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Random-Pattern Coverage Enhancement and
Diagnosis for LSSD Logic Self-Test

Embedded linear feedback shift registers can be used for logic component self-test. The issue of test coverage is addressed by
circuit modification, where necessary, of random-pattern-resistant fault nodes. Also given is a procedure that supports
net-level diagnosis for structured logic in the presence of random test-pattern generation and signature analysis.

Introduction

Logic self-test, the facility to test logic with built-in pattern
sources and response evaluators, is currently being widely
investigated in the literature. The self-test approach is
offered as an alternative to conventional component final
test, which uses software-precalculated stimuli and response
data stored in external test equipment. A number of recent
self-test proposals suggest partitioning logic designs into
sub-networks, each with a small number of inputs, such that
exhaustive pattern sets can be applied to ensure complete
coverage [1-3]. As attractive as exhaustive testing is, these
proposals encounter problems. Actual logic designs contain
networks that only allow partitioning to the required limits
with unacceptable circuit delays or pin costs. Further, the
partitions, where achieved, are sensitive to engineering
design changes. A different approach to self-test, also dis-
cussed in current literature [4-8], argues that random
patterns can be applied to an entire logic design in sufficient
number and speed to ensure adequate coverage. These latter
proposals have in common scan-path structured design and
the use of linear feedback shift registers (LFSRs) to gener-
ate pseudo-random patterns and to collect response signa-
tures. The body of this paper is concerned with the second
approach, i.e., random-pattern self-test.

Present and projected testing costs supply the motivation
for the investigation of self-test. If logic self-test can be put
into practice, there are a number of potential benefits. Those

most frequently cited are 1) reduction of test-pattern genera-
tion and data management costs, 2) use of less costly
equipment for chip and field-replaceable-unit test, and
3) migration of component tests to field service use.

But if logic self-test is going to involve hardware genera-
tion of pseudo-random patterns (RPs), then there are ques-
tions that need additional study. Is the fault-coverage
achievable with RP self-test equal to or superior to that of
conventional test methods? Will the required percentage of
faults be exposed by the number of RPs that can be gener-
ated in some acceptable length of time? Further, if long runs
of RPs are used for fault detection, is diagnosis of failures
possible with self-test? Are there diagnostics techniques that
can be used in the self-test environment that are comparable
in efficiency and result to those now used with conventional
final test?

One part of RP self-test, compressing test responses into
signatures, is already actual testing practice [9]. If there are
ways of ensuring the efficacy of the other major part,
random-pattern generation (RPG), then, given the disci-
plined state of design that the acceptance of constraints for
testability has brought about, it may be possible to combine
RPG and signature generation to realize the benefits of
self-test.

A proposal that addresses the questions of coverage and
diagnostics is described in the following sections of this
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Figure 1 General structure for random-pattern self-test.

paper. A general structure for self-test is first discussed, and
then circuit modifications that render logic designs random-
pattern testable are described. Next, modifications for some
particular random-pattern-resistant networks—cascaded
gate-array ANDs and large programmable logic arrays
(PLAs)—are discussed in some detail. Finally, a method for
practicing net-level diagnosis with level-sensitive scan design
(LSSD) [10] random-pattern self-test is presented.

Random test-pattern coverage

Assume a general self-test structure as shown in Fig. 1. Toan
LSSD network, with all primary inputs (PIs) and primary
outputs (POs) latched in a scan string, is added an LFSR, for
instance that in Fig. 2, as a source for random patterns [11].
Also added is another LFSR, for instance that in Fig. 3, to
compress the serial scan-out data stream into a signature
which can be compared to a precalculated good result. This
structure can be viewed as a particular means for performing
LSSD testing: Test patterns are scanned into shift-register
latch (SRL) strings, system clocks are pulsed, and test
results are scanned out. But how adequate is the test cover-
age when patterns are generated with an LFSR as opposed to
being algorithmically generated with software and stored at
a tester? Given that an n-bit LFSR can be constructed to
generate

