206

System /370 Extended Architecture:

The Channel Subsystem

The 370-X A channel subsystem architecture represents a significant extension of the corresponding System/370 architecture.
This paper examines the need for these extensions, discusses the important features and facilities of the new architecture, and
provides comparisons with its predecessor, the System/370 channel architecture. It also describes, from an operational
viewpoint, how these new concepts affect I/O processing and how they relate to the current trend toward using multiple CPUs5,
increasing CPU execution speed, and increasing the number of 1/0 attachments.

Introduction

The channel subsystem portion of the System /370 Extended
Architecture (370-XA) [1] introduces the most extensive
changes in the input/output (I/O) architecture of IBM’s
large-scale computers since the introduction of System/360
in 1964 [2]. This new I/O architecture provides more
capabilities than are provided in System/370 [3] in order to
meet the needs of current and future I/O devices and
processors. Compatibility with the System/370 I/O archi-
tecture has been maintained in two principal areas: (1)
channel-command words (CCWs) and channel programs
and (2) the physical attachment of control units and I/O
devices to the system.

The System/370 1/0O architecture has evolved from Sys-
tem/360 but maintains a high degree of compatibility with
its predecessor [4, 5]. The evolution has occurred at the same
time IBM’s large-scale computers have evolved into powerful
multiprocessor-based systems capable of supporting large,
complex configurations of I/O devices, many of which are
accessible to the system via multiple paths [6, 7]. The
370-XA channel subsystem architecture has been designed
to better meet the needs of these systems and to provide a
base for future system evolution. The System/370 I/O
structure has been replaced by a new structure that has
moved I/0O management functions out of CPU programs and

by a completely queued interface between the CPU and the
channel subsystem. As a result, the new architecture incor-
porates concepts and uses terminology different from those
of the System/370 I/O architecture.

In this paper, we review the more significant features of
the 370-XA channel subsystem architecture, including the
motivation for these features and their relationships to
System/370 structure and terminology. The following sec-
tions contain a discussion on the considerations that led to the
development of the new architecture, descriptions of the
significant facilities included in it, comparisons with Sys-
tem/370, and a description of I/O processing using the
370-XA channel subsystem.

Motivation

The channel subsystem architecture development was ini-
tiated early in 1975 at a time when several groups were
studying the future technical direction of IBM’s large-scale
systems. The most serious technical concern was how to
achieve higher performance in application program execu-
tion. This requirement was being considered from several
perspectives, including possible changes to the system struc-
ture, circuit technology, and system architecture. With
respect to /O architecture, the problem was viewed as one

© Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the

Editor.

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE

IBM J. RES. DEVELOP. » VOL. 27 @ NO. 3 « MAY 1983




that required changing the System/370 1/0 architecture to
reduce the net number of CPU instructions required for
performing I/O functions and to reduce the impact on CPU
performance of changes in the design of I/O devices and
attachment methods.

® Objectives of the architecture

The principal objectives were to increase the performance of
the large-scale systems and to structure the I/O architecture
to take full advantage of such systems that now consisted of
tightly coupled multiprocessors with large main storages and
multiple, microcoded microprocessors in lieu of hard-wired
logic. An additional and important objective was to provide
for better operating efficiency on the I/O interface.

These objectives had to be considered within the con-
straints of compatibility requirements that had been estab-
lished relative to System/370 architecture and the Multiple
Virtual Storage (MVS) [8] operating system. The first
compatibility objective was to support the unmodified
attachment of all the I/O control units and devices allowed in
MVS/370. This objective was there to protect customer
investments in 1/O equipment, which is often purchased and
replaced on a schedule different from that of the CPU. The
second compatibility objective was the support of customer
application programs running unmodified. To meet this
objective, the architecture requirements for channel pro-
grams written for System/370 and for the application pro-
gram interface (SUPERVISOR CALL) to the operating
system could not be changed. With certain minor exceptions,
these compatibility objectives have been met in the 370-XA
channel subsystem architecture.

® Development of the architecture

While the major part of the architecture was developed early
in the project, for most of the project’s duration the develop-
ment of the hardware, the software, and the architecture
have proceeded in parallel with a high degree of interaction
among designers in those three areas. After the basic I/O
functions were defined, the channel-subsystem-monitoring
facilities, path-management, and dynamic-reconnection
facilities were defined, followed by the channel-subsystem-
recovery facilities. After these major portions of the architec-
ture were completed, the remaining work consisted mainly in
refining the definition to supply the detail necessary for a
complete architecture and adding minor functions where
needed.

It is important to note that the point of reference for the
System/370 I/O architecture discussed in this paper essen-
tially applies to machines released just prior to the IBM 3033
in 1978. At that time, the channel subsystem function was
defined, and, with the exception of channel-set switching, the
changes made to the System/370 I/O architecture intro-

IBM J. RES. DEVELOP. e VOL. 27 # NO. 3 e« MAY 1983

System/370
channels

CPU

Interface S

<

]

Subchannels

370-XA
channel
subsystem

Interface—

Subchannels

Figure 1 System/370 and 370-XA structures.

duced with the IBM 3033 were derived from the channel
subsystem definition and retrofitted to System/370. Those
functions are the buffering of all status in subchannels, the
queuing of I/O requests in subchannels (start-I/O-fast
queuing), and the suspend-and-resume facility.

It should also be noted that the architecture, in its present
form, was influenced by many additional factors. For exam-
ple, practical considerations of the hardware/software trade-
offs between MVS, the Virtual Machine Facility/370 (VM/
370) [9], and the IBM 308X machines influenced the design
of the architecture.

Structure of the architecture

The structures of System/370 and 370-XA are shown in Fig.
1. In System/370, the channel-to-CPU interface is uni-
processor-oriented. Channels are provided in sets attached to
a CPU. A System/370 channel can be addressed only by the
single CPU to which it is connected. Also, a System/370
channel can interrupt only that CPU to which it is connected.

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE




208

In a System/370 multiprocessor (MP) system, each CPU
has its own set of channels [10]. This means that the
operating system in an MP system has to ensure that the
correct CPU is dispatched to perform I/O operations with
I/O devices that are not attached to channels on each CPU.
While this causes no problems in System/370, it does require
extra operating system overhead and delay in performing
1/0 operations in some MP systems. The 370-XA channel
subsystem is designed so that all CPUs in the system have the
same access capability for all devices attached to the system.
I/0 devices are attached to the channel subsystem, rather
than to a CPU as in System /370, and the channel subsystem
is accessible by any CPU. Therefore, any CPU can initiate
an I/O function with any device and can accept an I/O
interruption from any device.

