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A Fault-Tolerant System Architecture for Navy Applications

This paper describes the architecture of a computer system, being designed and built for the U.S. Navy, that is expected to be
the standard Navy shipboard computer for the next twenty years or so. It has a requirement for very high system reliability,
which is addressed by a multiprocessor system configuration that can recover dynamically from hardware faults and support
on-line repair of failed hardware elements. Successfully accomplishing this requires various types of redundant hardware
elements and special system architecture features, as well as intelligent fault-recovery software. This also requires that the
application programs be designed to participate fully in the recovery and reconfiguration process. This paper presents the
overall system architecture and discusses a number of significant new features designed to support fault-tolerant operation,
including a duplex control bus, a computer interconnection system, a technigue for remote diagnostics, a single-button
maintenance procedure, and special fault-handling software.

introduction

In the late 1950s, the U.S. Navy began to introduce digital ® An integral display/control panel and an integral power/
computers on board its ships to perform various real-time temperature panel for maintenance operations.
applications. The AN/UYK-7 was designated as the large ® A computer interconnection system to allow multiple
shipboard standard computer. In the late 1970s, in response enclosures to be connected into a single system.

to increasing performance requirements and improving tech-
nologies, the Navy defined requirements for a new family of
standard computers. The AN/UYK-43 (the system dis-
cussed in this paper) is the successor to the AN/UYK-7, and
is aimed at achieving significant improvements in cost,
performance, and functional capability while retaining
upward program compatibility from the AN/UYK-7. Spe-
cial emphasis has been placed on fault recovery and on-line
maintenance, which are the topics of discussion here.

The computer in the photograph is referred to as a “B”
enclosure. An “A” enclosure is also being built which is
smaller than the “B” enclosure and contains about half of its
equipment.

® Specification requirements

As with most government contract work, the AN /UYK-43 is
being built [1] in response to a Statement of Work issued by
the Navy [2]. This document contains detailed specifications
on exactly how the computer is to be built, its functional

Figure 1 is a photograph of the IBM AN/UYK-43 characteristics, its performance characteristics, etc. Table 1
computer. The enclosure has a cross section of approximately summarizes the key requirements relative to fault tolerance
20 x 22in. (50 x 55 cm) and stands 6 ft (1.8 m) tall. This and reliability. Although the terminology is defined in the
enclosure contains the following equipment: notes of the table, a few clarifying comments are appropri-
® Two CPUs, each rated at approximately 2.2 MIPS (mil- ate.

lion instructions per second). ® The mean time between the occurrence of hardware fault
® Two programmable I/O Controllers (IOCs), each con- conditions is MTTF, while MTBF is the mean time

nected to 32 channels. The connectors for the channels are between system failures. For a non-fault-tolerant system,

on the back of the cabinet. MTTF is the same as MTBF. In a fault-tolerant system
e Up to ten memory modules, for a total capacity of 2.5M MTBF is considerably larger than MTTF because it
32-bit words of memory. allows for the recovery from fault conditions and for
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Figure 1 AN/UYK-43 “B” enclosure.

on-line repair (i.e., repair of the failed module while the
system is operating). The Navy requirement is for a
MTBF of at least 6000 hours; current projections show the
MTRBEF for the “B” enclosure to be well in excess of 15 000
hours (based upon successful recovery from a fault condi-
tion, and with repair of the failed hardware module within
eight hours).

® Automatic isolation is the process of running diagnostic
programs in order to identify the specific replaceable unit
(page) which, when replaced, will put the failed module
back into operational status.

e The mean time to repair (MTTR) is based on the assump-
tion that the faulty replaceable unit is successfully isolated
and that the required replacement part is readily avail-
able.

® A single-point computer fault is a single fault condition
which can cause the full “B” enclosure configuration to
“crash,” i.e., to bring the computer to a halted condition.

e The Navy “A” school graduate has attained at least a
ninth-grade reading level, and has completed a 38-week
Navy school as an Electronic Technician. In addition, he
has completed a one-week maintenance course on the
AN/UYK-43.
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Table 1 Specification requirements for the AN/UYK-43.

MTTF = 1050 hours (for “B’ enclosure)
MTBF = 6000 hours (with on-line repair)

Automatic isolation:
98% to three LRUs
95% to two LRUs
90% to one LRU

MTTR = 15 minutes

MTTF of single-point computer faults = 50x MTTF for total
computer

99% of hardware faults repairable by Navy’s “A” school grad-
uate

MTTF = Mean time to fault condition
MTBF = Mean time between system failures
MTTR = Mean time to repair

LRU = Line replaceable unit

® Similar work

There are two existing systems which are very similar in
philosophy and approach to the AN/UYK-43. One of these
is the IBM 9020 computer developed for air-traffic control
for the FAA [3]. This is a classical, tightly coupled multipro-
cessing system with three processors and three I/O control-
lers, all sharing a large modular main store. It has been in
operation in various air-traffic control centers around the
nation for about 15 years. The approach taken on the
AN/UYK-43 for fault tolerance is similar in many respects
to concepts developed for the 9020 system, particularly in the
areas of on-line fault detection, fault recovery, dynamic fault
analysis, dynamic system reconfiguration, and executive
control.

The other system is a commercially available computing
system known as the Tandem ®Non-Stop Computer [4—6].
The Tandem computer system has the same objectives as the
AN/UYK-43, namely, being able to continue operation in
the presence of failed hardware elements, and being able to
perform on-line repair. The system architecture has a num-
ber of similarities. Up to sixteen processors can be connected
together by means of a duplex bus, and it provides core
memory with parity checking, and semiconductor memory
with an Error-Correcting Code (ECC). Power switching is
separate for each hardware module. However, there are also
some differences. The Tandem design has explicitly avoided
any shared memory, and has an I/O controller integrated
into each CPU.

The IBM 3081 is one of IBM’s newest high-performance
large-scale computer systems. While it was not necessarily
intended for high-availability applications, it has a number
of characteristics similar to the AN/UYK-43 [7]. The 3081
contains two CPUs (called dyadic processors) with shared
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main store and shared I/O channels. Considerable emphasis
was placed on fault detection and fault isolation, in order to
achieve simplified maintenance for a complex machine. The
3081 is especially important from the point of view of fault
tolerance because of its use of an embedded service processor
to handle fault situations, and because of its implementation
in LSI and the unique problems derived from that.

There are other fault-tolerant systems aimed at real-time
control applications which have an entirely different
approach from that described here. The objective for the
AN/UYK-43 is to have a high availability for a relatively
long mission time (on the order of 2000 hours). With these
other systems, the objective is to have a high reliability for a
relatively short mission time (a few hours); the emphasis
there is on duplication and voting to mask out the effect of
faults.

e The Space Shuttle avionics computer [8] contains four
computers organized as a quad-redundant set. All four
computers perform the same computations at the same
time, and are synchronized by software, and their results
are voted by software in order to determine when one
computer has failed. In this way, the system is capable of
retaining full computational capability after up to two
faulits. The system also has a fifth computer, with separate
software, as a backup in case a third fault should occur, or
in case a generic software design error should appear. This
system is a premiere example of an operational multiple-
redundant computer configuration.

® The Software Implemented Fault Tolerance (SIFT) sys-
tem [9] is a multiple-processor system with private memo-
ries. Its development is sponsored by NASA, and the
current experimental configuration contains ten proces-
sors. These processors can be grouped under software
control into sets of three, where each set runs the identical
computation and software votes on the results to determine
when a failure occurs. It is more flexible than the Space
Shuttle system because the allocation of processors to sets
of three can be changed from time to time under software
control. The emphasis is on the software structure and on
designing the system to be abie to prove the correctness of
the fault-tolerant approach.

