the hammer impact
is discernible on the coil current waveform as a slight cusp, if
indeed the coil current has not been interrupted at that
point.
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Numerical integration and graphics

Integration of the equations of motion was performed ini-
tially with the implicit trapezoidal rule, which features
excellent stability against the difficulties imposed by the
impact of the armature on the backstop. The widely used
fourth-order Runge-Kutta algorithm was also applied, giving
higher accuracy but less numerical stability. Typical step
sizes for the integration were ten microseconds when the
armature was not in contact with the backstop, and one
microsecond when the armature was in contact with the
backstop. During the final stages of the settle-out phase the
step size could safely be increased to twenty microseconds to
speed up the calculations. The computer program used to
analyze the behavior of the print hammer actuator is written
in APL. This allows interactive specification of important
parameters such as platen distance, forms thickness, current
waveform, and hammer firing rate.

The computationally intensive parts of the program are
written in PL /I and compiled. The object code is executed on
an IBM 3081 from the APL environment via the IDAMS
auxiliary processor, creating the impression to the user that
the APL environment is maintained. A convenient way to
interact with the program is the IBM 3277 with a graphics
attachment, driving a Tektronix 618 storage tube. Thus
equipped, the motion of the print hammer and various
derived variables are available in pictorial form in seconds.
Graphics support is provided by the RGRAFGA graphics
workspace.

Single-shot hammer response

When the stored-energy hammer is excited with a single
current pulse, the displacement response is as shown in Fig.
3. The hammer indents the ribbon/paper pack just once, as
intended. The amplitude during the settle-out phase is small
compared to the maximum hammer excursion, creating the
impression that the hammer is largely settled out and ready
for another firing. However, the energy of the hammer due to
the field of the permanent magnet, as well as the total force
on the armature, fluctuates significantly; see Fig. 4. By far
the largest forces encountered by the armature are those
caused by the backstop. In fact, the useful life of the actuator
is, to a large extent, determined by impact wear of the
armature/backstop interface. A force-displacement diagram
of the actuator cycle is shown in Fig. 5, which shows the
hysteresis loops in the ribbon/paper pack and in the back-
stop. During settle-out, the hysteresis loops become grad-
vally smaller. Clockwise loops indicate energy input, coun-
terclockwise loops indicate energy loss. The large impulsive
forces at the backstop cause near-discontinuities in the
hammer velocity. This sets the stage for great sensitivity of
the hammer response to past firings.
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Figure 5 Force-displacement diagram. The insert to the figure
shows the tightly nested hysteresis loops that correspond to settle-
out.
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Figure 6 Hammer response to two pulses, illustrating the sensitiv-
ity to timing of the second pulse. Horizontal lines indicate the
relative positions of the platen, ribbon/paper pack, and backstop.

Hammer response to multiple excitation

When there is multiple-hammer excitation there is opportu-
nity for the hammer to react to past hammer firings. A
striking example is presented in Fig. 6. In this two-pulse
example, a 40-microsecond difference in firing time (660 vs.
700 us) causes the response to the second waveform to
change from braked or quenched response to a complete
hammer excursion. The pulse with the longest delay (700
microseconds) causes a 10% stronger impact on the paper,
because the armature has a larger excursion into the
ribbon/paper pack. Instead of braking the motion, the firing
at 700 us aids the motion, thus making full use of the rebound
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Figure 7 An example of “buzz-printing.” The armature stays
clear of the backstop within a print burst. Relative positions of the
backstop, ribbon/paper pack, and platen are shown as horizontal
lines.
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Figure 8 Hammer displacement as a function of time and forcing
frequency. The hammer is excited by a nine-pulse burst.

kinetic energy. As a consequence, the hammer flight time is
reduced compared to that of the first firing. Catching the
hammer “on the rise” has been associated with the term
“resonant printing” [10]. Still another mode of operation is
possible. Instead of allowing the armature to return fully to
the backstop, current pulses can be issued that are synchro-
nized with the return of the armature from the paper. Figure
7 shows the result, sometimes known as “buzz-printing” [3].
The latter mode of operation tends to produce weak impacts
on the paper. It is also quite sensitive to proper timing of the
current pulse train, and to variations in the ribbon/paper
pack.

