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Integration of Machine  Organization  and  Control  Program 
Design - Review  and  Direction 

This paper discusses the relationship between  machine organization and control program design in high-end commercial 
computer systems. The criterion is cost/performance, subject to achieving  an acceptable performance level. A brief discussion 
of the environment expected for the design and operation of high-end commercial computer systems  is  outlined,  followed by a 
discussion of machine organization techniques which  are classified and reviewed to permit  a  qualitative evaluation of the 
degree to which control program intent is  exploited in machine organization. The thesis is developed next, using a hierarchical 
model which illustrates the contention that architecture has acted as a barrier to communication between the control program 
and  machine organization. Examples of techniques that exploit knowledge of the intent of the control program and comments 
on the methodology that might be used to investigate such techniques follow. Directions for further research are then 
proposed. 

1. Introduction 
The purpose of this  paper is to discuss the  relationship 
between machine  organization  and  control  program design  in 
high-end commercial  computer systems. Our  criterion is 
cost/performance,  and in our discussion we adopt  the point 
of  view that a computer  system  can be modeled as a 
hierarchical series of abstractions.  We  concentrate on the 
control  program  because  it is the  source of a large  and 
growing  proportion of the  instructions  executed on commer- 
cial high-end  systems. 

Our thesis is that  the  intent of the  control  program should 
be exploited at   the machine  organization level. Both  resource 
requirements  and dependencies  between  activities can  be 
inferred  from “intent,” thereby allowing the efficient alloca- 
tion of resources. Thus, recognizing the purpose of control 
program  activity at   the machine  organization level has  the 
potential for  allowing greater  use of performance improve- 
ment techniques. Although existing machine  organization 
techniques exploit intent  to a certain  degree, we argue  that 
the  full  potential of this  approach  has not yet been  realized. 

Our  concern is with good design  in machine  organization 
and  control  programs.  Although we do not deal  with specific 

measurements, we use cost/performance  as a measurement 
criterion.  We view cost  in terms of the  number of circuits 
used at  the  machine  organization level, and  our concept of 
performance is the  performance seen by an application. 
Throughput  and  transactions per second are examples of 
application-level measurements, which have the  advantage 
of including the effects of differences  in control  programs 
and in machine  languages. Conceptually, we assume  that  the 
same  application  runs on the machines to  be  compared  and 
that  the compilers for the machines we are  comparing  are 
equally efficient. Since we are concerned with high-end 
computer systems, we do not  insist  on  minimizing cost/ 
performance absolutely. Rather, we try  to minimize it  sub- 
ject  to achieving a specified performance level. 

Most of our examples are  drawn  from  either  the  IBM 
System/370  architecture [ 11 or the  OS/VS2  MVS  operating 
system [ 21. 

2. Environment 
In  this section we briefly outline  the environment we expect 
for  the design and  operation of high-end commercial com- 
puter systems. We believe that  integration of control pro- 
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gram design and  machine  organization  has  the  potential  to 
help  satisfy  the need for  increased  cost/performance in this 
environment [3]. 

0 Hardware environment 
The  demands placed  on  high-end commercial systems will 
continue  to  increase,  requiring  higher  performance.  In  addi- 
tion,  reliability and availability requirements will become 
even more  stringent  than  they  are today. 

We expect that  chip  densities will continue  to increase, 
resulting  in  a lower cost per circuit.  Thus,  the  use of a greater 
number of circuits in  a  system will become an  attractive  path 
to increased performance.  While  our discussion centers on 
machine  organization  as a  way to  make  machines  faster, 
improvements  in the raw  speed of circuits  or in  packaging 
(resulting in less distance between circuits) will also lead to 
improved performance. 

Software environment 
High-end  commercial  control  programs  are  characterized by 
a  richness of function  that gives rise to a high  degree of 
complexity. These  programs  comprise  thousands of modules, 
and  with  their compilers can  reach  ten million lines of code. 
High-end  supervisors support a  wide  variety of devices and 
applications, and  characteristically  manage  large  numbers of 
users concurrently.  Data on these systems are  shared by 
multiple  applications, and a wide selection of services is 
provided for  the user. The proliferation of professional 
workstations  raises the possibility that  the  primary  tasks 
performed by high-end  systems will be  communication  and 
the  management of shared  data  and  shared devices. 

In providing  a rich  set of services to  the  user, high-end 
commercial  control  programs necessarily undergo a high rate 
of change.  This is due  to  the  addition of function over time 
and  to  the  maintenance of function  required by a changing 
environment (e.g., changes in  device operation). Keeping 
control  program overhead low in such a  complex and  fast- 
changing  environment  can result in a certain  lack of struc- 
ture  and discipline  in control  program code. 

A given high-end commercial  control  program  may  be 
found  in over a thousand  installations.  Since  all of these 
installations rely  on information processing for the basic 
operation of their businesses, there is a  severe compatibility 
requirement on such  control  programs.  The investment  in 
user-written  software built  on top of the  control  program is so 
great  that  customers  cannot  tolerate significant  recoding,  nor 
recompiling programs  written in  a high-level language,  to 
accommodate a control  program  change.  Many high-end 
control  programs have therefore followed an evolutionary 
strategy, preserving the  application  interface while adding 
new features.  The evolutionary strategy  leads  to  additional 

complexity, as previous design  decisions  often  limit a 
designer’s flexibility in adding new functions. Changes  to  the 
control  program  must  therefore  be  made only after  careful 
consideration of their  impact. 