® The Fault-Tolerant Multiprocessor (FTMP) [10] is also
sponsored by NASA. This system has multiple processors,
but with shared main memory and redundant buses. The
hardware modules can be grouped into triple sets (the
same as with SIFT), with tight synchronization under
program control.

® Key features for fault tolerance

The ability to react to faults and to recover from their effects
has been a primary concern in the AN/UYK-43 program
and is reflected in the design of the hardware and software.
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Redundancy at the hardware module level is, of course,
required. Subsequent sections of the paper discuss various
features, techniques, and strategies in more detail. The
following list highlights the most important and unique of
these features.

e A duplex control bus is the principal mechanism for
communicating between a CPU and the various 1/O
channels. It is duplexed in order to operate in the presence
of faults. It is also the means by which remote diagnostics
are executed, configuration control is managed, and com-
munications are carried out with other enclosures.

® A basic principle adopted is that when a CPU experiences
a fault which makes it incapable of executing instructions,
then it should not be depended upon to perform any active
functions in the recovery process which follows. Conse-
quently, when a CPU suffers a catastrophic failure it is
simply stopped and some other processor is interrupted to
take charge of the subsequent recovery procedure. This
was judged to be a more cost-effective approach than
providing a special built-in service processor to perform
those functions. (See [11] for a description of one such
service processor.)

® The functional hardware modules in the system are indi-
vidually configurable; i.e., the interfaces with the buses
can be controlled by software and the modules have
individual power switches. This allows recovery software
to prevent a failing module from contaminating the rest of
the system, and also allows for repair of a faulty module
while the rest of the system continues to operate.

® The computer interconnection system allows multiple
enclosures to be connected in a variety of ways, based on
the individual system requirements. They can be tightly
coupled (and therefore share main store), or they can be
loosely coupled and simply communicate by means of
messages.

® The Fault-Tolerant and System Reconfiguration Module
(FTRM) is the primary software module which is deliv-
ered with the system and which controls all fault-recovery
actions. Its design is integrated closely with the various
fault-tolerant features within the AN/UYK-43, and it
interfaces with an executive program and with the user
application programs to achieve fault tolerance.

® Isolation of a fauity line replaceable unit (LRU) is
performed through the execution of diagnostic programs.
On the AN/UYK-43, these programs are written in a
special diagnostic language which is executable on either
the IOC or the CPU.

These features are all described in more detail subsequently.

® Organization of the paper

This introduction has summarized some background mate-
rial and some key features of the AN/UYK-43 system.
Subsequent sections of the paper cover the following:
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Figure 2 Computer set block diagram.

® A high-level view of the system architecture, and defini-
tion of some terminology used later in the paper.

@ An overview of the casualty reaction process.

® A detailed discussion of the casualty reaction features of
the AN/UYK-43, and how they relate to the system
architecture and to the casualty reaction process.

® A summary and conclusions.

System architecture

A fundamental characteristic of a fault-tolerant system is
that it must contain some form of redundancy, whether at the
circuit level, the module level, the system level, or the
software level. In order for a system to continue to operate in
the presence of a fault, there must be redundant hardware
somewhere either to correct the fault or to continue to
operate correctly in place of the hardware affected by the
fault. In the AN/UYK-43, this redundancy is introduced
primarily (but not exclusively) at the level of the functional
module, and therefore is evident in the system architecture.

Figure 2 is a system diagram of the AN/UYK-43 com-
puter and reflects the hardware that is included within a “B”
enclosure. The blocks in this diagram are generically
referred to as functional modules (FMs), and the possible
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redundancies among the functional modules should be clear.
Much of the terminology is relatively standard. It includes
Central Processing Units (CPUs), Input/Output Controllers
(IOCs), memories, Memory Interface Adapters (MIAs),
and Bus Control Units (BCUs). An IOA is an Input/Output
Adapter, the D/CP is a Display/Control Panel, the P/TP is
a Power/Temperature Panel, and the ROCU is a Remote
Operator Control Unit. The REI and DMI will be explained
shortly. The top-level redundancy can be seen by inspection
of the figure. There are two control buses, each of which can
operate independently, and each of which serves as a backup
for the other. There are separate memory buses for each
processor (CPU and 10C), so that a bus failure will affect
only one processor. Not shown in the figure is the fact that
each IOC actually contains duplex processors. Provision for
dual power sources is included.

A special Computer Interconnection System (CIS) has
been designed to allow a number of enclosures to be
connected together into larger systems. The CIS provides
direct extensions of the memory bus and the control bus to
additional enclosures. A special feature of this design is that
the normal use of these bus extensions is transparent to the
operational programmer; if a programmer wishes to access a
main memory location in another enclosure, his program
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simply generates an address in the normal way. The
address-decode mechanism then interprets the high-order
bits of the address to decide whether the requested memory
location is within this enclosure or another enclosure. Simi-
larly, the principal function of the control bus is to commu-
nicate I/O requests from a CPU to an IOC controlling the
proper channel. In order to request an I/O function from a
channel attached to another enclosure, the CPU program
simply requests the start of an I/O channel with an I0C
number located in another enclosure.

The CIS is made up of a Requestor Extension Interface
(REI) and a Direct Memory Interface (DMI). The REI in
Enclosure 1 can be connected to DMIs in up to 16 other
enclosures, and is the mechanism by which requests are sent
from a processor within Enclosure 1 to any other enclosure.
The DMI in Enclosure 1 is the mechanism by which other
enclosures send requests to this enclosure. The DMI has four
ports, each of which can be connected to one REI in another
enclosure.

From a system point of view, the block diagram of Fig. 2 is
that of a classical tightly coupled multiprocessing system
where every processor is able to access all of main store.
However, the actual use of memory is decided by the
application software design, and can be constrained by
means of software control. Each processor (as well as the
CIS) contains an address translation table. This table con-
verts logical addresses to physical addresses, and therefore
the entries in the table control which processors have access
to which memory modules. This allows a system operation
which could include private storage for one or more of the
processors, as well as defining how much memory (if any)
would be shared by which processors.

An important feature of the system architecture is the
control bus. I/O operations are invoked by means of a
message sent from a CPU to the proper I0C via the control
bus. In addition, the control bus is used to transmit inter-
processor interrupts, diagnostic commands, and certain other
error-handling controls. There are two independent and
identical control buses, each controlled by its own BCU. In
order to use a control bus, a processor that wishes to send a
message sends a signal to the common control logic which
selects one of the two buses which is not busy (either one).
After priority resolution, if any, the requesting processor is
granted one of the control buses. When it is granted a control
bus, the requesting processor then proceeds to send one or
more control and data words to the proper destination,
receiving a reply if necessary. That bus is then free to be
allocated to some other processor. If a fault is detected in the
transmission of the desired message, the BCU is notified and
the requesting processor is automatically switched to the
other bus in order to retransmit the message.
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An I0C is a programmable processor in its own right, with
its own instruction set, register set, memory protection,
memory bus, and translation table. It is microprogrammed
and, in fact, contains two physical processors. An IOC can
have up to 32 devices (IOAs) connected to it, and its primary
function is to essentially multiplex the operations of those 32
channels. In addition, the IOC takes charge during initial
program loading and can also assume command during
error-recovery situations when there are no operating CPUs
left in the enclosure.

As shown in Fig. 2, a “B” enclosure can contain up to ten
memory modules, each consisting of a Memory Interface
Adapter (MIA) and one or more memory array pages. A
memory module may contain either semiconductor memory
or core memory. The memory word in the semiconductor
memory is expanded to include an error-correcting code
(single error correction, double error detection), which pro-
vides for automatic correction of transient faults in the
memory array. A core memory page may also contain a
monolithic front end, as is described later.