The channel-to-I1/O-device interface is single-path-
oriented in System/370. When the program attempts to
initiate an I/O operation, the path over which the operation
is to take place is specified as part of the START 1/0 or
START I/O FAST RELEASE instruction. The I/O opera-
tion either is initiated on that path or is not initiated. If the
operation is not initiated, the program is notified, and the
program may attempt to initiate the operation via a different
path to the device, if one is available [11].

The channel-to-1/O-device interface is also single-path-
oriented in another way. Once a chain of I/O operations is
initiated with a device, all data, status, and commands for the
chain of operations must use the physical channel path over
which the first command was initiated. In particular, if a
device disconnects from the channel path during a chain of
commands, as when block multiplexing occurs, the device
must reconnect to the same channel path to continue execut-
ing that chain of commands. If the channel path to which the
device must reconnect is in use (for example, is communicat-
ing with a different device) when the device is ready to
reconnect, the device must wait until the path is free before it
can reconnect to continue execution.

In IBM’s large-scale systems, devices are often attached to
the system by more than one channel path for reasons of
availability. It also often happens that when one of these
devices is delayed in reconnecting in order to continue
execution of a chain of commands, as just described, another
path attaching the device to the system is not busy. The
channel subsystem architecture makes it possible to design
1/0O devices that can reconnect to continue execution of a
chain of commands on any path by which the device is
attached to the system. This mode of operation of the channel
subsystem is called multipath mode, and it is used for devices
having the dynamic-reconnection feature, such as the IBM
3380 Direct Access Storage Facility Model AA4.

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE

System performance

Improvements in system performance relative to System/
370 1/0O processing have generally been realized in three
ways: by redistributing function between CPU programs and
the channel subsystem, by reducing CPU program complex-
ity, and by reducing the CPU program overhead.

The use of high-performance microprocessors to perform
I/0 functions makes possible the further relocation of I/O
functions out of CPU programs into the channel subsystem
without significantly increasing hardware cost. When these
functions are moved, the same functions are performed, but
parallelism is increased, which can lead to an increase in
system performance.

In 370-XA, all I/O busy conditions are handled by the
channel subsystem rather than by the CPU program, as in
System/370. The removal of I/O busy and no-longer-busy
handling from the CPU program is especially important,
given certain system trends for large-scale systems. The
trend for control units is to larger numbers of attached
devices and the use of microprocessors. Both factors tend to
increase the number of control-unit-busy indications. The
trend to increased sharing of devices among systems in
multicomputer installations leads to an increase in the num-
ber of control-unit-busy and device-busy indications.

Another performance benefit in handling I/O busy and
no-longer-busy conditions by the channel subsystem is the
removal of the overhead introduced when the CPU processes
a no-longer-busy indication and encounters another busy
condition. This occurs when the delay between the genera-
tion of the no-longer-busy indication by the hardware and the
subsequent re-initiation of the I/O request by the program
has resulted in some shared resource in the path to the I/O
device again becoming busy. This situation results in addi-
tional busy/no-longer-busy processing cycles in System/370
that have been removed for 370-XA.

In 370-XA, alternate-path selection is handled by the
channel subsystem rather than by the CPU program, as in
System/370. This means that the functions of testing for
path availability and the management of logical channel
queues (MVS) and control-unit queues (VM /370) have been
removed from the CPU program. I/O requests are queued in
software on a device basis and are only dequeued when the
associated subchannel is free and the request can be accepted
by the channel subsystem.

System performance can also be improved by reducing
I/O program complexity. In System/370, channels must be
managed by type; that is, there are differences in program
action depending on whether a device is attached to a selector
channel or a multiplexer channel. In 370-XA, the type of

IBM J. RES. DEVELOP. e VOL. 27 ¢ NO. 3 ¢ MAY 1983




channel path protocol used is not apparent to the CPU
program. Program complexity is also reduced in 370-XA by
simplifying I/O interruption handling and status analysis. A
program-specified interruption parameter is passed back to
the program in the I/O interruption code in order to simplify
program handling of the interruption, and additional infor-
mation is available in the interruption status to simplify
analysis.

A third area of system performance improvement is in the
reduction of program overhead in handling I/O interrup-
tions. The number of I/O interruptions that must be
processed has been reduced because channel-available, con-
trol-unit-end, and device-end no-longer-busy-type I/O inter-
ruptions are not generated by the channel subsystem.
Instead, these are handled directly by the channel subsystem
without program intervention. The channel subsystem also
allows the merging of device status in certain cases, thus
allowing the status to be processed as a single interruption
rather than as two interruptions.

In System/370, the 1/O device is interrogated during the
execution of some I/O instructions and some I/O interrup-
tions. In 370-XA, the I/O device is not interrogated during
the execution of any instruction or during an interruption; all
I/O instructions are executed by the CPU asynchronously
with respect to the channel subsystem, and all I/O interrup-
tion status is buffered in the subchannels, where it is immedi-
ately available to the CPU program.

The removal of these delays of the CPU is especially
important in view of the trend in large-scale systems to
higher and higher CPU execution speeds. Consequently, the
I/O request rate and the I/O interruption rate also increase.
However, as described previously, the CPU delays intro-
duced because of an interrogation of the I/O device do not
decrease proportionately. The reason for this is that the delay
includes the time it takes for the 1/O device to respond to the
interrogation. Unfortunately for CPU execution speed, the
trend in device response times is toward longer rather than
shorter responses. This is because of the use of microproces-
sors instead of hard-wired logic in control units. This means
that the higher the execution speed of the CPU, the more the
I/O instruction and interruption times tend to become a
proportionately larger factor in CPU performance.

Terminology comparisons with System/370

The provision of new functions in the channel subsystem
architecture has resulted in several changes in terminology.
Also, some terms used in System/370 to describe the opera-
tional aspects of the architecture are not used in 370-XA
because the channel subsystem architecture does not require
an awareness of these aspects by the control program. In

IBM J. RES. DEVELOP. ¢ VOL. 27 ¢ NO. 3 « MAY 1983

other cases, terminology changes or deletions were necessary
because the logical view of the channel subsystem by the
control program differs from that of a System/370 channel.

The term “channel” in System/370 and the terms “chan-
nel path” and “channel subsystem” in 370-XA describe
different architectural concepts. In System/370, a single
physical path usually exists between a channel and the
attached control units (the IBM 2870 channel is an excep-
tion, having five paths to attached control units). The
physical path is referred to (and still is in 370-XA) as the
System/360 and System/370 I/O interface [12]. In Sys-
tem/370, communication between the channel and I/0
device occurs by using a subchannel, the physical path, and
the control unit. Communication between another channel
and the I/O device requires a different subchannel, physical
path, and control unit (or the same control unit when a
two-channel switch is used). The need for separately iden-
tifying the physical path is unnecessary; therefore, the term
“channel” also implies the physical path.