2" — 1/scan length + PIs

pseudo-random patterns on LSSD logic, how many RPs
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Figure 2 Random-pattern generator: A 20-bit, maximal-length-
sequence linear feedback shift register with taps at bits 3 and 20, and
with a test-bit-stream output port.
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Figure 3 Signature generator: A 20-bit maximal-length-sequence
LFSR with eight taps and with a device-test-response-bit input
port.

are required for any particular network? It has been shown
that RPs are often effective in detecting faults in combina-
tional networks [12, 13]; this result has also been shown to
extend to LSSD networks [14]. “Effective” here means
obtaining the desired fault coverage with a set of patterns
which, while much larger than a set of deterministic patterns
with comparable coverage, is still much smaller than a set of
exhaustive patterns. The fact that the required set of RPs is
large is not an obstacle to a self-test technique where patterns
are generated by hardware.

But is it not possible that there are logic networks which
are the product of intelligent design choices and comply with
LSSD design-for-testability rules that are not fully tested
with any practical number of RPs?

If the number of RPs needed for complete testing is
related to the size of the highest fan-in networks within the
device to be tested, then it is likely that VLSI/LSSD
packages will contain some hard-to-expose faults. To say
that a fault is not easily testable with RPs means either that
there exists a node in the network where the probability of
randomly arriving at “1” (or “0”) is very low, or that having
achieved the required value, the probability of also setting up
a sensitized path to an output is very low. We show that in
either case it is possible to modify the original logic, without
changing the system function so that the fault is more easily
detected with RPs.
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Modifying circuits for RP testability

® A general technique

The following is a technique for modifying a combinational
network (an LSSD sub-network) to make it RP-testable.
Consider the three-input NAND circuit shown in Fig. 4. All
stuck faults associated with this logic circuit will be tested if
the four tests shown are applied to the circuit and its output
observed either directly or through other logic circuits.
Consequently, if this circuit is part of an LSSD network and
not fully tested by a set of RPs, then one of two possibilities
exist: Either the RPs did not result in all four primitive tests
being applied, or, when applied, the output of the circuit was
not observable. If the problem is due to one or more of the
tests not being generated by the RPs, this is usually caused
by one or more of the circuit inputs having a very low
probability of being at “1”” (or “0”"). This can be corrected by
modifying the logic circuit feeding the untested circuit, as
shown in Fig. 5. When the “+ TEST” signal is held positive
during test, the probability of the circuit output being “1” is
changed from “very small” to approximately 0.5. (Where the
probability of the circuit output being “0” is very low, the
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Table 1 Fault coverage with random patterns and with a determin-
istic test-pattern generator for two sample chips.

Inputs  Logic Fault coverage (%) Fault
gates  with random patterns coverage
(%) with a
100 1,000 10,000 deterministic
generator

Chipl 63 926 86.1 94.1 96.3 96.6
Chip2 54 1103 752 923 95.9 97.1

logic modification is the same as indicated in Fig. 5 except
that in this case the “new” variable is dotted with the output
of the circuit.) If, however, the RPs result in the tests T, T,
T,, T, in Fig. 4 being applied but the output of the circuit is
not observable, this can be addressed by an additional
fan-out from the circuit to an SRL. If more than one new
internal observation point is required, they can share one
SRL through an EXCLUSIVE-OR tree, as shown in Fig. 6.

These two design modification techniques are a form of
test-point addition, but notice that in an LSSD environment
the overhead need not be large. No additional pins are
needed. In general, an existing SRL can be used to generate
the random test variable in Fig. 5, and the same variable can
fan-in to other circuits if needed. The observation points in
Fig. 6 require one additional SRL and n — 1 EXCLUSIVE-
ORs for n added points. Further perspective on overhead can
be gained by recalling that previous experience with RPs in
an LSSD environment indicates that many networks require
no modification to be testable [14]. Recent results with
current product samples are encouraging (see Table 1). The
two logic modification techniques are proposed as insurance
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Figure 7 Circuit A, a cascaded AND network.
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Figure 8 Circuit used for 1-of-4 select.

against exposure with using RPs on some particular design.
Notice that the techniques both effectively shorten the length
of a path in the logic, from an input edge where all test values
are approximately equally likely, to an observation point
where the test is captured; and for masterslice (gate-array)
logic, where the allowable fan-in to a circuit is usually low,
that is often all that is needed to render the logic testable with
a practical number of RPs.