These are the principal characteristics of the system
architecture for the AN /UYK-43, particularly as they relate
to fault tolerance and casualty reaction. A more complete
description can be found in [12].

Casualty reaction

Casualty reaction is a term used in the AN/UYK-43
program to cover all the processes, techniques, and features
related to the handling of faults. The use of this term avoids
some of the parochial definitions associated with such terms
as fault tolerance or high availability. This section of the
paper provides a top-level view of the major processes
involved in casualty reaction.

A number of general requirements concerning functions to
be provided for casualty reaction on the AN/UYK-43
system were provided in the Statement of Work. However, it
required a significant system design effort to put in place a
set of hardware and software capabilities to accomplish these
general requirements. The principal objective of this paper is
to describe how that has been accomplished. First, however,
a few clarifying points are in order.

One of the most important requirements was the develop-
ment of a casualty reaction design philosophy. This was
accomplished very early in the program and represents an
overall strategy of how to respond to fault conditions and how
to accomplish on-line repair. This design philosophy was
carefully documented and was the principal mechanism used
to drive the hardware design and the software design to a
coordinated solution. Most computer systems are developed
without any particular motivation towards fault tolerance or
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Figure 3 Fault recovery phase.

casualty reaction. The result is that hardware capabilities
such as fault detectors are left to the whims of the designer,
and any software capabilities are added later as an after-
thought. An effective fault-tolerant system simply cannot be
designed this way. (A documented overview of the casualty
reaction process for the AN/UYK-43 is contained in [13].)

Some effort was given to the consideration of software
faults, i.e., residual bugs in the application programs. How-
ever, there does not appear to be at this time any effective,
readily usable approach to this problem. There has been
considerable research directed to this problem in the last few
years in the areas of design diversity [14], recovery blocks
[15], and formal proof of correctness of programs [16].
However, none of these approaches has reached the stage yet
where it could readily be used in an arbitrary system
application, and therefore does not provide applicable direc-
tion towards the design of a system like the AN/UYK-43.

Development of programming guidelines is an important
part of the AN/UYK-43 program. Most existing fault-
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tolerant systems are designed to support a very specific
application. This is an important advantage because the
application software package can be designed in conjunction
with the hardware system in order to provide a coherent
approach to the handling of fault conditions. However, the
requirement here is to develop the AN/UYK-43 system as a
hardware/software package that can then be applied to
various Navy shipboard applications. The objective of the
programming guidelines is to provide advice to future appli-
cation programmers on how they should design and organize
their programs so as to effectively take advantage of, and
work with, the facilities provided with the AN/UYK-43
computer.

The strategy for casualty reaction is divided into two
principal phases. The first is fault recovery, which consists of
the actions that take place when a fault is detected. The
second is fault repair, which is the process involved with the
on-line repair of a failed functional module. These two
phases are treated separately because the processes involved
are different, and because they may occur discontiguously in
time. Fault recovery is an immediate reaction which gets the
system operating again (perhaps in a degraded mode) while
fault repair is a process that happens whenever the mainte-
nance technician decides that it is appropriate.

® Fault recovery phase

The fault recovery phase begins the instant a fault is
detected. The initial actions (when the fault is detected by
hardware) are performed automatically by hardware. Then
control is passed to the Fault-Tolerant and System Recon-
figuration Module (FTRM) which performs another set of
actions. Finally, notification is sent to the application pro-
gram, which must then perform the final software recovery.
The fault recovery phase completes when the system has
resumed operation.

Figure 3 is a top-level flow chart of the steps that are
executed to accomplish the fault recovery phase. These steps
are discussed briefly here in order to give an overall picture of
how casualty reaction works. Details of many of the features
are described in a subsequent section.

1. Fault detection—This refers to a hardware-detected
fault. The fault may have occurred in the hardware or it
may be an error in the software, but in either case, a
fault detector went off. A large number of real-time
continuous hardware fault checkers are included in the
AN/UYK-43 design. An interface is also provided for
FTRM to respond to the software detection of faults.

2. Automatic recovery—The block in the flow chart uses
the term “Retry,” but this does not necessarily mean
that an instruction or function is retried. Instead, it
represents a set of facilities where in specific cases the
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hardware has sufficient capability to automatically cor-
rect the fault, either by correcting, by retrying, or by
disabling the failing function. However it is done, if the
correction is successful the application program con-
tinues operation almost as if no fault had occurred.

3. Casualty reaction control—At this point it has been
determined that a solid failure has occurred (or, more
correctly, that a fault has occurred which is being
treated as a solid failure). If the fault is catastrophic in
the sense that a specific functional module is no longer
able to perform its function, this fact is automatically
displayed to the maintenance operator. Then an inter-
rupt is sent to a processor in order to invoke the
fault-handling software (FTRM). For a noncatastrophic
fault, this interrupt goes to a predefined processor. For a
catastrophic fault, the processor to be interrupted is
defined by means of a register located in the BCU. The
contents of this register are under software control,
providing two advantages. One is that it allows the
FTRM design strategy to determine which processor
should be interrupted in the case of a particular type of
catastrophic fault. The other is that it allows FTRM to
change that decision after a fault has occurred. This is
useful because it simplifies the handling of multiple
faults, should they occur.

4. Functional module isolation—The hardware interrupt
generated from the previous step invokes FTRM opera-
tion in a recovery processor. Note that FTRM can be
executed on either CPU in the enclosure. FTRM does
some preliminary handling of the interrupt, but its
principal function is to identify the functional module
which has failed. In the great majority of cases this is
immediately obvious from the type of interrupt that
occurred and from the interrupt status code. In the cases
where it is not obvious, FTRM must execute an algo-
rithm in an attempt to identify the specific functional
module which has failed. These ambiguous cases are
principally associated with the memory bus and the
control bus.

5. Hardware reconfiguration—The reconfiguration of a
functional module is the process of clamping its inter-
faces with the rest of the system so that, no matter what
kind of erratic behavior it may exhibit, it cannot impact
the normal operation of the other functional modules.
The primary function of this step is to configure out the
functional module which was identified as the one that
failed. However, two other functions are also performed
here. The first is to establish that there is an adequate set
of hardware resources remaining operational to keep the
system running. An obvious example is that if the last
processor in the enclosure fails, there is no computa-
tional capability left in that enclosure and the only
apparent option is to declare the system failed. In
addition, a fault log is kept by the software, which
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records each fault that occurred and what reconfigura-
tion action (if any) was taken.

6. Software recovery and restart—With the failed func-
tional module now out of the system, the rest of the
hardware should be able to operate in a normal way.
However, it may be necessary to go back and “repair”
the application program so that it can continue opera-
tion. A message is sent from FTRM to the application
program describing exactly what went wrong and what
functional module has failed. The application program
must now take some kind of recovery action in order to
restart the system. This may involve gding back to a
recent checkpoint, or switching in a hot spare hardware
module, or perhaps loading into memory a substitute
program which will operate in a degraded mode.

It cannot be emphasized too strongly that the ultimate
success of this type of a recovery scheme depends upon the
application software being able to continue operation even
though one or more specific hardware modules have failed.
There are a number of techniques available which can be
used to aid in this process, but these must be designed into
the application program from the start. Other forms of
redundancy which would not impact the software operation,
such as triple modular redundancy [17, 18], might be imple-
mented in hardware. However, these are considerably more
expensive in terms of hardware.

While the details of the various steps may be different, this
fault-recovery process applies no matter which functional
module has failed. The process also applies for multiple
faults, as long as the second fault does not occur until the
recovery process is complete for the first fault. Since the
recovery process is expected to take only a few seconds at
most, the probability of that occurrence is quite small. (It is
important to distinguish here between the occurrence of a
second independent fault and the occurrence of a second
indication of the same fault.)