We observe that  the  control  program comprises  a great 
proportion of the  code executed by a  high-end processor in 
the  commercial environment. There  are  many reasons  why 
the proportion of system  code  could continue  to grow. These 
reasons can  be  summarized  as increased  user reliance on 
vendor-supplied  code brought  about by limited  manpower 
available  to fill a large  demand for application  programming. 
In  particular,  an  interactive,  shared  data base  using  increas- 
ingly sophisticated devices (and a greater  number of device 
types) requires a great  amount of resource management. As 
the  number of processors in  a  single installation increases, 
control  programs have to  do  more work to allow distinct 
processors to  share  data while  preserving an  image of a  single 
system. 

3. Machine organization 
This section  identifies and  categorizes  the  major  characteris- 
tics  utilized  in machine  organization.  We  use  this  categoriza- 
tion to  measure  qualitatively  the  degree  to which control 
program  intent is exploited in machine  organization. 

Dejinitions 
Here, we define machine  architecture  and  machine  organiza- 
tion. We also comment on our  use of cost/performance  as a 
measure of good design. 

To define machine  organization we must first define the 
architecture of a machine.  The  architecture of a machine 
consists of the  entities visible to  the  machine  language 
programmer  and  the various  rules under which those entities 
can  be  manipulated.  Registers  and memory are common 
visible entities. Other  entities  may  include condition  codes, 
status words, and  storage keys. The  instruction  set of a 
machine is the  primary  set of rules for manipulating  the 
entities. Certain  other  rules also  apply. For example,  there 
are  rules  that govern the points a t  which an  interrupt  can 
occur,  the results of an  interrupt,  and,  for  multiple processor 
configurations, simultaneous  updates. 

Machine  organization is the way  in which the  architecture 
is implemented. A given architecture  may  be  implemented in 
a variety of ways, depending on  cost and  performance goals 
and  the  state of technology at  a given time. Given the 
limitations on the  introduction of new architecture discussed 
in the previous  section, an  architecture is likely to see  several 
implementations. 

It is understandable  that most architectures  today  contain 
entities  that were  included  in the  earliest  machine  organiza- 



tions. Architectural  entities  are often implemented directly: 
hardware registers to implement  “registers,”  memory  cells to 
implement “memory,” status  latches  to  implement  “status 
words.” Often, however, the  hardware  that is built consists of 
both more  than  and less than  the  entities specified by the 
architecture.  Rich  instruction  sets  are  implemented by a 
simpler  set of microcode to achieve  speed and simplicity. 
“Memory” is implemented  by a hierarchy  that includes  a 
cache.  Multiple  instructions  are  simultaneously decoded 
while the  architecture insists that  the  results produced are 
equivalent to having  executed only one  instruction a t  a  time. 
On lower-speed machines,  “registers” (which have an 
implied performance  advantage over memory)  are imple- 
mented by memory. 

Machine  organization leads to improved performance 
through parallelism at  different  system levels, through  the 
re-use of information  (retained in a fast  and accessible 
medium),  through various  look-ahead  schemes, and  through 
design shortcuts for path  optimization [4]. While we concen- 
trate on cost/performance issues in terms of number of 
circuits, we also  note  that  machine  organization  can 
influence cost/performance in other ways, such  as  hardware 
cost reduction  through  regular silicon structures  and  multi- 
ple-use parts,  and cycle time  reduction  through  the place- 
ment of functional  units  (such  as  instruction  and execution 
units) on  single  packages. In  addition, we note  that  machine 
organization  must  take  account of reliability,  diagnosability, 
and serviceability requirements. 

Parallelism 
Parallelism is the most important  machine  organization 
technique used. It is employed a t  several levels within  a 
computing  system, e.g., the  functional  unit level, the vector 
level, the  software  function level, and  the processor level. At 
each level, parallelism  can  be limited by the work that is 
visible to  that level, and by resource  dependencies. 

At  the cycle and subcycle level, parallelism is expressed as 
data width:  width of arithmetic  units, registers, and  paths  to 
memory. At  these levels, parallelism is limited by the maxi- 
mum  rate  at which instructions  can  use  data.  For example, if 
the  architecture were to specify an  eight-bit word, an  addi- 
tion  could  not  proceed more  than  eight  bits a t  a time. 

At  the  functional  unit level (e.g., instruction  unit, execu- 
tion  unit, etc.), parallelism  manifests itself in  different forms. 
Pipelining  is one  major  form.  In pipelining, the objective is to 
reduce  the  impact of the  latency of an  operation by structur- 
ing the  operation in stages  and by initiating  other  operations 
before the first is  finished. Here,  the  stages typically do 
dissimilar work, and parallelism is limited by dependencies 
between stages.  An  example of such a dependency  is the 
address  generation  interlock  in  System/370 pipelined 

processors: the  stage  that loads  a general-purpose  register for 
one  instruction holds up a stage  that does address  computa- 
tion,  using that  register for another instruction,  when the two 
instructions  are successive in the  program  sequence  and  the 
two stages  are nonsuccessive in the pipeline  sequence. 

