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Integration of Machine Organization and Control Program
Desigh—Review and Direction

This paper discusses the relationship between machine organization and control program design in high-end commercial
computer systems. The criterion is cost/performance, subject to achieving an acceptable performance level. A brief discussion
of the environment expected for the design and operation of high-end commercial computer systems is outlined, followed by a
discussion of machine organization techniques which are classified and reviewed to permit a qualitative evaluation of the
degree to which control program intent is exploited in machine organization. The thesis is developed next, using a hierarchical
model which illustrates the contention that architecture has acted as a barrier to communication between the control program
and machine organization. Examples of techniques that exploit knowledge of the intent of the control program and comments
on the methodology that might be used to investigate such techniques follow. Directions for further research are then

proposed.

1. Introduction

The purpose of this paper is to discuss the relationship
between machine organization and control program design in
high-end commercial computer systems. Our criterion is
cost/performance, and in our discussion we adopt the point
of view that a computer system can be modeled as a
hierarchical series of abstractions. We concentrate on the
control program because it is the source of a large and
growing proportion of the instructions executed on commer-
cial high-end systems.

Our thesis is that the intent of the control program should
be exploited at the machine organization level. Both resource
requirements and dependencies between activities can be
inferred from “intent,” thereby allowing the efficient alloca-
tion of resources. Thus, recognizing the purpose of control
program activity at the machine organization level has the
potential for allowing greater use of performance improve-
ment techniques. Although existing machine organization
techniques exploit intent to a certain degree, we argue that
the full potential of this approach has not yet been realized.

Our concern is with good design in machine organization
and control programs. Although we do not deal with specific

measurements, we use cost/performance as a measurement
criterion. We view cost in terms of the number of circuits
used at the machine organization level, and our concept of
performance is the performance seen by an application.
Throughput and transactions per second are examples of
application-level measurements, which have the advantage
of including the effects of differences in control programs
and in machine languages. Conceptually, we assume that the
same application runs on the machines to be compared and
that the compilers for the machines we are comparing are
equally efficient. Since we are concerned with high-end
computer systems, we do not insist on minimizing cost/
performance absolutely. Rather, we try to minimize it sub-
ject to achieving a specified performance level.

Most of our examples are drawn from either the IBM
System/370 architecture [1] or the OS/VS2 MVS operating
system [2].

2. Environment

In this section we briefly outline the environment we expect
for the design and operation of high-end commercial com-
puter systems. We believe that integration of control pro-
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gram design and machine organization has the potential to
help satisfy the need for increased cost/performance in this
environment [3].

® Hardware environment

The demands placed on high-end commercial systems will
continue to increase, requiring higher performance. In addi-
tion, reliability and availability requirements will become
even more stringent than they are today.

We expect that chip densities will continue to increase,
resulting in a lower cost per circuit. Thus, the use of a greater
number of circuits in a system will become an attractive path
to increased performance. While our discussion centers on
machine organization as a way to make machines faster,
improvements in the raw speed of circuits or in packaging
(resulting in less distance between circuits) will also lead to
improved performance.

® Software environment

High-end commercial control programs are characterized by
a richness of function that gives rise to a high degree of
complexity. These programs comprise thousands of modules,
and with their compilers can reach ten million lines of code.
High-end supervisors support a wide variety of devices and
applications, and characteristically manage large numbers of
users concurrently. Data on these systems are shared by
multiple applications, and a wide selection of services is
provided for the user. The proliferation of professional
workstations raises the possibility that the primary tasks
performed by high-end systems will be communication and
the management of shared data and shared devices.

In providing a rich set of services to the user, high-end
commercial control programs necessarily undergo a high rate
of change. This is due to the addition of function over time
and to the maintenance of function required by a changing
environment (e.g., changes in device operation). Keeping
control program overhead low in such a complex and fast-
changing environment can result in a certain lack of struc-
ture and discipline in control program code.

A given high-end commercial control program may be
found in over a thousand installations. Since all of these
installations rely on information processing for the basic
operation of their businesses, there is a severe compatibility
requirement on such control programs. The investment in
user-written software built on top of the control program is so
great that customers cannot tolerate significant recoding, nor
recompiling programs written in a high-level language, to
accommodate a control program change. Many high-end
control programs have therefore followed an evolutionary
strategy, preserving the application interface while adding
new features. The evolutionary strategy leads to additional

G. S. RAO AND P. L. ROSENFELD

complexity, as previous design decisions often limit a
designer’s flexibility in adding new functions. Changes to the
control program must therefore be made only after careful
consideration of their impact.