® Modifying a large, cascaded AND network

If, as seems likely, RP-resistant faults are likely to cluster on
certain characteristic sub-networks, then a more global
modification is often effective. Consider the large, cascaded
AND, designated as Circuit A, in Fig. 7. Here, even if the
circuit is directly accessible to test, each of the prime faults
has a detection probability of only 1/2%. The only fault
detected in Circuit A after simulation with 20 000 RPs is the
output of block 33 stuck-at-zero. To enhance the RP testabil-
ity of Circuit A we can add the I-of-4 select circuit shown in
Fig. 8. The resulting composite circuit, labeled Circuit B,

E. B. EICHELBERGER AND E. LINDBLOOM

DO~ I NN o b —

v 2

Ny

v

HES

{

N

H } = Stuck-at-one

Figure 9 Circuit B, AND network modified by addition of 1-of-4
select.

OO LI —

When
T=]

36

Figure 10 Circuit C, AND network with 1-of-4 select and addi-
tional circuits for observation.

is shown in Fig. 9. T is a test mode pin, ¢, and 7, are random
variables, which could be existing, independent SRL bits.
The 1-of-4 select circuit is such that when test signal T = 0,
all four derived signals v, #,, v,, and v, = 1, and the system
function is unaltered. When T = 1, one and only one of
the sets of derived signals, taken pairwise, v, v,, v, v,, v, v,
and v, v,, are set equal to 1, and the prime faults in Circuit B
have a random-pattern detection probability of 1/2°. The
effect of the added circuit is that in test mode any random
pattern sets exactly 3/4 of the original circuit to a noncon-
trolling state, substantially increasing the probability of
achieving a test on the remaining quadrant.

Fault simulation of Circuit B revealed that after 20 000
RPs all faults were detected, except the four indicated in Fig.
9. The added circuit introduces four new faults nearly as
difficult for RP testing as the original circuit. Further, these
new faults, if present, would affect system function. To cover
these faults, we can add the observation circuit shown in bold
lines in Fig. 10, arriving at a new composite, designated as
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Circuit C. The XOR output can be observed in an SRL or
added to an observation XOR tree, as in the preceding

discussion of general modifications. With this addition,

Circuit C is 100% testable with 20 000 RPs. See Table 2 for
the fault-simulation statistics.

® A random-pattern-testable design for PLAs

There is a popular design choice for VLSI custom logic that
is characterized by very high fan-in circuits—program-
mable logic arrays (PLAs). The problem that PLAs present
for random-pattern generation has been observed [13] and
consists simply of the fact that the AND array may contain
single circuits with high fan-in, say 24. In this case, the
probability of randomly establishing any one of the primitive
tests for the circuit is 1/2%, or approximately one out of 16
million, given probabilities of 0.5 for “1” and “0” on all of
the circuit inputs. (Note that high fan-in to the OR array
does not present the same problem because here the random
probability that any circuit input is in the noncontrolling
state is very high. For a number of PLAs selected from a
microprocessor and characterized in Table 3, PLA 1 con-
tained a 37-way OR-array circuit. However, with no AND-
array circuit in PLA 1 larger than a 12-way, almost all
testable faults were covered with 10* patterns.) Maximum
fan-in to any AND-array circuit can be used as an index to
the random testability of a PLA. If this becomes large, then
there are two choices: 1) break the single PLA into smaller
ones with “narrower” AND arrays, or 2) add circuitry to the
large PLA to make it random-pattern-testable.

Figure 11 illustrates a circuit modification that makes a
PLA testable with RPs. This additional circuitry consists of
two sections; the first is called segment select. Here, four
signals u,, u,, u,, and u, are generated from two random test
variables ¢, and , under control of the test signal 7 such that
they have the following properties:

1. When T = 0, all four signals u,, u,, u,, and u, are in their
“off” state and the PLA bit-partitioning logic works in
the normal way. (The normal PLA inputs are shown in
Fig. 11.)

