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An Improved  Regional  Correlation  Algorithm  for  Signature 
Verification  Which  Permits  Small  Speed  Changes Between 
Handwriting  Segments 

If  two nearly  coincident  accelerometers on a  pen  axis  measure orthogonal  acceleration components  perpendicular  to  this  axis, 
then  the regional  correlation algorithm for  signature verification divides  these  data  into  plausible  segments,  it  compares each 
segment  with a corresponding  reference,  and it  combines  the  results  into  a global similarity  index.  The  presently used 
intersegment distance  permits  certain  natural  data  transformations: ( I )  translating  a segment by  small integer multiples  of  the 
sampling interval: (2)  moving  the  pen  with  uniformly larger amplitude  throughout  a segment:  and (3)  rotating  the  pen  about  its 
axis between any  two  segments.  We  propose  a new intersegment distance  which permits  further  natural  transformations: (4) 
translating  a segment by  a  fraction  of  the  sampling interval:  and (5) writing at  slightly different uniform speed within each 
segment.  The new distance,  like  the  old  one,  is  the  minimum  of  a certain function.  We describe an  algorithm which computes 
this  minimum. 

1. Introduction 
Recent  attempts  at  signature verification have measured 
various concomitants of human  handwriting [ 1-25]. Specifi- 
cally,  a group at  the  IBM  Thomas J .  Watson  Research 
Center has proposed measurement of the  related  accelera- 
tions [S, 141. They have developed a pen with imbedded 
accelerometers  and have  achieved  high  selectivity with the 
resulting data [ 12, 13, 181. This  author  has provided a 
mathematical  structure for such  measurements  and has 
deduced optimal layouts of imbedded accelerometers [ I5- 
171. His work supports  the idea that  the  acceleration of the 
pen point is the essential carrier of signature  information; it 
offers an  argument [ 16, Section 51 that full recovery of the 
point motion demands six accelerometers inside the pen. 
However,  diagnostic  information from fewer instruments  has 
furnished good results through  astute  data analysis, and one 
statistical  technique with remarkable success has been the 
regional  correlation algorithm of the cited accelerometer 
research [ 12, 13, IS]. This  paper suggests  a  device which 
may sharpen  that  technique. 

Any  recognition algorithm saves data  from prior  signa- 
tures  and  takes corresponding data from each new signature. 

It digests  these into  numerical indices and  compares  them 
with some  threshold  values.  But  proper matching of such 
data  requires  an allowance for certain normal  variations. 
Thus, procedures  for nonlinear time-stretching allow non- 
constant distortions of the  time axis, to superimpose  signa- 
tures with irregular writing  speeds [ l ,  l l ,  241. However, 
techniques with such flexibility demand  computations of 
some length.  Hence  the regional  correlation algorithm  takes 
acceleration values a t  equal time intervals,  tries moderate 
shifts of natural  data  segments which align  their sampling 
times with reference  sampling instants,  and finds the best 
“correlation”  among these  various alternatives. However, 
this  algorithm  admits no variations in writing speed, and  its 
time-shifts include no fractions of the  sampling interval. The 
proposed improvement  incorporates  time-shifts by arbitrary 
small  amounts-and  it allows a  different, constant speed in 
each  handwriting  segment. 

The  author’s previous model [ 16, Section 91 assumes two 
accelerometers,  nearly  coincident on the pen axis, measuring 
orthogonal  components perpendicular  to  this axis. Such 
layouts  record  different numerical values if the  same person, 
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between two signatures, merely rotates  the pen about its  axis; 
but the regional  correlation algorithm allows  such rotations 
[ 12,  13, 181. Also, it lets each  handwriting  segment have a 
different, constant  amplitude.  The proposed improvement 
retains these features,  and  it involves similar  computations. 
Previous  workers [3, 6 ,7 ,  161, among  them  the  author, have 
considered  various analogs of covariance  analysis  to weight 
important  features of signature  data.  This new technique 
simply obtains  the best fit after  permitting  the  natural 
transformations. 

The  algorithm uses the  same global calculation, but  it 
redefines the  intersegment  distance.  Indeed,  measurements 
from a  segment  and its  reference form vectors z and zo in the 
complex inner-product  space C”, and  the  inner product 
defines a “correlation coefficient” yo such that 1 - )yolz is 
the present segment  distance.  We  interpret such  vectors in a 
2n-dimensional real inner-product space,  then introduce 
auxiliary reference  vectors for small time-shifts or speed 
variations,  and  replace  the old distance  formula by a more 
general minimization  problem. Here  the plausible general- 
ization is not an  unrestricted  minimum, so the  domain 
boundary may contain  the minimizing  point.  However, the 
calculation on the boundary is a lower-dimensional analog of 
the original  problem; therefore, inductive use of our basic 
Lemma gives the global minimum on the  restricted  domain. 