Let us further explore interactions between firings to see
how they depend on hammer firing frequency. To do this,
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Figure 9 Frequency-time plot for nine-pulse excitation, showing
the domain of erratic hammer response. Colors correspond to
amplitudes of the hammer motion.

displacement vs. time plots at gradually increasing current
excitation frequency are laminated together to form a three-
dimensional surface; see Fig. 8. The same data, now pre-
sented as a color-enhanced picture, are shown in Fig. 9. The
maximum hammer displacement at low frequency is 0.0112

(284 pm). Upon casual inspection, the figure shows
regions, both at low and at very high frequency, in which the
hammer response varies slowly with frequency. At high
frequencies, the armature fails to return to the backstop and
is no longer subjected to the sudden reversals of velocity. The
actuator behaves as in the buzz-printing mode mentioned
earlier, although the individual impacts on the paper are not
distinct and forceful enough to be used for printing. At low
frequency, there is enough time for settle-out to cause the
energy of each impact to dissipate before it can affect the
next cycle. Between these two extremes lies a region in
time-frequency space in which the response is chaotic. Sub-
sequent hammer excursions interact strongly and are
extremely dependent on the frequency. If we look at the
second firing in Fig. 9 at low frequency and keep our
attention fixed on it, we can gradually track the second firing
at increasing frequency. We observe that the second firing
starts to waver in the direction of the time axis, indicating
flight-time variations due to incomplete settle-out
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Figure 10 Actuator phase plane; arrows indicate increasing time.

of the first firing. We observe also that the second firing
disappears almost completely, corresponding to the second
firing at 660 us in Fig. 6. This state of affairs would lead to a
missing dot on the paper.

Poincaré plots

Repeated application of current drive pulses to the actuator
can be considered an iterated map in the phase plane of the
actuator motion. Figure 10 shows the phase plane for a single
pulse, including settle-out. If we magnify the region around
the origin and study the state (x, x) of the system at a
specific phase of the excitation, as if with a stroboscope, we
find that for low excitation frequencies the phase points
converge to a single point. The response to periodic forcing is
periodic with the same period. As the forcing frequency is
increased, the phase points are randomly perturbed and
wander in a seemingly irregular manner. They stay within a
small but slowly increasing radius of the origin. The system
did not undergo a series of transitions of period doubling, but
double and triple cycles were observed as isolated cases
among chaotic solutions. Referring to Fig. 9, this means that
in the area where the response appears randomly distributed,
solutions exist that are periodic at subharmonic frequencies.
Figure 11 shows Poincaré plots (abscissa = displacement,
ordinate = time) for the motion at gradually increasing
forcing frequencies (decreasing strobe times from 1.35 to
0.80 ms) for Figs. 11(a) through (1), respectively. Note that
there are 200 phase points in each plot. It is remarkable that,
despite the chaotic nature of the phase points—in general,
two successive phase points do not lie close to one another—
the points do tend to fall on the phase trajectory of the
single-pulse phase plane. It is tempting to conclude that this
is the strange attractor of the actuator Eq. (1). There are, in
fact, some similarities between the actuator equation and
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Figure 11 Sequence of Poincaré plots for the stored-energy actua-
tor at gradually increasing rates of actuation. The numbers in the
individual plots indicate the time (in ms) at which the actuator is
re-fired (strobe times). All of the plots show strange attractors,
except at a strobe time of 1.35 ms, where a double cycle occurs, and
at strobe times of 1.30, 1.25, and 1.00 ms, where the motion is
periodic at the frequency of forcing. Note the vertical lines which
define the position of the backstop [arbitrarily set at 0.002 in. (51
pm)]. The abscissa extends from 0.0015 to 0.0035 in. (38 to 89 um)
and the ordinate from —25 to +25 in./s (—0.64 to +0.64 m/s).
There are 200 phase points in each plot.

Duffing’s equation, which has a strange attractor that has
been studied extensively [11]. The paper and backstop can be
viewed as a hard spring, analogous to the cubic term in
Duffing’s equation. The actuator has very localized damping
as opposed to the distributed damping in Duffing’s equa-
tion.

Discussion :

By using a model of extreme simplicity, it was shown that
several shortcomings of present impact printer actuators,
such as print-force variations and flight-time variations, can
be caused only by imperfect settle-out. The way in which the
performance of a stored-energy actuator degrades with
increasing frequency of forcing was demonstrated in a single
compact plot. It is hoped that similar plots, derived from
experimental displacement plots, will become available in
the future. The resuilts of the simulation presented here
suggest very strongly that present actuators must change in
two ways if significant speed increases are to be realized: 1)
passive damping methods should be improved, probably
requiring a breakthrough in materials, and 2) driving current
waveforms ought to respond to the phase of the hammer
motion and the pattern to be printed. The latter will require
more expensive and possibly less reliable hammer drivers, as
well as some additional digital signal processing. These
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measures should result in higher average hammer efficien-
cies. For example, in a typical print burst of dots, more
energy might have to be expended in the first dot, but
subsequent dots would be printed by keeping the actuator
moving as in a parametric oscillator (swing). In the limit, the
only energy to be expended should be the energy absorbed by
the ribbon/paper pack, about one-half of a millijoule per
dot.
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