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Axisymmetric Motion of Radially Polarized Piezoelectric
Cylinders Used in Ink Jet Printing

An analysis of the low frequency response of piezoelectric squeeze tubes used in drop-on-demand ink jet printing is carried out.
The displacements at inner and outer boundaries are determined as a function of voltage and fluid pressure. The results are
used to obtain fluid pressure per applied voltage as a function of inner and outer radius. Numerical computations are carried
out for PZT-5H, and results are presented in graphical form which can be used to optimize design dimensions. The effect of

finite electrode thickness is also studied.

1. Introduction

This study was carried out for the purpose of determining the
motion of piezoelectric cylinders used in drop-on-demand ink
jet printing technology as described by Zoltan [1]. A cylinder
of this kind is typically made of a strongly coupled piezoelec-
tric ceramic that is polarized in the radial direction. The
cylinder has a concentric cylindrical hole which is filled with
a fluid (ink) during operation. The inner and outer cylindri-
cal boundaries of the ceramic are coated with thin electrodes
and are thus constrained to be electrical equipotential sur-
faces. The ejection of drops results from the interaction of
pressure waves due to the radial motion of the cylinder with
the free meniscus surface. This motion is produced by the
application of an electric potential difference between the
two electrodes.

From the general description of the problem given above,
it is apparent that a first analysis should emphasize the radial
motion of the cylinder. Depending on the specific mounting
design, the axial motion may, by assumption, be ruled out or
it may be allowed only as incidental to and as a by-product of
the radial motion. In the former case, we have a state of plain
strain and in the latter case, where we make the assumption
of vanishing normal stress in the axial direction, the state is
closer to plane stress.

Lazutkin and Tsyganov [2] considered the axisymmetric,
plane stress, harmonic radial vibrations of thick-walled short
cylinders (rings) and obtained an exact expression for the
amplitude of the radial displacement as a function of radial
coordinate and frequency. They also calculated the values of
the two lowest open-circuit mechanical resonance frequen-
cies. However, their work was restricted to the case of
stress-free inner and outer boundaries. Burt [3] extended the
solution for the radial displacement in [2] to the case of
vanishing frequency (static case). But, in attempting to
further extend the solution of [2] to obtain the voltage
response to harmonic excitation by internal pressure, he
introduced an artificial mechanical condition to determine
an unknown electrical parameter despite the fact that a
circuit equation is required for that determination. Adelman,
Stavsky, and Segal [4] obtained solutions for various bound-
ary conditions in the plane strain case for axisymmetric
harmonic radial vibrations.

In this paper we restrict the study to the quasistatic motion
of piezoelectric cylinders. For the static case only, the plane
stress idealization and other assumptions made in obtaining
the deformation of a ring are also adequate for a long
cylinder. We also carry out numerical calculations with the
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Figure 1 Cross section of piezoelectric cylinder used in ink jet
printing.

static solution to predict the response of the squeeze tubes to
voltage and pressure excitations at low frequencies. In addi-
tion, the mechanical effect of the electrodes on the response
of the cylinder is determined. Finally, the question of the
optimal cylinder dimensions from the point of view of ink jet
application is considered.

2. Theoretical background

The problem is analyzed in terms of the three-dimensional
linear theory of piezoelectricity. This theory can be summa-
rized by the following system of 22 field equations in 22
variables that are functions of time ¢ and position (x,, x,, x,)
as determined with respect to a Cartesian system of coordi-
nates:

T,, = ol ey

D, =0, : (2)

Si/’ = STy + &P (3)

Ei=—-guTy+ Biij’ (4)
1

S = 5 (uy g + g,), &)

E, = —¢.,. 6)

The lower case latin indices range over 1, 2, 3; summation of
repeated indices is implied; a comma denotes partial differ-
entiation, and a superposed dot indicates differentiation with
respect to time.