In 370-XA, the use of any of up to eight different physical
paths is permitted when communication takes place between
a single subchannel and an I/O device. Frequently it is
necessary to refer to a function executed on a specific
physical path apart from the channel subsystem. For exam-
ple, in System /370, a system reset is performed on a physical
path as a result of executing CLEAR CHANNEL [3]. The
reset function causes all attached I/O devices, subchannels,
and the entire channel to be reset. When the same function is
performed on a physical path in 370-XA, only those 1/O
devices attached to that path, as well as conditions in the
channel subsystem associated with that path, are reset. The
subchannels, other ongoing operations in the channel subsys-
tem, or operations involving other physical paths remain
unaffected. Here there is a need for identifying the physical
path because the reset function applies only to that physical
path and not to the entire channel subsystem.

In System/370, a channel is distinguishable from another
channel by three characteristics: a unique address, a separate
set of subchannels for attaching up to 256 1/O devices, and a
connected CPU. The channel is only available to the CPU to
which it is connected. In 370-XA, the channel subsystem is
available to any CPU (if more than one CPU exists), is not
identified by an address, and can permit attachment of
enough 1/0 devices to correspond with 256 System/370
channels. However, all of the I/O devices attached to the
channel subsystem are represented by a single set of sub-
channels. These characteristics, in addition to the increased
functional handling capabilities discussed previously, present
the appearance of a collection of channels, or what is termed
a “channel subsystem.”

209

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE




210

Table 1 Corresponding I/O instructions in System/370 and 370-
XA.

System/370 370-XA4
CLEAR CHANNEL RESET CHANNEL PATH
CLEAR I/O CLEAR SUBCHANNEL'
HALT DEVICE HALT SUBCHANNEL
HALT I/0 —

RESUME 1/0 RESUME SUBCHANNEL
START I/O 2

START /O FAST RELEASE START SUBCHANNEL
STORE CHANNEL ID —

TEST CHANNEL STORE CHANNEL
PATH STATUS

TEST 1/0 TEST SUBCHANNEL?

? MODIFY SUBCHANNEL

2 STORE SUBCHANNEL

2 SET CHANNEL MONITOR

I SET ADDRESS LIMIT

7 TEST PENDING
INTERRUPTION

— STORE CHANNEL
REPORT WORD

"The 1/O device is issued a selective reset in 370-XA.
*The function is not provided.
*The 1/0 device is not interrogated as in System/370.

Table 2 Format comparisons of System/370 and 370-XA.

System/370 370-XA
Content Content
(length in bytes) (length in bytes)

Channel-address word (4)
Channel-command word (8)

Operation-request block (12)
Format-0 channel-command
word' (8)
— Format-1 channel-command
word (8)

Indirect-data-address word (4) Indirect-data-address word' (4)

Channel-status word (8) Subchannel-status word (12)
Channel status (1) Subchannel status'? (1)
Device status (1) Device status' (1)

Limited channel log_‘out (4) Extended-status word (4)

Full channel logout” (-) Extended-control word* (32)

! Format in 370-XA unchanged from System/370.

Channel status has been renamed in 370-XA.

zLength of logout is model-dependent.

*Words 8-15 of the extended-control word are used for logout.

In System/370, the channel architecture refers to non-
shared and shared subchannels. Such references are neces-
sary since the effects of executing certain 1/O instructions
can vary as a function of the type of subchannel involved. For
example, if a subchannel is designated to be shared, and
HALT I/O [3] is executed to halt an I/O operation involving
I/0O device A, 1/O device B can be halted if the subchannel
was currently executing an I/O operation with 1/O device B.
With 370-XA, all subchannels appear to the control program

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE

as though they were nonshared, and control over the execu-
tion of I/O operations is independent of subchannel type;
therefore, a discussion of this concept is not applicable in the
370-XA architecture.

System/370 channels are defined in the architecture as
either selector, byte-multiplexer, or block-multiplexer chan-
nels. Depending upon the channel design or type, some 1/O
instructions are executed differently. For example, termina-
tion of a burst operation with an I/O device by HALT 1/O
(HIO) on a selector channel causes the channel and subchan-
nel to be immediately placed in the interruption-pending
state without their having received status from the I/O
device. When HIO is executed on a byte-multiplexer chan-
nel, the interruption-pending state of the subchannel is
deferred until the I/O device provides ending status. When
HIO is executed on a block-multiplexer channel, the function
may be executed as for a selector channel or byte multiplex-
er, depending upon the model. In 370-XA, attachments of
devices designed to operate in either selector, byte-multiplex-
er, or block-multiplexer modes are allowed for reasons of
compatibility; however, a single view is presented to the
control program since execution of operations directed to any
of the attached devices is determined by the 1/O instruction
and not by the mode of operation being performed on the
channel path. Further, an I/O instruction is executed in the
same way, independently of the channel subsystem, subchan-
nel, channel path, and I/O device involved.

Tables 1 and 2 provide further comparisons in terms of
nomenclature and correspondence of functions provided in
System/370 and 370-XA.

Significant facilities

Several key facilities provided by the channel subsystem
architecture allow increased functional capabilities to exist
in the channel subsystem and, in some cases, provide a
reduction in the CPU instruction load supporting I/O
processing compared with System/370. In other cases, facili-
ties are provided which ensure that programs written to run
under the architectures of System/360 and System/370 can
also run compatibly under 370-XA.

® Path-independent I/O addressing

In 370-XA, the architecture is structured and defined in such
a way that any I/O function can be initiated with any I/O
device regardless of the CPU executing the I/O instruction
or the physical attachment of the I/O device to the channel
subsystem. This is referred to as path-independent I/O
addressing.

Another significant feature of 370-XA is that any CPU in

the system enabled for I/O interruptions can accept an
interruption request from any subchannel. Initially, with

IBM J. RES. DEVELOP. e VOL. 27 @ NO. 3 ¢ MAY 1983




System/370, if a CPU failed, pending interruptions for that
CPU, the use of its attached channel or channels, and
potentially much of the status of attached 1/O devices, could
be unrecoverable. Improvements that would provide
increased CPU availability for System/370 were examined.
For example, increasing the size of the channel address and
making all channels addressable by all CPUs in the system
could have provided the needed improvement. However, this
potential extension proved to have too great an impact on the
control program; several internal control blocks that used the
current address format would have had to be modified.

