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The 801 Minicomputer 

This  paper  provides an overview of an experimental system developed at the IBM Thomas J.  Watson Research Center. I t  
consists of a running hardware prototype, a control program, and  an optimizing compiler. The basic concepts underlying the 
system are discussed, as are  the performance characteristics of the prototype. In particular, three principles are examined: (1) 
system orientation towards the pervasive use  of high-level language programming and a sophisticated compiler, (2) a  primitive 
instruction set  which  can be completely hard-wired, and (3) storage hierarchy and I 1 0  organization to enable  the CPU to 
execute an instruction at almost every cycle. 

Introduction 
In  October 1975, a group of about  twenty  researchers at  the 
IBM  Thomas J. Watson  Research  Center  began  the design 
of a minicomputer, a  compiler, and a control  program whose 
goal  was to achieve  significantly better  costlperformance for 
high-level language  programs  than  that  attainable by exist- 
ing  systems. The  name 801 was  chosen  because it was the 
IBM  number of the building  in  which the  project resided. 
(The  twenty  creative  researchers were singularly uninspired 
namers.)  This  paper describes the basic  design  principles and 
the  resulting system components  (hardware  and  software). 

Basic concepts 

Single-cycle implementation 
Probably  the  major distinguishing characteristic of the 801 
architecture is that  its  instructions  are  constrained  to  execute 
in a  single, straightforward,  rather primitive machine cycle. 
A similar  general  approach  has been  pursued by a group at  
the University of California [ 11. 

Complex,  high-function  instructions, which require sev- 
eral cycles to execute, are conventionally  realized by some 
combination of random logic and microcode. It is  often true 
that  implementing a  complex function in random logic will 
result in its execution  being  significantly faster  than if the 
function  were programmed  as a sequence of primitive 
instructions. Examples  are floating-point arithmetic  and 
fixed-point multiply. We have no objection to  this  strategy, 
provided the frequency of use  justifies the cost and, more 
importantly, provided these complex instructions in  no  way 
slow down the primitive  instructions. 
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But it is just  this pernicious effect on the primitive 
instructions  that  has  made us suspicious.  Most  instruction 
frequency  studies show a sharp skew in favor of high usage of 
primitive instructions  (such  as  LOAD,  STORE,  BRANCH, 
COMPARE,  ADD). If the presence of a  more  complex  set 
adds  just  one logic level to a  ten-level  basic machine cycle 
(e.g., to  fetch a  microinstruction from  ROS),  the  CPU  has 
been slowed down by 10%. The frequency and  performance 
improvement of the complex  functions must first overcome 
this 10% degradation  and  then  justify  the  additional cost.  If 
the presence of complex functions results in the  CPU exceed- 
ing  a  packaging constraint on some level (e.g., a  chip,  a 
board),  the  performance  degradation  can be even more 
substantial. 

Often, however, a minicomputer  that boasts of a  rich  set of 
complex instructions  has not spent  additional  hardware at  
all, but has simply microprogrammed  the functions. These 
microinstructions are designed to  execute in  a  single  cycle 
and, in that cycle, to set controls most  useful  for the  functions 
desired.  This, however, is exactly  the design  goal of the 801 
primitive instruction set. We question, therefore,  the need  for 
a separate set of instructions. 

In  fact, for  “vertical microcode,” the benefits claimed are 
generally  not due  to  the power of the  instructions  as  much  as 
to  their residence in a  high-speed  control store.  This  amounts 
to a hardware  architect  attempting  to guess which subrou- 
tines, or macros, are most frequently used and assigning 
high-speed memory to  them.  It  has resulted,  for instance, in 
functions  like EXTENDED-PRECISION  FLOATING- 
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POINT  DIVIDE  and  TRANSLATE  AND  TEST on Sys- 
tem/370  computers residing  in  high-speed storage, while 
procedure prologues and  the first-level-interrupt handler  are 
in main  storage.  The 801 CPU  gets  its  instructions  from  an 
“instruction  cache” which is managed by least-recently-used 
(LRU)  information.  Thus,  all  frequently used functions  are 
very likely to  be found  in this high-speed storage,  exhibiting 
the  performance  characteristics of vertical microcode. 

Programming complex functions  as  software procedures 
or macros  rather  than in microcode has  three  advantages: 

First,  the  CPU is interruptible a t  “microcode” boundaries, 
hence  more responsive. Architectures with  complex instruc- 
tions either  restrict  interrupts  to  instruction  boundaries, or 
(as  in, for instance,  the  MOVE  CHARACTERS  LONG 
instruction on the  System/370) define specific interruptible 
points. If the  instruction  must be atomic,  the  implementation 
must  ensure  that  it  can successfully complete before any 
observable state is saved. Thus, in the  System/370  MOVE 
CHARACTERS  instruction, before the move is started  all 
pages are pretouched (and locked,  in an   MP system)  to  guard 
against a page-fault  interrupt  occurring  after  the move has 
begun. If interruptible points are  architected,  the  state  must 
be such  that  the  instruction is restartable. 

The second advantage of programming  these  functions is 
that  an  optimizing compiler can often separate  their compo- 
nents, moving some  parts  out of a loop, commoning others, 
etc. 

Third,  it is often possible for parts of a  complex instruction 
to  be  computed at  compile time. Consider, for instance, the 
System/370  MOVE  CHARACTERS  instruction  once 
again.  Each execution of this  instruction  must  determine  the 
optimal move strategy by examining  the  lengths of the source 
and  target  strings,  whether  (and in what  direction)  they 
overlap, and  what  their  alignment  characteristics  are. But, 
for  most programming  languages, these may  all  be known at  
compile time. Consider also a multiply  instruction. If one of 
the  operands is a constant, known a t  compile time,  the 
compiler can often  produce more efficient “shift/add” 
sequences than  the  general  multiply microcode subroutine. 

