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A Fault-Tolerant  System  Architecture for  Navy  Applications 

This paper describes the architecture of a computer system, being designed and built for the US. Navy, that is expected to be 
the standard Navy shipboard computer for the next twenty years or so. It  has a requirement for very high system  reliability, 
which is addressed by a multiprocessor system configuration that can recover dynamically from hardware faults and support 
on-line repair of failed hardware elements. Successfully accomplishing this requires various types of redundant hardware 
elements and special system architecture features, as well as intelligent fault-recovery  software. This also requires that the 
application programs be designed to participate fully in the recovery and reconjiguration process. This paper presents the 
overall system architecture and discusses a number of significant new features designed to support fault-tolerant operation, 
including a  duplex control bus, a computer interconnection system,  a technique for remote diagnostics, a single-button 
maintenance procedure, and special fault-handling  software. 

Introduction 
In the  late 1950s, the U.S. Navy  began  to  introduce  digital 
computers on board  its ships to  perform various real-time 
applications. The  AN/UYK-7 was designated  as  the  large 
shipboard  standard  computer. In the  late 1970s,  in  response 
to increasing performance  requirements  and improving tech- 
nologies, the  Navy defined requirements for  a new family of 
standard computers. The  AN/UYK-43  (the system dis- 
cussed in this  paper) is the successor to  the  ANIUYK-7,  and 
is aimed a t  achieving  significant  improvements  in  cost, 
performance,  and  functional  capability while retaining 
upward  program  compatibility  from  the  AN/UYK-7.  Spe- 
cial  emphasis  has been  placed on fault recovery and on-line 
maintenance, which are  the topics of discussion  here. 

Figure 1 is a photograph of the IBM AN/UYK-43 
computer.  The enclosure has a  cross  section of approximately 
20 x 22 in. (50 x 55 cm)  and  stands 6 ft (1.8 m)  tall.  This 
enclosure contains  the following equipment: 

Two  CPUs,  each  rated  at  approximately 2.2 MIPS (mil- 
lion instructions per  second). 
Two  programmable 1 / 0  Controllers  (IOCs),  each con- 
nected to  32  channels.  The connectors  for the  channels  are 
on the  back of the  cabinet. 

0 Up  to  ten  memory modules, for  a total  capacity of 2.5M 
32-bit words of memory. 

An  integral  display/control panel and  an  integral power/ 

A computer interconnection  system to allow multiple 
temperature panel  for maintenance operations. 

enclosures to be connected into a single  system. 

The  computer in the  photograph is referred  to  as a “B” 
enclosure. An “A” enclosure is also being  built  which is 
smaller  than  the “B” enclosure and  contains  about half of its 
equipment. 

Specification requirements 
As with  most government  contract work, the  AN/UYK-43 is 
being built [ 11 in  response to a Statement of Work issued by 
the  Navy  [2].  This  document  contains  detailed specifications 
on exactly how the  computer is to  be built, its  functional 
characteristics,  its  performance  characteristics, etc. Table 1 
summarizes  the key requirements relative to  fault  tolerance 
and reliability. Although  the terminology is defined in the 
notes of the  table, a few clarifying  comments  are  appropri- 
ate. 

0 The  mean  time between the  occurrence of hardware  fault 
conditions is MTTF, while MTBF is the  mean  time 
between system  failures. For a non-fault-tolerant  system, 
MTTF is the  same  as  MTBF. In a fault-tolerant  system 
MTBF is considerably larger  than  MTTF because it 
allows for the recovery from  fault conditions and for 

0 Copyright 1983 by International Business  Machines Corporation.  Copying in  printed  form  for private use  is permitted  without  payment of 
royalty provided that (1) each  reproduction is  done  without alteration and (2) the Journal reference  and  IBM  copyright  notice are included  on 
the first page.  The title and abstract, but  no other  portions, of this  paper may  be  copied or distributed  royalty  free  without further permission  by 
computer-based  and  other  information-service  systems.  Permission  to republish any  other  portion of this  paper  must be obtained  from the 
Editor. 
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Figure 1 AN/UYK-43 “B’ enclosure. 

on-line repair (i.e., repair of the failed module  while the 
system is operating). The Navy requirement is for a 
MTBF of at least 6000 hours; current projections show the 
MTBF for the “B” enclosure to be  well  in  excess  of 15 000 
hours (based upon successful recovery from a  fault condi- 
tion, and with repair of the failed hardware module within 
eight hours). 
Automatic isolation is the process of running diagnostic 
programs in order to identify the specific replaceable unit 
(page) which,  when replaced, will put the failed module 
back into operational status. 
The mean time to repair (MTTR) is  based on the assump- 
tion that the faulty replaceable unit is  successfully isolated 
and that  the required replacement part is readily avail- 
able. 
A single-point computer fault is a single fault condition 
which can cause the full “B” enclosure configuration to 
“crash,” i.e., to bring the computer to a halted condition. 
The Navy “A” school graduate has attained at least a 
ninth-grade reading level, and has completed a 38-week 
Navy school as  an Electronic Technician. In addition, he 
has completed a one-week maintenance course on the 
AN/UYK-43. 

Table 1 Specification requirements for the AN/UYK-43. 

MTTF 2 1050 hours (for “B’ enclosure) 

MTBF 2 6000 hours (with on-line repair) 

Automatic isolation: 
98% to three LRUs 
95% to two LRUs 
90% to one LRU 

MTTR 5 15 minutes 

MTTF of single-point computer faults 2 50x MTTF for total 
computer 

99% of hardware faults repairable by Navy’s “A” school  grad- 
uate 

MTTF = Mean time to fault wndition 

MTTR = Mean time to repair 
MTBF = Mean time between system failures 

LRU = Line replaccable unit 

Similar work 
There are two  existing systems which are very similar in 
philosophy and approach to the  AN/UYK-43. One of these 
is the IBM 9020 computer developed  for air-traffic control 
for the FAA [3]. This is a classical, tightly coupled multipro- 
cessing system with three processors and three 1 / 0  control- 
lers, all sharing a large modular main store. It has been  in 
operation in  various air-traffic control centers around the 
nation for about 15 years. The approach taken on the 
AN/UYK-43 for fault tolerance is similar in many respects 
to concepts developed  for the 9020 system, particularly in the 
areas of on-line fault detection, fault recovery, dynamic fault 
analysis, dynamic system reconfiguration, and executive 
control. 

The other system is a commercially available computing 
system known as the Tandem %on-Stop Computer [4-61. 
The Tandem computer system has the same objectives as the 
AN/UYK-43, namely, being able to continue operation in 
the presence of failed hardware elements, and being able to 
perform on-line repair. The system architecture has a num- 
ber of similarities. Up to sixteen processors can be connected 
together by means of a duplex bus, and it provides core 
memory  with parity checking, and semiconductor memory 
with an Error-Correcting Code (ECC). Power switching is 
separate for each hardware module.  However, there are also 
some  differences. The Tandem design has explicitly  avoided 
any shared memory, and has an 1 / 0  controller integrated 
into each CPU. 

The IBM 3081  is one of  IBM’s newest high-performance 
large-scale computer systems. While it was not  necessarily 
intended for high-availability applications, it has a number 
of characteristics similar to  the  AN/UYK-43 [7]. The 308 1 
contains two CPUs (called dyadic processors)  with shared 
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main store  and  shared 1/0 channels. Considerable  emphasis 
was  placed on fault detection and  fault isolation,  in order  to 
achieve simplified maintenance for  a  complex machine.  The 
3081 is especially important  from  the point of view of fault 
tolerance because of its  use of an embedded service processor 
to  handle  fault  situations,  and  because of its  implementation 
in LSI  and  the  unique problems  derived from  that. 

There  are  other  fault-tolerant  systems  aimed a t  real-time 
control  applications which have  an  entirely  different 
approach  from  that described here.  The objective for  the 
AN/UYK-43 is to have a high availability  for a  relatively 
long mission time (on the  order of 2000 hours).  With  these 
other systems, the objective is to have  a  high  reliability  for  a 
relatively short mission time  (a few hours);  the  emphasis 
there is on duplication  and voting to  mask  out  the effect of 
faults. 

0 The  Space  Shuttle avionics computer [8] contains  four 
computers  organized  as a quad-redundant set.  All four 
computers  perform  the  same  computations at  the  same 
time, and  are synchronized by software,  and  their  results 
are voted by software in order  to  determine when one 
computer  has failed. In  this way, the system  is capable of 
retaining full computational  capability  after  up  to two 
faults.  The  system  also  has a fifth computer,  with  separate 
software, as a backup in case a third  fault should occur, or 
in case a generic  software design error should appear.  This 
system  is a premiere  example of an operational multiple- 
redundant  computer configuration. 

0 The  Software  Implemented  Fault  Tolerance  (SIFT) sys- 
tem [9] is  a  multiple-processor system  with  private memo- 
ries. Its development is sponsored by NASA,  and  the 
current  experimental configuration contains  ten proces- 
sors. These processors can  be  grouped  under  software 
control  into  sets of three, where each  set  runs  the  identical 
computation  and  software votes on the  results  to  determine 
when  a failure occurs. It is more flexible than  the  Space 
Shuttle system  because the allocation of processors to  sets 
of three  can  be  changed  from  time  to  time  under  software 
control. The  emphasis is on the  software  structure  and on 
designing the  system  to be able  to prove the  correctness of 
the  fault-tolerant  approach. 

0 The  Fault-Tolerant Multiprocessor (FTMP)  [lo] is also 
sponsored by NASA.  This system has  multiple processors, 
but  with  shared  main memory and  redundant buses. The 
hardware modules can be grouped  into  triple  sets  (the 
same  as with SIFT), with tight  synchronization  under 

Redundancy at  the  hardware module level is, of course, 
required.  Subsequent sections of the  paper discuss  various 
features, techniques, and  strategies in more  detail.  The 
following list highlights the most important  and  unique of 
these  features. 