An alternative to increasing the channel-addressing capa-
bility was to switch sets of channels between CPUs when a
failure occurred. Channel-set switching did not require a
change to the channel-address format and was subsequently
introduced into System/370 [3]. When a CPU fails, chan-
nel-set switching allows the control program to connect the
set of channels of the failing CPU to another CPU. The
function is invokable only during unusual circumstances. A
more generalized approach of allowing channel sets to be
equally accessible to CPUs during normal I/O processing
was not provided in this extension because the impact on the
control program would have been significant. For example, a
new class of interruption would have been required that
would cause the control program to connect a channel set to a
CPU whenever an I/O interruption condition was recog-
nized. Also, it appeared that a performance penalty would
have to be paid if a channel set had to be connected each time
before executing an I/O instruction. Finally, additional
complexity would have been introduced into the control
program in order to handle the connection and disconnection
of channel sets whenever I/O instruction execution and 1/0
interruption handling were required simultaneously.

Because of the improved accessibility in 370-XA and the
buffering of status in the subchannel prior to an I/O
interruption, provisions had to be made to prevent potential
data integrity exposures. Assume that status contained in a
subchannel indicated that a media change had occurred at
the 1/0 device. If a procedure for handling I/O interruptions
similar to that of System/370 were in use, one CPU could
clear the status from the subchannel during the associated
1/0 interruption while another CPU attempted to initiate a
new 1/O request with the same I/O device. As a result, the
new I /O request could be executed without recognition of the
media change at the I/O device.

This condition is avoided by (1) employing an I/O instruc-
tion (TEST SUBCHANNEL) that explicitly retrieves sta-
tus from the subchannel, (2) requiring that I/O interruptions
cause the storing only of information that identifies the

IBM J. RES. DEVELOP. @ VOL. 27 @ NO. 3 « MAY 1983

subchannel having available status, and (3) preventing the
acceptance of a new I/O request while the subchannel has
pending status.

This solution enables the control program to perform
interruption handling and status processing using the follow-
ing conventions: (1) any CPU is allowed to handle the I/O
interruption, (2) the subchannel number stored during the
interruption identifies the subchannel having status, and (3)
TEST SUBCHANNEL is executed only by the CPU whose
currently running program maintains ownership (locking) of
the control block representing the interrupting subchannel.

In System/370, the situation is handled by requiring the
I/O device to present an indication of its status to all
attached channels. As each channel receives the indication,
either an I/O interruption occurs or the indication is pre-
sented if execution of an I/O instruction is currently in
process. Such a procedure ensures that the control program
receives the indication before any CPU can initiate a new
I/0 request with the I/O device, but it has the disadvantage
of causing multiple interruptions, all describing the occur-
rence of a single event at the I/O device.

The procedure adopted for handling I/O interruptions and
status presentations in 370-XA is different in that, for
System/370, the status is stored during the I/O interruption.
However, application programs are unaffected by this
change and there is no difference in system performance
when compared with System/370. Such a comparison
reveals that the status stored during an I/O interruption in
System/370 needs to be moved from the fixed location in
main storage before the CPU is enabled again for 1/O
interruptions or executes the next 1/O instruction; otherwise,
that status may be overlaid. In 370-XA, the control program
can move the status directly from the subchannel to the area
in main storage where status processing is to be performed.

® [/O unit designations

Communication between the control program and the chan-
nel subsystem regarding an I/O device depends upon the use
of a subchannel number. Communication between the sys-
tem operator and the control program regarding an I/O
device depends in turn upon the use of a device number. The
channel subsystem and the I/O device communicate by using
a device address. The subchannel number identifies the
target subchannel during the execution of I1/O instructions
and during the handling of I/O interruptions. The device
number identifies the physical device to the system operator
during initiation of the system initial-program-load (IPL)
procedure and when the I/O device is enabled and disabled
[13]. These parameters are assigned during installation of
the I/O device, and they bear no relationship to the physical
attachment of that I/O device. Compatibility of addressing

21

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE




212

JCL I

Unit = Device number

L)

Operating system

<: Subchannel
number

Channel subsystem

Device

Devi
<: ade(r:::s$@

Device number

IINNRERRNEEENNEND

Operator console
i

Figure 2 I/O unit designations.

Device number

between the channel subsystem and the I/O device has been
maintained from System/370 to 370-XA since the device
address is still used in 370-XA; however, this address is not
visible to the control program. The designation of these
parameters and their use are identified in Fig. 2.

Two objectives were achieved by defining a device num-
ber: (1) I/O device uniqueness, and (2) a decoupling of
physical device addressing from the control program. In
System/370, the 1/O address is used whenever the control
program and the system operator need to identify the physi-
cal I/O device. The I/O address is also used when logging
information describing a system malfunction involving an
I/0 device. However, in some cases, actual identification of
the I/O device becomes difficult, especially in multicom-
puter installations where more than one I/O device is
identified by using the same address. In other cases, when a
maintenance or diagnostic function is initiated subsequent to
the reporting of a system malfunction, the I/O address
previously logged during the system incident may no longer
be assigned to the same physical I/O device.

A unique device number can be assigned, in any arrange-
ment, to each I/O device (up to 64K devices) in the
installation. This allows the IBM customer complete free-
dom in device number assignments. For visual identification
of the I/O device, the number assigned is physically affixed
to the outside cover of the I/O device (or placed at another
equally suitable location) in the same manner previously
used.

Architecturally, the device number has no relationship to
the device address used in the communication between the

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE

channel subsystem and the 1/O device or the channel path to
which the I/O device is physically attached. Since there is no
architectural relationship between the device number and
the device address, the second objective previously men-
tioned is achieved. Consequently, physical addressing
changes can be made between the channel subsystem and the
attached I/O device, as a result of either configuration
changes or technological advances in the attachment of I/O,
without impacting the control program.

A question is frequently raised as to the necessity of both a
subchannel number and a device number, -since the pre-
viously discussed objectives were achieved by defining the
device number. Initially, only the device number was defined
for communications among the control program, the channel
subsystem, and the system operator, and the device number
was used to identify the target subchannel during the execu-
tion of I/O instructions and I/O interruptions. However, as
implementation of the architecture progressed, some con-
straints were placed upon the assignment of device numbers.
For example, the channel subsystem implementation
required that all device numbers be contiguous. Further,
device numbers had to be assigned starting with zero.

These restrictions were necessary in order to reduce the
microcode overhead when locating the appropriate subchan-
nel during the execution of I/O instructions. As a result,
because some of the flexibility in device number assignment
was being reduced, a new parameter was added to the
architecture. This parameter, the subchannel number, is
used to identify the target subchannel, just as the early-
version device number did; however, the implementation
restrictions were applied to this parameter instead, thus
preserving the flexibility in the assignment of device num-
bers.

® Channel path management

Channel path management is a functional capability
whereby the channel subsystem, during initiation of I/O
functions, performs tests on the availability of channel paths
to the associated I/O device. On the basis of information
provided by the control program, the availability testing
results in one or more channel paths recognized by the
channel subsystem as being available for selection. One of
these paths is selected during initiation of an I/O function
and, if a busy condition is encountered, an alternate path
from the set of paths, if any, is chosen. If yet another busy-
condition is encountered, another path is selected if one is
available. This function is performed without any direct
interaction with the control program.

