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b An Improved Regional Correlation Algorithm for Signature
Verification Which Permits Small Speed Changes Between
Handwriting Segments

If two nearly coincident accelerometers on a pen axis measure orthogonal acceleration components perpendicular to this axis,
then the regional correlation algorithm for signature verification divides these data into plausible segments, it compares each
segment with a corresponding reference, and it combines the results into a global similarity index. The presently used
p intersegment distance permits certain natural data transformations: (1) translating a segment by small integer multiples of the
sampling interval; (2) moving the pen with uniformly larger amplitude throughout a segment; and (3) rotating the pen about its
axis between any two segments. We propose a new intersegment distance which permits further natural transformations: (4)
translating a segment by a fraction of the sampling interval; and (5) writing at slightly different uniform speed within each
segment. The new distance, like the old one, is the minimum of a certain function. We describe an algorithm which computes

this minimum.

1. Introduction

Recent attempts at signature verification have measured
various concomitants of human handwriting [1-25]. Specifi-
cally, a group at the IBM Thomas J. Watson Research
Center has proposed measurement of the related accelera-
tions [8, 14]. They have developed a pen with imbedded
accelerometers and have achieved high selectivity with the
resulting data [12, 13, 18]. This author has provided a
mathematical structure for such measurements and has
deduced optimal layouts of imbedded accelerometers 15—
17]. His work supports the idea that the acceleration of the
pen point is the essential carrier of signature information; it
offers an argument [16, Section 5] that full recovery of the
point motion demands six accelerometers inside the pen.
However, diagnostic information from fewer instruments has
furnished good results through astute data analysis, and one
statistical technique with remarkable success has been the
regional correlation algorithm of the cited accelerometer
research [12, 13, 18]. This paper suggests a device which
may sharpen that technique.

Any recognition algorithm saves data from prior signa-
tures and takes corresponding data from each new signature.

It digests these into numerical indices and compares them
with some threshold values. But proper matching of such
data requires an allowance for certain normal variations.
Thus, procedures for nonlinear time-stretching allow non-
constant distortions of the time axis, to superimpose signa-
tures with irregular writing speeds [1, 11, 24]. However,
techniques with such flexibility demand computations of
some length. Hence the regional correlation algorithm takes
acceleration values at equal time intervals, tries moderate
shifts of natural data segments which align their sampling
times with reference sampling instants, and finds the best
“correlation” among these various alternatives. However,
this algorithm admits no variations in writing speed, and its
time-shifts include no fractions of the sampling interval. The
proposed improvement incorporates time-shifts by arbitrary
small amounts—and it allows a different, constant speed in
each handwriting segment.

The author’s previous model [16, Section 9] assumes two
accelerometers, nearly coincident on the pen axis, measuring
orthogonal components perpendicular to this axis. Such
layouts record different numerical values if the same person,
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between two signatures, merely rotates the pen about its axis;
but the regional correlation algorithm allows such rotations
[12, 13, 18]. Also, it lets each handwriting segment have a
different, constant amplitude. The proposed improvement
retains these features, and it involves similar computations.
Previous workers [3, 6, 7, 16], among them the author, have
considered various analogs of covariance analysis to weight
important features of signature data. This new technique
simply obtains the best fit after permitting the natural
transformations.

The algorithm uses the same global calculation, but it
redefines the intersegment distance. Indeed, measurements
from a segment and its reference form vectors z and 2, in the
complex inner-product space C”, and the inner product
defines a “correlation coefficient” v, such that 1 — '70|2
the present segment distance. We interpret such vectors in a
2n-dimensional real inner-product space, then introduce

is

auxiliary reference vectors for small time-shifts or speed
variations, and replace the old distance formula by a more
general minimization problem. Here the plausible general-
ization is not an unrestricted minimum, so the domain
boundary may contain the minimizing point. However, the
calculation on the boundary is a lower-dimensional analog of
the original problem; therefore, inductive use of our basic
Lemma gives the global minimum on the restricted domain.

Section 2 introduces our concepts and calculates the
unrestricted minimum. Section 3 reviews the regional corre-
lation algorithm and motivates our proposed change. Section
4 describes the new algorithm and proves its validity. All
computational details are standard linear algebra [26].