A  different type of parallelism  occurs a t  a slightly more 
global level in  processors  with multiple execution units which 
can process work simultaneously, e.g., concurrent  operation 
of a  floating-point unit with  a fixed-point unit. Here  the 
dependency is at   the computation level. In  addition, parallel- 
ism is limited by  the availability of work that is to  be  done 
concurrently. For example,  the  architecture  may  require  that 
interrupts be precise, thus  constraining  certain  operations  to 
be done  sequentially. 

On  the  other  hand,  the  architecture  may allow greater 
parallelism. For  example, vector architectures allow several 
different data  to  undergo  the  same  operation, which offers 
several efficiencies. Pipelining techniques  can  be used with 
nearly  optimal efficiency, since several identical  operations 
are  carried  out on independent  data.  The single instruction 
needed for  a vector operation  can  be expressed  in  a struc- 
tured way, eliminating loop control  and  uncertain  branching. 
Furthermore,  the  amount of instruction  fetching  and decod- 
ing is reduced,  compared  to non-vector  operations. The 
parallelism a t  this level is limited by the  amount of “struc- 
ture”  one  can find in the application. 

Typically, high-performance vector-machine organiza- 
tions allow chaining, in addition  to pipelining of functional 
operations. Chaining  can be thought of as “pipelining” at   the 
vector or aggregate  data level: before one vector operation is 
complete (e.g., Vector Load),  the next  vector  operation (e.g., 
Vector Multiply) is started. 

At  the next level, we find various offload schemes that seek 
parallelism  in the software. The objective here is to find 
high-level functions in  a  single job  that  can  be performed 
independently. These  functions  are generally  performed  on 
different but not  necessarily  dissimilar processors. This  type 
of parallellism  generally occurs above the  architectural bor- 
der.  While  the processor has  to  detect  the conflicts that 
might limit  parallelism a t  the less global levels, it is generally 
the control program  that is responsible  for  scheduling offload 
activity. The  use of channels (which are  just specialized 
processors) to  perform 1/0 operations is a  common example 
of offloading. 

The final level a t  which parallelism is employed  is multi- 
processing. The supervisor  plays the key role a t  this level. A 
major difference from  other levels occurs  in the way  in  which 
multiprocessing  improves performance.  While  the  other 
techniques employ  parallelism to  decrease  the  time needed 
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to process a single  job, multiprocessing  only  improves 
throughput in a multijob environment.  A result of this is 
reduced  dependency  because  dependencies occur only when 
different jobs  require  the  same  global resources. 

We observe that a  dependency that  limits  parallelism 
results in more wasted  resource at  the levels farther  from  the 
processor. An  empty pipeline may result  in  several  wasted 
cycles, but  the  lack of a second job  for a  multiprocessor 
wastes the whole processor. 

Re-use of information 
A  second major  characteristic effectively used to  meet 
performance needs  is re-use of information. The objective 
here is to  learn  from  program execution  history. Typically, 
computing  systems  repeat several actions  and  regenerate 
data.  To  reduce repetitive operation,  frequently used data 
are saved and reused. A memory  hierarchy  tries  to achieve  a 
suitable  balance between  cost and  performance by keeping 
data  at  several levels with different fetch  and access  times. 
Such a hierarchy includes the registers,  which require  fastest 
access (typically subcycle, because results of the  register 
read-out  are used  in the  same  cycle),  the  cache, which 
requires access time  comparable  to  one cycle, and various 
other levels. The  hierarchy is required by the different rates 
of progress  in  processor logic technology and memory  tech- 
nology. It works  because among  all  the  data  available  to  the 
processor,  only a small  fraction is  needed at  any given point 
in time.  The portion  needed can  be kept ‘‘close’’ to  the 
processor, somewhat like an inventory management system. 
The  data  that  are needed are  frequently reused and  change 
slowly. 

Translation look-aside  buffers (TLBs) provide another 
example of how the re-use of information  strategy  can 
improve efficiency. A TLB  makes  use of a table  to  keep  the 
results of recent  translations of virtual  addresses  to  real 
addresses. Yet  another  example,  though  infrequent, is the 
use of history to  predict  branch action (see  Holgate  and 
Ibbett [ 51). 

It is a common  characteristic of history-based mechanisms 
that  they  perform  better  with  more  (longer) memory.  How- 
ever, these  mechanisms  are never perfect,  hence  they  must  be 
built to  detect  those  instances when the history-based action 
is wrong, and  also  to recover from  the  error in  prediction. 

Look-ahead 
Hedging, or look-ahead,  is another  category of techniques 
that have  been  used to improve performance.  The basic  idea 
here is that  alternatives  are  evaluated  ahead of time  and a 
principal course of action is chosen. In addition,  alternative 
actions  are  performed with lower priority. As with  history- 
based  techniques, there is a possibility of a wrong  choice of 

action  as well as  the  requirement  for  additional  actions  to  be 
performed. An  example of this  strategy is the  branching 
mechanism of the IBM 3033 [ 6 ] .  While  it guesses  most 
conditional branches  not  to be taken  and decodes the next 
sequential  instruction,  it  also  initiates  the  fetch of the  target 
stream in case  the guess is wrong. Until  the  branch is 
resolved, the  sequential  stream  and  the  target  stream  are 
both prefetched. A similar  strategy is used in prefetching 
lines into  the  cache  to avoid cache misses. Since  the  cache is 
demand-managed,  an  incorrect  action  requires  an  additional 
operation  to  correct. 