® Fault repair phase

When the fault recovery phase is complete, the maintenance
panel (D/CP in Fig. 2) contains a display showing which
functional module has failed. When the maintenance techni-
cian observes this and is prepared to institute a repair action,
a button on the panel is depressed to initiate the fault repair
phase. The fault repair process involves the identification of
the specific pluggable element (LRU) which has failed,
replacing it, checking that the module is now working
properly, and returning the module to full operation within
the system. Figure 4 is the high-level flow chart of this
process, which consists of the following steps:

7. LRU isolation—The application program has veto
power over the request by the maintenance technician to
begin on-line repair (since the application may be
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involved in some critical process and may not wish to
devote system resources to the repair action at this time).
If the application agrees to the repair process, the
principal function to be carried out is to run a set of
diagnostics against the failed functional module to deter-
mine the specific LRU which needs to be replaced. The
application program makes available a block of 32K
words of memory, and the proper set of diagnostic
programs is loaded into that memory from an external
device. This set of programs is then scheduled as a task
with the executive program so that it may run in a
background mode with the existing application program.
In this way, the application program can control the
amount of CPU time spent running the diagnostics.
When the diagnostic programs are complete, they have
identified the most likely set of LRUs which should be
replaced to repair the functional module.

. On-line repair—A special display is presented on the

D/CP of the LRUs to be replaced. (This is illustrated
subsequently.) The rest of this step is a manual process.
The repair technician must switch off the power to the
failed module (the power for each functional module can
be switched on and off separately), open the cabinet,
remove the faulty LRU and replace it with a spare, and
close the cabinet and turn the power to that module back

Table 2 Casualty reaction responsibilities.

Process step Responsibility Support
Fault recovery
1. Fault detection Hardware, —
FTRM,
application
2. Automatic recovery Hardware FTRM
3. Casualty reaction control ~ Hardware FTRM
4. Functional module isola- FTRM —
tion
S. Hardware reconfiguration FTRM Hardware
6. Software recovery and Application FTRM
restart
Fault repair
7. LRU isolation FTRM Application
8. On-line repair Maintenance FTRM,
technician hardware
9. Repair confirmation FTRM Application
10. Restoration Application FTRM

10.

on. A button is then depressed on the D/CP requesting
that the functional module be tested again to see if the
repair was effective.

. Repair confirmation—The next step is to retest the

functional module to see if it is now operating properly.
This is accomplished by running the same set of diagnos-
tic programs against that module. If no failures are
found, the D/CP display will show that the previously
failed functional module is now in standby mode, which
indicates to the technician that the repair has been
successful.

Restoration—Since the module has now been repaired,
it must be reconfigured back into the active hardware
system; that is, the interfaces which were effectively
disconnected during the recovery phase can now be
reconnected. This means that the functional module is
now fully capable of operating with the rest of the
modules in the system. A message is then sent to the
executive (or application) program indicating that the
identified functional module is now ready for use. It is up
to the application program to decide when and how to
begin using this hardware resource again.

Note that this entire fault repair phase is executed on line;
that is, the diagnostics are run and the repairs made by the
maintenance technician while the rest of the system con-
tinues to operate and perform its application function.

® Casualty reaction responsibilities
The ten steps just described represent the overall strategy for

casualty reaction on the AN/UYK-43. As was indicated
earlier, it represents a coordinated and integrated design of
hardware, fault-tolerant software, and application software.
In order to clarify this responsibility, Table 2 lists each of the
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ten steps, shows where the primary responsibility lies for
executing each step, and also shows those cases where
support is required from other areas.

The distinction between the fault-handling software
(FTRM) and the application software is especially impor-
tant. FTRM cannot and does not attempt to provide a
complete fault-recovery function for an arbitrary applica-
tion. That application software must be designed to be able to
handle those cases where individual hardware modules have
failed. The primary objective of having the fault-tolerant
design philosophy just described is to make sure that the
people responsible for each of the areas of the system know
specifically what their responsibilities are and where their
interfaces are with the rest of the system.

Fault-tolerant features

The previous two sections have given a general understand-
ing of the hardware configuration and how casualty reaction
works on the AN/UYK-43. This provides a context within
which to discuss specific fault-tolerant capabilities that are
provided in hardware and/or software to implement the
system. The following discussion is divided into subsections,
each of which covers a particular capability. In each case, the
more important or more interesting features are described in
some detail.

® Fault detection

The casualty reaction process does not start until a fault is
detected, which can be accomplished by either hardware or
software. In general, hardware fault detection is preferable
to software fault detection because it occurs continuously
and in real time. Here, “continuous” means that every
instance of a function is checked, and “real time” means that
the fault is detected within a very few machine cycles of
when it actually occurs. Software fault detectors normally
only apply when they are explicitly invoked by the macro
program, and will usually not detect a fault until many
(hundreds of) instruction execution times after the fault
actually occurs. Continuous real-time detection is much
more effective because there is a lower probability that the
fault will be propagated to some other part of the system,
because it is much easier to know precisely where the fault
occurred, and because the detector will also find transient
faults. But whatever fault-detection techniques are used,
successfully achieving the potential high reliability of a
fault-tolerant system is dependent upon detecting a very high
percentage of the faults that occur.

A large number of hardware fault detectors have been
included in the AN/UYK-43 design. Table 3 summarizes
the number of individual fault detectors designed into each
type of functional module, classified by the general types of
detectors involved. In general, when a fault is detected it
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Table 3 Number of hardware fault detectors, by type.

Type CPU Memory IOC BCU/ CIS Panels
PSL

Parity check 31 5 11 2 17 3
Timeout 8 3 7 12 6 8
Decode check 6 1 5 3 1
Limit check 4 3 1

Interface check 2 3 2 6
Others 10 1 8 3 9

Note: See Fig. 2 for definitions of functional modules.

causes an interrupt into one of the CPUs. This results in a
context switch to an interrupt-handling program, the mask-
ing of other interrupts of the same type, and the storing of an
interrupt status code containing information defining the
specific type of fault that occurred. Certain faults (primarily
in the CPU) are considered catastrophic whenever the
module is no longer able to execute any reasonable function.
In such a case, the failed CPU is halted and an interrupt is
sent to the other CPU. Faults detected in some other
functional module will result in an interrupt into one of the
CPUs so that the FTRM program can be invoked and
casualty reaction can proceed.

Software fault detection occurs when some macro-level
program designed to look for erroneous conditions finds one.
Three kinds of software fault detection are supported in the
AN/UYK-43.

® Part of the FTRM software package is a set of macro-level
self-test programs. At system initialization time, FTRM
requests the executive to schedule these programs as a
background task and to execute them periodically. These
programs are specifically designed to detect faults in areas
of the hardware not covered by the hardware fault detec-
tors. Whenever any of these self-test programs detect a
fault, they send a message to FTRM indicating the fault
condition.

e Two special instructions are provided in the AN/UYK-43
architecture: CPU confidence test and IOC confidence
test. The execution of these instructions invoke micropro-
grammed procedures which perform a basic check on the
processor function and its ability to execute instructions.
Detection of a fault results in an interrupt to the CPU.

® Application programmers are encouraged to include fault
detection in the design of their software modules. These
might include techniques such as checking parameters to
be within limits, using check sums on blocks of data, or
using timeouts. FTRM provides an interface whereby, if
such a fault is detected, a message can be sent to FTRM,
whereupon it makes a check of its own on the affected
functional modules.
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Table 4 Automatic recovery techniques.