2. Preliminaries

Ifgj, n; are real numbers and § = § + im, then the set C” of
complex n-tuples z = ({,,---, §,) forms an additive group
under the usual componentwise addition. Indeed, this group
becomes an n-dimensional complex inner product space if we
introduce complex scalar multiplication and the inner prod-
uct

(2, 2))¢ = Z ?l‘iflj’zj =& —in. (M

However, this group becomes a 2n-dimensional real inner
product space if we employ only real scalar multiplication
and the inner product

(2, 2)g = Z [gl‘jEZ,j + 771,;772‘,>]~ (2)

These products obey the simple relation

(21, 2)g = Re [(z2), 2)) ] 3)

whence both define the same norm

l2]°=(z,2) = (2, 2)¢- (4)

Thus the normalization of a nonzero vector z will yield the
same z/ || z || in both spaces, but the orthonormalization of a
sequence z,, z,, --- may give different results after the first
vector. Moreover, any orthonormal basis for the real inner
product (-, -), defines an isomorphism-isometry onto real
Euclidean 2n-space, even when the basis vectors have com-
plex components. Since the norm (4) defines the topology,
clearly, both spaces have the same topology. This notation
clarifies the model in Section 3; the next lemma simplifies
the proof in Section 4.

Given a finite sequence z, z,, -+, 2,, in C” which is linearly
independent over the real numbers, form the corresponding
orthonormal sequence wy, w,, .-, w, in C" which is deter-
mined by the inner product (-, -),. Then each vector v in the
domain

m
D(zy -+, 2,) = le” Z 0,2, ¢, po s b, T€al numbers
j=0

(5)

has a representation

m
i}
.Y o
j=0
for some real numbers o, -+, 0,,. If * = p + rr and aj?"
= (—1 )’aj, where r is any integer, then ¢*, 6%, -+, o* fix the
same vector. Also, any vector w defines two others

nt nt

a=Zaij., b:Zﬁjwj, 6)
j=0 j=0

where the real numbers, «, 8, satisfy

o i =y, =W, W, =01, m (7

Let the function f(2) = [ v — w Hz, restricted to the domain
D(zy, --+, z,,), have local minima precisely on a set M(w, z,,
-+, z,). Note the following analog of Bessel’s inequality,
extending a remark by R. K. Brayton (1]. (The corollary is
well known, but its statement is convenient.)

% Lemma
Any vector in M(w, z,, -+, z, ) has the form

U=ij-Re['yje’i"’]=a-cos¢+b-sin¢ (8)
j=0
for some real number ¢. If
¥, =0,
j=0
then | a |l = | & and (a, b), = 0, while ¢ is an arbitrary

real number; so M(w, 2, -
yield the same minimum value. If

", z,,) is a circle, and its points
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2 v #0,
j=0
then
i = = 2
e”=va/ >, 9)
=0 j=0

and any solutions ¢,, ¢, have difference rr, where r is an
integer; so M(w, z,, -*+, z,,) is a single vector, and this point is
the only local minimum. Hence all local minima are global
minima, and the minimum value is

3
Z Y
=0

+ Zlv,lz‘. (10)
j=0

1
MM%uﬂ»=HWW-ﬁ

Proof Expand [[v — w |’ via the w, using the orthonor-
mality of these vectors:

m
w—e?. Zajwj

Jj=0

2

= wl* + i Uf —2-Re [i crj(e'id’w, wj)Cl
= |w|* + Z {aj - Re [(w;, e "wy)f
_ %; [ w,w)e+ (W, e “w) ]

— I+ 3 b, — Re (v, 1P

j=0
D RN R
25 T = (1)
Clearly
Yv=lal> =161+ i(a b);
Jj=0

hence the last form yields the stated results.