0 A  duplex control  bus is the  principal  mechanism  for 
communicating between  a CPU  and  the various 1/0 
channels. It is duplexed  in order  to  operate in the presence 
of faults.  It is  also the  means by which remote diagnostics 
are  executed, configuration control is managed,  and com- 
munications  are  carried  out  with  other enclosures. 
A  basic  principle adopted is that when  a CPU experiences 
a fault which makes  it  incapable of executing  instructions, 
then  it should not  be  depended upon to  perform  any  active 
functions in the recovery process  which follows. Conse- 
quently, when a CPU suffers  a catastrophic  failure  it is 
simply  stopped and  some  other processor is interrupted  to 
take  charge of the  subsequent recovery procedure. This 
was judged  to  be a more cost-effective approach  than 
providing  a  special  built-in  service  processor to  perform 
those  functions. (See [ l l ]  for a description of one  such 
service processor.) 
The  functional  hardware modules  in the system are indi- 
vidually  configurable; i.e., the  interfaces with the buses 
can be controlled by software  and  the modules  have 
individual power switches. This allows recovery software 
to prevent  a failing  module  from  contaminating  the  rest of 
the system, and  also allows for  repair of a faulty  module 
while the  rest of the system  continues to  operate. 
The  computer interconnection  system  allows multiple 
enclosures to  be connected  in a variety of ways, based  on 
the individual  system requirements.  They  can  be  tightly 
coupled (and  therefore  share  main  store), or they  can  be 
loosely coupled and simply communicate by means of 
messages. 
The  Fault-Tolerant  and  System Reconfiguration Module 
(FTRM) is the  primary  software  module which is deliv- 
ered with the system and which  controls all fault-recovery 
actions. Its design is integrated closely with the various 
fault-tolerant  features within the  AN/UYK-43,  and  it 
interfaces  with  an executive program  and  with  the  user 
application programs  to achieve fault tolerance. 

0 Isolation of a faulty line replaceable unit (LRU) is 
performed through  the execution of diagnostic programs. 
On  the  AN/UYK-43,  these  programs  are  written in  a 
special diagnostic  language which  is executable on either 
the  IOC or the  CPU. 

program control. These  features  are  all described in  more  detail subsequently. 

Key features  for  fault tolerance Organization  of  the paper 
The  ability  to  react  to  faults  and  to recover from  their effects This  introduction  has  summarized  some background mate- 
has been  a primary concern  in the  AN/UYK-43  program rial  and  some key features of the  AN/UYK-43 system. 
and is reflected in the design of the  hardware  and software. Subsequent sections of the  paper cover the following: 22 1 
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Figure 2 Computer set block diagram. 

0 A high-level view  of the system architecture,  and defini- redundancies  among  the  functional modules  should be  clear. 
tion of some terminology used later in the  paper. 

- 
Much of the terminology  is  relatively standard.  It includes 

An overview of the  casualty  reaction process. Central Processing Units  (CPUs),  Input/Output  Controllers 
A detailed discussion of the  casualty  reaction  features of (IOCs), memories, Memory  Interface  Adapters  (MIAs), 
the  AN/UYK-43,  and how they  relate  to  the system and Bus Control  Units  (BCUs).  An  IOA is an  Input/Output 
architecture  and  to  the  casualty  reaction process. Adapter,  the  D/CP is a Display/Control  Panel,  the P/TP is 

0 A summary  and conclusions. a Power/Temperature  Panel,  and  the  ROCU is a Remote 
Operator  Control  Unit.  The  REI  and  DM1 will be explained 

System architecture 
A fundamental  characteristic of a fault-tolerant system is 
that  it  must  contain  some  form of redundancy,  whether at   the 
circuit level, the  module level, the  system level, or the 
software level. In  order  for a  system to  continue  to  operate in 
the presence of a fault,  there  must  be  redundant  hardware 
somewhere  either  to  correct  the  fault or to  continue  to 
operate  correctly in  place of the  hardware affected by the 

shortly. The top-level redundancy  can  be seen by inspection 
of the figure. There  are two control buses, each of which can 
operate independently, and  each of which serves as a backup 
for the  other.  There  are  separate memory buses for each 
processor (CPU  and  IOC), so that a  bus failure will affect 
only one processor. Not shown in the figure  is the  fact  that 
each IOC actually  contains duplex processors. Provision for 
dual power sources is included. 

fault.  In  the  AN/UYK-43,  this  redundancy is introduced 
primarily  (but  not exclusively) at  the level of the  functional 
module, and  therefore is evident in  the system architecture. 

A  special Computer Interconnection System  (CIS)  has 
been designed to allow a number of enclosures to  be 
connected together  into  larger systems. The  CIS provides 
direct extensions of the memory bus  and  the control bus  to 

Figure 2 is a system  diagram of the  AN/UYK-43 com- additional enclosures.  A  special feature of this design is that 
puter  and reflects the  hardware  that is included  within  a “B” the  normal  use of these  bus extensions  is transparent  to  the 
enclosure. The blocks in this  diagram  are generically operational  programmer; if a programmer wishes to access  a 
referred  to  as  functional modules (FMs),  and  the possible main  memory  location  in another enclosure, his program 



simply generates an address in the normal way. The 
address-decode mechanism then interprets the high-order 
bits of the address to decide whether the requested memory 
location is within this enclosure or another enclosure. Simi- 
larly, the principal function of the control bus  is to commu- 
nicate 1 / 0  requests from a CPU to an IOC controlling the 
proper channel. In order to request an 1 / 0  function from a 
channel attached to another enclosure, the CPU program 
simply requests the start of an 1 / 0  channel with an IOC 
number located in another enclosure. 

The CIS is made up of a Requestor Extension Interface 
(REI) and  a Direct Memory Interface (DMI). The REI in 
Enclosure 1 can be connected to DMIs in up to 16 other 
enclosures, and is the mechanism by which requests are sent 
from a processor within Enclosure 1 to any other enclosure. 
The DM1 in Enclosure 1 is the mechanism by which other 
enclosures send requests to this enclosure. The DM1 has four 
ports, each of which can be connected to one REI in another 
enclosure. 

From a system point of  view, the block diagram of Fig. 2 is 
that of a classical tightly coupled multiprocessing system 
where  every  processor  is able to access all of main store. 
However, the  actual use of memory is decided by the 
application software design, and can be constrained by 
means of software control. Each processor (as well as  the 
CIS) contains an address translation table. This table con- 
verts logical addresses to physical addresses, and therefore 
the entries in the  table control which  processors  have  access 
to which  memory  modules. This allows a system operation 
which  could include private storage for one or more of the 
processors, as well as defining how much memory  (if any) 
would  be shared by which  processors. 

An important feature of the system architecture is the 
control bus. 1 / 0  operations are invoked  by means of a 
message sent from a CPU to the proper IOC via the control 
bus. In addition, the control bus is  used to transmit inter- 
processor interrupts, diagnostic commands, and certain other 
error-handling controls. There are two independent and 
identical control buses, each controlled by its own BCU. In 
order to use a control bus, a processor that wishes to send a 
message sends a signal to the common control logic  which 
selects one of the two  buses  which  is  not  busy (either one). 
After priority resolution, if any, the requesting processor is 
granted one of the control buses. When it is granted  a control 
bus, the requesting processor then proceeds to send  one or 
more control and data words to the proper destination, 
receiving a reply if necessary. That bus  is then free to be 
allocated to some other processor.  If a fault is detected in the 
transmission of the desired message, the BCU is  notified and 
the requesting processor  is automatically switched to the 
other bus in order to retransmit the message. 

An IOC is a programmable processor  in its own right, with 
its own instruction set, register set, memory protection, 
memory  bus, and translation table. It is microprogrammed 
and, in fact, contains two  physical  processors. An IOC can 
have up to 32 devices (IOAs) connected to it,  and its primary 
function is to essentially multiplex the operations of those 32 
channels. In addition, the IOC takes charge during initial 
program loading and can also assume command during 
error-recovery situations when there are no operating CPUs 
left in the enclosure. 

As shown  in  Fig. 2, a “B” enclosure can contain up to ten 
memory  modules, each consisting of a Memory Interface 
Adapter (MIA) and one or more memory array pages. A 
memory  module  may contain either semiconductor memory 
or core memory. The memory word  in the semiconductor 
memory is expanded to include an error-correcting code 
(single error correction, double error detection), which  pro- 
vides for automatic correction of transient faults in the 
memory array. A core memory page may  also contain a 
monolithic front end, as is described later. 

These are the principal characteristics of the system 
architecture for the AN/UYK-43, particularly as they relate 
to fault tolerance and casualty reaction. A more complete 
description can be found  in [ 121. 

Casualty reaction 
Casualty reaction is a  term used  in the AN/UYK-43 
program to cover all the processes, techniques, and features 
related to the handling of faults. The use of this term avoids 
some of the parochial definitions associated with such terms 
as fault tolerance or high availability. This section of the 
paper provides a top-level view  of the major processes 
involved  in casualty reaction. 

A number of general requirements concerning functions to 
be  provided  for casualty reaction on the AN/UYK-43 
system were  provided  in the Statement of Work. However, it 
required a significant system design effort to put in place a 
set of hardware and software capabilities to accomplish these 
general requirements. The principal objective of this paper is 
to describe how that has been accomplished. First, however, 
a few clarifying points are in order. 

One of the most important requirements was the develop- 
ment of a casualty reaction design  philosophy. This was 
accomplished  very early in the program and represents an 
overall strategy of  how to respond to fault conditions and how 
to accomplish on-line repair. This design  philosophy  was 
carefully documented and was the principal mechanism used 
to drive the hardware design and  the software design to a 
coordinated solution. Most computer systems are developed 
without any particular motivation towards fault tolerance or 223 
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Figure 3 Fault  recovery  phase. 

casualty reaction. The result is that hardware capabilities 
such as  fault detectors are left to the whims of the designer, 
and any software capabilities are added later  as an after- 
thought. An  effective fault-tolerant system simply cannot be 
designed this way. (A documented overview  of the casualty 
reaction process for the AN/UYK-43 is contained in [ 131 .) 