The terms that appear in these equations are Cartesian
components of tensors as listed below:

T,.j stress tensor,

N. BUGDAYCI ET AL.

D, electric displacement vector,
S, strain tensor,

E, electric field intensity vector,
u, displacement vector,

¢ electric scalar potential,

p mass density,

8 ke elastic material tensor,

Lux piezoelectric material tensor,
B, dielectric material tensor.

We assume that the material is homogeneous, in which case
P S k9> Eurg» and B, are constant.

Equations (1) are the local stress equations of motion in
the absence of body forces. The condition (2) on the electric
displacement vector involves the assumption of a quasistatic
electric field. Equations (3) and (4) are the constitutive
equations reldting strain and electric field intensity to stress
and electric displacement. Through the material constants,
these equations characterize the behavior of the piezoelectric
material. Finally, Eqgs. (5) and (6) give the definitions of the
mechanical strain and the electric field intensity in terms of
the mechanical displacement components and the electric
potential, respectively.

It is convenient to express the constitutive relations (3)
and (4) in the usual compressed subscript notation:

S;=5,T,+ &uDs (M
E, = —g,T,+8,D; (8)

i

In (7) and (8), capital Latin indices have replaced pairs of
lower case Latin indices. Accordingly, these capital indices
take values 1 to 6.

The behavior of the piezoelectric material can also be
characterized by the following alternate set of constitutive
equations, which have the mechanical strain tensor and the
electric field intensity vector as independent variables:

T, =

1= €y

D, =e,S,+¢;E,, (10)

i

S, - e,E, )

where this time ¢, €,,, and ¢, are elastic, piezoelectric, and
dielectric material constants, respectively.

3. Analysis of the problem

We now apply the theory of piezoelectricity summarized
above to the problem of determining the response of a hollow
piezoelectric cylinder to voltage and pressure excitations.
Figure 1 shows the cross section of the cylinder. The inner
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and outer radii of the piezoelectric layer, the inner radius of
the inner electrode, and the outer radius of the oute
electrode are denoted by r,, r,, r,, and r,, respectively.
Figure 2 shows the perspective view of the cylinder alon
with a cylindrical polar coordinate system. Also shown in this
figure is the driving circuit that includes a voltage source. In
the analysis that follows we use Eqgs. (1)—(10) in their
equivalent polar form whenever it is necessary.

The piezoelectric material we are interested in is PZT-5H.
This ceramic effectively has the symmetry of a hexagonal
crystal in class C,, (or 6mm). The restrictions on the elastic,
piezoelectric, and dielectric constants of a material possess-
ing this symmetry are expressed by the following arrays, in
which the direction of the x, axis of the Cartesian coordinate
system is taken to coincide with the direction of polariza-

tion:
(¢, ¢, ¢35 0 0 07
€y €y €, 0 0 0
c; ¢, ¢, 0 0 O
[Cu] = 5
0 0 0 ¢, O 0
0 0 0 0 ¢, O
| O 0 0 0 0 c,
]
Css 5 (Cll - CIB)’

0 0 0 ¢, 0 O
¢, 0 O

[efj]= 0 ¢ O]. (11)
0 0 ¢

The alternate set of constants s,,, g,,, and 3, also exhibit the
same symmetries as those expressed by the above arrays.

The analytical results derived in this paper hold for all
piezoelectric materials in class C,,, even though the specific
material constant values for PZT-5H are used in the numer-
ical calculations.

The assumptions of the analysis are the following:

1. The motion of the cylinder is axisymmetric. Associated
with this assumption are (a) the absence of dependence of
field variables on the circumferential coordinate 6 and (b)
the vanishing of the circumferential displacement ,.
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A0 {6

Figure 2 Coordinate system of piezoelectric cylinder and sche-
matic of driving circuit.

2. In order to avoid the complications resulting from cou-
pling with the axial modes of motion, we make the
assumptions that the radial displacement «, and the scalar
electric potential ¢ do not depend on the axial coordinate
z and also that the axial displacement u, does not depend
on the radial coordinate r.