Provision in the architecture of a channel-path-manage-

ment facility proved to be particularly challenging. Initially,
the path-management function entailed only the handling of

IBM J. RES. DEVELOP. e VOL. 27 e NO. 3 ¢ MAY 1983




control-unit and device-busy conditions that would cause
alternate path selection to be attempted. However, addi-
tional aspects had to be considered. For example, multidevice
control units already attaching to System/370 channels and
designed to execute 1/O operations with shared subchannels
could not be handled in a manner similar to that for control
units designed to execute with nonshared subchannels with-
out compromising data integrity [3]. In particular, only a
single I/O operation at a time could be attempted with these
control units because the attached 1/O devices shared the
single subchannel. This restriction was part of the basic
design in these control units. If initiation of more than a
single operation was attempted by the channel, the control
unit could lose control of the ongoing I/O operation. Since, in
370-XA, each I/0O device is assigned to a different subchan-
nel, special path-management-handling procedures were
defined for these control units to ensure that data integrity
was not lost. These procedures took into account the kind of
1/0O function being initiated, the conditions existing at the
control unit, and the type of control unit involved.

It was determined that each control unit could be classi-
fied as one of three types, with each type requiring a
particular path-management algorithm. The types estab-
lished were based upon the ability of the control unit to
sustain concurrency of execution with multiple I/O devices.
If concurrency could not be tolerated but the control unit was
unable to preclude initiation of an I/O operation with more
than one device at a time, the control unit was classified as
Type 1. If the control unit was capable of handling concur-
rent execution of operations with multiple /O devices and
could preclude initiation of new operations when necessary
(by signaling a busy condition to the channel subsystem), the
control unit was classified as Type 2. If the control unit had
capabilities similar to that of a Type-2 control unit except
that, when an error condition was encountered, it was unable
to preclude initiation of new operations (characteristic of a
Type-1 control unit), the control unit was classified as Type
3.

Also to be taken into account in path-management han-
dling was the consideration that, by means of a command,
I/0 devices can be reserved for use on a single channel path.
That is, if a device is reserved to a channel path, it responds
busy when interrogated via other channel paths, with the
busy condition persisting until the reservation is cleared at
the device. Therefore, a special approach was required for
taking this condition into account in path selection. The
approaches considered were (1) to require the channel
subsystem to decode all commands transferred to devices and
to associate reserve commands with channel paths, or (2) to
require the channel subsystem to perform alternate-path
selection whenever a device-busy condition was encountered
during path selection until all paths available for selection

IBM J. RES. DEVELOP. » VOL. 27 ¢ NO. 3 ¢ MAY 1983

had been tried. The latter approach was chosen because it
created less operating overhead in the channel subsystem.

® Programmable interruption subclasses

Interruption subclasses are assigned to I/O devices attached
to the channel subsystem. That is, I/O interruption requests
from individual I/O devices can be assigned to any one of
eight maskable interruption subclasses. Masking of these
subclasses is provided by the use of a control register in each
CPU. Subclass assignments are made to each subchannel
during the execution of MODIFY SUBCHANNEL. This
feature is a refinement of a capability provided in System/
370 in which interruption requests are provided on a channel
basis. Interruptions from each System/370 channel are
controlled by a mask bit in a control register. However,
masking interruption requests at the channel level had the
disadvantage that all of the attached 1/O devices (up to 256)
were likewise being masked. Alternatively, in 370-XA,
assignment of subclasses to subchannels provides greater
flexibility in controlling 1/O interruptions from I/O devices.
For example, a software-controlled priority-interruption
methodology can be employed whereby only the lowest-
priority programs are executed with all subclasses enabled,
and successively higher-priority programs are executed with
fewer subclasses enabled. As a result, low-priority programs
can be interrupted by all of the I/O devices, but high-priority
programs can be interrupted by only a few devices.

® Address-limit checking

Address-limit checking is a storage-protection facility that
augments the key-controlled protection mechanism provided
in System/370 and 370-XA. In a virtual-machine environ-
ment, it is common to have one machine operating as a
preferred virtual machine (PVM). Typically, the PVM is
used in scheduling batch-type processing that has resulted
from supporting on-line terminal applications. In order to
meet performance requirements, the PVM is executed by
using an addressing methodology referred to as virtual-
equals-real (V = R). That is, the PVM guest storage has its
pages mapped one-to-one with the host real main storage. As
a result of this mapping, a performance advantage is realized
by the PVM in that the addresses used in the channel
programs need not be translated by the host. However, a
channel program written for the guest PYM may, because of
a programming error, attempt to cause the channel subsys-
tem to access a storage location outside of the storage range
assigned to the PVM. Normally, such an attempted access
would not be allowed because the program error would be
recognized during the address translation process by the host
program. However, since the PVM is being executed without
host translation of its channel programs, it is possible that
access to the improper storage location would be allowed if
the storage key assigned by the host matched the key used by
the channel program being executed in the guest PYM. To

213

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE




214

Format-0 CCW

Cmd code Data address
0 8 3
Flags Count
32 39 48 63
Format- 1 CCW
Cmd code Flags 0 Count
QO 3 15 31
0 Data address
32 63

Figure 3 CCW formats. Format-0 CCWs can be located anywhere
in the first 16 777 216 bytes of main storage. Format-1 CCWs can be
located anywhere in main storage.

avoid the potential integrity exposure, data accesses to
storage locations above or below a specified absolute address
can be prevented in 370-XA by setting an absolute-address
limit value in the channel subsystem. This limit is set by the
I/0O instruction SET ADDRESS LIMIT. Control-bit set-
tings provided by the control program and placed in the
subchannel during the execution of MODIFY SUBCHAN-
NEL specify that data accesses are allowed only at or above,
or only below, the limit address.

® Channel subsystem monitoring

The monitoring facility of the channel subsystem provides
measured parameters in main storage as I/O-resource-usage
data. This information is made available to the resource
management facility (RMF), which assists in managing the
performance of the system. The RMF also performed this
function in System/370; however, in that case most of the
information was obtained through sampling techniques that
examined the delays or busy conditions encountered by the
control program while attempting to initiate I/O operations.
A monitoring facility in 370-XA was needed because of the
many changes made to the internal interfaces of the control
program and because the I/O queue management and
busy-handling functions were moved into the channel subsys-
tem. The monitoring facility provides measured elapsed-time
parameters in main storage that describe the extent of 1/O
resource usage, delay time, and I/O contentions encountered
during execution of 1/O operations. These data are accumu-
lated on a subchannel basis and are made available as each
operation concludes at the respective subchannel.