Path optimization 
The objective of path  optimization is taking  short  cuts where 
possible to avoid redundancy.  Additional  circuits  are  justi- 
fied by the  frequent saving of operations. 

Below the  architectural  boundary,  path  optimization leads 
to various  kinds of bypasses. An example is the high-speed 
buffer bypass: on a cache miss, the missing information is 
brought  directly  into  the processor instead of having the 
cache loaded  first and  then  the processor. Another  example is 
the Load Bypass on the  IBM 3033: data  can  be supplied to 
the  address  generation  mechanism  at  the  same  time  they  are 
supplied to  the execution unit,  thus  short-circuiting  register 
loading and access. The objective here is to  approximate 
the  ideas of data-driven  computation machines  (data-flow 
machines),  where  the  computation  takes place as soon as  the 
data become  available. 

Above the  architectural  boundary,  path optimization 
takes  the  form of machine assists, or “vertical migration” 
[7]. Common sequences of instructions  are combined into 
one  to save instruction accesses and  to  reduce  the  number of 
microcode  operations  needed  to  perform  the  original 
sequence. An  example of an assist is the  Systemf370  instruc- 
tion, Obtain CMS Lock, which obtains  an MVS lock under 
certain conditions [8]. 

Limitations 
Technological  restrictions  can  limit  the  performance 
enhancement achievable  with the above  techniques. For 
example, cooling restrictions  may  limit  the  number of cir- 
cuits  that  may  be  packaged in close proximity,  leading to 
longer  signal propagation times. Thus  some  enhancements 
may  be self-defeating:  too many  additional  circuits  may 
increase  the cycle  time.  Conversely,  a machine  organization 
that is structured  with  packaging  capacities in mind  has  the 
potential of getting  the most benefit out of an  available 
technology. 

Various  machine  organizations  can  be vastly  different  in 
their effectiveness against varying workloads. Richer  ma- 
chine  organizations have to choose which of the  opportunities 



offered by the workload are  to  be optimized. On the  other 
hand, simple organizations,  with heavier reliance on technol- 
ogy, are  more  robust.  (We use the  term robust here  to  mean a 
strategy  that  performs well in a variety of environments.) 
Some examples of the workload-related optimization oppor- 
tunities  are  branching  characteristics, storage-access  activi- 
ty, 1 / 0  activity, data dependencies,  complex instructions, 
and code structure. A machine  organization  geared  toward 
an engineering/scientific  environment, with its  simpler 
branching  activity,  simpler  instructions,  and heavy  floating- 
point computation  activity, is not as effective in  a commer- 
cial environment characterized by more  frequent  branching, 
little floating-point activity,  more complex instructions  and 
more decimal  activity. 

4. Integrating machine organization and control 
We now discuss hierarchical  structures  and  the  occurrence of 
such structures in computer systems and  the  use of hierarchy 
to  reduce complexity. We first outline a conceptual  hierarchy 
in computer  systems  and  then discuss  ways  in which addi- 
tional levels of a hierarchy  are  generated.  We  argue  that in 
computer systems, hierarchical  structuring is uniquely flexi- 
ble, reduces complexity, and  can lead to improved cost/ 
performance.  It is our thesis that  greater  integration of 
machine  organization  and control program design can lead to 
improved cost/performance.  We  note  the role of architecture 
as  the  starting point  for machine  organization  and control 
program design, and  assert  that  the  architecture  can  thus 
hide useful information  from  the  machine  organization level. 
We conclude  with  a  discussion of the role of naming. 

Hierarchy in computer systems 
Simon [9] gives an eloquent account of the ways in which 
complexity, in general, is managed. He  argues  that  hierarchy 
"is one of the  central  structural schemes that  the  architect of 
complexity uses," and supplies  examples from social, natu- 
ral,  and symbolic  systems.  Simon's  definition of a  complex 
system is one  "made  up of a large  number of parts  that 
interact in  a  non-simple way." We  note  the  emphasis on 
interaction. Systems  with  large  numbers of parts  are not 
necessarily  complex.  Given that  commercial high-end com- 
puter systems are  among  the most  complex  systems created 
by man,  it is  not surprising  to observe hierarchical  structures 
in such systems. 

A review of the several levels of hierarchy associated with 
a typical  data processing  activity  begins with  the overall  goal 
of the activity:  processing an  application.  The  application is 
broken into several  functions, each of which may  be coded as 
a separate module in a high-level language. A  compiler, 
drawing on the services provided by the  control  program, 
produces a collection of machine  language  instructions. 
Additional  hierarchical  structure is found  in the  hardware. 
The processing of an  instruction is  broken into several 

--Control  program- - 
""""" 
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""""" 

""""" 

r Architecture I 
"""""""""""" 

Microcodc 
"""""""""""" 

- - - - - - - Machlne  organization- - - - - - - - 

Circuits 

Tcchnology I 
Figure 1 Hierarchical levels associated with data processing. 