The  major  disadvantage  to using procedures  instead of 
microcode to  implement complex functions occurs when the 
microinstruction set is defined to  permit  its  operands  to  be 
indirectly named by the  register  name fields in the  instruc- 
tion which is being interpreted.  Since, in the 801 and in most 
conventional architectures,  the  register  numbers  are bound 
into  the  instructions, a  compiler must  adopt  some specific 
register-usage  convention for  the  procedure  operands  and 
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A computer whose instructions  all  execute very efficiently, 
however, is attractive only if the  number of such  instructions 
required to  perform a task is not commensurately  larger  than 
that  required of a more complex instruction set. The 801 
project  was  concerned only with the execution of programs 
compiled by our optimizing  compiler. Therefore, within the 
constraints of a  primitive data flow, we left the  actual 
definition of the  instructions  to  the compiler  writers. The 
results, discussed later,  generally show path  lengths  (that is, 
number of instructions  executed)  about equivalent to those 
on a System/370  for systems  code, and  up  to 50% longer for 
commercial  and scientific applications (given no hardware 
floating point). 

e Overlapped siorage access 
Instruction mixes for the 801 show that  about 30% of 
instructions go to  storage  to  send or receive data,  and 
between 10% and 20% of instructions  are  taken  branches. 
Moreover,  for many applications, a significant  portion of the 
memory bandwidth is used by I/O. If the  CPU is forced to 
wait many cycles for storage access its  internal  performance 
will be wasted. 

The second major design  goal of the 801 project, therefore, 
was to  organize  the  storage  hierarchy  and develop a  system 
architecture  to minimize CPU idle time  due  to  storage 
access. First,  it was clear  that a cache was required whose 
access time was consistent  with the  machine cycle of the 
CPU.  Second, we chose  a  “store-in-cache” strategy  (instead 
of “storing through”  to  the backing store) so that  the 10% of 
expected store  instructions would not degrade  the  perform- 
ance severely. (For  instance, if the  time  to  store a word 
through  to  the backing store is ten cycles, and 10% of 
instructions  are stores, this will add  up  to  one cycle to  each 
instruction on average depending on the  amount of execution 
overlap.) 

But a CPU  organization  that needs  a new instruction at  
every  cycle as well as accessing data every third cycle will 
still be degraded by a  single  conventional cache  that delivers 
a word every cycle. Thus, we decided to  split  the  cache  into a 
part  containing  data  and a part  containing instructions. In 
this  way we effectively doubled the  bandwidth  to  the  cache 
and allowed  asynchronous fetching of instructions  and  data 
at  the  backing store. 

Most conventional architectures  make this decision diffi- 
cult because  every store of data  can  be a  modification of an 
instruction,  perhaps even the  one following the  store.  Thus, 
the  hardware  must  ensure  that  the  two  caches  are properly 
synchronized,  a job  that is either expensive or degrading, or 
both. Even instruction  prefetch  mechanisms  are complex, 
since  the effective address of a store  must  be  compared  to  the 
Instruction  Address  Register. 
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Historically, as soon as index  registers  were  introduced 
into  computers  the frequency of instruction modification fell 
dramatically until, today,  instructions  are  almost never mod- 
ified. Therefore,  the 801 architecture does not  require this 
hazard  detection.  Instead  it exposes the existence of the split 
cache  to  software  and provides instructions by which soft- 
ware  can synchronize the  caches when required. In this 
system,  the only program  that modifies instructions is the  one 
that loads programs  into  memory. 

Similarly, in conventional systems in which the existence 
of a cache is  unobservable to  the  software, 1/0 must (logical- 
ly) go  through  the  cache.  This is often accomplished in less 
expensive systems by sending  the 1/0 physically through  the 
cache.  The result is that  the  CPU is idle  while the 1/0 
proceeds, and  that  after  an 1/0 burst  the  contents of the 
cache no longer  reflect the working set of the process being 
executed, forcing it  back  into  transient mode. Even in  more 
expensive systems  a broadcasting or directory-duplication 
strategy  may result  in some  performance  degradation. 

We observed that responsibility  for the  initiation of 1/0 in 
current systems  was evolving towards paging  supervisors, 
system 1/0 managers using fixed-block transfers,  and, for 
low-speed devices, a buffer strategy which moves data 
between  subsystem  buffers and user areas.  This results  in the 
1/0 manager knowing the location and  extent of the  storage 
being  accessed, and knowing when an 1/0 transfer is  in 
process. Thus,  this  software  can properly synchronize  the 
caches, and  the 1/0 hardware  can  transmit  directly  to  and 
from  the backing store.  The  result of this system approach in 
our  prototype is that, even when half of the  memory  band- 
width is being  used  for I/O, the  CPU is virtually unde- 
graded. 

Notice  that in the preceding  discussions (and in the  earlier 
discussion of complex instructions)  an underlying strategy is 
being pervasively applied.  Namely, wherever there is a 
system function  that is expensive or slow in all  its  generality, 
but  where  software  can recognize  a frequently  occurring 
degenerate  case (or can move the  entire  function  from  run 
time  to compile time),  that function is moved from  hardware 
to  software,  resulting in lower cost and improved  per- 
formance. 