Some effort was  given to the consideration of software 
faults, i.e., residual bugs  in the application programs. How- 
ever, there does  not appear to be at this time any effective, 
readily usable approach to this problem. There has been 
considerable research directed to this problem in the last few 
years in the areas of design diversity [14], recovery  blocks 
[ 151, and formal proof  of correctness of programs [ 161. 
However,  none of these approaches has reached the  stage yet 
where it could readily be  used  in an arbitrary system 
application, and therefore does  not  provide applicable direc- 
tion towards the design of a system like the  AN/UYK-43. 

Development of programming guidelines is an important 
part of the  AN/UYK-43 program. Most existing fault- 224 
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tolerant systems are designed to support a very  specific 
application. This is an important advantage because the 
application software package can be  designed  in conjunction 
with the hardware system in order to provide a coherent 
approach to the handling of fault conditions. However, the 
requirement here is to develop the  AN/UYK-43 system as  a 
hardware/software package that can then be applied to 
various Navy shipboard applications. The objective of the 
programming guidelines is to provide advice to future appli- 
cation programmers on  how they should  design and organize 
their programs so as to effectively take advantage of, and 
work  with, the facilities provided  with the AN/UYK-43 
computer. 

The strategy for casualty reaction is  divided into two 
principal phases. The first  is fault recovery,  which consists of 
the actions that take place when a  fault is detected. The 
second  is fault repair, which is the process involved with the 
on-line repair of a failed functional module. These two 
phases are treated separately because the processes involved 
are different, and because they may occur discontiguously  in 
time. Fault recovery  is an immediate reaction which gets the 
system operating again (perhaps in a degraded mode)  while 
fault repair is a process that happens whenever the mainte- 
nance technician decides that it is appropriate. 

Fault recovery phase 
The  fault recovery phase begins the instant a  fault is 
detected. The initial actions (when the fault is detected by 
hardware) are performed automatically by hardware. Then 
control is  passed to the Fault-Tolerant and System Recon- 
figuration Module (FTRM) which performs another set of 
actions. Finally, notification is sent to the application pro- 
gram, which  must then perform the final software recovery. 
The  fault recovery phase completes when the system has 
resumed operation. 

Figure 3 is a top-level flow chart of the steps that  are 
executed to accomplish the  fault recovery  phase. These steps 
are discussed  briefly here in order to give an overall picture of 
how casualty reaction works. Details of many of the features 
are described in a subsequent section. 

1. Fault detection-This refers to a hardware-detected 
fault. The fault may  have occurred in the hardware or it 
may be an error in the software, but in either case, a 
fault detector went off. A large number of real-time 
continuous hardware fault checkers are included  in the 
AN/UYK-43 design.  An interface is  also  provided  for 
FTRM to respond to the software detection of faults. 

2. Automatic recovery-The  block  in the flow chart uses 
the  term "Retry," but this does  not  necessarily  mean 
that  an instruction or function is retried. Instead, it 
represents a set of facilities where  in  specific cases the 
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hardware  has sufficient capability  to  automatically cor- 
rect  the  fault,  either by correcting, by retrying, or by 
disabling  the  failing function.  However it is  done, if the 
correction is successful the  application  program con- 
tinues  operation  almost  as if no fault  had  occurred. 

3. Casualty  reaction control-At  this  point it  has been 
determined  that a solid failure  has  occurred (or, more 
correctly,  that a fault  has  occurred which is being 
treated as a solid failure). If the  fault is catastrophic in 
the sense that a specific functional  module is no longer 
able  to  perform  its function, this  fact is automatically 
displayed to  the  maintenance  operator.  Then  an  inter- 
rupt is sent  to a processor in order to invoke the 
fault-handling  software  (FTRM).  For a noncatastrophic 
fault,  this  interrupt goes to a  predefined processor. For  a 
catastrophic  fault,  the processor to  be  interrupted is 
defined by means of a  register  located  in the BCU. The 
contents of this  register  are  under  software control, 
providing two  advantages.  One is that  it allows the 
FTRM design strategy to determine which processor 
should be  interrupted in the  case of a particular  type of 
catastrophic  fault.  The  other is that it  allows FTRM  to 
change  that decision after a fault  has  occurred.  This is 
useful  because it simplifies the  handling of multiple 
faults, should they occur. 

4. Functional  module isolation-The hardware  interrupt 
generated  from  the previous step invokes FTRM opera- 
tion in  a  recovery processor. Note  that  FTRM  can  be 
executed on either CPU in the enclosure. FTRM does 
some  preliminary  handling of the  interrupt,  but  its 
principal function is to  identify  the  functional  module 
which has failed. In the  great  majority of cases  this is 
immediately obvious from  the  type of interrupt  that 
occurred  and  from  the  interrupt  status code. In the  cases 
where  it is  not obvious, FTRM must  execute  an algo- 
rithm in an  attempt  to  identify  the specific functional 
module which has failed. These  ambiguous  cases  are 
principally  associated  with the memory bus  and  the 
control bus. 

5 .  Hardware reconfiguration-The  reconfiguration of a 
functional  module is the process of clamping  its  inter- 
faces with the  rest of the system so that, no matter  what 
kind of erratic behavior it  may  exhibit,  it  cannot  impact 
the  normal  operation of the  other  functional modules. 
The  primary  function of this  step is to configure out  the 
functional  module which was  identified as  the  one  that 
failed.  However,  two other  functions  are  also performed 
here.  The first  is to  establish  that  there is an  adequate  set 
of hardware resources remaining  operational  to  keep  the 
system  running.  An obvious example is that if the  last 
processor in the  enclosure fails, there is no computa- 
tional  capability  left in that enclosure and  the only 
apparent option is to  declare  the system  failed. In 
addition, a fault log is kept by the  software, which 

records each  fault  that  occurred  and  what reconfigura- 
tion  action (if any) was taken. 

6 .  Software recovery and  restart-With  the failed func- 
tional module now out of the  system,  the  rest of the 
hardware should be  able  to  operate in a normal way. 
However, it  may  be necessary to  go back and  “repair” 
the  application  program so that  it  can  continue  opera- 
tion. A message  is sent  from  FTRM  to  the application 
program describing exactly  what went  wrong and  what 
functional module has failed. The application program 
must now take  some kind of recovery action  in order  to 
restart  the system. This  may involve going back  to a 
recent checkpoint, or switching  in  a hot  spare  hardware 
module, or perhaps loading into memory  a substitute 
program which will operate in  a degraded mode. 

It  cannot  be emphasized  too  strongly that  the  ultimate 
success of this  type of a recovery scheme depends  upon the 
application  software being able  to  continue  operation even 
though  one or more specific hardware modules  have  failed. 
There  are a number of techniques  available which can  be 
used to  aid in this process, but  these  must  be designed into 
the  application  program  from  the  start.  Other forms of 
redundancy which would not impact  the  software  operation, 
such  as  triple  modular  redundancy [ 17, 181, might  be imple- 
mented in hardware. However, these  are considerably  more 
expensive in terms of hardware. 

While  the  details of the various  steps may  be different, this 
fault-recovery process applies no matter which functional 
module  has failed. The process also applies  for multiple 
faults,  as long as  the second fault does  not  occur until  the 
recovery process is complete for  the first fault.  Since  the 
recovery process is expected to  take  only a  few  seconds a t  
most, the probability of that  occurrence is quite small. (It is 
important  to distinguish here between the  occurrence of a 
second independent  fault  and  the  occurrence of a second 
indication of the  same  fault.) 

Fault  repair  phase 
When  the  fault recovery phase is complete, the  maintenance 
panel (D/CP in Fig. 2) contains a  display  showing which 
functional  module  has failed. When  the  maintenance techni- 
cian observes this  and is prepared  to  institute a repair action, 
a button on the  panel is  depressed to  initiate  the  fault  repair 
phase. The  fault  repair process involves the identification of 
the specific pluggable element (LRU) which has  failed, 
replacing it,  checking that  the  module is now working 
properly, and  returning  the module to full  operation  within 
the  system.  Figure 4 is the high-level flow chart of this 
process, which consists of the following steps: 

I. LRU isolation-The application  program  has veto 
power over the  request by the  maintenance technician to 
begin on-line repair (since the application may  be 225 
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involved  in some critical process and may  not wish to 
devote system resources to the repair action at this time). 
If the application agrees to the repair process, the 
principal function to be carried out is to run a set of 
diagnostics against the failed functional module to deter- 
mine the specific LRU which  needs to be replaced. The 
application program makes available a block of 32K 
words  of memory, and the proper set of diagnostic 
programs is  loaded into that memory from an external 
device. This set of programs is then scheduled as a task 
with the executive program so that it may run in a 
background mode  with the existing application program. 
In this way, the application program can control the 
amount of CPU time spent running the diagnostics. 
When the diagnostic programs are complete, they have 
identified the most  likely set of LRUs which should be 
replaced to repair the functional module. 
On-line repair-A special display is presented on the 
D/CP of the  LRUs to be replaced. (This is illustrated 
subsequently.) The rest of this step is a manual process. 
The repair technician must switch off the power to the 
failed module (the power for each functional module can 
be switched on and off separately), open the cabinet, 
remove the faulty LRU and replace it with a spare, and 
close the cabinet and turn  the power to  that module back 

Table 2 Casualty reaction responsibilities. 

Process  step  Responsibility  Support 

Fault recovery 
1.  

2. 
3. 
4. 

5 .  
6.  

Fault detection 

Automatic recovery 
Casualty reaction  control 
Functional  module isola- 
tion 
Hardware  reconfiguration 
Software recovery  and 
restart 

Hardware, 
FTRM, 
application 

- 

Hardware FTRM 
Hardware FTRM 
FTRM - 

FTRM Hardware 
Application FTRM 

Fault repair 
7. LRU isolation FTRM Application 
8. On-line repair Maintenance FTRM, 

technician hardware 
9. Repair  confirmation FTRM Application 

10. Restoration  Application FTRM 

9. 