Section 2 introduces our concepts and  calculates  the 
unrestricted  minimum. Section 3 reviews the regional corre- 
lation algorithm  and motivates our proposed change.  Section 
4 describes the new algorithm  and proves its  validity. All 
computational  details  are  standard  linear  algebra  [26]. 

2. Preliminaries 
If t,, v, are real numbers  and {, = (, + iq,, then  the set C“ of 
complex  n-tuples z = (Cl, ..., {”) forms an  additive  group 
under  the usual  componentwise addition. Indeed, this  group 
becomes an n-dimensional  complex inner product space if  we 
introduce complex scalar multiplication and  the inner prod- 
uct 

However, this group becomes a 2n-dimensional real inner 
product space if  we employ only real scalar multiplication 
and  the  inner product 

These products obey the simple  relation 

( 2 1 3  2 2 ) R  = Re [(z , .  z,),], (3) 

whence  both  define the  same norm 

Thus  the normalization of a nonzero vector z will yield the 
same z /  11 z 11 in both spaces,  but the  orthonormalization of a 
sequence zlr z2, ... may give different  results after  the first 
vector.  Moreover, any  orthonormal basis for the real inner 
product ( * ,  ) R  defines an isomorphism-isometry onto real 
Euclidean  2n-space, even when the basis vectors have com- 
plex components. Since  the norm (4) defines the topology, 
clearly, both spaces  have the  same topology. This notation 
clarifies the model in Section 3; the next  lemma simplifies 
the proof in Section 4. 

Given a finite sequence zo, z , ,  ..., z,, in C“ which is linearly 
independent over the real numbers,  form  the corresponding 
orthonormal sequence wo, w I ,  ..., wm in C“ which is deter- 
mined by the inner  product (., Then  each vector u in the 
domain 

has a representation 
m 

e‘@ . E u,w, 

for some real numbers uo, ..., urn. If 4* = p + r r  and u,? 
= (- l)’u,, where r is any  integer,  then 4*, ut, ..., uz fix the 
same vector. Also, any vector w defines two others 

,=0 

”! 1 

a = z: a,w, 9 b = E P,w, 3 

I - 0  ,=0 

where the real numbers, a,, p, satisfy 

a, -t io, = 7, = (w,, w ) ~ ,  j = 0, 1, ..., m. ( 7 )  

Let the  functionf(v) = 11 u - w /I ’, restricted to  the  domain 
D(z,, .-., zm),  have local minima precisely on a set M(w, z0, 

..., zm). Note  the following analog of  Bessel’s inequality, 
extending  a  remark by R. K .  Brayton [I].  (The corollary is 
well known, but its statement is convenient.) 

Lemma 
Any vector in M(w,  zo, . . ., z,,,) has the form 

m 

u = x w, . Re [y,e”@] = a . cos 4 + b . sin 4 
,=0 

for  some  real number 4. I f  
m E 7; = 0, 

,=0 

then 1 )  a /I = 11 b 1 1  and (a ,  b)R = 0, while 4 is an  arbitrary 
real number; so M ( w ,  zo, ..., zm) is a circle, and its  points 
yield the  same minimum  value. If 
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and  any solutions 4,, 6' have  difference r r ,  where r is an 
integer; so M ( w ,  zo, . .., zm) is a  single  vector, and  this point is 
the only local minimum.  Hence all local minima  are global 
minima,  and  the  minimum value is 

Proof Expand 1 1  u - w ( 1  ' via the w), using the  orthonor- 
mality of these vectors: 

Clearly 

x 7: = 11 a II' - II b II ' + i(a, blR ; 
m 

J=o 

hence the  last  form yields the  stated results. 

3. Distance 
Suppose two accelerometers fixed inside  a  pen,  having the 
same location (nearly) on the pen axis and measuring 
orthogonal acceleration components perpendicular  to this 
axis. If [ ( T ) ,  V ( T )  are  the  measured components,  where 7 

denotes time, then 

= [ ( T )  + (1 3) 
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holds the  same information. Let equally  spaced times T , ,  T', 

... during a signature yield measured values ( K T , ) ,  K T ' ) ,  ... ). 
Let some processing of earlier  data yield a  reference  signal 
(c0(7,), { & T ~ ) ,  ...). The regional correlation  algorithm 
[ 12, 13, 181 divides the new signal into  natural  segments 
( { ( T ) + ~ ) ,  {(T),'),  ..., K T ) , " ) )  and  evaluates  their "similarity 
distance"  from translated  segments ({o(~k+l), { & T ~ + ~ ) ,  ... 
{ o ( ~ k + , ) ) .  Then it chooses the closest fit among possible 
translations,  and it  combines  these segment distances into 
one global  index. If  new and reference segments have 
different  lengths, then adjoined zeros first equalize  them. 