"pipelined" steps:  decoding, address  generation,  data  fetch, 
and execution.  Execution is further broken  down into micro- 
program orders. At  the lowest level, we have the  actual 
cycle-by-cycle logic operations. Figure 1 illustrates  the levels 
we have  discussed. 

Given a  single level of a conceptual  hierarchy,  adjacent 
levels can be generated  through  abstraction  or analysis. The 
process of recognizing  higher-level activities is called 
abstraction. Abstraction begins  with a set of components  and 
leads  to a  single, general activity. This  reduces complexity by 
allowing  reason and resources to  be  concentrated on the 
overall  task. A DO loop in a high-level language,  for  exam- 
ple, hides the machine-language-level details  from  the pro- 
grammer  and allows him  to  concentrate on his application. 
The process of creating a  series of components from a general 
activity is called analysis. Analysis can improve cost/per- 
formance by allowing  several  functions to  use  the  same 
common  element. As  Simon points out,  analysis  also allows 
the  separation of interacting portions of an  activity  from 
independent portions. Parallel operation of the  independent 
portions  is then possible. Hierarchical  structuring  thus  has 
two complementary goals:  reducing  complexity and improv- 
ing cost/performance  through  the removal of interaction. 

We  note  that  computer systems are  unique in the  degree of 
flexibility allowed  in structuring  hardware  and  software  into 
levels of the  hierarchy. In part,  this is  because the processing 
of information is not constrained by physical laws  to  the  same 
extent  that most other  activities  are.  It is particularly easy to 
set  up  an  additional level of abstraction in  software. While 
there  can be an  arbitrary  number of levels of abstraction,  and 
an  arbitrary  set of activities a t  each level, we know intuitively 
that  the  resulting  structure should be  tailored  to  the overall 25 1 
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process. We feel that a  “successful”  model of an activity 
should be parsimonious: each level should  serve to  reduce 
cost, or improve performance,  or  reduce complexity. It is in 
this sense that  programming  and  computer  architecture 
remain  crafts  rather  than  acts of engineering. 

The  hierarchical  structure of computer systems reduces 
complexity  in  several ways. Hierarchical  structuring is used 
as a means  for  reducing complexity  within the high-level- 
language level. Iliffe [ 101 discusses abstraction in software. 
The complexity of machine  language  programming is hidden 
from  the  programmer by the high-level language.  Further- 
more, the complexity of managing resources directly is 
hidden from  the compiler by the  control  program.  Dijkstra 
[ 1 11 and  Lister  and  Sayer [ 121 discuss the  value of additional 
levels within the  control  program.  In Voldman et al. [ 131 
intriguing evidence is presented that Simon’s  notion of 
hierarchical  interaction  applied  to  software  manifests itself 
as  statistical  similarity in the  pattern of references  to  mem- 
ory.  Leaving the  software levels, we observe that  the  archi- 
tecture hides the complexity of micro-orders from  the  control 
program  and  the compiler. At  each level, a “virtualization” 
occurs.  Each successive level presents a higher-order 
machine  image. Agnew and  Kellerman [ 141 offer an  inter- 
esting discussion of the ways in which multiple levels of 
machine  organization  can  be used to  implement a complex 
architecture. 

Hierarchical  structure improves cost/performance in 
computer  systems  primarily at  the  machine  organization 
level. The notion of sharing, or centralization of resources, is 
a major way of reducing cost. When  the  cost of a particular 
component is high, we attempt  to  share  it  among a group of 
“users.” For example, an  adder in  a CPU is “shared”  among 
all memory  locations. An  extravagant  alternative would be  to 
have one  adder  and associated data  paths for each  pair of 
memory  locations. Multiple  additions could then  take  place 
independently. At  present  this  alternative is not cost- 
effective, and  thus  all  data  must first be moved to a central 
adder before the  operation  can  take place. Note  that  this 
movement of data  to a central resource  is handled at  the 
machine-organization level and  may  be  hidden  from  the 
programmer by the  architecture.  The  System/370 Add 
Decimal instruction,  for  example, gives the  programmer  the 
illusion that  he is directly  adding  together two operands at  
arbitrary  memory locations. The key parameters in deter- 
mining whether or not a functional  unit is to  be  replicated or 
shared  are  the  circuit cost and  the  frequency of function 
requests. As  the cost of hardware comes  down, units  that  are 
now shared will be  replicated  and customized  for particular 
“users.” When  the  request  frequency is high, replication 
becomes more desirable. The implications of replication are 
being  investigated  in  several  data-flow  projects (see- 
Agerwala  and  Arvind  [15]). 

Integration of mac 
design 

ahine organization and control program 

Historically,  the levels shown  in Figure 1 did not arise in 
sequence  from  top  to bottom, or vice versa. Machine 
language  programs existed  before high-level languages  and 
were  executed by direct logic before  pipelining  was  intro- 
duced.  Computer system  design today generally  echoes the 
historical pattern:  the  architecture for  a machine is deter- 
mined  first, with machine  organization  and  software for the 
machine following. Design of an  architecture  thus  has two 
major goals. The  architecture  must allow  systems and appli- 
cation  programmers  to  write  general  programs with  reason- 
able effort, and  it  must allow an  implementation at   the 
desired cost/performance.  The  control  program completes 
the  task of allowing programmers  to  write efficiently, and 
machine  organization completes the  task of allowing an 
implementation at  the  desired  cost/performance. 