The instruction SET CHANNEL MONITOR places the
channel subsystem in the monitoring mode and identifies the

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE

e

starting location in main storage where the measured data
are accumulated. Additionally, control bits provided by the
control program and placed in the subchannel during execu-
tion of MODIFY SUBCHANNEL selectively enable or
disable a subchannel for monitoring.

® CCW data addressing extension

A 31-bit data address is provided in 2 new CCW format that
allows direct use of 31-bit addresses in channel programs. In
System/370, 31-bit addressing of 1/O data can only be
accomplished by use of the indirect data address word
(IDAW), and all CCWs and IDAWSs must reside in the first
16M bytes of storage. In 370-X A, two modes of operation are
provided: a compatible 24-bit addressing mode for executing
old CCWs (Format-0 CCWs) and a 31-bit addressing mode
for executing the new format CCW (Format 1). When
Format-1 CCWs are specified, the CCWs and IDAWs may
reside anywhere in storage. The mode is controlled by a bit
that is passed to the channel subsystem during the execution
of START SUBCHANNEL. In 370-XA, depending upon
the setting of the control bit, direct addressing in either the
24-bit or 31-bit mode is applicable for the entire channel
program being executed. Mixed CCW formats within a
channel program are not allowed. The two CCW formats are
shown in Fig. 3.

® Dynamic reconnection

The dynamic reconnection facility allows an 1/O device to
reconnect to any available channel path in order to continue
execution of a chain of commands in a channel program. The
instruction MODIFY SUBCHANNEL (MSCH) describes
to the channel subsystem, by means of mask bytes, the set of
available channel paths for which reconnection is permitted.
Use of this facility is controlled by a mode setting (multipath
mode) in each subchannel. The MSCH instruction is also
used to selectively allow or disallow use of the feature at each
subchannel by setting the mode bit (multipath mode). The
set of available channel paths for which reconnection is
permitted is communicated to the I/O device through com-
mand execution by the control program. This capability,
together with the channel path management capability,
allows the channel subsystem and I/O device to choose the
first available channel path for the purpose of initiating or
resuming execution of a chain of I1/O operations.

1/0 processing in 370-XA

® Channel program structure

In order to perform an I/O operation, it is necessary to
construct a channel program consisting of one or more
channel-command words (CCWs). These CCWs control
operations at the device (for example, seek, read, etc.) and
the actions that the channel subsystem performs in executing
the I1/O operation. The 370-X A channel subsystem architec-
ture was defined to allow execution of the CCWs that were
defined for System/370 as well as the new Format-1 CCWs,

IBM J. RES. DEVELOP. e VOL. 27 e NO. 3 ¢« MAY 1983



Regardless of the format of the CCWs, the same channel and
control-unit operations can be executed. While the ability to
compatibly execute channel programs is maintained, the
portions of the architecture dealing with the initiation of I/O
operations and with the I/O interruption mechanism have
been changed extensively, requiring new programming at
this level.

© Operation initiation

In System/370, 1/O operations can be initiated by the
START I/O instruction, which identifies the channel and
the device address on the specified channel. In addition,
START I/O causes the channel to fetch the channel-address
word (CAW) from a fixed location in real storage. The
CAW contains the subchannel key and designates the loca-
tion in storage from which the channel subsequently fetches
the first CCW. If the specified channel is busy at the time
START 1/0 is executed, the operation is not initiated and
the program is notified. If the specified channel is available,
the CPU is delayed while the channe! attempts to initiate the
operation at the device. The length of time required is
determined by the I/O device and, in some cases, may be
more than 100 microseconds. While attempting to initiate
the operation at the I/O device, the channel may receive a
control-unit-busy indication, in which case the operation is
not initiated and the program is notified. If other channels in
the configuration exist that are connected to the device, the
program can repeat the procedure, specifying a different
channel in the instruction. In this instance, multiple control-
unit-busy indications are possible, with a resulting CPU
delay.

The start-1/O-fast function was introduced with System/
370 to reduce CPU delay in initiating the operation at the
device. This function basically allows the CPU to proceed
with execution of the next instruction as soon as the channel
availability is determined. Thus, processing continues while
the channel, in parallel with the CPU, attempts to initiate the
operation at the device. With this approach, on encountering
a control-unit-busy condition, the channel notifies the pro-
gram by means of an I/O interruption so that operation
initiation can be attempted on an alternate path. It was soon
determined that in some configurations the additional
processing required to handle the interruptions reporting
control-unit busy more than offset the gain from the start-
I/O-fast function. As a result, the function was modified to
cause the CPU to wait until the channel could determine if
the control unit was busy before allowing the CPU to proceed
with the execution of the next instruction. Since the time
required to determine a control-unit-busy condition is less
than the time to initiate an I/O operation, the start-1/O-fast
function remains faster than the original start-1/O function.
However, this change to the start-1/O-fast function resulted
in the loss of most of the performance improvement origi-
nally projected for it.

IBM J. RES. DEVELOP. ¢ VOL. 27 4 NO, 3 « MAY 1983

Subsequently, start-I1/O-fast queuing was introduced for
System/370. With this function, the channel would return an
1/0 request to the program only if the desired subchannel
was busy executing an operation. If any other busy condi-
tions were encountered, the channel would wait for the busy
condition to end and then initiate the operation. While this
approach offers performance improvement in some cases, it
suffers the deficiency that an I/O request can be queued in
one channel because of a busy condition while other channels
with paths to the desired device are idle.

In 370-XA, operations are initiated by the START SUB-
CHANNEL instruction which, unlike START I/O or
START I/O FAST RELEASE, does not specify the channel
path. Since there is only one subchannel for each device in
the system regardless of the number of paths that exist, the
program specifies the subchannel corresponding to the
desired I/O device; it does this by loading a register with the
subchannel number. START SUBCHANNEL also speci-
fies the address of the operation-request block (ORB) which
contains the address of the first CCW to be executed. Except
for the case of a busy subchannel, the I/O request is accepted
for subsequent execution regardless of busy conditions exist-
ing at the time the instruction is executed. However, unlike
start-1/O-fast queuing in System/370, the 1/O operation is
not queued for a specific channel path. Rather, the channel
subsystem selects an available path and attempts to initiate
the operation. If a busy condition is encountered, attempts
are made by the channel subsystem on other available
channel paths. If busy conditions are encountered on all
paths, the I/O request remains queued in the subchannel
until the operation is initiated on one of the channel paths.

® Operation execution

In 370-XA, the functions performed by the channel subsys-
tem while it is executing a channel program (addressing
storage, counting data bytes, command and data chaining,
etc.) are compatible with those performed in System/370.
However, additional functions can be invoked by the pro-
gram or device to modify certain aspects of channel program
execution.