Recovery technique Generic method System Impact on system
notification
1. Cache disable Correct and avoid Interrupt Loss of CPU performance
2. Disable monolithic front end Count Loss of memory bandwidth
3. Disable IOC engine Interrupt Loss of I/O bandwidth
4. Retry main memory Correct transient faults Count Temporary delay
5. Retry IOA read Status Probably none
6. Alternate control bus Repeatedly correct Interrupt Loss of bus bandwidth
7. ECC on semiconductor memory Count None
8. Disable memory priority Avoid Status Loss of priority

® Automatic recovery
Automatic recovery, as discussed here, is characterized by
three principal features:

® The detected fault is fixed immediately, that is, within just
a few machine cycles.

® There is no lost or damaged information. The fault is
corrected in real time, and the damage is not propagated
into the system in any way.

® The fault condition is transparent to the software; that is,
applications programs do not even know that the fault has
occurred.

Within the limits of this definition, there are a number of
automatic recovery techniques which have been included in
the design of the AN /UYK-43. The principal ones are listed
and classified in Table 4. Brief descriptions of each are given
in the following:

1. Each CPU contains a cache memory in order to improve
the average memory access time. A fault in the cache
memory or its associated circuitry causes the cache to be
disabled; thereafter, memory accesses go directly to main
memory without using the cache.

2. A special memory has been developed for the AN/
UYK-43 computer which is called a mono-fronted core
memory. This memory module contains 64K words of
core memory plus 64K words of monolithic memory, and
there is a one-to-one mapping between the contents of the
two memories. Each store into the memory module first
stores into the monolithic memory and then stores the
same data into the corresponding word in the core mem-
ory. Reads from the memory simply come from the
monolithic memory. Such a memory module provides the
access time of a monolithic memory while also providing
the retention of data in the core memory array during
power outages. The automatic recovery technique occurs
when a fault is detected in the monolithic front end,
whereupon the monolithic memory is disabled and all
future accesses simply come from the core memory.

3. The IOC actually contains two identical processors.
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Whenever one of these fails, it is disabled and the other
engine takes over the full load for the IOC. (However, one
processor can only support one-half of the full I/O data
rate.)

. In both the CPU and the IOC, whenever a fault is

detected on the memory bus (as distinguished from a solid
fault detected in the memory module itself), the processor
will retry the access one time in order to correct for a
possible transient error on the memory bus. If the access
on the retry also detects the fault, it is treated as a solid
fault.

. When an IOC is reading data from a device through an

IOA, if a fault is detected, the IOC will try to reread the
data. Note that the IOC cannot retry I/O data which are
being written to the device because the detection of that
fault must occur out in the device itself.

. The duplex control bus has been described previously.

Whenever a processor tries to use the control bus and
detects a fault in the bus it is using, it will automatically
switch to the alternate bus and attempt to get the message
through there.

. Extra bits are included in the semiconductor memory

modules to provide correction of single-bit faults. Note
that if a solid single-bit fault occurs either in a single word
or in all words in the module, that fault will be corrected
on every memory access.

. The memory interface adapter for each memory module

contains a special chip which implements the desired
priority control for that memory module. The logic also
includes a special high-speed bypass invoked whenever
there is only a single request outstanding against that
memory module. (If there is only one requestor at a time,
there is no need to resolve priorities). This high-speed
bypass circuit is then also used to provide automatic
recovery. If a fault is detected in the memory priority
circuit, the circuit is switched out of operation and the
high-speed bypass is applied to every access. In this case,
the normal priority algorithm is replaced by a simple
first-in, first-out resolution of memory contention acces-
ses.
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Three other types of information are included in Table 4
(second through fourth columns). One is the generic method
for handling the fault. In the first three cases, the fault which
was detected is corrected and further occurrences are
avoided because the faulty hardware is no longer being used.
The next two cases are simply the correction of a transient
fault. The next two cases will correct for transient faults but
will also repeatedly correct the presence of a solid fault. The
final case does not do any correction; it simply avoids the
fault conditions by disabling the faulty hardware.

As previously discussed, one of the characteristics of this
type of automatic recovery is that the application software
does not know that a fault has occurred. However, it is still
important that the fault not be ignored completely; that is,
there should be a record of the fact that the fault has
occurred. As indicated in Table 4, system notification can be
accomplished in three different ways. In some cases an
interrupt is generated anyway, even though the fault has
been corrected. Such an interrupt is handled directly by
FTRM in order to update the status of the functional module
which is experiencing the fault. In some cases, the hardware
provides a counter which is incremented every time the
particular fault occurs. If the count should ever overflow,
that will cause an interrupt. The third technique is to simply
record, in an internal status word, the fact that a particular
fault has occurred. FTRM periodically samples these coun-
ters and status words, and thus becomes aware when these
faults have occurred.

While there is no direct impact on the application soft-
ware, the existence of a fault condition will in general have
some kind of an impact on the operation of the hardware.
The fourth column of Table 4 indicates, for each recovery
technique, what the nature of the impact is expected to be.

® Hardware reconfiguration

Hardware reconfiguration is the process of logically discon-
necting a functional module from the rest of the system. (The
term also applies when a repaired functional module is
reconnected to the system.) The form of the disconnection
should not be absolute disconnection; rather, the level of
disconnection is determined by the following objectives:

® The most important requirement is to ensure that, if a
module has failed, no matter what it might do it should not
impact any of the rest of the active system. This implies
that all normal outgoing operational interfaces must be
disabled.

o If a functional module in the operational part of the system
should attempt to make a normal operational access to the
failed module, this should be detected and indicated to the
operational system.
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® A processor in the operational system should be able to get
into the failed module in order to execute diagnostics on
that module. This allows a recovery processor to perform
fault isolation on the failed module and then to verify
complete operational capability of the repaired module
before configuring the module back into the system.

® The reconfiguration mechanisms should be under software
control.

o The actual hardware controls should be located external
to the failed module, i.e., should be part of a good
module.

¢ Once the failed module has been configured out, it should
not be able, by itself, to change the reconfiguration
controls.

The basic strategy for casualty reaction is reflected in this
set of objectives. Rather than expecting a failed module to
diagnose itself, the strategy is for a good processor to cause
the diagnostics to be run on the failed unit. This requirement
legislates against a reconfiguration mechanism which com-
pletely disconnects the failed module from the system.

Reconfiguration control has to occur at the interfaces
between an individual functional module and the rest of the
system. As can be seen in Fig. 2, those primary interfaces are
at the memory bus and the control bus. Separate configura-
tion control mechanisms are provided for each of these.

There are two separate control mechanisms provided at
the memory interface. The first can be used to prevent a
failed processor from accessing a good memory, while the
second is used to prevent a good processor from accessing a
failed memory. The first mechanism involves the priority
circuits in each memory module. Each Memory Interface
Adapter (MIA) contains a relatively sophisticated program-
mable priority mechanism. Basically, the priority circuit
contains a table with ten slots in it, where each processor can
be allocated by software to one (or more) of the ten slots. The
important point is that the memory module does not even
recognize a request from a processor unless that processor’s
identifier has been inserted into the priority table some-
where. Therefore, for example, if CPU 0 is failing, FTRM
can remove the identifier of that CPU from the priority table
in each memory module; this prevents the failed processor
from reading or writing into any memory module. (Note that
this mechanism can be used selectively to allow the failed
processor to access one memory module for diagnostic pur-
poses, if that should be desired.) The second mechanism for
controlling the memory interface is the address translation
table. Each CPU and each IOC (as well as the CIS) contains
its own address translation table, which maps logical mem-
ory addresses onto physical memory modules. If Memory
Module 2 has failed, FTRM can ensure that no processor will
try to access that module by modifying all the address
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Table § Fault-Tolerant and System Reconfiguration Module
(FTRM) characteristics.