10. 

on. A button is then depressed on the D/CP requesting 
that  the functional module  be tested again to see if the 
repair was  effective. 
Repair confirmation-The next step is to retest the 
functional module to see if it is  now operating properly. 
This is  accomplished by running the same set of diagnos- 
tic programs against that module.  If  no failures are 
found, the D/CP display will  show that the previously 
failed functional module  is now  in standby mode,  which 
indicates to the technician that  the repair has been 
successful. 
Restoration-Since the module has now  been repaired, 
it must  be  reconfigured  back into the active hardware 
system; that is, the interfaces which  were  effectively 
disconnected during the recovery phase can now  be 
reconnected. This means that  the functional module is 
now fully capable of operating with the rest of the 
modules  in the system. A message is then sent to  the 
executive (or application) program indicating that  the 
identified functional module  is now ready for  use. It is up 
to the application program to decide when and how to 
begin  using this hardware resource again. 

Note that this entire fault repair phase is executed on line; 
that is, the diagnostics are run and the repairs made by the 
maintenance technician while the rest of the system con- 
tinues to operate and perform its application function. 

0 Casualty reaction responsibilities 
The ten steps just described represent the overall strategy for 
casualty reaction on the AN/UYK-43. As was indicated 
earlier, it represents a coordinated and integrated design of 
hardware, fault-tolerant software, and application software. 
In order to clarify this responsibility, Table 2 lists each of the 



ten steps, shows where  the  primary responsibility lies for 
executing  each  step,  and also  shows  those cases  where 
support is required  from  other  areas. 

The distinction  between the  fault-handling  software 
(FTRM)  and  the  application  software is especially  impor- 
tant.  FTRM  cannot  and does not  attempt  to provide a 
complete fault-recovery function  for an  arbitrary  applica- 
tion. That  application  software  must  be designed to  be  able  to 
handle those cases  where individual hardware modules  have 
failed. The  primary objective of having the  fault-tolerant 
design philosophy just described  is to  make  sure  that  the 
people responsible for  each of the  areas of the  system know 
specifically what  their responsibilities are  and  where  their 
interfaces  are  with  the  rest of the system. 

Fault-tolerant features 
The previous two  sections  have given a general  understand- 
ing of the  hardware configuration and how casualty  reaction 
works on  the  AN/UYK-43.  This provides a context within 
which to discuss specific fault-tolerant  capabilities  that  are 
provided in hardware  and/or  software  to  implement  the 
system. The following discussion is divided into subsections, 
each of which covers a particular  capability.  In  each case, the 
more  important or more  interesting  features  are described  in 
some  detail. 

0 Fault detection 
The  casualty  reaction process  does  not start  until a fault is 
detected, which can be accomplished by either  hardware or 
software. Id general,  hardware  fault  detection is preferable 
to  software  fault detection  because it  occurs continuously 
and in real  time.  Here, “continuous” means  that every 
instance of a function is  checked, and  “real  time”  means  that 
the  fault is detected within a very few machine cycles of 
when it actually occurs. Software  fault  detectors normally 
only apply when they  are explicitly invoked by the  macro 
program,  and will usually  not detect a fault  until  many 
(hundreds of) instruction execution times  after  the  fault 
actually occurs. Continuous  real-time detection  is much 
more effective because  there is a lower probability  that  the 
fault will be propagated  to  some  other  part of the  system, 
because it is much  easier  to know precisely where  the  fault 
occurred,  and  because  the  detector will also find transient 
faults. But whatever fault-detection  techniques  are used, 
successfully  achieving the  potential high  reliability of a 
fault-tolerant  system is dependent upon detecting a  very high 
percentage of the  faults  that occur. 

A large  number of hardware  fault  detectors have  been 
included  in the  AN/UYK-43 design. Table 3 summarizes 
the  number of individual fault  detectors designed into  each 
type of functional module, classified by the  general types of 
detectors involved. In general,  when  a fault is detected  it 

Table 3 Number of hardware fault detectors, by type. 

Type CPU Memory IOC  BCU/ CIS Panels 
PSL 

Parity  check 31 5 11 2  17 3 
Timeout 8 3 7 1 2 6 8  
Decode  check 6 1 5 3 1  
Limit  check 4 3 1 
Interface check 2 3 2  6 
Others 10 1 8 3  9 

Note: See Fig. 2 for definitions of functional  modules. 

causes an  interrupt  into  one of the  CPUs.  This results  in  a 
context switch to  an  interrupt-handling  program,  the  mask- 
ing of other  interrupts of the  same type, and  the  storing of an 
interrupt  status code containing  information defining the 
specific type of fault  that  occurred.  Certain  faults  (primarily 
in the  CPU)  are considered catastrophic whenever the 
module is  no  longer able  to  execute  any  reasonable  function. 
In  such a  case, the failed CPU is halted  and  an  interrupt is 
sent  to  the  other  CPU.  Faults  detected in  some other 
functional  module will result in an  interrupt  into  one of the 
CPUs so that  the  FTRM  program  can  be invoked and 
casualty  reaction  can proceed. 

Software  fault detection  occurs  when some macro-level 
program designed to look for erroneous  conditions finds one. 
Three kinds of software  fault detection are  supported in the 
AN/UYK-43. 

Part of the  FTRM  software  package is  a  set of macro-level 
self-test programs.  At system  initialization  time, FTRM 
requests  the executive to  schedule these programs  as a 
background  task  and  to  execute  them periodically. These 
programs  are specifically designed to  detect  faults in areas 
of the  hardware not  covered by the  hardware  fault  detec- 
tors. Whenever  any of these self-test programs  detect a 
fault,  they  send a  message to  FTRM  indicating  the  fault 
condition. 

0 Two special instructions  are provided in the  AN/UYK-43 
architecture:  CPU confidence test  and  IOC confidence 
test. The execution of these instructions invoke micropro- 
grammed procedures which perform  a  basic check on the 
processor function  and  its  ability  to  execute instructions. 
Detection of a fault results  in an  interrupt  to  the  CPU. 
Application programmers  are  encouraged  to  include  fault 
detection  in the design of their  software modules. These 
might  include  techniques  such  as checking parameters  to 
be within  limits,  using check  sums on blocks of data, or 
using  timeouts. FTRM provides an interface whereby, if 
such a fault is detected, a  message can  be  sent  to  FTRM, 
whereupon it  makes a check of its own on the affected 
functional modules. 227 
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Table 4 Automatic recovery techniques. 

Recovery technique Generic method  System  Impact on system 
notiJcation 

1.  Cache disable Correct  and  avoid  Interrupt Loss of CPU performance 
2. Disable monolithic  front  end  Count Loss of memory  bandwidth 
3. Disable IOC engine Interrupt Loss of 1 / 0  bandwidth 

4. Retry  main  memory  Correct  transient faults Count  Temporary delay 
5. Retry IOA read Status Probably  none 

6. Alternate control  bus Repeatedly correct  Interrupt Loss of bus  bandwidth 
7. ECC on semiconductor  memory  Count None 

8. Disable memory  priority  Avoid Status Loss of priority 

0 Automatic recovery 
Automatic recovery, as discussed here, is characterized by 
three principal features: 

0 The detected fault is  fixed immediately, that is,  within just 
a few machine cycles. 

0 There is no lost or damaged information. The fault is 
corrected in real time, and the damage is  not propagated 
into the system in any way. 
The fault condition is transparent to the software; that is, 
applications programs do not  even  know that the  fault has 
occurred. 

Within the limits of this definition, there are a number of 
automatic recovery techniques which  have  been  included  in 
the design of the  AN/UYK-43. The principal ones are listed 
and classified  in Table 4.  Brief descriptions of each are given 
in the following: 
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Each CPU contains a cache memory  in order to improve 
the average memory access time. A  fault in the cache 
memory or its associated circuitry causes the cache to be 
disabled; thereafter, memory  accesses  go directly to main 
memory without using the cache. 
A special memory has been  developed  for the AN/ 
UYK-43 computer which  is called a mono-fronted core 
memory. This memory  module contains 64K words of 
core memory  plus 64K words  of monolithic memory, and 
there is a one-to-one mapping between the contents of the 
two  memories. Each store into the memory  module  first 
stores into the monolithic memory and then stores the 
same data into the corresponding word  in the core mem- 
ory. Reads from the memory  simply  come from the 
monolithic memory. Such a memory  module  provides the 
access time of a monolithic memory  while also providing 
the retention of data in the core memory array during 
power outages. The automatic recovery technique occurs 
when a  fault is detected in the monolithic front end, 
whereupon the monolithic memory  is disabled and all 
future accesses  simply  come from the core memory. 
The IOC actually contains two identical processors. 

4. 

5 .  

6. 

7. 

8. 

Whenever  one of these fails, it is disabled and the other 
engine takes over the full load for the IOC. (However,  one 
processor can only support one-half of the full 1 / 0  data 
rate.) 
In both the CPU and the IOC, whenever a fault is 
detected on the memory  bus (as distinguished from a solid 
fault detected in the memory  module itself), the processor 
will retry  the access one time in order to correct for a 
possible transient error on the memory  bus.  If the access 
on the retry also detects the fault, it is treated as  a solid 
fault. 
When an  IOC is reading data from a device through an 
IOA, if a fault is detected, the IOC will try to reread the 
data. Note that the  IOC cannot retry 1/0 data which are 
being written to the device because the detection of that 
fault must occur out in the device itself. 
The duplex control bus has been  described  previously. 
Whenever a processor tries to use the control bus and 
detects a fault in the bus it is using, it will automatically 
switch to the  alternate bus and attempt to get the message 
through there. 
Extra bits are included in the semiconductor memory 
modules to provide correction of single-bit faults. Note 
that if a solid single-bit fault occurs either in a single word 
or  in all words  in the module, that fault will  be corrected 
on  every  memory  access. 
The memory interface adapter for each memory  module 
contains a special chip which implements the desired 
priority control for that memory  module. The logic  also 
includes a special high-speed  bypass  invoked  whenever 
there is  only a single request outstanding against that 
memory  module. (If there is only one requestor at a time, 
there is no  need to resolve priorities). This high-speed 
bypass circuit is then also  used to provide automatic 
recovery.  If a  fault is detected in the memory priority 
circuit, the circuit is switched out of operation and the 
high-speed  bypass is applied to every  access.  In this case, 
the normal priority algorithm is replaced by a simple 
first-in, first-out resolution of memory contention acces- 
ses. 
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Three  other  types of information  are include1 d  in Table 4 
(second through  fourth columns). One is the  generic method 
for handling  the  fault.  In  the first three cases, the  fault which 
was detected is corrected  and  further  occurrences  are 
avoided because  the  faulty  hardware is no  longer  being used. 
The next two  cases  are simply the  correction of a transient 
fault.  The next  two cases will correct  for  transient  faults  but 
will also  repeatedly  correct  the presence of a solid fault.  The 
final case does not  do  any correction; it simply  avoids the 
fault conditions by disabling  the  faulty  hardware. 