An interesting  example of the  application of this  strategy 
concerns  managing  the  cache itself. In the 801 the  cache line 
is 32 bytes and  the  largest unit of a store is four bytes. In such 
a cache, whose line size is larger  than  the  unit of a store  and 
in  which a “store-in-cache” approach is taken, a store 
directed a t  a  word which is not in the  cache  must  initiate a 
fetch of the  entire  line  from  the backing store  into  the  cache. 
This is because, as  far  as  the  cache  can  tell, a load of another 
word from  this  line  might be requested  subsequently.  Fre- 

quently, however, the  store is simply the first store  into  what 
to  the  program is newly acquired space. It could be a new 
activation on a process stack  just pushed on procedure  call 
(e.g., PL/I  Automatic);  it could be an  area  obtained by a 
request  to  the  operating system; or  it could be a  register  save 
area used by the first-level-interrupt handler. In all of these 
cases the  hardware does not know that no old values from 
that line will be needed, while to  the compiler and supervisor 
this  situation is quite  clear.  We have defined explicit instruc- 
tions  in the 801 for cache  management so that  software  can 
reduce these  unnecessary  loads and stores of cache lines. 

One  other 801 system strategy leads to more effective use 
of the  cache. Conventional software  assumes  that its  memory 
is randomly  addressable. Because of this assumption, each 
service program in the supervisor and subsystems has  its own 
local temporary storage. Thus,  an  application  program 
requesting  these services will cause references to  many 
different  addresses. In a  high-level-language-based  system 
like the 801, control  program services are  CALLed  just like  a 
user’s subroutines.  The result is that  all  these service pro- 
grams  get  their  temporary  areas  from  the  same  stack, 
resulting  in much reuse of cache lines and,  therefore, higher 
cache  hit ratios. 

So far we have discussed 801 features  that  result in 
overlapped  access to  the  cache between instructions  and 
data, overlapped  backing store access among  the caches and 
I/O, less hardware synchronizing among  the  caches  and 
I/O, and  techniques  to improve the  cache  hit ratios. One 
other  aspect of the 801 CPU design and  architecture should 
be described to complete the  picture. 

Even if almost  all  instruction  and  data references are 
found in the  cache,  and  the  cache  and backing store  are 
always available  to  the  CPU, a  conventional CPU will still 
often be idle while waiting for a load to complete or for the 
target of a branch  to be fetched.  Sophisticated  CPUs often 
keep branch-taken histories or fetch  ahead on both paths in 
order  to overcome this  idle  time. In the 801 project we 
observed that, with  a  small number of hardware primitives, 
software (i.e., the  compiler) could reorder  programs so that 
the  semantics  remained  unchanged  but  the  hardware could 
easily  overlap this  idle  time with useful work. 

On load instructions  the  register  that is to  be  the  target of 
the load is locked by the  CPU.  The  CPU  then continues 
execution of the  instruction  stream  until  it  reaches  an 
instruction  that  requires  this  register, a t  which time  it idles 
until  the load is completed. Thus, if the compiler can find a 
useful instruction  to put after  the load that does  not require 
the result of the load, the  CPU will not be idle a t  all while the 
data  cache fetches the requested word. (And if the compiler 239 
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can find several such  instructions  to  put  after  the  load, 
execution of these will even overlap  cache miss.) 

Similarly  for  branches,  the  801  architecture defines, for 
every type of branch  instruction, an  alternate  form called 
BRANCH  WITH  EXECUTE.  (This is similar  to  the 
delayed branch in the  RISC  computer [ 11.) These  instruc- 
tions  have exactly  the  same  semantics  as  their corresponding 
branch  instructions, except that while the  instruction  cache is 
fetching  the  branch  target  the  CPU  executes  the  instruction 
that  has been placed immediately  after  the  BRANCH 
WITH  EXECUTE  instruction.  For  instance, in the 
sequence 

LOAD  R1  ,A 

BNZ L 

the  CPU would be idle  while the  instruction  cache was 
fetching  L, if the  branch was taken.  Changing  the  BRANCH 
NON-ZERO  to a BRANCH  NON-ZERO  WITH  EXE- 
CUTE  and moving the  LOAD  instruction  results in 

BNZX L 

LOAD R  1 ,A 

which has  exactly  the  same  semantics  but allows the  CPU  to 
execute  the  LOAD while the  instruction  cache is fetching  the 
instruction a t  L.  The  801 compiler is able,  generally,  to 
convert about 60% of the  branches in a program  into  the 
execute form. 

0 A compiler-based system 
So far we have  discussed two  major ideas which pervade the 
801 system. First, build  a CPU  that  can  execute  its  instruc- 
tions  quickly (i.e., in one relatively short  machine cycle), and 
define these  instructions  to be a good target  for compilation 
so that  resulting  path  lengths  are generally commensurate 
with  those for  the  same  functions on more complex instruc- 
tion sets (e.g., System/370).  Second, define the  storage 
hierarchy  architecture,  the  CPU  instructions,  the 1/0 archi- 
tecture  and  the  software so that  the  CPU will generally not 
have to wait  for storage access. The  third  major idea centers 
about  the  801 compiler.  A fundamental decision of the  801 
project  was to  base  the  entire system on its pervasive use. 
This  has resulted  in the following system characteristics. 