3. We assume the condition of plane stress, i.e., the normal
stress in the axial direction is zero. The shearing stress
components vanish due to the kinematical assumptions 1
and 2 and the constitutive equations for the piezoelectric
ceramic. :

4. With assumption 3, we can satisfy the equation of motion
for the axial direction only in the static case. Physically,
this is associated with the fact that axial resonance can
result from electrical or pressure excitation in the radial
direction. But, for frequencies that are small in compari-
son with the axial resonance frequency, the cylinder may
be assumed to behave quasistatically. We restrict the
analysis to such low frequencies and use the static solution
in studying the deformation of the cylinders.

In order to obtain an estimate of the frequency range of
validity of the analysis to be presented, we derive next the
lowest axial resonance by considering one-dimensional wave
propagation for a cylinder of length €.

Starting with the kinematical assumptions,

u,=u,=0; u =u/lzt); ¢=0, (12)

r

constitutive Egs. (9) and (10) with arrays (11) yield the
following nonvanishing stress and electric displacement com-
ponents:

Ty = Cpju T, =c,u

z,2° rr

D, =e,u,,. 13)

z,2°

T,=qcqu,;

When (13) are substituted into the polar version of the
equations of motion (1), we obtain

T —T,
rr 88 _ 0,
r
aT
= — i, (14)
9z ‘
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The circumferential equation of motion and the charge
equation are trivially satisfied. For this initial estimate, we
can consider the first of (14) as essentially satisfied, since c,,
and ¢, are almost equal. (For PZT-5H, the difference is less
than 5% of the material constant values.) For harmonic time
dependence, the second of (14) gives with Eq. (13)
pw’

u, . +—u =0, (15)

' Cll
where u_ now stands for the amplitude of the displacement in
the axial direction, p is the density, and « is the radial
frequency. With the boundary conditions,

T.=0atz =0, (16)

the natural frequencies of vibration are found to be

I batl

= — n=1,2,.... (17)
29 o

S
For a PZT-5H cylinder with € = 25 mm the lowest natural
frequency of vibration in the axial direction is calculated to
be 81 kHz. Therefore, in such a cylinder, the analysis that
follows can be expected to be valid for frequencies that are
small in comparison with that value.

Using assumptions | and 4 the mechanical polar displace-
ment components and the electric potential can be repre-
sented by the following functions:

u =u(r); u,=0; u,=ulz); ¢ =¢(r). (18)
The mechanical strain tensor and electric field intensity

vector components then become

S

rr nr?

[
=

S,=8,=S5, =0,
E,=E =0, E,

I
|
e

(19)

Establishing a local correspondence between the polar 8, r,
and z axes and the Cartesian x|, x,, and x, axes, respectively,
and substituting (19) in constitutive Eqs. (9) and (10) with
the use of arrays in (11), we obtain

Trﬂ = Tﬂz = Trz = 0’

D,=D,=0. (20)
We also recall here assumption 3:

T,=0. 21

Now, we substitute Eqs. (20) and (21) into constitutive Eqs.
(7) and (8) to produce the following relations:

Sg = 5,Ty + 5,7, + 8,D,,

S, =15,Ty+ 5,1, + 8,0

2l

S, =s5,Ty + 5,7, + 8,0,
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E = -g,Ty— 8,7, + B8,,D, . (22)

We also note that a simple expression can be derived for D,
by inspecting the polar cylindrical version of Eq. (2) and
using the last two of Eqs. (20) and also the fact that D, is
independent of the #-coordinate, i.e.,

D = D,/r, (23)

where D, is a constant. We now derive stress-displacement
type relations for T, and T, by solving the first two of (22)
for these variables and substituting expressions from Eqs.
(19) for S,, and S, and Eq. (23) for D,.