Our proposed improvement keeps the  same global calcu- 
lation;  it  simply changes  the segment distance  formula. 
Hence,  relabeling  observation  times, we treat only one seg- 
ment 

= ({(TI), ( ( 7 2 ) '  ' ' ' 3  { (T , ) ) ,  (14) 

and, choosing a particular  translation, we compare  an  equal- 
length  reference 

20 = (!3Tl). .rO(TZ)' '.'. ! 3 T n ) ) .  (15)  

Now,  the complex  inner  product  space C" contains z and zo. 
But the presently used [ 12, 13, IS]  intersegment  distance is 
1 - 1 yolz, where  the "correlation  coefficient" yo is 

(ZO, Z),./II 20 II * / I  z II; 
so the  Schwarz inequality  implies  nonnegative 1 - I yo 1' and 
proportional z, zo have  vanishing segment  distance. 

Indeed,  multiplying either z or z0 by a positive number p or 
a  phase factor eim yields precisely the new or reference data 
for  uniformly  scaled measurements or an axially rotated pen, 
while multiplying either z or zo by any nonzero  complex 
number yields, obviously, the  same  numerical values of I yo 1 
and 1 - I yo 12. This property  for  individual  segments shows 
the claimed  invariance of the global  index. Also, normalizing 
z does not change I - 1 yo 12. But if w = z /  ( 1  z ( 1 ,  then 

1 - I Yo l 2  = cL(w, 20) 

= min { 11 w - poe"zo ( 1  : 6, po real numbers] (16) 

by our Corollary; so if the reference admits  arbitrary scaling 
and  rotation,  then  the present  segment distance is just  the 
closest fit to this w. Hence  an improved distance would be the 
corresponding minimum when the reference  segment under- 
goes further  natural  transformations: ( I )  time  translations 
by a  fraction AT of a sampling  interval;  (2) uniform change in 
writing  speed during a segment. 

The time-dependent reference CO(7), after such transfor- 
mations, takes  the  approximate form 

{ob((l + @ ( T  - TaJ + Ta, + AT) 

Co(T) + A T  (6 ( T )  + 6 . (7 - T,,){d ( T )  (1 7 )  



by Taylor's theorem.  Here AT is a short  time  and 6 is a small 
real number, while T~~ = ( T ]  + ~ , ) / 2  and Ci((7) = d{,,/dT. If 
we can smooth C0(7)  well enough so that we can find ( i ( 7 )  

numerically,  then we can define the  three vectors 

20 = ( C O ( 7 1 ) '  CJTJ. ...) C O ( T , J ) ~  

= ( C i ( 7 I ) y  { ~ ( T J .  ' ' ' 9  Ci(7,,)), 

z2 = ( b ]  - T a v ) C ~ ( 7 1 ) >  '.'> b n  - 7 a v ) S b ) ( T n ) ) >  (18) 

and we can  introduce  the  domain 

~ ~ ( z , ,  z,, Z J  = W ( z ,  + X,Z, + X,ZJ 

: 4, p real numbers, -K,  5 X, 5 K ) .  (1 9) 

Here  the  domain  admits negative scale  factors p because 
these  have  physical interpretations: namely, the  domain 
admits all angles 6, and -pei' = pei('+*) . Moreover, the 
positive constants K ]  and K' in ( 1  9) bound respectively the 
small parameters AT and 6 in (17), and  thus limit the 
transformations ( 1 )  and  (2) in this  approximate  form. 

But the old segment  distance is the  minimum (1 6), so our 
proposed replacement is the  quantity 

u(w, zo, zI, 2,) = min 1 /I u - w I/ ' : u D,(z,, z,, ZJI. 
(20) 

We now present an  algorithm which easily computes  this 
minimum. 

4. Algorithm 
The  broader  context of Section 2 permits a simpler discussion 
of the  algorithm.  Hence,  take  any finite sequence z,,, ..., zm 
linearly independent over the real numbers.  Again  form  the 
orthonormal  sequence w,,, ..., wm determined by the  inner 
product (., .),. Choosing positive constants K , ,  ..., K ~ ,  intro- 
duce  the  domain 

6, p real numbers, - K ,  5 X, 5 K, . (21) 1 
I 

Now, given nonzero vector z, take w = z /  /I z I/ and  restate 
problem (20): find 

v(w, zo, ..., zm) = min { (1 u - w ( 1 '  : u t ~ , ( z , ,  ..., zm)}. 