We observe that the control program comprises a great
proportion of the code executed by a high-end processor in
the commercial environment. There are many reasons why
the proportion of system code could continue to grow. These
reasons can be summarized as increased user reliance on
vendor-supplied code brought about by limited manpower
available to fill a large demand for application programming.
In particular, an interactive, shared data base using increas-
ingly sophisticated devices (and a greater number of device
types) requires a great amount of resource management. As
the number of processors in a single installation increases,
control programs have to do more work to allow distinct
processors to share data while preserving an image of a single
system.

3. Machine organization

This section identifies and categorizes the major characteris-
tics utilized in machine organization. We use this categoriza-
tion to measure qualitatively the degree to which control
program intent is exploited in machine organization.

® Definitions

Here, we define machine architecture and machine organiza-
tion. We also comment on our use of cost/performance as a
measure of good design.

To define machine organization we must first define the
architecture of a machine. The architecture of a machine
consists of the entities visible to the machine language
programmer and the various rules under which those entities
can be manipulated. Registers and memory are common
visible entities. Other entities may include condition codes,
status words, and storage keys. The instruction set of a
machine is the primary set of rules for manipulating the
entities. Certain other rules also apply. For example, there
are rules that govern the points at which an interrupt can
occur, the results of an interrupt, and, for multiple processor
configurations, simultaneous updates.

Machine organization is the way in which the architecture
is implemented. A given architecture may be implemented in
a variety of ways, depending on cost and performance goals
and the state of technology at a given time. Given the
limitations on the introduction of new architecture discussed
in the previous section, an architecture is likely to see several
implementations.

It is understandable that most architectures today contain
entities that were included in the earliest machine organiza-
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tions. Architectural entities are often implemented directly:
hardware registers to implement “registers,” memory cells to
implement “memory,” status latches to implement “status
words.” Often, however, the hardware that is built consists of
both more than and less than the entities specified by the
architecture. Rich instruction sets are implemented by a
simpler set of microcode to achieve speed and simplicity.
“Memory” is implemented by a hierarchy that includes a
cache. Multiple instructions are simultaneously decoded
while the architecture insists that the results produced are
equivalent to having executed only one instruction at a time.
On lower-speed machines, “registers” (which have an
implied performance advantage over memory) are imple-
mented by memory.

Machine organization leads to improved performance
through parallelism at different system levels, through the
re-use of information (retained in a fast and accessible
medium), through various look-ahead schemes, and through
design shortcuts for path optimization [4]. While we concen-
trate on cost/performance issues in terms of number of
circuits, we also note that machine organization can
influence cost/performance in other ways, such as hardware
cost reduction through regular silicon structures and multi-
ple-use parts, and cycle time reduction through the place-
ment of functional units (such as instruction and execution
units) on single packages. In addition, we note that machine
organization must take account of reliability, diagnosability,
and serviceability requirements.

® Parallelism

Parallelism is the most important machine organization
technique used. It is employed at several levels within a
computing system, e.g., the functional unit level, the vector
level, the software function level, and the processor level. At
each level, parallelism can be limited by the work that is
visible to that level, and by resource dependencies.

At the cycle and subcycle level, parallelism is expressed as
data width: width of arithmetic units, registers, and paths to
memory. At these levels, parallelism is limited by the maxi-
mum rate at which instructions can use data. For example, if
the architecture were to specify an eight-bit word, an addi-
tion could not proceed more than eight bits at a time.

At the functional unit level (e.g., instruction unit, execu-
tion unit, etc.), parallelism manifests itself in different forms.
Pipelining is one major form. In pipelining, the objective is to
reduce the impact of the latency of an operation by structur-
ing the operation in stages and by initiating other operations
before the first is finished. Here, the stages typically do
dissimilar work, and parallelism is limited by dependencies
between stages. An example of such a dependency is the
address generation interlock in System/370 pipelined

IBM J. RES. DEVELOP. » VOL. 27 e NO. 3 « MAY 1983

processors: the stage that loads a general-purpose register for
one instruction holds up a stage that does address computa-
tion, using that register for another instruction, when the two
instructions are successive in the program sequence and the
two stages are nonsuccessive in the pipeline sequence.