ATy = s5,)(u, — gD /r — s,y (u,, — g,Dy/1),

(24)
AT, = —s,(u, — g, Do) /r + 5, (u,, — £,D4/1),
where
A= 5,8, ~ sfz' (25)

With assumptions (1) to (4) and results (20), the polar
form of the stress equations of motion (1) give the following
stress equation of equilibrium in the radial direction:

rr 2

dr r

dr, T. - T
—_—ry i W, (26)

We obtain the radial displacement equation of equilibrium
by substituting (24) and (25) into (26):

1 v,oA
urrr + _urr - _2ur = "2 (27)
” r r r
where
=5,/ :
A= (8,5, — 528:)D4/5,, - (28)

Equation (27) has the following solution:

N A
u,=cr +cr’ — - (29)
The constants ¢, c,, and D are to be determined from the
mechanical boundary conditions and the driving circuit
equation. The mechanical boundary conditions consist of the
specification of the pressure at the cylindrical boundary
surfaces:

Trr(r2) = —p2 * (30)
Trr(rl) = ‘p] :

In (30) p, and p, are the pressures on the inside and outside
surfaces, respectively. The equivalent conditions on the
radial displacement at the cylindrical boundaries are
obtained by substituting the second of (24) into (30):
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A
p‘atr:rl
s,u B Si
u —_—— = = =
s, r r
pzatr:rz, a0
sll
where
B={g, - ,-2|p (32)
=\8n gzns o -
11

When the solution (29) is substituted into boundary condi-
tions (31), the following two relations are obtained between
constants ¢, ¢,, and D,:

g —Apr,

(v — o)) — DS =

Y
C](V + alz)ra - I3
S» S

a=1,2, (33)

where
Ty = —8,/51
J:
Sao=s(1—-—21.
" ( snsn) (34)

The third condition needed in the determination of the
arbitrary constants of the solution is provided by the voltage
equation of the driving circuit shown in Fig. 2. This condition
is the specification of the electric potential difference V
across the electrodes. We now derive an expression for V in
terms of the radial displacement function. From (6), we
have

v=—- [ Ear (35)

Substituting (23) and (24) into the fourth of (22) and then
using the result in (35), we obtain

" U, r
V=d(ulr) - ulr)) +d, f —dr + ngOQn(r—z),

(36)

where
dy = (g%, — &) /A,
dy = (58 — 5,,82) /4,
dy = [(25,881 ~ oS — En91)/B] ~ By - (37)
Substitution of the expression (29) into (36) yields
e(rh = ), + dyv) + &,(ry" = 1) d, = dy /o)

+ Dy(dy + diA[s,,)8n(r,[r) = V. (38)

The set of three equations (33) and (38) can be solved for the
constants ¢, ¢,, and D, to completely determine the static
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response. The results can then be substituted into (28) and
(29) to yield the displacement u,. Since we are primarily
interested in the motions at the inner and outer surfaces, this
displacement function has been evaluated at r, and r,, and
the results are

u(r) =arp + Brp, + vV,
ur(rz) = p + 62r2p2 + 72Vv (39)

in which the coefficients o, «,, 8,, 8,, 7v,, and v, are
functions of x, where

x=r/r, (40)

as listed below:

a,(x) = [5,x " In (x) + 5 In (x) + T,x" + Tpx ™
+¢1/D(x),

a,(x) = [—sIn (x) + Q%" + Q,x"]/D(x),

B,(x) = [sgIn (x) + Q%" + @x7"]/D(x),

By(x) = {—s,x"In(x) — sx"In(x) + Tx" + T)x™*

+ ¥1/D(x),
v (x) = [Ax" — Ax" + ¢]/D(x),
Y2(x) = [AX — A x7" — ¢]/D(x), (41)

where the denominator expression D(x) is
D(x) = 5,(x" —x ) In(x) + (X" + x" - 2) (42)
and the constants in (41) are defined as follows:
Sq= — Sud,o,, §o = ~ Sqd,0,,
S = 2wSqd, , s, = 0,0,d,,
Y= — 4g22s§ﬁd2/usn, & = 25,480,/v5,
¢ = 23, Sen/V8,185
Q= — si;(vd, + d,)1g,, — dy(s,, — v5,)]/v5,,,
Q, = sk (wd, — d,)[g,, — dy(s,, — v5,)/v5,, (43)
Ay = —540,(gy, + 0,d,8,}/5,
A, = S540,(gy — 0,d,8,,)/5,,,
Ty = —s4l8n(vd, - d,)