We  assert  that  generally, in computer system  design, 
machine  architecture  has been the  starting point from which 
additional levels of the  hierarchy  are derived. In  particular, 
the  control  program level is built on top of the  architecture, 
and  the  machine  organization level is built below it.  The 
architecture  has been the reference level for both the control 
program  and  the  machine  organization.  Thus,  machine  orga- 
nization and  control  program design  have had  minimal 
interaction.  An essentially sequential von Neumann  archi- 
tecture,  such  as  System/370, results  in  both benefits (in 
terms of reduced  complexity) and  limitations (in terms of 
performance).  We believe that  there is an  opportunity for 
improved cost/performance in the  greater  integration of 
control program design and  machine  organization. 

This belief is based on an  examination of the  techniques 
described  in Section 3 and  the  degree  to which they  are 
exploited on behalf of the  control  program.  For  example, 
most machine  organization techniques are based on the 
execution of a  single instruction  and  make no use of any 
higher-level information.  At  the supervisor level, however, 
processing is hardly a one-instruction-at-a-time activity: 

Instructions  are grouped to  form higher-level  operations. 
0 Sequentially performed  activities are logically indepen- 

The  same  operation is  performed  repetitively on multiple 
dent. 

pieces of data. 

We believe that, in the  future,  machine  organization 
techniques should  exploit the  characteristics of control pro- 
gram behavior. These  characteristics  are  currently hidden 
from  the  machine  organization level because of abstraction 
through  the  architecture. Significant performance  gains  may 
result  since  information  can  be used to minimize the cost of 
performing  a  function, and  control  program  functions com- 
prise  a large  fraction of executed code. In  MVS  running 
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under  System/370,  for  example, we may recognize logically 
independent activities (e.g., real memory management)  but 
have  no  way to  carry  them  out in parallel,  short of creating a 
task  that  requires a full processor for some  fraction of time. 
Alternatives  that could be offered at   the machine  organiza- 
tion level (for  example, a low-cost slow processor tailored to 
memory management)  cannot  be  entertained with  reference 
only to  the  architectural level. Considering  the  machine 
organization level and  the  control  program level together 
raises the possibility of greater parallelism, better re-use of 
information,  more  accurate hedging, and  additional  path 
optimization. We discuss further possibilities in Section 5 .  

Greater  interaction between machine  organization  and  the 
control  program is feasible in the  current high-end  environ- 
ment because  system  “users” (including compilers and  other 
system software)  interact  almost  entirely  with levels a t  or 
above the  control  program.  Joint  optimization of lower levels 
is thus possible without disruption  to most  users. Further- 
more, the  control  program is supplied by the  hardware 
vendor. Radin’s approach [ 161 involves integration of levels 
in a  different  way. The 801 architecture,  compared  to 
System/370, does  not  have as  many complex instructions 
and offers greater resources, such  as registers, at  the  archi- 
tectural level. In Radin’s  case,  complexity is hidden from  the 
user  because the user interacts with the system at  the 
programming  language level. The  (system) compiler optim- 
izes the  use of resources available at  the  machine  organiza- 
tion level for all code: control  program code as well as 
application code. The compiler must also compensate  for 
architectural  limitations. 

Naming 
In essence, abstraction is recognizing and  naming  the overall 
result  of  multiple  activities, and  analysis is recognizing and 
naming  the  components of a more  general activity. Naming 
is important because  objects that  are  indistinguishable  from 
one  another  cannot  be  treated differently. In particular,  an 
activity  must  be recognized (named) in the level a t  which we 
wish to  manipulate  it. For example, if  we wish to exploit the 
sequentiality of memory  references in certain specific cases, 
but  not  in all cases, we must  make  sure  that  the yes-cases can 
be distinguished from  the no-cases by the memory hierarchy. 
If accurate  detection is only possible a t  a higher level, the 
detected  information  must be communicated across levels for 
the  technique  to  be effective. In our case, communicating 
information  from  the  control  program level to  the  machine 
organization level requires  additions at  the  architectural 
level. 

We observe that,  currently,  entities at  the  machine  organi- 
zation level generally recognize, or  name, a  limited number 
of cases.  For example,  the pipeline treats every instruction  as 
having the  same  stages, regardless of the  instruction type.  A 

limited number of names at  a level result from  the  sharing of 
high-cost items, discussed above. Although  the  importance of 
naming is well known in software [17], it  has not been 
adequately recognized in hardware.  As  the cost of circuits 
decreases,  it will become feasible  to recognize  a greater 
number of names at  the  machine  organization level. We  note 
that addresses are  names for  memory  locations that  are 
extremely  easy  to  manipulate. 

5. Directions for research 
In previous sections we have  outlined the  types of machine 
organization  techniques  that lead to improved cost/per- 
formance.  We have argued  that  the  opportunity exists  for 
greater exploitation of control  program  intent at   the machine 
organization level. In this section, we indicate several distinct 
areas in  which machine  organization  and supervisor  design 
can  interact.  We discuss  primitive  operations, management 
of the memory hierarchy, relationships to scheduling, and 
co-processing  opportunities. We conclude  with comments on 
the methodology for investigating  these areas. 