® Corollary

Ifm=0and |wl| = 1, then v, = (w,, W) = (25, W)/
| z, || and
wlw, z0) = 1= | x| (12)

3. Distance

Suppose two accelerometers fixed inside a pen, having the
same location (nearly) on the pen axis and measuring
orthogonal acceleration components perpendicular to this
axis. If £(r), n(r) are the measured components, where 7
denotes time, then

§(r)y = &) + in(7) (13)
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holds the same information. Let equally spaced times 7, 7,,
--- during a signature yield measured values ({(7,), {{(7,), -**).
Let some processing of earlier data yield a reference signal
(), §(7,), --). The regional correlation algorithm
[12, 13, 18] divides the new signal into natural segments
({(T].H), G REEE(C /)| and evaluates their “similarity
distance” from translated segments (§(7,,,), {(7,.,) -
$o(r,,,)). Then it chooses the closest fit among possible
translations, and it combines these segment distances into
one global index. If new and reference segments have
different lengths, then adjoined zeros first equalize them.

Our proposed improvement keeps the same global calcu-
lation; it simply changes the segment distance formula.
Hence, relabeling observation times, we treat only one seg-
ment

z = ({(r)), §(1,), - {(7,)), (14)

and, choosing a particular translation, we compare an equal-
length reference

2y = ((0(7-1)9 g‘o(Tz)’ Tt (0(7,,))' (15)

Now, the complex inner product space C” contains z and z,,.
But the presently used [12, 13, 18] intersegment distance is

1 — |v,[°, where the *“correlation coefficient” v, is
(o D)/l 2 1+ 1 2 [l
so the Schwarz inequality implies nonnegative 1 — | Yo |*and

proportional z, z, have vanishing segment distance.

Indeed, multiplying either z or z, by a positive number p or
a phase factor ¢ yields precisely the new or reference data
for uniformly scaled measurements or an axially rotated pen,
while multiplying either z or z, by any nonzero complex
number yields, obviously, the same numerical values of |7, |
and 1 — |'yo|2. This property for individual segments shows
the claimed invariance of the global index. Also, normalizing
z does not change I — I'yolz. Butifw = z/ || z ||, then

1 - 17()'2 = I-L(Wa zo)
= min { | w — pe”z, I’ : ¢, p, real numbers} (16)

by our Corollary; so if the reference admits arbitrary scaling
and rotation, then the present segment distance is just the
closest fit to this w. Hence an improved distance would be the
corresponding minimum when the reference segment under-
goes further natural transformations: (1) time translations
by a fraction Ar of a sampling interval; (2) uniform change in
writing speed during a segment.

The time-dependent reference {,(+), after such transfor-
mations, takes the approximate form

Sl + 0)(r —
=) + AT () + o (r =T )G (A7)

Tav) + Tav + AT)
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by Taylor’s theorem. Here Ar is a short time and § is a small
real number, while 7, = (v, + 7,)/2 and {; () = d{,/dr. If
we can smooth {,(7) well enough so that we can find {;(7)
numerically, then we can define the three vectors

2y = (§Q(T|)a fo(Tz)s Tty {0(7,,))’
z, = (§6 (T|)’ §6 (72)5 HAEY g-(; (T,,));
= 1,08 (1), s (7, ~ 7 )60 (7)), (18)

and we can introduce the domain

z, = ((r,

Dy(2g, 2,5 2,) = {0 (2, + N2, + A\,2,)

: ¢, p real numbers, —x, <\, < k). (19)
Here the domain admits negative scale factors p because
these have physical interpretations: namely, the domain
admits all angles ¢, and —pe® = pe'®*™. Moreover, the
positive constants «, and «, in (19) bound respectively the

small parameters Ar and & in (17), and thus limit the
transformations (1) and (2) in this approximate form.

But the old segment distance is the minimum (16), so our
proposed replacement is the quantity
v(w, zy, 2, 2,) = min {lo-wl?:v€ Dy(zy, 2, zz)}.
(20)

We now present an algorithm which easily computes this
minimum.