A different type of parallelism occurs at a slightly more
global level in processors with multiple execution units which
can process work simultaneously, e.g., concurrent operation
of a floating-point unit with a fixed-point unit. Here the
dependency is at the computation level. In addition, parallel-
ism is limited by the availability of work that is to be done
concurrently. For example, the architecture may require that
interrupts be precise, thus constraining certain operations to
be done sequentially.

On the other hand, the architecture may allow greater
parallelism. For example, vector architectures allow several
different data to undergo the same operation, which offers
several efficiencies. Pipelining techniques can be used with
nearly optimal efficiency, since several identical operations
are carried out on independent data. The single instruction
needed for a vector operation can be expressed in a struc-
tured way, eliminating loop control and uncertain branching.
Furthermore, the amount of instruction fetching and decod-
ing is reduced, compared to non-vector operations. The
parallelism at this level is limited by the amount of “struc-
ture” one can find in the application.

Typically, high-performance vector-machine organiza-
tions allow chaining, in addition to pipelining of functional
operations. Chaining can be thought of as “pipelining” at the
vector or aggregate data level: before one vector operation is
complete (e.g., Vector Load), the next vector operation (e.g.,
Vector Multiply) is started.

At the next level, we find various offload schemes that seek
parallelism in the software. The objective here is to find
high-level functions in a single job that can be performed
independently. These functions are generally performed on
different but not necessarily dissimilar processors. This type
of parallellism generally occurs above the architectural bor-
der. While the processor has to detect the conflicts that
might limit parallelism at the less global levels, it is generally
the control program that is responsible for scheduling offload
activity. The use of channels (which are just specialized
processors) to perform I/O operations is a common example
of offloading.

The final level at which parallelism is employed is multi-
processing. The supervisor plays the key role at this level. A
major difference from other levels occurs in the way in which
multiprocessing improves performance. While the other
techniques employ parallelism to decrease the time needed
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to process a single job, multiprocessing only improves
throughput in a multijob environment. A result of this is
reduced dependency because dependencies occur only when
different jobs require the same global resources.

We observe that a dependency that limits parallelism
results in more wasted resource at the levels farther from the
processor. An empty pipeline may result in several wasted
cycles, but the lack of a second job for a multiprocessor
wastes the whole processor.

® Re-use of information

A second major characteristic effectively used to meet
performance needs is re-use of information. The objective
here is to learn from program execution history. Typically,
computing systems repeat several actions and regenerate
data. To reduce repetitive operation, frequently used data
are saved and reused. A memory hierarchy tries to achieve a
suitable balance between cost and performance by keeping
data at several levels with different fetch and access times.
Such a hierarchy includes the registers, which require fastest
access (typically subcycle, because results of the register
read-out are used in the same cycle), the cache, which
requires access time comparable to one cycle, and various
other levels. The hierarchy is required by the different rates
of progress in processor logic technology and memory tech-
nology. It works because among all the data available to the
processor, only a small fraction is needed at any given point
in time. The portion needed can be kept “close” to the
processor, somewhat like an inventory management system.
The data that are needed are frequently reused and change
slowly.

Translation look-aside buffers (TLBs) provide another
example of how the re-use of information strategy can
improve efficiency. A TLB makes use of a table to keep the
results of recent translations of virtual addresses to real
addresses. Yet another example, though infrequent, is the
use of history to predict branch action (see Holgate and
Ibbett [5]).

It is a common characteristic of history-based mechanisms
that they perform better with more (longer) memory. How-
ever, these mechanisms are never perfect, hence they must be
built to detect those instances when the history-based action
is wrong, and also to recover from the error in prediction.

® Look-ahead

Hedging, or look-ahead, is another category of techniques
that have been used to improve performance. The basic idea
here is that alternatives are evaluated ahead of time and a
principal course of action is chosen. In addition, alternative
actions are performed with lower priority. As with history-
based techniques, there is a possibility of a wrong choice of
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action as well as the requirement for additional actions to be
performed. An example of this strategy is the branching
mechanism of the IBM 3033 [6]. While it guesses most
conditional branches not to be taken and decodes the next
sequential instruction, it also initiates the fetch of the target
stream in case the guess is wrong. Until the branch is
resolved, the sequential stream and the target stream are
both prefetched. A similar strategy is used in prefetching
lines into the cache to avoid cache misses. Since the cache is
demand-managed, an incorrect action requires an additional
operation to correct.