Instruction  sets for  conventional CPUs have been defined 
with an implicit assumption  that  many  programmers will use 
assembly language.  This  assumption  has  motivated  the defi- 
nition of complex instructions  (such  as  EDIT  AND  MARK, 
TRANSLATE  AND  TEST)  almost  as  much  as  has  the 
notion of a fast  control  store.  But, increasingly, programmers 
do not use assembly language except where  optimal per- 
formance is essential or machine  functions  are  required  that 
are not reflected in the  source  language. 240 
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The compiler  for the  801  has  demonstrated  that  it  can 
produce object code that is close enough to best hand code 
generally so that assembly language  programming is almost 
never needed  for performance.  The  operating system has 
isolated  those machine-dependent  functions not reflected in 
the  language  (such  as  DISABLE,  START I/O, DIS- 
PATCH)  and developed efficient procedures which provide 
these functions with minimal  linkage overhead. 

The  result is  a system in  which less than a thousand lines of 
supervisor  code (and some of the “microcode” subroutine 
implementations of the complex functions)  are  written in 
assembly language.  This  has relieved the  801  architecture of 
the  burden of being easy  to  program  directly.  Virtually  the 
only programmers who are concerned  with the  nature of the 
architecture  are  the compiler writers  and  the “core”  supervi- 
sor writers. All  others see the system only through a  high- 
level language. Because of this,  the  801  architects were able 
to base their decisions solely on the needs of these few 
programmers  and on cost/performance considerations. 

Thus,  the  801  architecture was defined as  that set of 
run-time  operations which 

could  not be moved to compile time, 
0 could not  be  more efficiently executed by object  code 

produced by a  compiler which understood the high-level 
intent of the  program, or 
was to be implemented in random logic more effectively 
than  the equivalent sequence of software instructions. 

It  might  at first seem surprising  that compiler writers 
would not want powerful high-level instructions. But in fact 
these  instructions  are often hard  to use  since the compiler 
must find those cases which exactly fit the  architected 
construct.  Code selection becomes not just finding the fewest 
instructions, but  the  right instructions. And when these 
instructions  name  operands in storage instead of in  registers, 
code  selection depends upon the results of register alloca- 
tion. 

The  801  approach  to protection is strongly  based  upon this 
compiler intermediary between users and  the  hardware. 
Conventional  systems  expect application  programmers,  and 
certainly subsystem programmers,  to  use assembly language 
or other  languages in  which it is possible to  subvert  the 
system (either  deliberately or accidentally).  Thus,  hardware 
facilities are  required  to properly  isolate these users. The 
most  popular  examples of these facilities are  storage  protect 
keys, multiple  virtual  address spaces, and supervisor state. 
These facilities are often  costly and sometimes degrade 
performance. But  what is more important is that  they  are 
often inadequate.  Since even 16  different keys are insuffi- 
cient for unique  assignment, for instance, different  users are 
sometimes given the  same key or the system limits  the 
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number of active users. Also, because  the key disciplines are 
only two-level, many subsystems are forced to  run with full 
addressing  capability. 

If, however, users are  constrained  to a  properly defined 
source  language,  and  their  programs  are processed by an 
intelligent  compiler and  run on an operating  system  that 
understands  the  addressing  strategies of the compiler, it is 
possible to provide better protection at  less cost. The 801 
system,  therefore, is based upon the  assumption  that  certain 
critical  components of the compiler are  correct,  and  that  all 
programs  executing on the system  (except for a  small 
supervisor core) have  been  compiled by this compiler. The 
system will guarantee 

that  all references to  data  (scalars,  arrays,  structures, 
areas) really do point to  that  data,  and  that  the  extents of 
the references are included  in the  extents of the  data, 
that a reference  to  dynamically  allocated-and-freed  data is 
made only between an allocation and a free, 

0 that  all  branches  are  to labels, and  all calls are  to proper 
entry points in procedures, 

0 that  the  extents of all  arguments  to a procedure  match  the 
extents of their corresponding parameters, so that  the 
protection  persists  across  calls, and 
that  all  declarations of global (external)  variables in 
separately compiled  procedures  have  consistent extents. 

This  checking is often  done at  compile  time,  link-edit  time, 
or program-fetch time, but, when  necessary, trap  instruc- 
tions are  introduced  into  the object  code to  check a t  run time. 
The  resulting  increase in path  length  due  to  this  run-time 
checking  is  generally less than 10% because  this code is 
optimized  along with  the  rest of the  program [2]. 

Notice  that  this is not a “strongly typed”  approach  to 
checking. Overlays of one  data  type on another  are  permit- 
ted, provided the  domains  are  not exceeded. But  our experi- 
ence in running code conventionally on the  System/370  and 
then on the 801 with  this checking has shown that  many 
program bugs are discovered and  that, more importantly, 
they  tend  to  be  the kinds of bugs that  elude  normal compo- 
nent test procedures. 

It was  noted earlier  that, because the  operating system was 
also written in the 801’s high-level language  and compiled by 
the  801 compiler, its service programs were  simply CALLed 
like any  external  procedure, resulting  in better  cache behav- 
ior. An even more  important consequence of this design, 
however, is that  the checking of matches between arguments 
and  parameters is  performed at  the  time a program is  loaded 
into memory and linked to  the supervisor. This  results in 
efficient calls  to supervisor  services,  especially when com- 
pared  to conventional  overhead. It  means  also  that  the 
compiler-generated “traceback”  mechanism  continues  into 

the  operating  system, so that when an error occurs the  entire 
symbolic call chain  can  be displayed. 

The  linkage between  procedures  on the 801 is another 
example of a  consistent machine design  based  on  a  system 
used solely via a high-level language.  We  wanted applica- 
tions  on the 801 to  be  programmed using good programming 
style. This implies  a large  number of procedures and  many 
calls. In  particular,  it implies that very short  procedures  can 
be freely written  and invoked. Thus,  for  these  short proce- 
dures,  the  linkage  must  be minimal. 