4. Algorithm
The broader context of Section 2 permits a simpler discussion
of the algorithm. Hence, take any finite sequence z,, -, z,,

linearly independent over the real numbers. Again form the
orthonormal sequence w,, ---, w, determined by the inner

product (-, -).. Choosing positive constants «;, -+, «,,, intro-
duce the domain
m
i¢
Dylzg -+ 2,) = { pe’ (zo ) Ajzj)
j=1
: ¢, p real numbers, —K SN S 210

Now, given nonzero vector z, take w = z/ || z | and restate
problem (20): find

v(w, 2y, -+, 2,,)) = min o —wl*:ve Dy(zp, * s zm)}.
(22)

Clearly, the nonvoid compact subdomain B (M Dy(z,, --+, 2,,)
contains any optimal point , where

B={veC":o-—w|=<l|z-wlh (23)

Thus the continuity of || v — w || * implies the existence of
this minimum. Also, by definition (5), the previous domain
D(z,, -+, z,,) includes the new set Dy(z,, --+, z,,); and, for a
single vector z,,

D(z,) = Dy(z,). (24)

Given any disjoint subsets S* and S~ of {1, ---, m}, alter the
definition (21) of D(z,, -+, 2,) so that A, = *«; when j
€ S*. The resulting subsets for any S*, S~ are the faces of
Dy(zy -+ 2,). If ST = 8§ = ¢, then the defined set is the
improper face Dy(zy, -+, 2,). If §* ) S™ is a singleton {k},
then the defined set is a maximal face. Indeed, \, = *«,; so
the set is

Dyfzy = K2p 215 " 241> Zpy s "> Zr)- (25)

Inductively, each proper face has form Dy(zf; ---, z¥), where
the integer r <C the given m. Moreover, the norm topology for
C" defines a relative topology on D(z,, ---, 2,,) such that the
union of the maximal faces includes the boundary points of
Dy(zy 05 2,).

® [nductive algorithm

Use the results of our Lemma to find the set M(w, z,, -+, z,))
in the previous domain D(z,, -+, z,). If M(w, z;, ---, z,)) M
Dy(z,, -*-, 2,) is nonvoid, then its elements yield the mini-
mum (22). If this intersection is void, then take all maximal
faces of Dy(z,, -+, z,,), each a set having form (25), and use
this algorithm on every such face to find its minimizing set
for | v — w % finally, choose the computed vector or set
with the smallest | v — w || *.

® Theorem
This algorithm finds the minimum (22), and it takes finitely
many steps.

Proof If m = 0, then (24) implies the result. If the result
holds for integers up to m — 1, then it holds for all maximal
faces of Dy(z,, -+, z,,). If no point of D(z,, -, z,) yields a
global minimum over D(z,, - -+, z,,), then the Lemma implies
that no interior point of Dy(z,, -, z,,) yields a local minimum
of | v — w||% thus, some maximal face contains the desired
minimum.

Clearly, the domain Dz, -, z,) has 3" faces, and
probably large m need faster algorithms. However, our
motivation is (20), and there m = 2. Moreover, our discus-
sion has concealed one small problem, namely, that the
algorithm must determine the set M(w, z;, --+, 2,,) () Dy(z,
.-+, z,). Hence, using the notation of Section 2, we treat the
two cases of the Lemma. Our recent disclosure [26] contains
more computational details.

1. If

> v =0,

j=0
then M(w, z,, -+, z,) is the circle la-cosgp +b-sing:¢
real}, where || a | = || # || and (a, b),=0.1If

m m
a= Z p, ;% and b = Z Py ;s
j=0 j=0
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then the intersection is void when p,, = p,, = 0.
Otherwise, let ¢ be any real number, and define

2(0) = [(p,0)" + (050)] "

X [(pavo - Upb‘o)a + (pb,o + O'pa_o)b]

I

=z + [(0,0) + (001"

X Z [pa,opa,j + pb,o pb,j + O'(puvopbvj - PhVOPaJ)]Z,w
j=1

(26)
Then the intersection contains z(s)/ I z(a) | precisely

when Dy(z,, -+, z,) contains z(¢). Thus the admissible
values ¢ satisfy

|pa,o Py + Pyo P + U'(P,,»O Ppi = Ppo Pa‘,-) |
2 2
=x{p0) + ()], (27)

where j = 1, ---, m, and these inequalities delimit a (possibly
void) o-interval.

2.

If

m

2 #0,

j=0

then M(w, z,, ---, z,)) contains a single vector
n m

v=2¢e". Z oW, = & . Z P2, . (28)
j=0 j=0

But the intersection is void when p, = 0; otherwise the

intersection is {o} when all|p,/p, | =< «; .
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