—dy(vd, + d,)(s,, + v5,)1/v5y, ,
T, = —sil—g,0d, + d,)

+ d,(vd, — d,)(s,, — vs,))]/vsy,,
in which

o, =v+o,, 0,=v—0,, d4=d3+d§A/sn. (44)

Many of the numerical results to be presented are for a
PZT-5H cylinder with r, = 0.38 mm and r, = 0.62 mm. For

i
|
|
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Figure 3 Radial displacement profile across thickness of cylinder.
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Figure 4 Radial displacement profile across thickness of cylinder.
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Applied voltage: 1 V
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Figure S Electrical potential profile across thickness of cylinder.
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Figure 6 Electrical potential profile across thickness of cylinder.

these parameters the coefficients «;, a,, 8,, 8,, v,, and v,
have values as follows:

J

ar, = 0166 x 1077, ar, =0.115x 107,

Biry=—0191x 107",  Br,= —0.171 x 107,  (45)
with units of m/MPa, and

v, =0815x107°, v, =0.240 x 107, (46)

with units of m/volt.

4. Numerical results

Numerical calculations using the static solution were carried
out for a PZT-5H cylinder with 0.75 mm inner diameter and
1.25 mm outer diameter. These are typical parameters used,
for example, in Zoltan [1]. Figure 3 shows the radial
displacement profile across the thickness of a cylinder which
has 1 volt electric potential difference between its electrodes
and no pressure on its surfaces. Figure 4 shows the displace-
ment profile across the thickness of a cylinder with shorted
electrodes and a pressure of 0.1 MPa applied on its inner
surface. Figures 5-10 show the profiles of electric potential,
radial stress, and hoop stress across the thickness of the
cylinder for both the case in which 1 volt is applied between
the electrodes and no pressure is on the surfaces and the case
in which the electrodes are shorted and a pressure of 0.1 MPa
is applied on the inner surface. Because of linearity, one can
obtain from these graphs the radial dependence of the above
variables for arbitrary combinations of applied voltage and
internal pressure.

5. Optimization of cylinder dimensions: maxi-
mum fluid pressure
Two assumptions were made in the investigation of the
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Figure 7 Radial stress profile across thickness of cylinder.

problem of finding the optimal cylinder dimensions for the
ink jet application:

1. The cylinder was assumed to behave quasistatically.

2. The amount of pressure produced in the fluid in a
completely enclosed cylinder was used as the criterion of
optimization.

If we take for the fluid equation of state,
(47)

where v is the volume of the cylindrical cavity filled by the
liquid, p is the liquid pressure and B is the liquid bulk
modulus, we can, by integrating (47) and expressing the
volume change in the cavity in terms of the displacement of
the inner surface of the cylinder, arrive at the following
result:

2

p = —Bn (1 + —"’(")). (48)
r

Since u,(r,)/r, << 1, (48)is approximately equivalent to

p= —2Bu(r)/r . (49)

The first of (39) gives for the case of no outside pressure on
the cylinder,

u(r) =arp+vV (50)
where «, and vy, are given in Egs. (40)—(44). Equations (49)

and (50) combined yield the following expression for pres-
sure produced per volt applied:
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Figure 8 Radial stress profile across thickness of cylinder.
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Figure 9 Hoop stress profile across thickness of cylinder.
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Figure 10 Hoop stress profile across thickness of cylinder.
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— Fluid instde and mechanical cffect
of electrodes neglected

r,=0.381 mm

r,=0.51 mm

r,=0.635 mm

Pressure/volt (104 Pa/V)

Figure 11 Pressure/volt inside the fluid as a function of r,/r,.