(22) 

Clearly,  the nonvoid compact  subdomain B n Do(z,, . ., zm) 
contains  any  optimal point u, where 

B = [ u € C " : I l u - w ( 1 5 1 1 z 0 - w l l ~ .  (23) 

Thus  the  continuity of I/ u - w 1 1 '  implies the existence of 
this minimum. Also, by definition ( 9 ,  the previous domain 
D(zo, ..., z,) includes the new set Do(zo, ..., zm); and, for a 
single vector zo, 

Given any disjoint subsets S' and S-  of {l ,  . .., m}, alter  the 
definition (21) of Do(z,, ..., zm) so that X, = ' K ~  when j 
E S'. The resulting subsets for any S', S- are  the faces of 
D,(z,. ..., zm). If S+ = S-  = 4, then  the defined set is the 
improper face D,(z,, ..., zm). If S' U S- is a  singleton {k} ,  
then the defined set is a maximal face. Indeed, X, = k K ~ ;  so 
the set is 

Do(z, * K k Z k '  2 1 '  ' . '? zk-]'zk+]l '") zm). (25) 

Inductively, each proper face has  form D,,(z$, ..., z:), where 
the  integer r < the given m. Moreover, the norm topology for 
C" defines a  relative topology on D(z,, ..., zm) such that  the 
union of the  maximal faces  includes the boundary  points of 
D,(z,, ...> zm). 

Inductive algorithm 
Use the results of our Lemma  to find the set M(w,  zo, ..., zm) 
in the previous domain D(z,,, ..., zm). If M(w,  zo, ..., 2,) f' 
Do(zo, ..., zm) is nonvoid, then its elements yield the mini- 
mum (22). If this intersection is void, then  take all maximal 
faces of Do(zo, ..., zm), each a  set  having  form (25),  and use 
this  algorithm on every  such face  to find its minimizing  set 
for I/ u - w / I  2; finally, choose the  computed vector or set 
with the smallest 11 u - w I/ '. 

Theorem 
This  algorithm finds the minimum (22),  and it takes finitely 
many  steps. 

Proof If m = 0, then  (24) implies the result. If the result 
holds for integers up  to m - 1, then  it holds for all maximal 
faces of D,(z,, ..., 2,). If no point of Do(zo, ..., zm) yields  a 
global minimum over D(zo, ..., zm), then  the  Lemma implies 
that no interior point of Do(zo, ..., zm) yields a local minimum 
of ( 1  u - w ( 1  '; thus,  some  maximal  face  contains  the desired 
minimum. 

Clearly,  the  domain D,(zo, ..., zm) has 3"' faces, and 
probably large m need faster  algorithms. However, our 
motivation is (20),  and  there m = 2. Moreover, our discus- 
sion has concealed one small  problem,  namely, that  the 
algorithm must determine  the set M(w,  zo, ..., zm) n Do(zo, 
. . ., zm). Hence, using the notation of Section 2, we treat  the 
two cases of the  Lemma. Our recent disclosure  [26] contains 
more computational  details. 

I .  If 
m 

E r)= 0, 
/ -0  

then M(w,  z,,, . .., zm) is the circle [a  . cos 4 + b . sin 6 : 4 
real), where I( a /I = I/ b I/ and (a ,  b ) ,  = 0. If 

rn m 

a x and = 1 Pb, Iz j  9 

J=o j = O  
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then  the  intersection is void when = pb,O = 0. 
Otherwise, let u be any real number, and define I 
4.) = [(P,,o)z + (Pb,0)21” 

I 

x [(Pa,, - %,& + (Pb.0 + %,o)bl 
i 

= 2 0  + [(P,,)’ + (Ph.0)21 ~ ’ 
rn 

x x b a . 0  Po., + Ph.0 Ph., + u(Pa,O Pb., - Ph.0 P q ) I 2 j  ‘ 
j= I 

( 2 6 )  
Then the intersection  contains z (u ) /  /I z(u) /I precisely 
when DO(zo, ..., zm) contains Z ( U ) .  Thus  the  admissible  
values u satisfy 

I Po.0 P o j  + Pb.0 PbJ + u(PaO PbJ - Pb.0 P a d )  I 
5 K,[(Pa,0)2 + ( P b , J 2 l ?  (27) 

w h e r e j  = I ,  ..., m ,  and these  inequalities  delimit a (possibly 
void)  u-interval. 
2. I f  

27; f 0, 
j=O 

then  M(w,  zo, . .., z,,,) contains a single  vector 

u = e” . x u.w = e@ . x p,z, . 

But  the  intersection  is  void  when po = 0; otherwise  the 

intersection  is {u )  when  all  I p,/pO I 5 K, . 

m m 

/ I  (28) 
j=O ,=0 
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