Software module

Runs under existing executive program
Handles hardware fault interrupts

Isolates faulty hardware module

Makes system failure decision*
Reconfigures hardware, as required*
Maintains status of hardware configuration
Notifies application program of changes in hardware status
Maintains error log

Controls on-line repair*

Schedules periodic self-test programs*
Controls multiple-enclosure fault recovery

*With guid from the application program.

Table 6 Principal FTRM components.

Program modules:
FTRM initialization
Interrupt bandler
FM isolation
Application services
On-line repair

Data structures:
System resource table
Casualty error data table
Casualty reaction log

translation tables so that no logical address will map into the
physical addresses associated with that module. (Close coor-
dination between FTRM and the application program is
required to do this in an intelligent way.)

Use of the control bus is regulated by the Bus Control Unit
(BCU). Any functional module which wants to send a
message over the control bus must first send a request line to
the BCU, which then legislates which functional module will
be allocated the bus for a period of time. The BCU contains a
mask register with one bit associated with each functional
module. If this mask bit is on, the associated module is not
allowed to use the control bus. This mask register can be
loaded by FTRM, which allows it to control which modules
can use the bus and which ones cannot. Therefore, if CPU 0
has failed, FTRM (running in CPU 1) can set the mask
register in the BCU to prevent CPU 0 from accessing the
control bus. Note that CPU 0 can still receive messages over
the control bus from some other processor; it is just not
allowed to send its own messages over the control bus.
Consequently, a failed processor cannot pollute the system
by usurping the control bus; but, at the same time, a good
processor can execute diagnostics by sending them over the
control bus to the failed processor.

In addition to controlling the interfaces, certain opera-
tional controls are also available. Diagnostic commands can
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be sent over the control bus to a processor to control its
actions, such as Stop, Start, Single Step, and Single Micro
Step.

The configuration controls that have just been described
apply primarily within a single enclosure. When several
enclosures are connected together to form a complex system,
there are features available within the CIS to control those
interfaces also. These include the ability to enable or disable
the CIS interface; an interface priority circuit (identical to
the one in the memory module) which can be used to limit
accesses; and an address translation table and a set of
protection registers, both of which can be used to control
memory accesses from outside the enclosure.

® FTRM program

Previous sections have described hardware features provided
with the AN/UYK-43 for the handling of faults.
The Fault-Tolerant and System Reconfiguration Module
(FTRM) is the program which is responsible for overall
control of casualty reaction in the system. It uses all of the
hardware information available, implements the overall
casualty reaction strategy, and interfaces with the executive
and application programs. Table 5 is a list of the characteris-
tics of FTRM and the functions which it must provide. Table
6 is a list of the principal components of FTRM, both
program modules and data structures. Each of these is
described briefly.

FTRM initialization

Part of the load package which is read into memory at
initialization time is FTRM, and it is the first program to be
executed. It has two main functions. One is to initialize the
hardware configuration. There are a number of tables and
registers which control the operation of the hardware config-
uration, including the address translation tables, the priority
registers of the memory modules, and the various registers
that control communications among the hardware modules.
While the hardware provides default values in these areas,
FTRM must replace them with values that fit with the
operational system. The other principal function is to create
and initialize a system resource table so that it reflects the
current operational configuration of hardware.

Interrupt handler

Under normal circumstances, while the machine is execut-
ing, FTRM never executes at all. It is invoked only when a
fault occurs, which is normally indicated by an interrupt.
The AN/UYK-43 has three classes of interrupts, one for
hardware faults, one for program faults, and a third for I/O.
Hardware faults are sent directly to FTRM and its interrupt
handler. (The other two classes of interrupts go to the
executive, which may decide that the interrupt really repre-
sents a fault, in which case it is passed on to FTRM.) On
receiving the interrupt, FTRM creates an entry in the
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casualty error data table. The interrupt status information
and the relevant software context information are saved in
this table. The interrupt handler normally operates with
interrupts masked off. Its work is kept to a minimum in order
to reduce the period of time during which interrupts cannot
be accepted. When it is completed, the interrupts are
unmasked and control is passed to the FM isolation module.

One of the complicating problems here is that certain fault
conditions (such as memory faults) can be detected more
than once, by separate processors. FTRM must accept these
multiple fault indications and sort them out appropriately.

Functional Module (FM) isolation

This module first performs a careful analysis of the interrupt
status information in order to verify that a hardware fault
has occurred. The program must then determine which
functional module has experienced the fault. This is done by
analyzing the interrupt status information. In most cases this
is a straightforward process, and it can readily be determined
which FM is at fault. However, there are some cases where
this is not true. For example, if the interrupt indicates that a
fault was detected on the control bus, the location of the
actual failed component could be in one of four places: it
could be the sender’s interface to the control bus, it could be
the receiver’s interface to the control bus, it could be in the
BCU controller, or it could be in the control bus itself. In
such a case, FTRM must exercise a special algorithm to
determine where the fault really occurred. Once the failed
FM has been identified, the system resource table is updated
to reflect this, and a message is sent to the application
notifying it of the change in hardware status.

Application services

FTRM provides a number of special services related to fault
handling for the application programs. These are provided by
means of a standard message interface, where the applica-
tion program sends a message to FTRM indicating the
service it requires. Typical services include the following:

1. FTRM provides a facility to save vital data. It keeps its
own critical data in two copies stored in two different
memory modules. This service allows the application to
send its vital data to FTRM, where it is saved in the two
different stores. The data are not directly addressable by
the application but must be accessed via FTRM.

2. FTRM schedules the execution of a set of periodic
hardware self-test programs. The application may add
additional software tests to that set or may delete from
it.

3. If the application decides to change the configuration by
adding or deleting one or more functional modules, it
sends a request to FTRM, which then performs the
necessary reconfiguration of the interfaces.

4. FTRM maintains a number of data structures containing
information describing the system and the events that
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have occurred. (Some of these are discussed subsequent-
ly.) The application can request access to these data from
FTRM.

On-line repair

On-line repair is invoked when the maintenance technician
presses a button on the D/CP, indicating that he is ready to
begin the repair phase. FTRM responds to this request and
proceeds to schedule the execution of the appropriate diag-
nostic programs as a background task with the executive. In
this way, the rest of the system continues operating while the
diagnostics are being carried out. Upon completion of the
diagnostics, the most probable list of LRUs to be replaced is
known. FTRM then controls the dialog with the D/CP to
assist the maintenance technician in making the repair.
When the repair is successfully completed, it sends a message
back to the application program, indicating that the repaired
functional module is now available for use.

System resource table

This table contains one entry for each functional module in
the system. It is created at system initialization time and is
maintained by FTRM as long as the system is in operation,
indicating when modules have been removed (due to failure
or any other reason) and when they are returned. At any
time, the current status of each FM can be found in this table
(whether it is operational, halted, powered off, operating in a
degraded mode, etc.). The application can access any of this
information by means of the application services.

Casualty error data table

This table is essentially a buffer area for the processing of
current interrupts; it contains one entry for each error type
for each CPU. This is required because a high-priority
interrupt may interrupt the handling of another interrupt
before that interrupt is complete. Since there are two CPUs
sharing the same copy of FTRM, there must be entries
separately for each CPU. When all the data are collected for
a specific interrupt, that information is recorded in the
casualty reaction log.

Casualty reaction log

This table contains one entry for each fault indication that
occurs in the system. The entry is created for a particular
interrupt with the set of status information that was put
together in the casualty error data table. The log entry is then
expanded to include indications of what happened as a result
of the fault (what reconfiguration occurred, the LRU callout
that was made, and if repair was successful). This log is
maintained in a fixed area of main store; when this area
becomes full, the oldest entries are dropped off as new ones
are added. If the application program desires to retain this
information, it should periodically collect the information
from FTRM and record it on a tape or some external
device.
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Table 7 Application Recovery Module (ARM) responsibilities.