The 801 procedure  linkage  attempts  to  keep  arguments in 
registers where possible. It also  expects  some  register  values 
to  be destroyed  across  a CALL.  The  result is that a proce- 
dure  call  can  be  as  cheap  as a BRANCH  AND  LINK 
instruction when the called procedure  can  execute  entirely 
out of available registers. As  more complex functions  are 
required  they  increase  the overhead  for linkage incre- 
mentally. 

Finally, the pervasive use of a high-level language  and 
compiler has given the project great freedom to  change.  The 
architecture  has  undergone several drastic  changes  and 
countless  minor ones. The  linkage conventions, storage  map- 
ping strategies,  and  run-time  library have  similarly been 
changed  as experience provided new insights. In almost  every 
case  the cost of the  change was  limited to recompilations. 

This  ability  to preserve source code, thus limiting the 
impact of change,  can have  significant  long-range impact on 
systems. New technologies (and  packaging) often offer great 
performance  and cost benefits if they can be exploited with 
architecture changes. 

System components 

The  programming language 
The  source  language for the 801 system is called  PL.8. It was 
defined to  be  an  appropriate  language for  writing  systems 
programs  and  to produce  optimized  code  with the checking 
described previously. 

PL.8 began  as  an  almost-compatible subset of PL/I, so 
that  the  PL.8 compiler was initially compiled by the  PL/I 
Optimizer.  It  contains, for  instance, the  PL/I  storage classes, 
functions,  floating-point  variables,  varying character strings, 
arrays with adjustable  extents,  the  structured  control primi- 
tives of PL/I,  the  string-handling built-in  functions, etc.  It 
differs from  PL/I in  its interpretation of bit  strings  as  binary 
numbers, in its  binary  arithmetic (which  simply  reflects the 
arithmetic of the 801 hardware)  and in some  language 
additions borrowed from  Pascal.  It does  not contain  full  PL/I 
O N  conditions, multiple  entry points, or the  ability  to 241 
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develop absolute pointers to  Automatic or Static  storage. 
Relative pointers,  called  Offsets, can  be developed only to 
Areas.  This discipline has several advantages: 

All program  and  data  areas  can  be moved freely by the 
system,  since  absolute  addresses  are never stored in  user- 
addressable  data  structures. 

0 Any  arithmetic  data  type  can  be used as  an offset (relative 
pointer)  and  all  arithmetic  operations  can  be freely  per- 
formed,  since  the  extent  checks  are  made on  every use. 

0 A store, using a computed offset, can only  affect other  data 
in that  particular  area.  Thus,  the locations whose values 
could have been changed by this  store  are significantly 
limited. This  enhances  the power of the  optimization 
algorithms. 
It  leads  to  better  structured,  more easily readable pro- 
grams. 

The optimizing compiler 
There have  been about seven programmers in the compiler 
group since the project  began.  A running compiler  was 
completed after  about two years.  Since  then  the  group  has 
been involved with  language extensions, new optimization 
techniques, debugging,  and usability aids.  It should be noted, 
however, that for about  twenty  years  the  Computer Sciences 
department a t  Yorktown Heights  has been  working on 
compiler algorithms,  many of which were  simply  incorpo- 
rated  into  this compiler. 

The  PL.8 compiler adopts two strategies which lead to  its 
excellent object code. The first is a strategy which translates, 
in the most straightforward, inefficient (but  correct)  man- 
ner,  from  PL.8  source  language  to  an  intermediate  language 
(IL).  This  translation  has  as  its only  objective the production 
of semantically  correct  object code. It seeks almost no special 
cases, so that it is relatively easy  to  debug. Moreover, the 
intermediate  language which is its  target is a t  a  very low 
level, almost at   that  of the  real 801 machine. 

The next phase of the compiler develops flow graphs of the 
program  as  described in [3],  and, using these  graphs, 
performs  a  series of conventional optimization  algorithms, 
such  as 

common  sub-expression elimination, 
moving code out of loops, 
eliminating  dead code, and 
strength reduction. 

Each of these  algorithms  transforms  an IL program  into a 
semantically  equivalent,  but  more efficient, IL program. 
Thus,  these  procedures  can  be  (and  are) called  repetitively 
and in any  order.  While  these  procedures  are  quite sophisti- 
cated,  since  each of them  acts on the  entire  program  and on 
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The power of this  approach is not only in the optimizing 
power of the  algorithms  but in the  fact  that  they  are applied 
to  such a low-level IL. Conventional  global  optimizing com- 
pilers perform  their  transformations at  a  much higher level 
of text,  primarily  because  they were  designed to  run in 
relatively  small-size  memory. Thus,  they  can  often not do 
much  more  than convert one  program  to  another which  could 
have been written by a more  careful  programmer.  The PL.8 
compiler, on the  other  hand,  applies  its optimization  algo- 
rithms  to  addressing code, domain  checking code, procedure 
linkage code,  etc. 

The second compiler strategy which is different from 
conventional  compilers is our  approach  to  register allocation 
[4, 51. The  IL, like that of most  compilers, assumes  an 
arbitrarily  large  number of registers. In  fact,  the result of 
each different computation in the  program is assigned  a 
different  (symbolic)  register. The  job  for  register allocation 
is  simply to assign real  registers  to  these symbolic  registers. 
Conventional approaches  use  some subset of the  real regis- 
ters  for special  purposes (e.g., pointers to  the  stack,  to  the 
code, to  the  parameter  list).  The  remaining set  is  assigned 
locally within  a statement,  or a t  best  a  basic block (e.g., a 
loop). Between these assignments, results which are  to  be 
preserved are  temporarily stored and  variables  are  redun- 
dantly loaded. 