As previously discussed, one of the  characteristics of this 
type of automatic recovery is that  the  application  software 
does  not know that a fault  has  occurred. However, it is still 
important  that  the  fault not be ignored  completely; that is, 
there should be a  record of the  fact  that  the  fault  has 
occurred. As indicated in Table 4, system  notification can  be 
accomplished in three different ways. In  some cases an 
interrupt is generated  anyway, even though  the  fault  has 
been corrected.  Such  an  interrupt is handled directly by 
FTRM in order  to  update  the  status of the  functional module 
which is experiencing the  fault.  In  some cases, the  hardware 
provides a counter which is incremented every time  the 
particular  fault occurs.  If the  count should  ever overflow, 
that will cause  an  interrupt.  The  third  technique is to simply 
record, in an  internal  status word, the  fact  that a particular 
fault  has  occurred.  FTRM periodically  samples these coun- 
ters  and  status words, and  thus becomes aware when these 
faults  have  occurred. 

While  there is no direct  impact on the  application soft- 
ware, the existence of a fault condition will in general have 
some  kind of an  impact on the  operation of the  hardware. 
The  fourth  column of Table 4 indicates,  for each recovery 
technique, what  the  nature of the  impact is expected to be. 

Hardware reconfiguration 
Hardware reconfiguration is the process of logically discon- 
necting  a functional  module  from  the  rest of the  system.  (The 
term  also  applies when a repaired  functional  module is 
reconnected to  the system.) The  form of the disconnection 
should  not be absolute disconnection; rather,  the level of 
disconnection is determined by the following objectives: 

0 The most important  requirement is to  ensure  that, if a 
module has  failed, no matter  what  it  might  do  it should  not 
impact  any of the  rest of the  active system. This implies 
that  all  normal outgoing operational  interfaces  must  be 
disabled. 

0 If a functional  module in the  operational  part of the system 
should attempt  to  make a  normal operational access to  the 
failed  module, this should be  detected  and  indicated  to  the 
operational system. 

A processor in the  operational system  should be  able  to  get 
into  the failed  module  in order  to  execute diagnostics  on 
that module. This allows a recovery processor to  perform 
fault isolation  on the failed  module and  then  to verify 
complete  operational  capability of the  repaired  module 
before  configuring the  module  back  into  the  system. 
The reconfiguration  mechanisms  should be  under  software 
control. 
The  actual  hardware controls  should be located external 
to  the failed  module, i.e., should be part of a good 
module. 
Once  the failed module  has been  configured out,  it should 
not be able, by itself, to  change  the reconfiguration 
controls. 

The basic strategy for casualty reaction  is reflected in this 
set of objectives. Rather  than expecting  a  failed  module to 
diagnose  itself, the  strategy is  for  a good processor to  cause 
the diagnostics to  be  run on the failed unit.  This  requirement 
legislates against a  reconfiguration mechanism which com- 
pletely  disconnects the failed  module from  the system. 

Reconfiguration control  has  to occur at   the interfaces 
between an individual functional module and  the  rest of the 
system. As  can  be seen in  Fig. 2, those primary  interfaces  are 
at  the memory  bus and  the  control bus. Separate configura- 
tion control mechanisms are provided for  each of these. 

There  are two separate  control mechanisms provided a t  
the memory interface.  The first can  be used to prevent  a 
failed processor from accessing  a good memory, while the 
second is used to prevent  a good processor from accessing  a 
failed  memory. The first mechanism involves the  priority 
circuits in each memory  module. Each  Memory  Interface 
Adapter  (MIA)  contains a  relatively sophisticated  program- 
mable  priority mechanism.  Basically, the priority circuit 
contains a table with  ten  slots in it,  where  each processor can 
be allocated by software  to  one (or more) of the ten  slots. The 
important point is that  the memory  module  does  not even 
recognize  a request  from a processor unless that processor’s 
identifier has been inserted into  the  priority  table some- 
where. Therefore, for example, if CPU 0 is failing, FTRM 
can remove the identifier of that CPU from  the priority table 
in each memory  module; this prevents the failed processor 
from  reading or writing into  any memory  module. (Note  that 
this  mechanism  can  be used selectively to allow the failed 
processor to access one memory  module  for diagnostic  pur- 
poses, if that should be desired.) The second mechanism  for 
controlling the memory interface is the  address  translation 
table.  Each CPU and  each IOC (as well as  the  CIS)  contains 
its own address  translation  table, which maps logical  mem- 
ory addresses onto physical  memory  modules. If Memory 
Module 2 has failed, FTRM  can  ensure  that no processor will 
try  to access that  module by modifying all  the  address 229 
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Table 5 Fault-Tolerant and System Reconfiguration Module 
(FTRM) characteristics. 

Software module 
Runs under existing executive program 
Handles hardware fault  interrupts 
Isolates faulty  hardware module 
Makes system failure decision* 
Reconfigures hardware, as required* 
Maintains status of hardware configuration 
Notifies application program of changes in hardware status 
Maintains error log 
Controls on-line repair* 
Schedules periodic self-test programs* 
Controls multiple-enclosure fault recovery 

*With  guidancc from the application program. 

Table 6 Principal FTRM components. 

Program modules: 
FTRM initialization 
Interrupt handler 
FM isolation 
Application services 
On-line repair 

Data structures: 
System resource table 
Casualty error data table 
Casualty reaction log 

translation tables so that no logical address will map into the 
physical addresses associated with that module. (Close coor- 
dination between FTRM and the application program is 
required to do this in an intelligent way.) 

Use of the control bus  is regulated by the Bus Control Unit 
(BCU). Any functional module  which wants to send a 
message  over the control bus must first  send a request line to 
the BCU, which then legislates which functional module will 
be allocated the bus  for a period of time. The BCU contains a 
mask register with  one bit associated with each functional 
module.  If this mask bit is on, the associated module is  not 
allowed to use the control bus. This mask register can be 
loaded by FTRM, which  allows it to control which  modules 
can use the bus and which  ones cannot. Therefore, if CPU 0 
has failed, FTRM (running in CPU 1) can set the mask 
register in the BCU to prevent CPU 0 from accessing the 
control bus. Note that  CPU 0 can still receive  messages  over 
the control bus from some other processor; it is just not 
allowed to send its own messages  over the control bus. 
Consequently, a failed processor cannot pollute the system 
by usurping the control bus; but, at the same time, a good 
processor can execute diagnostics by sending them over the 
control bus to the failed processor. 

In addition to controlling the interfaces, certain opera- 
230 tional controls are also available. Diagnostic commands can 

be sent over the control bus to a processor to control its 
actions, such as Stop, Start, Single Step, and Single Micro 
Step. 

The configuration controls that have just been described 
apply primarily within a single enclosure. When several 
enclosures are connected together to form a complex  system, 
there are features available within the CIS to control those 
interfaces also. These include the ability to enable or disable 
the CIS interface; an interface priority circuit (identical to 
the one in the memory module) which can be  used to limit 
accesses; and an address translation table and a set of 
protection registers, both of which can be  used to control 
memory  accesses from outside the enclosure. 

FTRMprogram 
Previous sections have described hardware features provided 
with the  AN/UYK-43 for the  handling of faults. 
The Fault-Tolerant and System Reconfiguration Module 
(FTRM) is the program which  is  responsible for overall 
control of casualty reaction in the system. It uses all of the 
hardware information available, implements the overall 
casualty reaction strategy, and interfaces with the executive 
and application programs. Table 5 is a list of the characteris- 
tics of FTRM and the functions which it must provide. Table 
6 is a list of the principal components of FTRM, both 
program modules and data structures. Each of these is 
described briefly. 

FTRM initialization 
Part of the load package which is read into memory at 
initialization time is FTRM, and it is the first program to be 
executed. It has two main functions. One is to initialize the 
hardware configuration. There are a number of tables and 
registers which control the operation of the hardware config- 
uration, including the address translation tables, the priority 
registers of the memory  modules, and the various registers 
that control communications among the hardware modules. 
While the hardware provides default values in these areas, 
FTRM must replace them with values that fit  with the 
operational system. The other principal function is to create 
and initialize a system resource table so that it reflects the 
current operational configuration of hardware. 

Interrupt handler 
Under normal circumstances, while the machine is execut- 
ing, FTRM never executes at all. It is  invoked  only  when a 
fault occurs, which  is normally indicated by an interrupt. 
The  AN/UYK-43 has three classes of interrupts, one for 
hardware faults, one for program faults, and a  third for I/O. 
Hardware faults are sent directly to FTRM and its interrupt 
handler. (The other two  classes of interrupts go to the 
executive,  which  may decide that  the interrupt really repre- 
sents a  fault, in  which case it is  passed  on to FTRM.) On 
receiving the  interrupt, FTRM creates an entry in the 

WEBB T. COMFORT IBM J. RES.  DEVELOP. VOL. 21 NO. 3 MAY 1983 



casualty  error  data  table.  The  interrupt  status  information 
and  the relevant software  context  information  are saved in 
this  table.  The  interrupt  handler  normally  operates with 
interrupts masked off. Its work is kept to a minimum in order 
to  reduce  the period of time  during which interrupts  cannot 
be  accepted.  When it is completed, the  interrupts  are 
unmasked and  control is  passed to  the  FM isolation  module. 

One of the  complicating problems here is that  certain  fault 
conditions (such  as memory faults)  can be detected more 
than once, by separate processors. FTRM must  accept  these 
multiple  fault  indications  and  sort  them  out  appropriately. 