React to fault notifications from FTRM
Decide what software was damaged

Decide and perform software recovery:
Reload and restart
Switch to degraded mode
Switch in spare hardware modules
Return to last checkpoint
Keep track of recoverable/nonrecoverable 1/O

Coordinate multiple-enclosure recovery

Handle restoring of repaired hardware modules

® Executive program interface

A number of the FTRM functions (such as interrupt han-
dling and the control of hardware resources) are very closely
related to the traditional functions associated with executive
programs. One of the complexities of the AN/UYK-43
program is that FTRM must be designed to operate with a
number of different and unknown executive programs. Con-
sequently, it has been necessary to draw the line between
functions to be performed by FTRM and functions to be
performed by the executive. The general approach has been
to exclude from FTRM whenever possible those functions
that are normally handled by an executive and that do not
directly relate to fault handling. Clear well-defined inter-
faces are provided between FTRM and the executive. These
interfaces have been identified and the principal ones are
described here.

® As previously noted, FTRM is the first program to be
invoked during system initialization. When this is com-
pleted, FTRM sends a message to the executive and
expects it to do its own initialization and whatever initiali-
zation is required for the application program.

® The executive is expected to handle two of the three classes
of interrupts, namely, the program fault conditions and the
I/0O conditions. If the executive decides that any of these
cases represent potential hardware fault conditions, it is
expected to pass these back to FTRM for error process-
ing.

® Some of the functions of FTRM are to be performed as
tasks in a multi-programming mode with other application
programs. The two prime examples of this are the diagnos-
tic programs and the periodic software self-test programs.
When FTRM decides that these need to be executed, a
request is sent to the executive to have these tasks sched-
uled in a normal way.

® The normal mechanism for passing status information or
requests between FTRM and application tasks is by means
of some form of message protocol. Most executives provide
some general form of task-to-task communication which
can be used for this purpose.
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e FTRM will notify the executive whenever there is a
change in hardware status. For example, if a fault inter-
rupt has occurred and FTRM determines that Memory
Module 7 has failed, FTRM will send a message to the
executive indicating this. The executive is then free to take
whatever action it wishes based on this information.

® Application program responsibilities

The ultimate effectiveness of fault recovery depends upon the
application program being designed to respond to, and work
around, failed hardware modules. After FTRM has done
everything that it can to handle a fault, it finally sends a
message to the application saying, in effect, “CPU-0 has
failed. What do you want to do about it?”

The FTRM design assumes the existence of a generic
application program known as the Application Recovery
Module (ARM). This is the module which is responsible for
the software recovery of the application and its interface with
FTRM. This ARM might be a single module that controls
recovery for the whole system; there might be a set of ARMs,
each associated with a particular part of the system, or the
ARM might be simply the executive. However it is imple-
mented, this ARM is expected to perform certain functions,
as outlined in Table 7. The ARM will receive a message from
FTRM indicating which hardware module has failed, and
based on its knowledge of the organization and structure of
the total application, it must determine where and how the
software has been damaged and what kind of recovery to
implement. Some possible options are listed in the table. The
question of how these various techniques should work is
beyond the scope of this paper. (Unfortunately, there is little
in the technical literature that discusses these various tech-
niques.) The important point to recognize is that none of
these techniques will work unless the application system is
designed ahead of time to make them work.

In addition to providing one or more ARM programs,
FTRM expects guidance from the application in the form of
two tables. The first is called the Software State Mapping
Table. It contains one entry for each hardware functional
module, and its primary function is to provide a program
module identifier, that is, the identifier of the proper ARM
which should be notified when that functional module fails.
Then if CPU-O fails, for example, FTRM looks in the table to
determine which ARM to send the message to, indicating
that the failure has occurred.

The other table is called the Application Options Table.
This table is used for the application program to provide
guidance to FTRM on how to handle certain situations. It
includes the following kinds of information:

o Certain of the FTRM application services are considered
to be of a privileged nature. The Application Options
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Table identifies which ARMs are allowed to request these
privileged services. For example, one of the FTRM ser-
vices allows the application program to request that an
individual functional module be configured out of the
system. The application program might wish to delete
Memory Module 7 from the system (for some reason) and
to request FTRM to do that. However, that is a very
powerful capability, and it is probably not a good idea to
let any arbitrary application program come in and make
that kind of request. Hence, only privileged ARMs are
allowed to make that specific request.

® In certain kinds of catastrophic fault conditions, the hard-
ware or FTRM will automatically configure out a failed
hardware module. However, the application program may
be executing some very critical tasks and may feel that it is
better to continue operation attempting to use that failed
module. The Application Options Table provides a way for
the application to instruct FTRM to do this.

® In order to execute the on-line diagnostic programs,
FTRM must request the use of certain other system
resources. The Application Options Table provides the
identifier of the program module which is in charge of
those resources.

These tables are expected to be designed into the overall
application software package and included in the application
load block. At initialization time, they would be sent to
FTRM for its use during system operation. If the application
elects not to provide these two tables, FTRM will use some
simple default cases to handle each situation.

The application programmer is also encouraged to include
software fault detectors where this is feasible.

® Single-button maintenance

Considerable emphasis has been placed in the AN/UYK-43
program on simplifying the maintenance procedures. This is
important to the Navy for three reasons. First, maintenance
is expected to be performed by technicians with very limited
technical skills. Such technicians are simply not qualified to
single-step through programs at a console or to use a scope to
probe signal levels on logic pages. Second, many of these
computers will be installed on ships and will be at sea for
extended periods of time. Educated engineering personnel
will not be available to perform maintenance on the
machines. Third, with an MTTF of over 1000 hours, on the
average a fault will occur only once every six weeks or so. In
that situation, it is difficult for any technician to retain
experience and expertise on how to make repairs effectively.
As a result, considerable effort is being spent to provide
complete diagnostic programs to perform the LRU isolation
process and to provide a simple maintenance protocol at the
D/CP. This protocol has been called single-button mainte-
nance.
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Figure 5 D/CP display.

This procedure follows the overall flow chart of Fig. 4, and
is carried out as follows:

® The display on the D/CP indicates which functional
module has failed (or more than one, if that is the case).
The D/CP contains a display element with 11 lines and 64
characters per line, as illustrated in Fig. 5. The top four
lines are continuously updated to show the operating state
of each of the hardware functional modules in the enclo-
sure. In the figure, it is indicated that Memory Module 0
has failed. Line 11 is the direction to the technician as to
how to institute the repair action.

® The technician depresses the EXECUTE TEST button to
indicate to FTRM that he is ready to institute a repair
action. FTRM checks with the application for approval to
do the repair operation at this time. If this is acceptable,
FTRM proceeds to load the memory diagnostics into main
store and to cause them to be executed. The diagnostic
program runs multiprogrammed with the application, and
when it is complete, has the proper LRU callout.

o FTRM displays the LRU callout on lines 8 and 9 of the
display. Three LRUs are displayed, with the most proba-
ble one being displayed first. This display is illustrated in
the figure.

e The technician must now make the physical repair. He
powers down the failed memory module, opens the cabinet,
and replaces one or more of the LRUs indicated on the
display. He then closes the cabinet and turns the power to
the failed module back on.

® As indicated on line 11 of the display, he pushes the
EXECUTE TEST button again to cause the diagnostics to
be rerun, in order to see if the repair has been effective.

® FTRM re-executes the memory diagnostics. If the diag-
nostics still detect a fault, the display will continue to show
an LRU callout list (either the same one, or perhaps a
different list). If the diagnostics no longer detect a fault,
the display is changed. The technician now has the option
either to rerun the diagnostic test or to push the BYPASS
TEST button to notify FTRM to put the now-repaired
memory module back into the system.
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Table 8 Sample diagnostic commands.