® Path optimization

The objective of path optimization is taking short cuts where
possible to avoid redundancy. Additional circuits are justi-
fied by the frequent saving of operations.

Below the architectural boundary, path optimization leads
to various kinds of bypasses. An example is the high-speed
buffer bypass: on a cache miss, the missing information is
brought directly into the processor instead of having the
cache loaded first and then the processor. Another example is
the Load Bypass on the IBM 3033: data can be supplied to
the address generation mechanism at the same time they are
supplied to the execution unit, thus short-circuiting register
loading and access. The objective here is to approximate
the ideas of data-driven computation machines (data-flow
machines), where the computation takes place as soon as the
data become available.

Above the architectural boundary, path optimization
takes the form of machine assists, or “vertical migration”
[7]. Common sequences of instructions are combined into
one to save instruction accesses and to reduce the number of
microcode operations needed to perform the original
sequence. An example of an assist is the System/370 instruc-
tion, Obtain CMS Lock, which obtains an MVS lock under
certain conditions [8].

® Limitations

Technological restrictions can limit the performance
enhancement achievable with the above techniques. For
example, cooling restrictions may limit the number of cir-
cuits that may be packaged in close proximity, leading to
longer signal propagation times. Thus some enhancements
may be self-defeating: too many additional circuits may
increase the cycle time. Conversely, a machine organization
that is structured with packaging capacities in mind has the
potential of getting the most benefit out of an available
technology.

Various machine organizations can be vastly different in

their effectiveness against varying workloads. Richer ma-
chine organizations have to choose which of the opportunities
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offered by the workload are to be optimized. On the other
hand, simple organizations, with heavier reliance on technol-
ogy, are more robust. (We use the term robust here to mean a
strategy that performs well in a variety of environments.)
Some examples of the workload-related optimization oppor-
tunities are branching characteristics, storage-access activi-
ty, I/O activity, data dependencies, complex instructions,
and code structure. A machine organization geared toward
an engineering/scientific environment, with its simpler
branching activity, simpler instructions, and heavy floating-
point computation activity, is not as effective in a commer-
cial environment characterized by more frequent branching,
little floating-point activity, more complex instructions and
more decimal activity.

4. Integrating machine organization and control
We now discuss hierarchical structures and the occurrence of
such structures in computer systems and the use of hierarchy
to reduce complexity. We first outline a conceptual hierarchy
in computer systems and then discuss ways in which addi-
tional levels of a hierarchy are generated. We argue that in
computer systems, hierarchical structuring is uniquely flexi-
ble, reduces complexity, and can lead to improved cost/
performance. It is our thesis that greater integration of
machine organization and control program design can lead to
improved cost/performance. We note the role of architecture
as the starting point for machine organization and control
program design, and assert that the architecture can thus
hide useful information from the machine organization level.
We conclude with a discussion of the role of naming.

& Hierarchy in computer systems

Simon [9] gives an eloquent account of the ways in which
complexity, in general, is managed. He argues that hierarchy
“is one of the central structural schemes that the architect of
complexity uses,” and supplies examples from social, natu-
ral, and symbolic systems. Simon’s definition of a complex
system is one “made up of a large number of parts that
interact in a non-simple way.” We note the emphasis on
interaction. Systems with large numbers of parts are not
necessarily complex. Given that commercial high-end com-
puter systems are among the most complex systems created
by man, it is not surprising to observe hierarchical structures
in such systems.

A review of the several levels of hierarchy associated with
a typical data processing activity begins with the overall goal
of the activity: processing an application. The application is
broken into several functions, each of which may be coded as
a separate module in a high-level language. A compiler,
drawing on the services provided by the control program,
produces a collection of machine language instructions.
Additional hierarchical structure is found in the hardware.
The processing of an instruction is broken into several
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Figure 1 Hierarchical levels associated with data processing.