The 801 approach observes that  the register-assignment 
problem  is  equivalent to  the graph-coloring  problem,  where 
each symbolic  register is a  node and  the real registers  are 
different colors. If  two  symbolic  registers  have the property 
that  there is a t  least  one point in the  program  where both 
their values must  be  retained, we model that  property on the 
graph  as a  vertex  between the two nodes. Thus,  the register- 
allocation  problem  is  equivalent to  the problem of coloring 
the  graph so that no  two nodes connected by a  vertex are 
colored  with the  same  crayon. 

This global approach  has proven very effective. Surpris- 
ingly many procedures “color” so that no store/load 
sequences are necessary to  keep  results in storage  temporari- 
ly. (At present the compiler ‘‘colors’’ only computations. 
There is, however, no technical reason why local variables 
could not also be “colored,” and we intend  to  do  this 
eventually.) When  it does  fail, other  algorithms which use 
this  graph  information  are employed to  decide  what  to store. 
Because of this  ability of the compiler to effectively utilize a 
large  number of registers, we decided to  implement  32 
general-purpose registers in the  hardware. 

The compiler  also accepts  Pascal  programs, producing 
compatible object  code so that PL.8 and  Pascal  procedures 
can  freely  call  one  another.  It  also produces efficient object 
code  for the  System/370,  thus providing  source  code porta- 
bility. 
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Instructions and operands 
Instruction  formats  and  data  representations  are  areas which 
saw  significant change  as  the  project evolved. This section 
describes the  current version of the  architecture.  The kind of 
instruction  and  operand  set requested by the compiler devel- 
opers turned  out,  fortunately,  to be precisely one which made 
hardware  implementation easier. The overriding theme was 
regularity. For instance, 

All operands  must  be  aligned on boundaries consistent 
with their size (i.e., halfwords  on  halfword  boundaries, 
words on word boundaries). All instructions  are fullwords 
on  fullword  boundaries. (This results in an  increase in 
program size over two- and  four-byte  formats,  but  the 
larger  format allows us  to define more powerful instruc- 
tions resulting in shorter  path lengths.) Since  the  801 was 
designed for a cache/main  store/hard disk hierarchy  and 
virtual-memory  addressing,  the consequence of larger pro- 
grams is limited to  more disk space  and  larger working sets 
(i.e., penalties  in cache-hit-ratio  and  page-fault  frequen- 
cies). 

With  this  alignment  constraint,  the  hardware is greatly 
simplified. Each  data or instruction access can  cause at  
most one  cache miss or one page  fault.  The  caches  must 
access a t  most one aligned word. Instruction prefetch 
mechanisms  can easily find op codes if they  are  searching 
for  branches. Instruction  alignment  and  data  alignment 
are unnecessary. Instruction  Length  Count fields (as in the 
System/370  PSW)  are unnecessary and  software  can 
always  backtrack instructions.  Moreover,  for data,  traces 
show that misaligned operands  rarely  appear,  and when 
they  do  are  often  the  result of poor programming  style. 

0 Given four-byte  instructions,  other benefits accrue. Regis- 
ter fields in instructions  are  made five bits  long so that  the 
801  can  name  32 registers. (This  aspect of 801  architec- 
ture  makes  it feasible to  use  the  801  to  emulate  other 
architectures which  have 16  general-purpose registers, 
since  16 additional  801  registers  are still available for 
emulator use.) 

Four-byte  instructions  also allow the  target  register of 
every instruction  to  be  named explicitly so that  the  input 
operands need not  be destroyed. This facility  is applied 
pervasively, as in “Shift  Reg A Left by contents of Reg B 
and  Store  Result in Reg C.” This  feature of the  architec- 
ture simplifies register allocation and  eliminates  many 
MOVE  REGISTER  instructions. 

0 The  801 is a true 32-bit architecture, not a 16-bit architec- 
ture  with  extended registers.  Addresses are  32  bits long; 
arithmetic is  32-bit two’s complement;  logical and  shift 
instructions  deal  with 32-bit  words (and  can  shift  distances 

up  to  32). A  useful  way to  reduce  path  length (and cache 
misses) is to define  a rich  set of immediate fields, but of 
course  it is  impossible to encode  a general 32-bit constant 
to fit into  an  immediate field in  a four-byte  instruction. 
The  801 defines the following subsets of such  constants 
which  meet  most requirements: 

A  16-bit immediate field for arithmetic  and  address 
calculation  (D field)  which  is interpreted  as a two’s- 
complement signed integer.  (Thus,  the  constants 2215 
can be represented  immediately.) 
A  16-bit  logical constant.  Each logical  operation has two 
immediate forms-upper and lower, so that in a t  most 
two instructions (cycles)  logical operations  can  be per- 
formed using  a  32-bit  logical constant. 
An 1 1-bit encoding of a Mask (Le., a substring of ones 
surrounded by zeros or zeros surrounded by ones). Thus, 
for shift,  insert,  and isolate operations  the  substring  can 
be defined immediately. 

0 A  16-bit immediate field for  branch-target  calculation 
(D field) which is interpreted  as a  signed two’s-comple- 
ment offset from  the  address of the  current  instruction. 
(Thus, a  relative branch  to  and  from  anywhere within  a 
32K-byte  procedure  can  be specified immediately.) 

0 A 26-bit  immediate field specifying an offset from  the 
address of the  current  instruction or an  absolute  address, 
so that  branches between  procedures, to supervisor 
services, or to “microcode subroutines”  can be specified 
without  having to establish  addressability. 