2. When T = 1, exactly one of the four signals u,, u,, u,,
and u, is “off” while the other three are “on,” forcing al/
AND-array inputs in their quadrants to the “1” value.
The AND-array inputs to the fourth quadrant are con-
trolled by the normal PLA input.

The test mode, when 7 = 1, changes the probability of
generating a primitive test for an evenly partitioned 24-input
AND gate from 1/2* to 1/2°, if random patterns are applied
to the PLA inputs.

Although the segment select improves the chances of
getting the required primitive test values, it hinders observa-
bility. To ensure that tests propagate through the OR array,
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Table 2 Fault-simulation statistics for Circuits A, B, and C.

LFSR Fault coverage (%)
pattern count
Circuit A Circuit B Circuit C
100 1.0 7.9 23.3
1,000 1.0 46.0 52.8
10,000 1.0 95.5 97.5
20,000 1.0 98.2 100.0

Table 3 Fault coverage with random patterns for four sample
PLAs.

Inputs  Product  Fault coverage (%) Untested
terms  with random patterns  faults

100 1,000 10,000

PLA 1 14 54 415 79.2 99.3 4
PLA 2 15 30 398 93.6 100.0 0
PLA 3 19 32 924 994 99.6 2
PLA 4 21 27 942 100.0 100.0 0

the second section of circuitry shown in Fig. 11, product term
select, is added. The operation of this logic is as follows:

1. When T = 0, all product-term-select inputs to the AND
array are forced to “1,” allowing the PLA to function
normally.

2. When T = 1, the random variable inputs 7,, ¢,, ¢,, and ¢,
are pair-wire-decoded such that exactly two out of eight
inputs to the AND array are *“1.” This ensures that one
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Figure 12 Random-pattern test coverage curves with unmodified
and modified PLA.

“1”

product term has two inputs and all other product
terms have at least one “0” input.

Thus, at most, one product term can be selected at a time
and the results of any associated applied test can be observed
at the output of the PLA. The number of additional random
inputs required can be reduced by partitioning the product
terms of a PLA into n groups, such that each member of a
group has at least one path to an observation point not shared
by another member, and selecting all members of one group
together.

An experiment was performed in which a large PLA, one
with 38 primary inputs, 117 product terms, and a maximum
AND-array fan-in of 20, was modified by the inclusion of
segment-select and product-term-select circuitry. The
unmodified PLA had a 94.3% fault coverage with a state-
of-the-art deterministic generator (the remaining faults were
logically redundant) and an 82.3% coverage with 10* RPs.
See Fig. 12 for coverage curves. After modification, 98.0%
was achieved with 4300 RPs. The increase in testability over
the deterministic generator was due primarily to the fact that
the previously redundant crosspoints were made testable
with the use of the product-term-select technique.

A number of recent papers have proposed designs for fully
testable PLAs [15—17]. These designs physically or logically
partition the PLA AND array and OR array into separate
circuits divided by added SRL strings. The separate circuits
are fully testable by function-independent, universal, deter-
ministic pattern sets. These designs, despite their generous
addition of SRLs, do not aid—nor were they intended to—in
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the random-pattern testability of high fan-in circuits charac-
teristic of PLAs.

Determining RP coverage

Apart from the special case of PLAs in custom logic just
discussed, how do we know if a masterslice design is RP-
testable? For a given design, are any of the internal test
points discussed earlier needed? If so, where should they be
added? In support of self-test, a tool is needed to determine
RP testability and potential “trouble points.”

Fault simulation is a possibility: Large numbers of LFSR-
generated patterns could be fault-simulated against an
LSSD network and the residual untested circuits studied.
But this is a not entirely attractive alternative since it
eliminates one of the intended benefits of self-test—reduc-
tion of computer costs involved in test generation.

A software fault simulator tailored to LSSD networks and
long runs of patterns against a small residue of untested
faults may be feasible. Recent developments with special-
purpose hardware offer the prospect of a fault-simulation
machine [18]. Another alternative is an analytic tool. It may
be possible to write an efficient program to calculate the joint
probability of controlling and observing a test bit on each net
in a combinational network [19]. Such a tool must contain a
solution to the perennially troublesome “reconvergent-fan-
out” problem. Given these probabilities, it will be clear
whether logic modification is necessary and where added
internal random variables or observation points are needed.
SCOAP [20] numbers, which are integer values indicating
the minimum number of primary inputs needed to control
and observe a net state, do not appear helpful unless a
solution to the reconvergent-fan-out problem is found [21-
22].