“pipelined” steps: decoding, address generation, data fetch,
and execution. Execution is further broken down into micro-
program orders. At the lowest level, we have the actual
cycle-by-cycle logic operations. Figure 1 illustrates the levels
we have discussed.

Given a single level of a conceptual hierarchy, adjacent
levels can be generated through abstraction or analysis. The
process of recognizing higher-level activities is called
abstraction. Abstraction begins with a set of components and
leads to a single, general activity. This reduces complexity by
allowing reason and resources to be concentrated on the
overall task. A DO loop in a high-level language, for exam-
ple, hides the machine-language-level details from the pro-
grammer and aliows him to concentrate on his application.
The process of creating a series of components from a general
activity is called analysis. Analysis can improve cost/per-
formance by allowing several functions to use the same
common element. As Simon points out, analysis also allows
the separation of interacting portions of an activity from
independent portions. Parallel operation of the independent
portions is then possible. Hierarchical structuring thus has
two complementary goals: reducing complexity and improv-
ing cost/performance through the removal of interaction.

We note that computer systems are unique in the degree of
flexibility allowed in structuring hardware and software into
levels of the hierarchy. In part, this is because the processing
of information is not constrained by physical laws to the same
extent that most other activities are. It is particularly easy to
set up an additional level of abstraction in software. While
there can be an arbitrary number of levels of abstraction, and
an arbitrary set of activities at each level, we know intuitively
that the resulting structure should be tailored to the overall
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process. We feel that a “successful” model of an activity
should be parsimonious: each level should serve to reduce
cost, or improve performance, or reduce complexity. It is in
this sense that programming and computer architecture
remain crafts rather than acts of engineering.

The hierarchical structure of computer systems reduces
complexity in several ways. Hierarchical structuring is used
as a means for reducing complexity within the high-level-
language level. lliffe [10] discusses abstraction in software.
The complexity of machine language programming is hidden
from the programmer by the high-level language. Further-
more, the complexity of managing resources directly is
hidden from the compiler by the control program. Dijkstra
[11] and Lister and Sayer [12] discuss the value of additional
levels within the control program. In Voldman et al. [13]
intriguing evidence is presented that Simon’s notion of
hierarchical interaction applied to software manifests itself
as statistical similarity in the pattern of references to mem-
ory. Leaving the software levels, we observe that the archi-
tecture hides the complexity of micro-orders from the control
program and the compiler. At each level, a “virtualization”
occurs. Each successive level presents a higher-order
machine image. Agnew and Kellerman [14] offer an inter-
esting discussion of the ways in which multiple levels of
machine organization can be used to implement a complex
architecture.

Hierarchical structure improves cost/performance in
computer systems primarily at the machine organization
level. The notion of sharing, or centralization of resources, is
a major way of reducing cost. When the cost of a particular
component is high, we attempt to share it among a group of
“users.” For example, an adder in a CPU is “shared” among
all memory locations. An extravagant alternative would be to
have one adder and associated data paths for each pair of
memory locations. Multiple additions could then take place
independently. At present this alternative is not cost-
effective, and thus all data must first be moved to a central
adder before the operation can take place. Note that this
movement of data to a central resource is handled at the
machine-organization level and may be hidden from the
programmer by the architecture. The System/370 Add
Decimal instruction, for example, gives the programmer the
illusion that he is directly adding together two operands at
arbitrary memory locations. The key parameters in deter-
mining whether or not a functional unit is to be replicated or
shared are the circuit cost and the frequency of function
requests. As the cost of hardware comes down, units that are
now shared will be replicated and customized for particular
“users.” When the request frequency is high, replication
becomes more desirable. The implications of replication are
being investigated in several data-flow projects (see-
Agerwala and Arvind [15]).
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& Integration of machine organization and control program
design

Historically, the levels shown in Figure 1 did not arise in
sequence from top to bottom, or vice versa. Machine
language programs existed before high-level languages and
were executed by direct logic before pipelining was intro-
duced. Computer system design today generally echoes the
historical pattern: the architecture for a machine is deter-
mined first, with machine organization and software for the
machine following. Design of an architecture thus has two
major goals. The architecture must allow systems and appli-
cation programmers to write general programs with reason-
able effort, and it must allow an implementation at the
desired cost/performance. The control program completes
the task of allowing programmers to write efficiently, and
machine organization completes the task of allowing an
implementation at the desired cost/performance.