LOAD  and  STORE  instructions  are  available in  every 
combination of the following options: 

LOAD or STORE. 
0 Character, halfword,  sign-extended  halfword, or full- 

0 Base + Index, or Base + Displacement effective 
address  calculation.  (Usage  statistics for System/370 
show low use  for  the  full B + X + D  form. Thus, a 
three-input  adder  did not seem  warranted.) 

(Le., “autoincrement”) or not. 

word. 

0 Store  the effective address  back  into  the base register 

0 Branches  are  available  with  the following branch-target 
specifications: 

Absolute 26-bit address, 
Instruction  Address  Register + Displacement  (signed 
16- or 26-bit  word  offset), or 

0 Register + Register, 

BRANCH  AND  LINK forms  are defined normally. But 
conditional branches  are defined not only based  upon the 
state of the Condition Register  but on the presence or 
absence of a one in any  bit position in any register. [This 
allows the  TEST  UNDER  MASK - BRANCH  CONDI- 243 
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TION sequence in System/370 to be executed in one 
machine cycle (and no storage references) if the bit is already 
in a register. Again, the power  of global register allocation 
makes this more probable.] 

There are  COMPARE  AND  TRAP instructions defined 
which  allow the System/370 COMPARE - BRANCH 
CONDITION sequence to be executed in one machine 
cycle for those cases where the test is  for an infrequently 
encountered exception condition. These instructions are 
used to implement the run-time extent checking discussed 
earlier. 

Arithmetic is 32-bit two’s complement. There are special 
instructions defined to allow MAX, MIN, and decimal 
add and subtract to be  coded  efficiently. There are also two 
instructions defined (MULTIPLY  STEP and DIVIDE 
STEP) to allow  two 32-bit words to be multiplied in 16 
cycles (yielding a 64-bit product) and a 64-bit dividend to 
be  divided  by a 32-bit  divisor  in  32  cycles (yielding a 32-bit 
quotient and  a 32-bit remainder). 

The 801 has a rich set of shift and insert instructions. 
These were developed to make device-controller “micro- 
code,” emulator “microcode,” and systems code  very 
efficient. The functions, all available in one machine cycle, 
are as follows: 

0 Ring-shift a register up to 31  positions  (specified  in 
another register or  in an immediate field). 
Using a mask (in another register or in an immediate 
field), merge this shifted word  with all zeros  (i.e., isolate 
the field) or with any other register (i.e., merge), or with 
the result of the previous shift (i.e.,  long shift), 
Store this back into any other register or into storage 
(i.e., move character string). 

(This last facility allows  misaligned source and target 
character string moves to execute as  fast  as two characters 
per  cycle.) 

Interrupts and I/O 
1 / 0  in the 801 prototype is controlled by a set of adapters 
which attach to the CPU and memory by  two buses. The 
External Bus attaches  the  adapters to the  CPU. It is  used by 
software to send commands and receive status, by means of 
synchronous READ and WRITE instructions. Data are 
transmitted between the adapters and the 801 backing store 
through the M I 0  (Memory-I/O) bus. (As described pre- 
viously, it is the responsibility of the software to synchronize 
the caches.) 

Rather  than support integrated and complex (multi-level) 
interrupt hardware, the 801 again moves to software func- 

244 tions that can be performed more  efficiently by program- 

ming. Software on systems that provide, say, eight interrupt 
levels often find this number inadequate as  a distinguisher of 
interrupt handlers. Thus, a software first-level-interrupt 
handler is programmed on top of the hardware, increasing 
the real time to respond.  Moreover, the requirement to 
support eight sets of registers results in these being stored in 
some fast memory rather  than in  logic  on-chip. This results in 
a slower machine cycle.  If the real-time responsiveness of a 
system is measured realistically, it must include not  only the 
time to get to an interrupt handler but the time to process the 
interrupt, which clearly depends on the length of the machine 
cycle. Thus, in a practical sense the 801 is a good real-time 
system. 

Interrupt determination and priority handling is packaged 
outboard of the CPU chips in a special unit called the 
external interrupt controller (along with the system clocks, 
timers, and adapter locks). (This packaging decision  allows 
other versions of 801 systems to choose different interrupt 
strategies without impacting the CPU design.) In this con- 
troller, there are (logically) two bit vectors. The first, the 
Interrupt Request Vector (IRV) contains a bit for each 
device  which  may wish to interrupt  the CPU (plus one each 
for the clocks, timers, and the CPU itself for simulating 
external interrupts). These bits are tied by lines to the 
devices. 

The second  vector, called the  Interrupt Mask Vector 
(IMV) contains a bit corresponding to each bit  in the IRV. 
The IMV is loaded by software in the CPU.  It dynamically 
establishes the priority levels  of the  interrupt requesters. If 
there is a one in a position  in the  IRV corresponding to a one 
in the corresponding position of the IMV, and the 801 CPU 
is enabled for interrupt,  the CPU is interrupted. 

On interrupt,  the CPU becomes disabled and unre- 
located and begins executing the first-level-interrupt handler 
(FLIH) in  lower  memory. The FLIH stores the interrupted 
state, reads the  IRV, and determines the requester. Using 
this position number, it sends a new IMV (reflecting the 
priority of the requester) and branches to the  interrupt 
handler for that requester, which executes enabled and 
relocated. Path lengths for the FLIH  are less than 100 
instructions (and can be  reduced for a subclass of fast- 
response interrupts), and less than 150 instructions for the 
dispatcher (when the  interrupt handler completes). 