Functional Module  (FM) isolation 
This  module first performs a careful  analysis of the  interrupt 
status  information in order  to verify that a hardware  fault 
has  occurred.  The  program  must  then  determine which 
functional module has experienced the  fault.  This is done by 
analyzing  the  interrupt  status  information.  In most cases this 
is a straightforward process, and  it  can  readily  be  determined 
which FM is a t  fault. However, there  are  some  cases  where 
this is not true.  For  example, if the  interrupt  indicates  that a 
fault was detected on the  control bus, the location of the 
actual failed component could be in one of four places: it 
could be  the sender’s interface  to  the  control bus, it could be 
the receiver’s interface  to  the  control bus, it could be in the 
BCU  controller, or it could be in the  control  bus itself. In 
such a case, FTRM must exercise  a  special algorithm  to 
determine  where  the  fault really occurred.  Once  the failed 
FM  has been  identified, the  system resource table is updated 
to reflect  this, and a  message is sent  to  the  application 
notifying it of the  change in hardware  status. 

Application services 
FTRM provides a number of special  services related  to  fault 
handling for the  application  programs.  These  are provided by 
means of a standard message interface,  where  the applica- 
tion program  sends a  message to  FTRM  indicating  the 
service it requires. Typical services include  the following: 

1. FTRM provides a facility to  save vital data.  It keeps its 
own critical  data in  two  copies stored in two  different 
memory  modules. This service allows the  application  to 
send its vital data  to  FTRM,  where it  is  saved  in the two 
different  stores. The  data  are not directly  addressable by 
the  application  but  must  be accessed via FTRM. 

2. FTRM schedules the execution of a set of periodic 
hardware self-test  programs. The  application  may  add 
additional  software  tests  to  that  set or may  delete  from 
it. 

3. If the  application decides to  change  the configuration by 
adding or deleting  one or more  functional modules,  it 
sends a request  to  FTRM, which then  performs  the 
necessary  reconfiguration of the  interfaces. 

4. FTRM maintains a number of data  structures  containing 
information  describing  the system and  the events that 

have occurred.  (Some of these  are discussed subsequent- 
ly.) The application can  request access to  these  data  from 
FTRM. 

On-line repair 
On-line repair is invoked when the  maintenance technician 
presses a button on the  D/CP,  indicating  that  he is ready  to 
begin the  repair phase. FTRM responds to  this  request  and 
proceeds to  schedule  the execution of the  appropriate  diag- 
nostic programs  as a background  task with the executive. In 
this way, the  rest of the  system continues operating while the 
diagnostics are being carried  out. Upon  completion of the 
diagnostics, the most probable list of LRUs  to  be replaced is 
known. FTRM then controls the dialog  with the  D/CP  to 
assist the  maintenance  technician in making  the  repair. 
When  the  repair is successfully  completed, it sends  a  message 
back  to  the  application  program,  indicating  that  the  repaired 
functional module is now available for use. 

System resource table 
This  table  contains  one  entry  for  each  functional module  in 
the system. It is created  at system  initialization time  and is 
maintained by FTRM  as long as  the system  is  in operation, 
indicating when modules  have  been removed (due  to  failure 
or any  other reason) and when they  are  returned.  At  any 
time,  the  current  status of each FM  can  be found  in this  table 
(whether it is operational,  halted, powered off, operating in a 
degraded mode,  etc.). The  application  can access any of this 
information by means of the  application services. 

Casualty error data table 
This  table is essentially a buffer area for the processing of 
current  interrupts;  it  contains  one  entry  for  each  error  type 
for  each  CPU.  This is required because  a  high-priority 
interrupt  may  interrupt  the  handling of another  interrupt 
before that  interrupt is complete. Since  there  are two CPUs 
sharing  the  same copy of FTRM,  there  must  be  entries 
separately for each  CPU.  When  all  the  data  are collected for 
a specific interrupt,  that  information is recorded  in the 
casualty  reaction log. 

Casualty reaction log 
This  table  contains  one  entry  for  each  fault indication that 
occurs in the system. The  entry is created  for a particular 
interrupt with the set of status information that was put 
together in the  casualty  error  data  table.  The log entry is then 
expanded  to  include indications of what  happened  as a  result 
of the  fault  (what reconfiguration occurred,  the  LRU  callout 
that was made,  and if repair was successful). This log is 
maintained in  a fixed area of main  store; when this  area 
becomes full, the oldest entries  are  dropped off as new ones 
are  added. If the  application  program desires to  retain  this 
information,  it should  periodically  collect the information 
from  FTRM  and record it on  a tape or some external 
device. 23 1 
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Table 7 Application  Recovery Module (ARM) responsibilities. 

React  to fault notifications  from  FTRM 

Decide  what  software was damaged 

Decide  and  perform  software  recovery: 
Reload and restart 
Switch to degraded mode 
Switch in spare hardware modules 
Return to last checkpoint 
Keep track of recoverable/nonrecoverable 1 / 0  

Coordinate  multiple-enclosure recovery 

Handle  restoring of repaired  hardware modules 

0 Executive  program interface 
A number of the  FTRM  functions  (such  as  interrupt  han- 
dling and  the  control of hardware resources) are very closely 
related  to  the  traditional  functions associated with executive 
programs.  One of the complexities of the  AN/UYK-43 
program is that  FTRM  must be designed to  operate  with a 
number of different and unknown  executive programs. Con- 
sequently, it  has been  necessary to  draw  the line  between 
functions  to  be performed by FTRM  and  functions  to be 
performed by the executive. The  general  approach  has been 
to  exclude  from FTRM whenever possible those  functions 
that  are normally  handled by an executive and  that  do not 
directly  relate  to  fault handling. Clear well-defined inter- 
faces  are provided between FTRM  and  the executive. These 
interfaces have been identified and  the principal  ones are 
described here. 

0 As previously noted, FTRM is the first program  to be 
invoked during  system initialization. When  this is com- 
pleted, FTRM sends  a  message to  the executive and 
expects it  to  do  its own initialization and whatever  initiali- 
zation is required for the  application  program. 

0 The executive is expected to  handle two of the  three classes 
of interrupts,  namely,  the  program  fault conditions and  the 
1 / 0  conditions. If the executive  decides that  any of these 
cases  represent  potential  hardware  fault conditions,  it is 
expected to  pass  these  back  to  FTRM for error process- 
ing. 
Some of the  functions of FTRM  are  to  be performed as 
tasks in a multi-programming mode  with other  application 
programs.  The  two  prime  examples of this  are  the diagnos- 
tic  programs  and  the periodic software  self-test  programs. 
When  FTRM decides that  these need to  be  executed, a 
request is sent  to  the executive to have these  tasks sched- 
uled in a normal way. 
The  normal  mechanism  for passing status  information or 
requests between FTRM  and  application  tasks is by means 
of some  form of message  protocol. Most executives provide 
some  general  form of task-to-task  communication which 

232 can  be used for  this purpose. 

WEBB T. COMFORT 

FTRM will notify the executive whenever there is a 
change in hardware  status.  For  example, if a fault  inter- 
rupt  has  occurred  and  FTRM  determines  that  Memory 
Module 7 has failed, FTRM will send a message to  the 
executive indicating this. The executive is then  free  to  take 
whatever action  it wishes based  on this information. 

Application  program responsibilities 
The  ultimate effectiveness of fault recovery depends upon the 
application  program being  designed to respond to,  and work 
around, failed hardware modules. After  FTRM  has  done 
everything that  it  can  to  handle a fault,  it finally sends a 
message to  the  application saying,  in  effect, “CPU-0  has 
failed. What  do you want  to  do  about  it?” 

The  FTRM design assumes  the existence of a generic 
application  program known as  the Application  Recovery 
Module  (ARM).  This is the module which is responsible for 
the  software recovery of the  application  and its interface with 
FTRM.  This  ARM  might  be a single  module that controls 
recovery for the whole system; there  might be a set of ARMS, 
each associated  with  a particular  part of the system, or the 
ARM might  be simply the executive. However it is  imple- 
mented,  this ARM is expected to  perform  certain functions, 
as outlined  in Table 7. The  ARM will receive a message from 
FTRM  indicating which hardware  module  has failed, and 
based  on its knowledge of the  organization  and  structure of 
the  total  application,  it  must  determine where and how the 
software  has been damaged  and  what kind of recovery to 
implement. Some possible options are listed  in the  table.  The 
question of  how these various techniques should  work  is 
beyond the scope of this  paper.  (Unfortunately,  there is little 
in the  technical  literature  that discusses  these  various  tech- 
niques.) The  important point to recognize is that none of 
these  techniques will work unless the  application system is 
designed ahead of time  to  make  them work. 

In  addition  to providing one or more ARM programs, 
FTRM expects guidance  from  the  application in the  form of 
two tables. The first  is  called the  Software  State  Mapping 
Table.  It  contains  one  entry for each  hardware  functional 
module, and  its  primary  function is to provide a program 
module  identifier, that is, the identifier of the proper ARM 
which should be notified when that  functional  module fails. 
Then if CPU-0 fails, for example, FTRM looks in the  table  to 
determine which ARM  to send the message to,  indicating 
that  the  failure  has  occurred. 

The  other  table is called the Application Options  Table. 
This  table is used for the  application  program  to provide 
guidance  to  FTRM on how to  handle  certain  situations.  It 
includes the following kinds of information: 

Certain of the  FTRM  application services are considered 
to  be of a privileged nature.  The Application Options 
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Table identifies  which ARMS  are allowed to  request these 
privileged services. For  example,  one of the  FTRM  ser- 
vices allows the  application  program  to  request  that  an 
individual functional module be configured out of the 
system. The  application  program  might wish to  delete 
Memory  Module 7 from  the  system (for some reason) and 
to  request FTRM  to  do  that. However, that is a very 
powerful capability,  and  it is probably  not  a good idea to 
let any  arbitrary application program  come in and  make 
that kind of request.  Hence, only privileged ARMS  are 
allowed to  make  that specific request. 