We assert that generally, in computer system design,
machine architecture has been the starting point from which
additional levels of the hierarchy are derived. In particular,
the control program level is built on top of the architecture,
and the machine organization level is built below it. The
architecture has been the reference level for both the control
program and the machine organization. Thus, machine orga-
nization and control program design have had minimal
interaction. An essentially sequential von Neumann archi-
tecture, such as System/370, results in both benefits (in
terms of reduced complexity) and limitations (in terms of
performance). We believe that there is an opportunity for
improved cost/performance in the greater integration of
control program design and machine organization.

This belief is based on an examination of the techniques
described in Section 3 and the degree to which they are
exploited on behalf of the control program. For example,
most machine organization techniques are based on the
execution of a single instruction and make no use of any
higher-level information. At the supervisor level, however,
processing is hardly a one-instruction-at-a-time activity:

& Instructions are grouped to form higher-level operations.

o Sequentially performed activities are logically indepen-
dent.

& The same operation is performed repetitively on multiple
pieces of data.

We believe that, in the future, machine organization
techniques should exploit the characteristics of control pro-
gram behavior. These characteristics are currently hidden
from the machine organization level because of abstraction
through the architecture. Significant performance gains may
result since information can be used to minimize the cost of
performing a function, and control program functions com-
prise a large fraction of executed code. In MVS running
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under System/370, for example, we may recognize logically
independent activities (e.g., real memory management) but
have no way to carry them out in parallel, short of creating a
task that requires a full processor for some fraction of time.
Alternatives that could be offered at the machine organiza-
tion level (for example, a low-cost slow processor tailored to
memory management) cannot be entertained with reference
only to the architectural level. Considering the machine
organization level and the control program level together
raises the possibility of greater parallelism, better re-use of
information, more accurate hedging, and additional path
optimization. We discuss further possibilities in Section 5.

Greater interaction between machine organization and the
control program is feasible in the current high-end environ-
ment because system “users” (including compilers and other
system software) interact almost entirely with levels at or
above the control program. Joint optimization of lower levels
is thus possible without disruption to most users. Further-
more, the control program is supplied by the hardware
vendor. Radin’s approach [16] involves integration of levels
in a different way. The 801 architecture, compared to
System/370, does not have as many complex instructions
and offers greater resources, such as registers, at the archi-
tectural level. In Radin’s case, complexity is hidden from the
user because the user interacts with the system at the
programming language level. The (system) compiler optim-
izes the use of resources available at the machine organiza-
tion level for all code: control program code as well as
application code. The compiler must also compensate for
architectural limitations.

® Naming

In essence, abstraction is recognizing and naming the overall
result of multiple activities, and analysis is recognizing and
naming the components of a more general activity. Naming
is important because objects that are indistinguishable from
one another cannot be treated differently. In particular, an
activity must be recognized (named) in the level at which we
wish to manipulate it. For example, if we wish to exploit the
sequentiality of memory references in certain specific cases,
but not in all cases, we must make sure that the yes-cases can
be distinguished from the no-cases by the memory hierarchy.
If accurate detection is only possible at a higher level, the
detected information must be communicated across levels for
the technique to be effective. In our case, communicating
information from the control program level to the machine
organization level requires additions at the architectural
level.

We observe that, currently, entities at the machine organi-
zation level generally recognize, or name, a limited number
of cases. For example, the pipeline treats every instruction as
having the same stages, regardless of the instruction type. A
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limited number of names at a level result from the sharing of
high-cost items, discussed above. Although the importance of
naming is well known in software [17], it has not been
adequately recognized in hardware. As the cost of circuits
decreases, it will become feasible to recognize a greater
number of names at the machine organization level. We note
that addresses are names for memory locations that are
extremely easy to manipulate.

5. Directions for research

In previous sections we have outlined the types of machine
organization techniques that lead to improved cost/per-
formance. We have argued that the opportunity exists for
greater exploitation of control program intent at the machine
organization level. In this section, we indicate several distinct
areas in which machine organization and supervisor design
can interact. We discuss primitive operations, managcmeht
of the memory hierarchy, relationships to scheduling, and
co-processing opportunities. We conclude with comments on
the methodology for investigating these areas. ’

Recently, several research projects have been aimed at
defining an architecture based on the code that one expects
to execute. Although these projects have tried to integrate
the design of several levels of our conceptual hierarchy, they
have primarily been directed toward the execution of high-
level languages [18, 19]. In the high-end commercial envi-
ronment, the control program constitutes the bulk of the
executed code, and we thus believe that such efforts should
be based on typical control program function rather than
typical high-level language function.