Recently, several research projects  have been aimed at  
defining an  architecture based on the code that  one expects 
to execute. Although  these projects  have tried  to  integrate 
the design of several levels of our  conceptual  hierarchy,  they 
have primarily been directed  toward  the execution of high- 
level languages [18, 191. In the high-end commercial envi- 
ronment,  the control program  constitutes  the bulk of the 
executed  code, and we thus believe that  such efforts  should 
be based on typical  control  program  function  rather  than 
typical high-level language  function. 

Primitive  operations 
The simplest  way in which the supervisor can have an  impact 
on machine  organization is to  architect “primitive” (from  the 
control  program point of view) operations. This exploits the 
technique of path  optimization. In several instances, control 
program  requirements have  resulted  in additions  to  the 
System/370  architecture, e.g., added  instructions for multi- 
processing. System/370  has also had  vertical migration of 
code into  the  architecture.  The  dual-address-space facility of 
the  System/370  architecture is a more  sophisticated  addition 
based on the need to  communicate across address spaces. 
Additional,  more complex  primitives  could also  be  added  to 
high-end architectures. 

Typically  suggested operations  include those for  queue 
management (e.g., add,  delete), process management (e.g., 
create,  suspend, resume, destroy),  and  communication (e.g., 
wait,  signal) [20]. The IBM System/38 [21] incorporates 
many of these  functions  and  has  multiple  machine  organiza- 
tion levels. As discussed previously, these “machine assists” 
potentially  improve performance by avoiding certain  steps in 
instruction processing. Performance improvements result 253 
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from not  having to  store  back or re-fetch operands between 
instructions.  Assists  also  simplify  building  a control  program 
by standardizing common operations,  reducing  the possibili- 
ties for  error,  and simplifying the system programmer’s  task. 
Repetitive execution of a sequence of instructions  might  also 
be  detected in the  machine  organization without specifically 
adding  an  instruction  to  the  architecture.  Striding  through 
an  array by columns is an example. 

The key parameters  that  determine  the  value of an assist 
are  the  number of steps saved by the assist and  the  frequency 
with which it is used.  Assists formed  from a set of instruc- 
tions in which the  same  data  items  are re-used offer the 
opportunity  to  save  more  steps  than  simpler assists. To 
increase  the  chance of re-using the  same  data,  larger  sets of 
instructions  can  be considered. The  drawback of such com- 
plex assists is that a  complex operation is not used as 
frequently  as a more  fundamental assist. In  addition,  more 
circuits  may  be needed to  implement a complex  assist. A 
well-structured control  program is  necessary to achieve the 
highest frequency of use  for  an assist. Otherwise,  some 
potential uses of the assist may  go unrecognized or require 
significant  recoding. Note  that  determining which instruc- 
tion  sequences  should be combined into a single  unit is nearly 
impossible without an understanding of what  the  software is 
trying  to accomplish. This is  a major  area  for  further 
research. 

Management of the memory hierarchy 
Management of the memory hierarchy is the second area in 
which the supervisor and  machine  organization  can  interact. 
The  techniques we describe  here  fall  into  the “look-ahead” 
category.  Currently, most  high-end  processors  use  a cache, or 
high-speed buffer, to keep the processor  supplied  with data. 
(The  large memories  on these processors cannot supply data 
at  the  required speed.) In most cases  the  cache is transparent 
to  the  programmer  and is  not  included as  part of the 
architecture.  This simplifies the  task of the  programmer  and 
is  in contrast  to  the  direct  management of main memory by 
software. Caches  are typically managed  according  to a 
demand-block fetch/least-recently-used (LRU) replace- 
ment scheme. That is,  a block of data (e.g., 128 bytes) 
containing  the  requested  operand is brought  from memory 
into  the  cache, replacing the  least  recently used item in the 
cache. Caches exploit  a property of program behavior known 
as locality. Basically, there  are  two types of locality: (a)  the 
processor is likely,  in a “close” interval of time,  to need data 
located  physically near  the  data previously requested;  and 
(b)  the processor is likely to re-use data  that  it  has  already 
referenced  in a “close” interval of time [22]). The  LRU 
scheme is  very robust,  compensating  for  the  lack of program- 
mer control. 

Interestingly,  much  control  program  activity does  not 
exhibit locality to  the  degree  that  application code does. In 254 
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searching a  linked  list, for example, the  operating system 
neither references data physically close to  the  last referenced 
data  nor does it re-use the list in  a “close” interval of time.  At 
the expense of greatly increased programming complexity, 
one could increase flexibility in managing  the  cache by 
making  it visible to  the  programmer. However, limited 
communication between the  control  program  and  the  cache 
offers the possibility of performance improvements  without 
burdening  the  programmer,  particularly  the  application pro- 
grammer.  For example, the  control  program  might signal 
that  it was  going  down  a  linked  list, and  the  cache would 
respond by fetching  the  entire list. Since  the linked  list  is not 
likely to be reused  in the  near  future,  the  data  fetched would 
be  subject  to  early  replacement. 

Further  performance improvements might be possible if 
the memory hierarchy prefetched data on the basis of what 
the  operating system  was  doing. Such prefetching  could be 
triggered by a  history of past  activity or by a  signal from  the 
operating system that a particular  function was  being 
entered. For example,  the  cache  might respond to  the linked 
list  signal by prefetching  entries on the list. Prefetching could 
be extended  to move data across all levels of the  hierarchy 
simultaneously. 