Internal bus 
We have, so far, described a CPU  that must have the 
following (logical) buses to storage: 

a command bus to describe the function requested, 
an address bus, 
a source data bus for stores, and 
a  target data bus for loads. 
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Table 1 Performance  comparison: System/370-168 and 801, for a 
Heap Sort programmed  in PL.8. 

CPU In inner loop 

Code No. of Data  Cycles Cycles/ 
size instruc- refs.  inst. 

(bytes) tions 

Systemf370-168 236 33 8 56 1.7 

80 1 240 28 6 31  1.1 

We observed that other functions might be implemented 
outboard of the CPU and could attach  to  the  CPU via these 
same buses  (e.g., floating point). Therefore, we exposed these 
buses  in an 801 instruction, called INTERNAL BUS 
OPERATION (IBO). This instruction has operands to name 
the following: 

the bus unit being requested, 
0 the command, 

the two operands (B,D or B,X)  which  will be added to 

the source register, and 
the  target register, if needed, 

and three flags: 

0 privileged command or not, 
0 target register required or not, and 
0 address bus sent back to Base register or not. 

produce the  output on the address bus, 

Having defined this generic instruction, we gave bus-unit 
names to the instruction and data caches, the external- 
interrupt controller, the timer, and the relocate controller, 
and assigned the IBO op  code to all instructions directed to 
these units. 

Prototype hardware 
A hardware prototype has been built for an early version of 
the 801 architecture, out of MECL 10K DIPS (Motorola 
Emitter  Current Logic dual in-line packages). It runs at 1.1 
cycles  per instruction. (This number must be taken as an 
out-of-cache performance figure because the applications 
which currently run show hit ratios at close to 100% after  the 
initial cache load.) We do not  yet  have multiple-user mea- 
surements. 

The register file is capable of reading out any three and 
writing back any two registers within a single cycle. Thus, 
the  CPU is  pipelined as follows. 

The first level  of the pipeline  decodes the instruction, reads 
two registers into the ALU, executes the  ALU, and either 
latches the result or, for LOAD or STORE instructions, 

Table 2 Performance  comparison:  randomly selected modules  on 
PL.8 compiler. (Note: Relative numbers  are  the  ratios of 801 
parameters  to System/370 parameters.) 

Module 
(In order 

of increasing 
size) 

FIND 
SEARCHV 
LOAD S 
P2-EXTS 
S O R T 3  1 
P M A D D 1  
ELMISS 
PM-GKV 
P5DBG 
DESCRPT 
ENTADD 

Total 

Relative 
code 
size 

1.02 
0.93 
0.83 
1 .oo 
0.86 
0.86 
0.87 
0.92 
0.98 
0.86 
0.79 

0.90 

Dynamic comparisons 

Relative Relative 

executed storage 
instructions data 

references 

0.9 1 0.60 
0.83 0.38 
0.9 1 0.43 
1 .oo 0.57 
0.78 0.59 
0.96 0.63 
0.86 0.69 
0.76 0.46 
0.8 1 0.52 
0.75  0.42 
0.76 0.42 

0.80 0.50 

sends the computed address to the cache. On a STORE 
instruction, the  data word  is also fetched from the register 
file and sent to the cache. 

The second  level of the pipeline  sends the latched result 
through the shifter, sets the condition register bits, and stores 
the result back into a register. During this cycle also, if a 
word has been  received from the cache as  the result of a load 
instruction, it is loaded into the register. 

(The hardware monitors register names to bypass the load 
when the result is being immediately used.) 

The cache is  designed so that, on a miss, the requested 
word  is sent directly to the CPU, thus reducing lockout  while 
the cache line is being  filled. 

Performance comparisons 
Tables 1 and 2 show some early performance comparisons. 
Since the compiler  produces object code for the System/370 
as well as the 801, these comparisons are possible for the 
same source programs and the same compiler. We use the 
number of cycles  in the inner loops and the number of storage 
references in the inner loops to approximate dynamic per- 
formance. 

Table 1 shows results for an in-memory sort procedure. 
Table 2 shows the results for randomly selected modules 
from the compiler itself. Note that as the modules get larger 
the power  of global register allocation results in fewer 
storage references. Note also that, in spite of the  fact that  the 245 
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801  contains no  complex instructions,  the  801 modules 
contain fewer instructions  and fewer instruction executions. 
This is  because the complex instructions  are generally  very 
infrequent,  whereas  the  801  has a more powerful set of 
primitive  instructions. 

Conclusions 
While we do  not have nearly  enough  measurements  to  draw 
hard conclusions, the  801  group  has developed a set of 
intuitive  principles which seem  to hold consistently. 

At least  in  low-to-mid-range processor complexity,  a  gen- 
eral-purpose,  register-oriented instruction  set  can  be at  least 
as good as  any special vertical microcode  set. Thus,  there 
should be only one  hard-wired  instruction  set,  and  it should 
be  directly  available  to  the compiler. 

A good global  register  allocator  can effectively use  a large 
number of general-purpose registers. Therefore,  all  the regis- 
ters which the  CPU  can afford to build  in hardware should 
be  directly  and  simultaneously  addressable.  Stack  machines, 
machines  that  hide  some of the  registers  to improve CALL 
performance,  and multiple-interrupt-level machines  all seem 
to  make poorer use of the  available registers. 

Protection  is far  more effectively provided at  a level where 
the  source  language  program is understood. 

It is easy  to design and build  a fast,  cheap  CPU,  and  it will 
become more so as VLSI evolves. The  harder problem is to 
develop  software, architecture,  and  hardware which do not 
keep the  CPU idling due  to  storage access. 
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