0 In  certain kinds of catastrophic  fault conditions, the  hard- 
ware or FTRM will automatically configure out a  failed 
hardware module.  However, the  application  program  may 
be  executing  some very critical  tasks  and  may feel that  it is 
better  to  continue operation attempting  to use that failed 
module. The Application Options  Table provides a  way  for 
the  application  to  instruct FTRM  to  do this. 
In  order  to  execute  the on-line diagnostic  programs, 
FTRM must request  the use of certain  other system 
resources. The Application Options  Table provides the 
identifier of the  program module which is in charge of 
those  resources. 

These  tables  are expected to  be designed into  the overall 
application  software  package  and included  in the  application 
load block. At initialization time,  they would be sent  to 
FTRM for  its use  during system  operation.  If the  application 
elects not to provide  these  two tables, FTRM will use  some 
simple default  cases  to  handle  each  situation. 

The  application  programmer is also  encouraged  to  include 
software  fault  detectors where this is feasible. 

Single-button maintenance 
Considerable  emphasis  has been placed  in the  AN/UYK-43 
program on  simplifying the  maintenance procedures. This is 
important  to  the  Navy for three reasons. First,  maintenance 
is expected to be performed by technicians  with very limited 
technical skills. Such  technicians  are simply  not  qualified to 
single-step through  programs at  a console or to use  a  scope to 
probe  signal levels on logic pages. Second,  many of these 
computers will be installed on ships and will be at  sea for 
extended  periods of time.  Educated engineering  personnel 
will not be available  to  perform  maintenance on the 
machines. Third, with an  MTTF of over 1000 hours, on the 
average a fault will occur only once  every six weeks or so. In 
that  situation,  it is difficult for  any  technician  to  retain 
experience and  expertise on how to  make  repairs effectively. 
As a  result, considerable effort is being spent  to provide 
complete  diagnostic  programs  to perform the  LRU isolation 
process and  to provide  a  simple maintenance protocol at  the 
D/CP.  This protocol has been called  single-button  mainte- 
nance. 

0 I 2 3 4 5 6 
1 2 3 4 5 6 7 0 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 0 9 0 1 2 3 ~ ~ 5 6 7 0 9 0 1 2 3 4 5 6 7 0 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4  

REPLACE  LRUS I N  ORDER L L L L  6 X X X X X X - X X  P T P l ,  
0 1  U N I T S  H A V E   F A I L E D .  

Figure 5 D/CP display. 

This  procedure follows the overall flow chart of Fig.  4, and 
is carried  out  as follows: 

The display on the  D/CP indicates which functional 
module has failed (or more  than one, if that is the  case). 
The  D/CP  contains a  display element with 11 lines and  64 
characters per line, as  illustrated in  Fig. 5 .  The  top  four 
lines are continuously updated  to show the  operating  state 
of each of the  hardware  functional modules in the enclo- 
sure.  In  the figure, it is indicated  that  Memory  Module 0 
has failed. Line 11 is the direction to  the technician as  to 
how to  institute  the  repair action. 

0 The  technician depresses the  EXECUTE  TEST  button  to 
indicate  to  FTRM  that  he is ready  to  institute a repair 
action.  FTRM checks  with the application  for  approval to 
do  the  repair  operation a t  this  time. If this is acceptable, 
FTRM proceeds to load the memory  diagnostics into main 
store  and  to  cause  them  to  be  executed.  The diagnostic 
program runs multiprogrammed with the application, and 
when it is complete, has  the proper LRU callout. 

0 FTRM displays the  LRU  callout on lines 8 and 9 of the 
display. Three  LRUs  are displayed,  with the most  proba- 
ble one being  displayed first. This display is illustrated in 
the figure. 

0 The  technician  must now make  the physical repair. He 
powers down the failed  memory  module,  opens the  cabinet, 
and replaces  one or more of the  LRUs  indicated on the 
display. He  then closes the  cabinet  and  turns  the power to 
the failed  module back on. 
As  indicated on line 11 of the display, he pushes the 
EXECUTE  TEST  button  again  to  cause  the diagnostics to 
be rerun, in order  to see if the  repair  has been effective. 

0 FTRM re-executes the memory  diagnostics. If the  diag- 
nostics still detect a fault,  the display will continue  to show 
an  LRU  callout list (either  the  same one, or perhaps a 
different list). If the diagnostics no longer detect a fault, 
the display is changed.  The technician now has  the option 
either  to  rerun  the  diagnostic  test or to push the  BYPASS 
TEST  button  to notify FTRM  to put the now-repaired 
memory  module back  into  the system. 233 
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Table 8 Sample diagnostic commands. 

CPU Macro Stop 
Read CPU Scan Register 
Load CPU Control Store 
Start CPU Execution at Address K 
CPU Continue 
Read MIA Status Register 
Read CIS Nested Status Register 
Wrap Data 
Wrap  Bad  Parity 
Read  DM1  Priority Status 
Start at Micro-Address K 
Stop at IOC ENDOP 
Read  IOC Status 
Microstep Sequence A 
Microstep Sequence B 
Read  IOC  Local Store (Address K) 
Write  IOC  Local Store (Address K) 
Reset Alternate BCU 
Reset Error Status History 
Change Bus  Priority 

When he  pushes BYPASS  TEST,  FTRM  updates  the 
System  Resource  Table  to  indicate  that  Memory  Module 0 
is now in standby mode (and  changes  the display  accord- 
ingly).  A  message is sent  to  the proper ARM, which can 
then  put  the module back  into  active  status. 

This  repair  procedure  can  be  aborted at  any point by 
depressing the  BYPASS  TEST  button.  The  technician  might 
want  to  do  this if, for  example,  he does not  have the  right 
spare  parts in stock, or if the  replacement of the called LRUs 
does  not repair  the problem. 

As  indicated previously, this  maintenance  procedure 
requires no knowledge of programs or registers or words in 
memory, etc.  Still,  it is expected to  be effective  in repairing 
the system about 99% of the  time.  For  the  remainder of the 
cases where the  LRU  callout  turns  out  to  be  incorrect, or 
where  the  fault is in an  area of the system not  subject  to 
diagnostics,  a more complicated procedure is available  and is 
supported by software in the machine. This includes tradi- 
tional console functions,  such  as  manual loading of registers, 
display of memory  locations and  register  contents, single- 
stepping of the  program,  etc. 

Remote diagnostics 
The basic diagnostic philosophy with  the  AN/UYK-43 is 
that  it is better  not  to let a failing  hardware  module  attempt 
to  diagnose itself; rather,  the failed module is put  into a 
stopped state,  and a good processor will come in over the 
control bus and  execute  the necessary diagnostic sequences 
to  determine  what is  wrong  with the failed  module. This is 
referred  to  as  “remote diagnostics” [ 191. 

The  package of diagnostics for a functional  module is 
234 made  up of a series of individual  tests, where  each  test is  a 
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sequence of individual  diagnostic commands  to  be  sent over 
the  control bus. Thus,  for example, a specific test  might 
include a  sequence of commands which would load  several 
CPU registers,  load the  macro-instruction  counter, load the 
micro-instruction counter, single-step the  microprogram 13 
times, read  out  the  contents of two internal registers, and 
compare  the  actual results  with the predicted  results. Such a 
test is executed by sending  each of these  commands sequen- 
tially over the  control  bus  to  the failed CPU. A  list of some of 
the  diagnostic  commands  that  can  be used  in creating  these 
test sequences is given in Table 8. 

This use of the packages of diagnostic  programs for the 
repair  phase of casualty reaction is known as  On-Line 
System Diagnostics (OLSD).  The  same set of diagnostic 
packages is also available  for use in an off-line mode  when 
the system is not operational.  This is known as  Stand-Alone 
System Diagnostics (SASD).  For  this  situation,  the  identical 
set of diagnostic packages is used, but a  diagnostic  supervisor 
is added.  The function of the  diagnostic supervisor is to 
sequentially run diagnostics against every functional module 
in the system to  determine which ones are working and which 
ones are not. Whenever a fault is  identified  in one of the 
functional modules, the  same  type of single-button mainte- 
nance  scenario is provided a t  the  D/CP. 

SASD is invoked automatically  under two circumstances. 
First,  SASD is an  integral  part of the initialization process. 
When power is turned on, one of the first things  that  happens 
is that  SASD is loaded, and  it proceeds to  check  out  the 
whole set of available  hardware.  (One of the  byproducts of 
this first  execution of SASD is the  initial  state of the system 
resource table, which is then passed to  FTRM.)  The second 
case  where  SASD is used is when the enclosure crashes. 
On-line  repair is no longer possible, and  the  SASD  initializa- 
tion test is invoked. 

The bulk of the code (the  diagnostic  tests themselves) is 
identical between OLSD  and  SASD.  The only difference is 
how the  tests  are invoked and how they  are sequenced. The 
diagnostics under  OLSD  are always  executed on the  CPU, 
whereas the diagnostics under  SASD  must sometimes be 
executed by an  IOC.  Since  the IOC and  the  CPU  are not 
architecturally compatible, the  diagnostic  programs have 
been written in a special diagnostic  language which maps 
directly  into  control  commands on the  control bus. A  sepa- 
rate  interpreter is then provided, one for the  CPU  and  one for 
the  IOC,  to  cause  the execution of the  diagnostic  commands 
over the  control bus. 

Conclusion 
This  paper  has described how casualty  reaction is  being 
accomplished on the  AN/UYK-43 computer. The overall 
philosophy of handling  faults is  not particularly novel, as 
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similar  things have  been done on multiple-computer systems 
in the  past. However, many of the  details of the  hardware 
and  software  implementation  are new and  interesting,  and 
are expected to be quite effective. 

0 Summary and evaluation 
Many  concepts  have been  discussed  in this  paper,  some at  a 
detailed level and  some a t  a more  conceptual level. It would 
be  inappropriate  to  try  to  summarize  all of them. However, 
the following key concepts deserve comment  and emphasis. 