Scheduling of work 
This leads us to  the  third  area in  which the control program 
might  interact with machine  organization:  the scheduling, or 
dispatching, of work. This  area  falls  into  the “re-use of 
information” category. Wherever a “setup cost” (such  as a 
memory fetch or a state  swap) is incurred,  organizing  the 
work can lead to increased  performance. Some  setup costs, 
such  as  the cost of bringing  pages into memory, are recog- 
nized by the control program,  and scheduling  decisions take 
it  into  account.  Other  setup costs, such  as a cache miss, are 
hidden from  the  control  program  and  thus  cannot  be  taken 
into  account.  The  control  program views the processor as a 
single entity,  letting priorities and  interrupts  determine  the 
next unit of work to  be  dispatched.  Using  the  cache  as  an 
example, one  might  be  able  to achieve better  performance by 
dispatching work based  on current  cache contents. On  multi- 
ple processors, one  might  attempt  to move those units of work 
that use the  same  data  to a particular processor. A user,  for 
example,  might be dispatched only on one processor, so that 
his data would not move from  cache  to cache. Functional 
separation  might  also provide good separation of data. How- 
ever, the  control  program would have to distinguish one 
function  from  another explicitly. While  control  programs 
have control blocks for users, they  are  not  as likely to have 
internal  representations of functions. 

Co-processing 
The final area in  which machine  organization  and  control 
programs  might  interact is co-processing. Co-processors 
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cooperate with the  main processor by performing  particular 
tasks. They  share  some memory with the  main processor and 
are not  necessarily as  fast  as  the  main processor. 

At  one  extreme, co-processors  could be highly  optimized 
special-purpose  processors that efficiently execute  particular 
instruction sequences “in-line” while the  main processor 
waits. In a sense,  a cache is such a  co-processor. The  cache is 
dedicated  to moving data between levels of the memory 
hierarchy.  Prefetching schemes put  additional intelligence  in 
such a co-processor. At  the  other  extreme, co-processors 
could “offload” work from  the  main processor in the sense of 
1 / 0  channels. For  example,  much of the resource manage- 
ment in  control programs  might  be  done  outside  the  main 
processor. (Research is necessary to  determine  the  degree  to 
which resource management  can  be  separated  from  the  main 
flow of the  control  program.) Co-processing has  the  greatest 
potential  performance improvement when the co-processed 
activity is totally  overlapped  with the  main processor. We 
concentrate on co-processing as a technique  that increases 
parallelism. 

Recognizing appropriate work for co-processors in the 
control program is analogous to  breaking  instruction execu- 
tion into pipeline stages.  Data movement  lends  itself natu- 
rally to  parallel processing, either between levels of a  mem- 
ory  hierarchy or within  a level. Co-processors  could thus  be 
used in  conjunction  with  prefetching.  Co-processing can  be 
thought of as  the limit of path optimization: sets of instruc- 
tions are completely removed from  the main processor. 

In addition  to  the  splitting  and overlapping of the work 
currently  performed, co-processing also suggests the possibil- 
ity of hedging on control  program activities, just  as is done 
currently on branches at  the  instruction level. For example, 
queue  searches, a major control program  activity, could be 
performed on a co-processor. The co-processor would find 
not just  one  matching  item  but  as  many  as  are  available a t  
the given time.  This  batching of logical  activity  is  analogous 
to blocking for  data movement. Search results would then be 
available for the  main processor when  needed. Control 
programs often must  test a  series of conditions to  determine 
an  appropriate  action. A co-processor  could keep  track of the 
final outcome of the  tests for use by the  main processor when 
needed. Research  is needed to  determine  whether or not this 
information  can  be provided accurately enough to avoid 
incorrect actions. 

Methodology 
We have  outlined  several areas in which machine  organiza- 
tion and  control  program design can have greater  interaction. 
Each of these  areas  requires  careful  research  to  determine if 
it  can improve cost/performance of high-end processors. 
Accurate  performance evaluation requires  control  program 
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prototypes and  hardware simulations. Care  must  be  taken 
not to  introduce an unmanageable  degree of complexity by 
integrating  the design of several levels. 

A good understanding of control  program  activity is 
necessary  in order to determine, for example, which func- 
tions  should be done  on co-processors. We  note  that  it is 
extremely difficult to  determine  the sequence of execution of 
instructions  from  an  examination of static  control  program 
code. Such systems are typically multiprogrammed  and 
interrupt-driven.  Furthermore, a given application may 
invoke a  complex sequence of control-program functions. 
Detailed  traces of a running system are necessary to  under- 
stand  the  functional flow  of the control program.  Gathering 
such  traces  requires a representative workload or series of 
workloads,  since the  type  and  frequency of control program 
activity varies  with workload. 

It is easier to assemble the tools necessary for  such 
research  for evolutionary architectures. By evolutionary, we 
mean  machine  architectures  that persist  across more  than 
one product  cycle. Control  programs  and typical  workloads 
are more  readily available for such  architectures. 

We  note  that co-processing requires good, fast process 
synchronization  techniques,  and  that control programs with 
good structure lend  themselves  more  readily to  enhancement 
in machine  organization. 
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