Diagnostics with LSSD random-pattern self-test
Before we implement self-test as a manufacturing procedure,
it will be advantageous to have shown that it can support
net-level diagnosis. One way of accomplishing this might be
the following. Referring to Fig. 1, the scan-out signal line
which drives the signature generator is also brought to a pin,
such that it can (but only when needed) drive a small,
external data-storage facility. This pin, together with inter-
mediate signatures recorded when calculating the final sig-
nature, supports the following diagnostic procedure:

1. Run self-test to completion in normal mode.

2. If the signature at completion of full test does not agree
with the precalculated one, re-initiate the pattern genera-
tor and run for 100 cycles, coliecting all scan data in the
storage facility.
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3. Compare the signature with the expected one after 100
cycles; if it is good, run and record response data for the
next 100 cycles—overlaying the previous data.

4. If an intermediate signature does not agree with the
expected one, compare the data in the storage facility
with the good machine responses and determine which
bits failed. (Note that the response data can be generated
on demand by software that ripples the pattern generator
LFSR up to the pattern of interest and then performs
good machine simulation on the segment containing the
fail(s). Or experience may indicate that it is preferable to
do a one-time generation of the first few thousand
patterns’ worth of good machine responses.)

With the identification of the individual failing bits, we
have the information required for current diagnostic practice
with LSSD chips and multi-chip modules [23, 24]. From the
failing responses and the self-test cycle counter, we can
exactly determine the primary input pattern exposing each
failing response; now it is possible to do the post-test full-
fault diagnosis described in [23, 24]. The strategy of this
diagnostic practice is that since each LSSD pattern com-
pletely reinitializes the device under test, fault simulation of
the entire pattern set is not required to help locate the cause
of an observed failure. In place of the traditional precalcu-
lated fault dictionaries, LSSD diagnostics requires fault
simulation of only those load, clock, and unload sequences
that contain actual failures observed under test. Provided
that the self-test pattern generator LFSR is physically
distinct from the LFSR used for signature collection (as in
Fig. 1), so that no input pattern is corrupted by an upstream
failure bit, and a snapshot of any response data is available in
diagnostic mode (data storage buffer, Fig. 1), failure loca-
tion is as good as that with conventional LSSD testing. What
the diagnostic simulator requires is identification of 1)
failing responses and 2) the input patterns that exposed these
fails. We hope to have shown that both can be efficiently
obtained in the presence of RPs and signature registers.

Conclusion

We have described a self-test proposal that faces the ques-
tions of test coverage and diagnosis. Significant work
remains to be done in the area of tools to determine if and
where circuit modification is required for RP testability. The
same tool used to calculate the difficulty of exposing each
fault in a net could be rerun, after any necessary modifica-
tion, and used to estimate the number of patterns required
and the fault coverage.

Another significant challenge to LSSD RP self-test meth-
odology is the additional degree of design discipline required
to ensure that a network is RP-testable. A design-for-
testability rules checker must ensure not only that the logic is
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scannable and level-sensitive but also that no indeterminate
state can exist in test mode, such as an uninitialized RAM
cell.

A final reflection: The self-test approach as described here
rests on random-pattern testing; but if RP testing is effective,
why is it not already widely practiced? The answer is that
initially the test community was faced with large, uncon-
strained, sequential packages and RPs were not effective
with them. With design constraints, RP testing was still not
economical if it meant generation of enormous software
pattern sets and transmitting them to be applied by external
test equipment. Self-test with LFSRs, however, provides a
way of generating and compressing these enormous data sets
via simple hardware. But persistent concerns remained:
There are networks in some well-designed products that
could force us, with RP self-test, to completely unreasonable
test lengths. And, having compacted all the test responses
into a signature, we could be faced with an intractable
diagnostic problem. The design modifications and diagnostic
procedure we have described, which are simple in concept
and implementation, should alleviate these concerns.
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