As mentioned earlier, CCWs may be either Format-0
(24-bit data address) or Format-1 (31-bit data address), the
latter allowing for expanded storage. Even if the new For-
mat-1 CCWs are specified, the same chains of commands
with devices are possible, and no changes are required to
devices.

Address-limit checking, if used by the program, can also
affect the execution of channel programs. When this is used,
the channel subsystem compares the data address being used
to access storage with the boundary address previously
established by SET ADDRESS LIMIT. If an address-limit

215

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE




216

Channel
1
CPU Channel Control
1 2 unit
1
Main
storage Devices
CPU Channel
2 ! Control
unit
2
Channel
2

Figure 4 Multiprocessing system configuration.

violation is detected, a program check is indicated even
though the CCWs may appear valid according to System/
370 rules. Thus, error-analysis programs must be aware of
this new checking feature.

Another part of the 370-XA channel subsystem architec-
ture that affects program execution is the dynamic reconnec-
tion facility. In System/370, when a channel program is
initiated with a device, the path that is used to initiate the
operation is the path that must be used to execute the entire
channel program. This often causes users to attempt to keep
the usage of channel paths very low by attaching few devices
to a channel, hoping to ensure availability of the channel
path when it is needed by a device for a time-dependent
reconnection. Rotational devices are examples of devices that
experience a long time delay (one revolution) to be added to
the length of time to execute the operation if a channel path
is not available when needed. The dynamic reconnection
facility allows a device that disconnects from a channel path
during an operation to use any path to the system in
reconnecting. Thus, if multiple paths exist, a higher activity
on each interface is possible while at the same time a high
probability exists that an interface to the system is available
when required.

® [/O interruption procedure

I/0 interruptions allow the channel to inform the program of
the status of I/O operations, as well as external events at
devices. An I/O device will transfer to the subchannel a
status indication (channel end) when an operation with the
channel is ended, and a different indication (device end)
when the operation is completed at the device. In System/
370, the first status indication is accepted by the subchannel

R. L. CORMIER, R. I. DUGAN, AND R. R. GUYETTE

and then presented to the program by means of an I/O
interruption. In this case, the I/O interruption is completed
in only a few microseconds since it is not necessary to contact
the device. However, the second status indication, if it is
presented as a separate sequence, is held pending at the
device, and the channel must select the device to retrieve the
status as part of the I/O interruption procedure. In some
cases these I/O interruptions may take in excess of 100
microseconds because of device delay. In 370-XA, both types
of status are accepted by the subchannel, thus reducing the
time required for an 1/O interruption.

The I/O interruption procedure is initiated in 370-XA
when an interruption is pending in a subchannel and the
interruption subclass assigned to that subchannel is allowed
in any processor in the configuration. The channel subsystem
interrupts an enabled processor and stores the interruption
code, leaving the subchannel in the status-pending state. The
interruption code provides the subchannel number to the
program receiving the interruption and allows that program
to gain control of the appropriate control blocks prior to
clearing the status with the TEST SUBCHANNEL instruc-
tion. In a multiprocessor configuration, this process prevents
one processor from initiating an operation with a device at
the same time that a second processor may be handling status
from the device.

Another new aspect of interruption processing in 370-XA
is the TEST PENDING INTERRUPTION instruction. In
System/370, after one I/O interruption is handled, it is
customary to enable the CPU for I/O interruptions again to
see if any other interruptions are pending, and if so, the
interruption procedure is repeated, with all the programming
overhead associated with the required state switching. In
370-XA, this is not necessary since the program can deter-
mine if another interruption is pending by means of the
TEST PENDING INTERRUPTION instruction, and if
there is one, can clear the interruption request and determine
which subchannel caused it. It is then possible to clear the
status information from the subchannel by issuing the TEST
SUBCHANNEL instruction, using the subchannel number
provided by TEST PENDING INTERRUPTION. This
procedure can be repeated until all pending interruptions are
cleared and without the intervening saving of machine state
descriptions. Since I/O interruption conditions are made
available to all CPUs in a multiprocessing system, the
program has the flexibility of allowing all CPUs to handle
I/0 interruptions or of specifying that a single CPU process
all interruptions.

® [llustration of advantages of 370-XA

The benefits of the most significant features of the 370-XA
channel subsystem architecture are apparent if one considers
the I/O activity that can occur in a multiprocessing system

IBM J. RES. DEVELOP. & VOL. 27 & NO. 3 & MAY 1983




with multiple paths to the I/O devices from each CPU.
Figure 4 shows an example of this type of configuration,
which has become more commonplace in recent years. The
efficiency of the I/O operation in this type of configuration is
especially important in the overall system operation.

In the configuration illustrated in Fig. 4, with System /370
it is possible for a program running on CPU 1 to attempt to
initiate an operation by using Channel 1. If this attempted
initiation encounters a control-unit-busy condition, the pro-
gram could attempt the request on Channel 2. If this attempt
encounters a channel-busy condition, the program in CPU 1
could issue a signal-CPU instruction to interrupt CPU 2 in
order to initiate the request on that processor. At this time,
CPU 2 could try the request on Channel 1 and encounter a
control-unit busy prior to initiating the request on Channel 2.
Although the request would now be initiated, additional
overhead would be encountered since Channel 2 on CPU 1
would generate a channel-available interruption when the
channel-busy condition ended and since Control Unit 1
would generate a control-unit-end interruption for both
channel paths. Thus, an attempt to initiate one I/O request
in a heavily loaded large system could result in up to

® Four START I/O attempts,

® One SIGNAL PROCESSOR instruction,

® One external interruption,

® Two I/O interruptions with control-unit-end status, and
® One I/O interruption signaling channel available.

The exact sequence of events described may occur infre-
quently, but it does illustrate the problems that can occur in
attempting to initiate an 1/O operation. In addition, it is
obvious that, as the loading on the system increases, the
number of busy conditions and the associated overhead
increase.

In 370-XA, an attempt to initiate an operation, given the
same busy conditions as in System/370, would result in only
the execution of a single START SUBCHANNEL. This is
true regardiess of the level of activity in the system. Thus, in
a heavily loaded system, when efficiency is most important,
the 370-XA channel subsystem architecture provides the
greatest improvement.

Conclusion

System/370 Extended Architecture has been introduced to
provide a better match with the evolutionary trends taking
place in IBM’s large-scale systems structure. By redistribut-
ing I/O functions between CPU programs and the channel
subsystem, more parallelism in I/O processing has been
introduced, and the I/O processing functions performed by
CPU programs have been streamlined.