CPU Macro Stop

Read CPU Scan Register

Load CPU Control Store

Start CPU Execution at Address K
CPU Continue

Read MIA Status Register

Read CIS Nested Status Register
Wrap Data

Wrap Bad Parity

Read DMI Priority Status

Start at Micro-Address K

Stop at IOC ENDOP

Read 1I0C Status

Microstep Sequence A

Microstep Sequence B

Read 10C Local Store (Address K)
Write IOC Local Store (Address K)
Reset Alternate BCU

Reset Error Status History

Change Bus Priority

® When he pushes BYPASS TEST, FTRM updates the
System Resource Table to indicate that Memory Module 0
is now in standby mode (and changes the display accord-
ingly). A message is sent to the proper ARM, which can
then put the module back into active status.

This repair procedure can be aborted at any point by
depressing the BYPASS TEST button. The technician might
want to do this if, for example, he does not have the right
spare parts in stock, or if the replacement of the called LRUs
does not repair the problem.

As indicated previously, this maintenance procedure
requires no knowledge of programs or registers or words in
memory, etc. Still, it is expected to be effective in repairing
the system about 99% of the time. For the remainder of the
cases where the LRU callout turns out to be incorrect, or
where the fault is in an area of the system not subject to
diagnostics, a more complicated procedure is available and is
supported by software in the machine. This includes tradi-
tional console functions, such as manual loading of registers,
display of memory locations and register contents, single-
stepping of the program, etc.

® Remote diagnostics

The basic diagnostic philosophy with the AN/UYK-43 is
that it is better not to let a failing hardware module attempt
to diagnose itself; rather, the failed module is put into a
stopped state, and a good processor will come in over the
control bus and execute the necessary diagnostic sequences
to determine what is wrong with the failed module. This is
referred to as “remote diagnostics” [19].

The package of diagnostics for a functional module is
made up of a series of individual tests, where each test is a
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sequence of individual diagnostic commands to be sent over
the control bus. Thus, for example, a specific test might
include a sequence of commands which would load several
CPU registers, load the macro-instruction counter, load the
micro-instruction counter, single-step the microprogram 13
times, read out the contents of two internal registers, and
compare the actual results with the predicted results. Such a
test is executed by sending each of these commands sequen-
tially over the control bus to the failed CPU. A list of some of
the diagnostic commands that can be used in creating these
test sequences is given in Table 8.

This use of the packages of diagnostic programs for the
repair phase of casualty reaction is known as On-Line
System Diagnostics (OLSD). The same set of diagnostic
packages is also available for use in an off-line mode when
the system is not operational. This is known as Stand-Alone
System Diagnostics (SASD). For this situation, the identical
set of diagnostic packages is used, but a diagnostic supervisor
is added. The function of the diagnostic supervisor is to
sequentially run diagnostics against every functional module
in the system to determine which ones are working and which
ones are not. Whenever a fault is identified in one of the
functional modules, the same type of single-button mainte-
nance scenario is provided at the D/CP.

SASD is invoked automatically under two circumstances.
First, SASD is an integral part of the initialization process.
When power is turned on, one of the first things that happens
is that SASD is loaded, and it proceeds to check out the
whole set of available hardware. (One of the byproducts of
this first execution of SASD is the initial state of the system
resource table, which is then passed to FTRM.) The second
case where SASD is used is when the enclosure crashes.
On-line repair is no longer possible, and the SASD initializa-
tion test is invoked.

The bulk of the code (the diagnostic tests themselves) is
identical between OLSD and SASD. The only difference is
how the tests are invoked and how they are sequenced. The
diagnostics under OLSD are always executed on the CPU,
whereas the diagnostics under SASD must sometimes be
executed by an IOC. Since the IOC and the CPU are not
architecturally compatible, the diagnostic programs have
been written in a special diagnostic language which maps
directly into control commands on the control bus. A sepa-
rate interpreter is then provided, one for the CPU and one for
the 10C, to cause the execution of the diagnostic commands
over the control bus.

Conclusion

This paper has described how casualty reaction is being
accomplished on the AN/UYK-43 computer. The overall
philosophy of handling faults is not particularly novel, as
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similar things have been done on multiple-computer systems
in the past. However, many of the details of the hardware
and software implementation are new and interesting, and
are expected to be quite effective.

® Summary and evaluation

Many concepts have been discussed in this paper, some at a
detailed level and some at a more conceptual level. It would
be inappropriate to try to summarize all of them. However,
the following key concepts deserve comment and emphasis.

e Achieving a high system MTBF depends upon successfully
recovering from faults, which in turn depends upon detect-
ing the faults in the first place. Significant design effort
and hardware circuit cost have been expended in the
AN/UYK-43 to provide hardware fault detection. Ideally,
one would like to be able to detect 100% of the faults
continuously in real time by hardware. However, in each
case, the decision of whether or not to include a particular
hardware fault detector is a tradeoff of a number of
factors, including the cost of the hardware checker as
compared with the cost of the circuit being checked, the
unreliability added to the system as a result of the addition
of the checking circuit, and the possible performance
degradation that might result from including the checker
circuit.

e The single-button maintenance concept is very important,
especially in the Navy context. However, its effectiveness
depends directly upon the diagnostic programs being able
to indicate the proper LRU callout.

® The overall casualty reaction strategy is a fairly general
process. It should be applicable to a large class of multiple-
CPU configurations. However, the design for a particular
computing system must strike a balance between what is
“right” for fault tolerance and what (sometimes skeptical)
users are willing to put up with. Some users still object to
providing programs with absolute control over what is
done with faulty hardware. Detailed design is also a
tradeoff between general solutions and detailed solutions.
“Generality breeds inefficiency,” and also leads to more
complexity. Successful fault tolerance requires immediate
response to fault conditions, and users often object to the
allocation of significant amounts of system resources to
handle these fault problems.

o This casualty reaction system is designed to recover from
any single fault in a “B” enclosure (with two CPUs and
two 10Cs). However, it should also recover from many
fault conditions in an A enclosure (with only one CPU and
one I0C). Fault detection, software recovery, and single-
button maintenance should apply in either case.

® The use of remote diagnostics (as previously described)
appears to be a matter of philosophy. Many commercial
computing systems (which are not necessarily emphasiz-
ing fault tolerance) allow a failed CPU to diagnose itself.
In the AN/UYK-43 approach described here, it is felt that
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self-diagnosis could result in many more opportunities for
polluting the system. Consequently, diagnostic control is
given to a processor which is known to be operating
properly.

® Again, the application program must be responsible for the
ultimate software recovery, and generally this cannot be
patched onto the application programs after the fact; it
must be designed in from the beginning. This will be a
nontrivial problem in trying to transport AN/UYK-7
programs to the AN/UYK-43 while at the same time
trying to take advantage of the AN/UYK-43 casualty
reaction capability.

® Program status

The Navy has awarded two parallel engineering development
contracts for the AN/UYK-43 computer, one to IBM and
one to another computer manufacturer. The instruction set
architecture of the AN/UYK-43 computer was specified in
detail in the Statement of Work, and therefore AN/UYK-43
programs should execute on machines from either manufac-
turer. However, the approach to fault tolerance and casualty
reaction was only specified in general terms. Consequently,
the approaches of the two companies are probably quite
different. This paper has described IBM’s approach to
casualty reaction.

The engineering models of the AN/UYK-43 computer are
scheduled to be delivered in March of 1983. Acceptance
testing of the hardware includes the demonstration of the
casualty reaction capabilities as described here. The Navy
will then select one contractor for production. The AN/
UYK-43 is expected to be operational in the fleet by 1986,
and will provide a standard shipboard computer for the Navy
for at least 20 years.
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