® Primitive operations

The simplest way in which the supervisor can have an impact
on machine organization is to architect “primitive” (from the
control program point of view) operations. This exploits the
technique of path optimization. In several instances, control
program requirements have resulted in additions to the
System/370 architecture, e.g., added instructions for multi-
processing. System/370 has also had vertical migration of
code into the architecture. The dual-address-space facility of
the System /370 architecture is a more sophisticated addition
based on the need to communicate across address spaces.
Additional, more complex primitives could also be added to
high-end architectures.

Typically suggested operations include those for queue
management (e.g., add, delete), process management (e.g.,
create, suspend, resume, destroy), and communication (e.g.,
wait, signal) [20]. The IBM System/38 [21] incorporates
many of these functions and has multiple machine organiza-
tion levels. As discussed previously, these “machine assists”
potentially improve performance by avoiding certain steps in
instruction processing. Performance improvements result
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from not having to store back or re-fetch operands between
instructions. Assists also simplify building a control program
by standardizing common operations, reducing the possibili-
ties for error, and simplifying the system programmer’s task.
Repetitive execution of a sequence of instructions might also
be detected in the machine organization without specifically
adding an instruction to the architecture. Striding through
an array by columns is an example.

The key parameters that determine the value of an assist
are the number of steps saved by the assist and the frequency
with which it is used. Assists formed from a set of instruc-
tions in which the same data items are re-used offer the
opportunity to save more steps than simpler assists. To
increase the chance of re-using the same data, larger sets of
instructions can be considered. The drawback of such com-
plex assists is that a complex operation is not used as
frequently as a more fundamental assist. In addition, more
circuits may be needed to implement a complex assist. A
well-structured control program is necessary to achieve the
highest frequency of use for an assist. Otherwise, some
potential uses of the assist may go unrecognized or require
significant recoding. Note that determining which instruc-
tion sequences should be combined into a single unit is nearly
impossible without an understanding of what the software is
trying to accomplish. This is a major area for further
research.

& Management of the memory hierarchy

Management of the memory hierarchy is the second area in
which the supervisor and machine organization can interact.
The techniques we describe here fall into the “look-ahead”
category. Currently, most high-end processors use a cache, or
high-speed buffer, to keep the processor supplied with data.
(The large memories on these processors cannot supply data
at the required speed.) In most cases the cache is transparent
to the programmer and is not included as part of the
architecture. This simplifies the task of the programmer and
is in contrast to the direct management of main memory by
software. Caches are typically managed according to a
demand-block fetch/least-recently-used (LRU) replace-
ment scheme. That is, a block of data (e.g., 128 bytes)
containing the requested operand is brought from memory
into the cache, replacing the least recently used item in the
cache. Caches exploit a property of program behavior known
as locality. Basically, there are two types of locality: (a) the
processor is likely, in a “close” interval of time, to need data
located physically near the data previously requested; and
(b) the processor is likely to re-use data that it has already
referenced in a “close” interval of time [22]). The LRU
scheme is very robust, compensating for the lack of program-
mer control.

Interestingly, much control program activity does not
exhibit locality to the degree that application code does. In
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searching a linked list, for example, the operating system
neither references data physically close to the last referenced
data nor does it re-use the list in a “close” interval of time. At
the expense of greatly increased programming complexity,
one could increase flexibility in managing the cache by
making it visible to the programmer. However, limited
communication between the control program and the cache
offers the possibility of performance improvements without
burdening the programmer, particularly the application pro-
grammer. For example, the control program might signal
that it was going down a linked list, and the cache would
respond by fetching the entire list. Since the linked list is not
likely to be reused in the near future, the data fetched would
be subject to early replacement.

Further performance improvements might be possible if
the memory hierarchy prefetched data on the basis of what
the operating system was doing. Such prefetching could be
triggered by a history of past activity or by a signal from the
operating system that a particular function was being
entered. For example, the cache might respond to the linked
list signal by prefetching entries on the list. Prefetching could
be extended to move data across all levels of the hierarchy
simultaneously.