IBM J. RES. DEVELOP. @ VOL. 27 @ NO. 3 » MAY 1983

The channel subsystem architecture provides a new struc-
ture on which to base further advances in machine, software,
and system-design technologies while maintaining essential
compatibility with System/370 architecture for those inter-
faces intended for application development or for the attach-
ment of current I/O equipment.

Acknowledgments

The authors wish to recognize the significant technical
contributions made by M. J. Halma, A. S. Meritt, P. J.
Wanish, L. W. Wyman, and C. Zeitler, who helped establish
many of the key concepts of this architecture. Their persis-
tence in helping to resolve key technical issues affecting the
development of the architecture is also appreciated. The
authors also wish to recognize R. E. Wright for his many
hours spent reviewing and editing the architecture documen-
tation. Also recognized is J. D. Evangelista for her work in
preparing the numerous presentations, changes, and exten-
sions of the architecture.

References and notes

1. IBM 370-XA Principles of Operation, Order No. SA22-7085,
available through IBM branch offices.

2. G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, Jr., “Architec-
ture of the IBM System/360,” IBM J. Res. Develop. 8, 87101
(1964).

3. IBM System/370 Principles of Operation, Order No. GA22-
7000, available through IBM branch offices.

4. A. Padegs, “System/360 and Beyond,” IBM J. Res. Develop.
25,377-390 (1981).

5. R. P. Case and A. Padegs, “Architecture of the IBM System/
370,” Commun. ACM 21, 73-96 (1978).

6. M. S. Pittler, D. M. Powers, and D. L. Schnabel, “System
Development and Technology Aspects of the IBM 3081 Proces-
sor Complex,” IBM J. Res. Develop. 26,2—11 (1982).

7. R.N. Gustafson and F. J. Sparacio, “IBM 3081 Processor Unit:
Design Considerations and Design Process,” IBM J. Res. Devel-
op. 26, 12-21 (1982).

8. M. A. Auslander, D. C. Larkin, and A. L. Scherr, “The
Evolution of the MVS Operating System,” IBM J. Res. Devel-
op. 25,471-482 (1981).

9. R. J. Creasy, “The Origin of the VM/370 Time-Sharing
System,” IBM J. Res. Develop. 25, 483490 (1981).

10. While this is true in the sense of System/370 architecture,
machines have been implemented in the past which may seem to
violate this statement. For example, in the attached processor
(AP) configurations of System/370 Models 158, 168, 3031, and
3033, one of the two processors is not provided with channels.
Architecturally, such systems are considered to be MP systems
which have no channels configured to one of the processors. An
earlier example is found in the System/360 Model 67 operating
in the extended PSW mode. In this system, each of the two
processors can access all channels provided in the system and
can accept I/O interruptions from any of the channels. These
facilities are extensions of the System/360 architecture which
were not carried forward into the System/370 architecture.
They are, however, provided as part of the 370-XA channel
subsystem architecture.

11. With start-I/O-fast queuning, channel, control-unit, and device-
busy conditions may not cause the program to be notified.

12. IBM System/360 and System/370 I/O Interface: Channel to
Control Unit, Original Equipment Manufacturers’ Informa-
tion, Order No. GA22-6974, available through IBM branch
offices.

217

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE




218

13. OS/VS2 MVS and Stand-Alone Versions: Input/Output Con-
figuration Program User’s Guide and Reference, Order No.
GC28-1027, available through IBM branch offices.

Received August 12, 1982; revised November 24, 1982

R. L. Cormier IBM Information Systems and Technology
Group, P.O. Box 390, Poughkeepsie, New York 12602. Mr. Cormier
is a senior engineer and manager of input/output architecture with
responsibility for IBM System/370 and 370-XA channel and
input/output interface architecture. He joined IBM in Poughkeepsie
in 1960 and worked on the design of the 7909 data channel for the
7090 system. He subsequently worked on the design of a plotter
control system and the 2870 multiplex channel. He joined architec-
ture in 1968 and became I/O architecture manager in 1978. Mr.
Cormier received a B.S. in electrical engineering from Worcester
Polytechnic Institute, Massachusetts, in 1960, an M.S. in informa-
tion sciences from Syracuse University, New York, in 1970, and an
M.B.A. from Marist College, Poughkeepsie, New York, in 1982.
Mr. Cormier received an IBM Outstanding Invention Award for
work on the IBM System/370 I/O interface control in 1972 and a
Second Level Invention Achievement Award in 1980.

Robert J. Dugan IBM Information Systems and Technology
Group, P.O. Box 390, Poughkeepsie, New York 12602. Mr. Dugan
is a senior engineer in the Central Systems Architecture Depart-
ment. He received his B.S. and M.S. in electrical engineering from
Auburn University, Alabama, in 1968 and 1969. In 1969, he joined

R. L. CORMIER, R. J. DUGAN, AND R. R. GUYETTE

IBM at the Poughkeepsie laboratory, where he has worked on
various assignments in the architecture department involving the
development and extensions to the IBM System/370 1/O architec-
ture. In 1975, Mr. Dugan started the development of the 370-XA
channel subsystem architecture. The development of this architec-
ture continues to be his primary responsibility. Mr. Dugan has
received a Second Level IBM Invention Achievement Award and is
a member of Eta Kappa Nu.

Richard R. Guyette IBM Information Systems and Tech-
nology Group, P.O. Box 390, Poughkeepsie, New York 12602. Mr.
Guyette has been a member of the Central Systems Architecture
Department at the Poughkeepsie development laboratory since
1974. His primary responsibility since early 1975 has been the
development of the 370-XA channel subsystem architecture. Mr.
Guyette was also responsible for developing the architecture for the
suspend-and-resume and start-I1/O-fast-queuing facilities which are
part of the 3033 extensions feature on the IBM 3033 and 308X
processors. He joined IBM in 1965 as a systems engineer in the
Rochester, New York, branch office. In 1968 he became a regional
data acquisition and control systems (DACS) engineer on the
eastern region staff in New York City. In 1969 he joined a
programming architecture group in the Endicott, New York, devel-
opment laboratory to work on architecture and programming exten-
sions for real-time processing. It was as a result of this work that he
ultimately joined the Central Systems Architecture Department in
Poughkeepsie in 1974. Mr. Guyette received a B.A. from the
University of Vermont in 1961 and an M.S. from Cornell University,
Ithaca, New York, in 1965, both in physics. He received an IBM
Eastern Regional Manager’s Award in 1968, a First Level IBM
Invention Achievement Award in 1980, a Division Award in 1981
(for his work on the architecture for the 3033 extension feature), and
a Second Level IBM Invention Achievement Award in 1982.

IBM J. RES. DEVELOP. ¢ VOL. 27 ¢ NO. 3 ¢ MAY 1983