_ [ =287
PV=7 [1 + 2Bax, (x)
_ l —2Bvy,(x)
a ryix + 2Bxa, (x)}| GD

In Fig. 11 we show graphs that give the values of this
expression for typical values of the inner and outer radii. In
the calculations associated with these graphs, the value
2.23 x 10’ MPa was used for the bulk modulus B of the
liquid. The graphs show that for a fixed ratio of r,/r, the
pressure/volt increases as r, decreases. This can be seen in
(51). For fixed r,, we find that p/V is a minimum for r, /r,
near 0.6 and increases as r, /r, approaches either zero or one.
Neither of these two limiting cases is feasible, since if 7, is too
small, insufficient volume would be available for forming
drops, whereas if r, approaches r,, the critical field strength
for depolarization of the piezoelectric tube is exceeded.

In manufacturing piezoelectric cylinders, there is a lower
limit on the inside radius for ensuring that a good electrode
will be obtained from the plating process. For the case that 7,
is fixed at, say, 0.381 mm, and r, is allowed to vary, the
dashed curve in Fig. 11 for p/V is obtained. The best design
at fixed r, is found by choosing r, as small as possible without
exceeding the safe level of electric field strength. For values
of r, greater than 0.381, the dashed curve in Fig. 11 is

N. BUGDAYCI ET AL.

translated to the right and downward. We therefore conclude
that r; should be made as small as possible from a manufac-
turing viewpoint. It should be pointed out, however, that
viscous effects in the fluid may invalidate the last conclu-
sion.

6. Optimization of cylinder dimensions: minimum
OD displacement

In some designs it may be desirable to have the radial
displacement vanish at the outer surface of the piezoelectric
cylinder. From (39) it is seen that u,(,) depends on p,, p,,
and V. In order for u (r,) to vanish for arbitrary values of
these three forcing functions, it would be necessary for all
three of the coefficients «,, 8,, and ¥, to vanish. It is clear
from (41) that these conditions cannot all be met with the
same value of x. However, under most conditions the major
contribution to the radial motion of the piezoelectric cylinder
is the applied voltage, and it is possible to find a ratio r /r,
such that v, vanishes.

The condition for v, = 0 is obtained from (41) as

Ay — ¢y — A =0, (52)
where
y=x. (53)

Solving the quadratic equation (52) and substituting from
(43) and (44) the definitions of A, A,, and ¢, we obtain the
two solutions

y=1, (gzz + gz[")/(gzz - g2|V)- (54)

The first solution yields x = r /r, = 1, and it is not

physically meaningful. The second solution yields

x = (gzz + gzn”)’/"_ (55)
8y — &u¥

For PZT-5H cylinders this condition requires
x=r/r,=038. (56)

Therefore, if the radial motion of the outside surface of a
PZT-5H cylinder is to vanish for any value of applied
voltage, in the absence of applied pressures, the ratio of
inside to outside radius has to be considerably less than the
value r,/r, = 0.6 used in the calculations presented in
Figs. 3-10.

7. Mechanical effect of electrodes

The mechanical effect of the electrodes on the response of the
cylinder has so far been neglected. We now attempt to get an
estimate of this effect on the static response, and on the
results in the optimization study, by coupling Egs. (39),
which describe the boundary behavior of a piezoelectric
cylinder, with the well known solutions [5] for the elasto-
static deformation of a hollow isotropic cylinder under
internal and external pressure. This solution is summarized