Achieving a high system MTBF  depends upon  successfully 
recovering from  faults, which in turn  depends upon detect- 
ing the  faults in the first  place. Significant design  effort 
and  hardware  circuit cost have  been  expended  in the 
AN/UYK-43  to provide hardware  fault  detection. Ideally, 
one would like  to  be  able  to  detect 100% of the  faults 
continuously  in real  time by hardware. However, in each 
case,  the decision of whether or not to  include a particular 
hardware  fault  detector is  a  tradeoff of a number of 
factors, including the cost of the  hardware  checker  as 
compared with the cost of the  circuit being checked,  the 
unreliability added  to  the  system  as a  result of the  addition 
of the checking circuit,  and  the possible performance 
degradation  that  might result from  including  the checker 
circuit. 

0 The single-button maintenance concept  is very important, 
especially in the  Navy  context. However, its effectiveness 
depends  directly upon the  diagnostic  programs being able 
to  indicate  the proper LRU callout. 
The overall casualty reaction strategy is a fairly  general 
process. It should be  applicable  to a large  class of multiple- 
CPU configurations.  However, the design  for  a particular 
computing  system  must  strike a balance between what is 
“right” for fault  tolerance  and  what  (sometimes  skeptical) 
users are willing to  put  up  with.  Some users  still  object to 
providing programs with absolute  control over what is 
done with faulty  hardware.  Detailed design is also a 
tradeoff  between general solutions and  detailed solutions. 
“Generality  breeds inefficiency,” and  also leads to  more 
complexity. Successful  fault  tolerance  requires  immediate 
response to  fault conditions, and users often object to  the 
allocation  of  significant amounts of system  resources to 
handle these fault problems. 
This  casualty  reaction system  is  designed to recover from 
any  single  fault in  a “B’ enclosure (with two CPUs  and 
two IOCs). However, it should  also recover from  many 
fault conditions in an A  enclosure (with only one  CPU  and 
one  IOC).  Fault detection, software recovery, and single- 
button  maintenance should apply in either  case. 

0 The  use of remote diagnostics (as previously described) 
appears  to  be a matter of philosophy. Many  commercial 
computing  systems (which are not  necessarily emphasiz- 
ing fault  tolerance) allow a failed CPU  to  diagnose itself. 
In  the  AN/UYK-43  approach described here,  it is felt that 
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self-diagnosis  could result in many  more  opportunities  for 
polluting the system. Consequently,  diagnostic control is 
given to a processor which is known to  be  operating 
properly. 

0 Again,  the  application  program  must  be responsible  for the 
ultimate  software recovery, and generally this  cannot  be 
patched  onto  the  application  programs  after  the  fact;  it 
must  be designed  in from  the beginning. This will be a 
nontrivial  problem  in trying  to  transport  AN/UYK-7 
programs  to  the  AN/UYK-43 while at  the  same  time 
trying  to  take  advantage of the  AN/UYK-43  casualty 
reaction  capability. 

0 Program status 
The  Navy  has  awarded two parallel engineering  development 
contracts  for  the  AN/UYK-43  computer,  one  to  IBM  and 
one  to  another  computer  manufacturer.  The  instruction set 
architecture of the  AN/UYK-43  computer was specified in 
detail in the  Statement of Work,  and  therefore  AN/UYK-43 
programs should execute on  machines from  either  manufac- 
turer. However, the  approach  to  fault  tolerance  and  casualty 
reaction was only specified in general  terms. Consequently, 
the  approaches of the two companies are probably quite 
different. This  paper  has described  IBM’s approach  to 
casualty reaction. 

The engineering  models of the  AN/UYK-43  computer  are 
scheduled to  be delivered  in March of 1983. Acceptance 
testing of the  hardware includes the  demonstration of the 
casualty  reaction  capabilities  as described here.  The  Navy 
will then  select one  contractor for production. The  AN/ 
UYK-43 is expected to be operational in the fleet by 1986, 
and will provide  a standard  shipboard  computer for the  Navy 
for a t  least 20 years. 

Acknowledgments 
There  are over 100 people at   IBM currently working  on the 
development of the  AN/UYK-43  computer, so it is simply 
not possible to recognize  all the people  who have  contributed 
to  the design and  implementation of this  fault-tolerance 
strategy. However, three people  should particularly  be recog- 
nized. R.  W. Bergeman  was the  manager of System Engi- 
neering  on the  AN/UYK-43  program  at  the  time  this 
fault-tolerant design philosophy was developed and  put in 
place. While  he provided guidance in a number of areas,  he 
gave the  author considerable latitude in  laying out  the 
casualty  reaction process in the way the  author saw  best. 
R. E. Miles is the principal hardware systems  engineer  on the 
program  and is responsible  for the definition of a number of 
the key hardware  features  that  are used here.  Finally, M. C. 
Intrieri, who took charge of the design and development of 
the  FTRM software, is a  key  individual involved in making 
the  fault-tolerant system work. 235 

WEBB T. COMFORT 



~ 236 

WEBB T. 

References and notes 
1 .  The work reported herein was performed, in part, under U.S. 

Navy Contract N00024-80-C-7135. 
2.  RFP-N00024-80-R-7135,  Attachment A,  Statement of Work 

for Full-Scale Engineering Development of Computer  Set 
AN/UYK-43 (XN-l)(V),  Department of the Navy, Naval  Sea 
Systems Command (March 1980). 

3 .  “An Application-Oriented Multiprocessing System,” IBMSyst .  
J .  6 ,  No. 2 (1967). (This issue contains a series of six papers 
describing the 9020 system.) 

4. J. A. Katzman,  “A  Fault-Tolerant Computing System,” 11th 
Hawaii Con$ System  Sciences 3,85-  102 (Jan. 1978). 

5. @Nan-Stop is a registered trademark of Tandem  Computers, 
Inc., Cupertino,  CA. 

6 .  J.  F. Bartlett,  “A ‘Non-Stop’ Operating  System,” 11 th  Hawaii 
Con$ System Sciences 3, 103-1 17 (Jan. 1978). 

7 .  “System Development and Technology Aspects of the  IBM 
3081 Processor Complex,” I B M J .  Res.  Develop.  26, No. 1 (Jan. 
1982). (This issue contains a set of papers describing the IBM 
3081 and various aspects of its design and development.) 

8. J. R. Sklaroff, “Redundancy  Management  Technique for Space 
Shuttle Computers,” IBM J .  Res. Develop. 20, 20-28 (Jan. 
1976). 

9 .  J. H. Wensley, L.  Lamport, J. Goldberg, M.  W.  Green,  K. N. 
Levitt, P.  M.  Melliar-Smith,  R. E. Shostak, and C. B. 
Weinstock, “SIFT: Design and Analysis of a  Fault-Tolerant 
Computer for Aircraft Control,” Proc.  IEEE 66, 1240-1255 
(Oct. 1978). 

10. A. L. Hopkins, Jr.,  T. B. Smith 111, and J.  H. Lala, “FTMP-A 
Highly Reliable  Fault-Tolerant Multiprocessor for Aircraft,” 
Proc. IEEE66,1221-1239 (Oct. 1978). 

1 1 .  J. Reilly, A. Sutton,  R.  Nasser,  and  R. Griscom, “Processor 
Controller for the IBM 308 1 ,” IBM J.  Res.  Develop.  26,22-29 
(Jan. 1982). 

12. “AN/UYK-43  (XN-1)(V)  Computer  Set, Technical Descrip- 
tion,” Report  No.  82-091-004, IBM  Corporation, Owego, NY, 
May 1982. 

13. W. T. Comfort, “Casualty  Reaction on the  AN/UYK-43: 
Scope and Overview,” Report No. 81-D91-002, IBM Corpora- 
tion, Owego, NY,  Apr. 1981. 

14. L. Chen and  A. Avizienis, “N-Version Programming: A  Fault- 
Tolerance Approach to Reliability of Software  Operation,” 
Digest FTCS-8.8th Annual International Conference on Fault- 
Tolerant  Computing, June 1978, pp. 3-9. 

15. 

16. 

17. 

18. 

19. 

B. Randell, “System Structure for Software  Fault Tolerance,” 
IEEE  Trans.  Software Engineering SE1, 220-232 (June 
1975). 
R. C .  Linger, H. Mills, and B. Witt, Structured  Programming 
Theory and Practice, Addison-Wesley Publishing Co., Reading, 
MA, 1979. 
R. E. Kuehn, “Computer Redundancy: Design, Performance, 
and  Future,” IEEE  Trans.  Reliability R-18, 3-11  (Feb. 
1969). 
A. Avizienis, “Fault-Tolerance:  The Survival Attribute of Digi- 
tal Systems,” Proc. IEEE  66, 1109-1 125 (Oct. 1978). 
In some commercial systems, the  term “remote diagnostics” 
refers to diagnostics performed via a long-distance communica- 
tions line. 

Received September 29, 1982; revised December 12, 1982 

Webb T. Comfort IBM Federal Systems  Division,  Owego, 
New  York  13827. Mr. Comfort received a B.A. in mathematics from 
Pennsylvania State University and an M.S. in computer science 
from the University of Michigan. He joined IBM in 1956 and his 
early work was  in programming and programming systems for 
real-time computers. In 1963, he  transferred  to Poughkeepsie, New 
York, where he worked  on computer architecture for high- 
performance systems and multiple-computer systems. He was also 
responsible for the design of the  operating system for the  IBM 
System/360 Model 67, which  was IBM’s first commercial computer 
with virtual memory and dynamic paging. In 1973, he transferred 
back to  the  Federal  Systems Division  in Owego, where he  has been 
doing computer architecture definition and evaluation for real-time 
control computers. Mr. Comfort is a senior programmer and for the 
last two years has been the lead systems engineer specifying and 
designing hardware  and software fault-tolerance capabilities for the 
AN/UYK-43  computer.  He has been an Association for Computing 
Machinery National  Lecturer  and spent one year as Visiting Profes- 
sor in Computer Science at the University of Massachusetts. Mr. 
Comfort is a member of the Association for Computing Machinery, 
Phi Theta  Kappa, and Sigma  Xi. 

30MFORT IBM J.  RES. DEVELOP. VOL. 27 NO. 3 MAY 1983 