& Scheduling of work

This leads us to the third area in which the control program
might interact with machine organization: the scheduling, or
dispatching, of work. This area falls into the “re-use of
information” category. Wherever a “setup cost” (such as a
memory fetch or a state swap) is incurred, organizing the
work can lead to increased performance. Some setup costs,
such as the cost of bringing pages into memory, are recog-
nized by the control program, and scheduling decisions take
it into account. Other setup costs, such as a cache miss, are
hidden from the control program and thus cannot be taken
into account. The control program views the processor as a
single entity, letting priorities and interrupts determine the
next unit of work to be dispatched. Using the cache as an
example, one might be able to achieve better performance by
dispatching work based on current cache contents. On multi-
ple processors, one might attempt to move those units of work
that use the same data to a particular processor. A user, for
example, might be dispatched only on one processor, so that
his data would not move from cache to cache. Functional
separation might also provide good separation of data. How-
ever, the control program would have to distinguish one
function from another explicitly. While control programs
have control blocks for users, they are not as likely to have
internal representations of functions.

& Co-processing
The final area in which machine organization and control
programs might interact is co-processing. Co-processors
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cooperate with the main processor by performing particular
tasks. They share some memory with the main processor and
are not necessarily as fast as the main processor.

At one extreme, co-processors could be highly optimized
special-purpose processors that efficiently execute particular
instruction sequences “in-line” while the main processor
waits. In a sense, a cache is such a co-processor. The cache is
dedicated to moving data between levels of the memory
hierarchy. Prefetching schemes put additional intelligence in
such a co-processor. At the other extreme, co-processors
could “offload” work from the main processor in the sense of
I/O channels. For example, much of the resource manage-
ment in control programs might be done outside the main
processor. (Research is necessary to determine the degree to
which resource management can be separated from the main
flow of the control program.) Co-processing has the greatest
potential performance improvement when the co-processed
activity is totally overlapped with the main processor. We
concentrate on co-processing as a technique that increases
parallelism.

Recognizing appropriate work for co-processors in the
control program is analogous to breaking instruction execu-
tion into pipeline stages. Data movement lends itself natu-
rally to parallel processing, either between levels of a mem-
ory hierarchy or within a level. Co-processors could thus be
used in conjunction with prefetching. Co-processing can be
thought of as the limit of path optimization: sets of instruc-
tions are completely removed from the main processor.

In addition to the splitting and overlapping of the work
currently performed, co-processing also suggests the possibil-
ity of hedging on control program activities, just as is done
currently on branches at the instruction level. For example,
queue searches, a major control program activity, could be
performed on a co-processor. The co-processor would find
not just one matching item but as many as are available at
the given time. This batching of logical activity is analogous
to blocking for data movement. Search results would then be
available for the main processor when needed. Control
programs often must test a series of conditions to determine
an appropriate action. A co-processor could keep track of the
final outcome of the tests for use by the main processor when
needed. Research is needed to determine whether or not this
information can be provided accurately enough to avoid
incorrect actions.

® Methodology

We have outlined several areas in which machine organiza-
tion and control program design can have greater interaction.
Each of these areas requires careful research to determine if
it can improve cost/performance of high-end processors.
Accurate performance evaluation requires control program
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prototypes and hardware simulations. Care must be taken
not to introduce an unmanageable degree of complexity by
integrating the design of several levels.

A good understanding of control program activity is
necessary in order to determine, for example, which func-
tions should be done on co-processors. We note that it is
extremely difficult to determine the sequence of execution of
instructions from an examination of static control program
code. Such systems are typically multiprogrammed and
interrupt-driven. Furthermore, a given application may
invoke a complex sequence of control-program functions.
Detailed traces of a running system are necessary to under-
stand the functional flow of the control program. Gathering
such traces requires a representative workload or series of
workloads, since the type and frequency of control program
activity varies with workload.

It is easier to assemble the tools necessary for such
research for evolutionary architectures. By evolutionary, we
mean machine architectures that persist across more than
one product cycle. Control programs and typical workloads
are more readily available for such architectures.

We note that co-processing requires good, fast process
synchronization techniques, and that control programs with
good structure lend themselves more readily to enhancement
in machine organization.
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