1BM J. RES. DEVELOP. ¢ VOL. 27 ¢ NO. 2 « MARCH 1983




by the following expression for the radial displacement:

l“o'azpi_‘bzpo
2 NS
E b ~a)

u(r) =

1 +0a’b'(p—p)1
E (b -a) r

) (57)

in which E and s are Young’s modulus and Poisson’s ratio, a
and b are the inner and outer radii, while p, and p_ are the
inner and outer pressures. In our calculations the following
values for pure nickel were used for the material constants of
the electrodes:

E =216 x 10° MPa,

g =031 (58)
With some manipulation, (57) can be put into the follow-

ing form:

u(r) = h(ria,b)p, + h(r:ba)p,, (59)

where the function A is given by

3 2
h(x:c,d) = E(d—;:_c—z_) (I +aox+ 0+ 0)%‘ - (60)

Denoting the pressures at radial distances r, r,, 7, and r, by
P Py Py and p,, respectively, we apply the result (59) to
obtain the two relations,

w,(ry) = h(rg;ry,r)ps + h(ry;rr)p,,

u,(r)) = h(r;ry,r)p, + h(r;r,r)p, (61)
for the inner electrode; and the two relations,

u,(ry,) = h(ryr,,rdp, + h(ryr,r)p,,

u,(r,) = h(rgry,r)p, + h(rir,r)p, (62)

for the outer electrode.

Next recall from (39) that

ulr) =arp +B8,np, +vV,

u(r,) = arp + 6,n0, + 7,V (63)
and from (49),
py = —2Bu(r)/r,. (64)

If V and p, are given, the set of equations (61)—(64)
constitutes a linear system of seven equations in seven
unknowns, u(r,), u,(r,), & (ry), u(r,}, p,. p,, and p,. Taking
p, = 0 and ¥ = 1 volt, we can solve, in particular, for p, to
obtain the pressure produced in the liquid per voltage applied
between the electrodes. Figure 12 shows three curves giving
this pressure as a function of internal radius for a cylinder
with outside radius of 0.635 mm. The upper curve shows the
results of the analysis in which the mechanical effect of the
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Figure 13 Pressure/volt inside the fluid as a function of r /r,
(electrode thickness = 0.025 mm).
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electrodes was neglected, while the lower curves show the
results in cases where the mechanical effects of electrodes of
0.0125 mm and 0.0250 mm thickness were taken into
account. Comparison of these three curves shows that the
pressure is reduced considerably due to the presence of the
electrodes. The curves in Fig. 13 correspond to those in Fig.
11 except that in this case the mechanical effect of 0.025-
mm-thick electrodes was included in the analysis. The earlier
conclusion, that the smaller the outside radius the more
pressure is produced for the same amount of voltage applied,
still holds true, even though the absolute values for the
pressurés are lower when the electrodes are taken into
account.

8. Summary

Using the axisymmetric quasistatic solution for the motion of
radially polarized hollow piezoelectric cylinders, we were
able to make certain predictions on the low frequency
behavior of squeeze tubes used in ink jet printing technology.
Of particular interest was the finding that for a cylinder of
typical dimensions the magnitude of the displacement of the
inner surface in deformation caused by a voltage difference
between the electrodes was more than three times the
magnitude of the displacement of the outer surface. Since the
outer surface is the only one accessible for experimental
measurements, whereas it is the motion of the inner surface
that drives the fluid, the importance of this result in the
interpretation of experimental data is evident.

In the investigation of the question of optimal cylinder
dimensions, it was found that the smaller the cylinder, i.e.,
the smaller its outer radius, the more fluid pressure was
produced per unit voltage applied. When the mechanical
effects of the electrodes were taken into account, this result
still held true, but the fluid pressure was less sensitive to the
value of the inner radius, depending on the thickness of the
electrode. The obvious implication of these results for the
design of the squeeze tubes used in drop-on-demand ink jet
printing is that, in order to reduce the voltage requirements
for the printers, the tubes should be made as small as
practicable. However, problems with volume supply of ink
and clogging of the tubes can be expected to arise if this
prescription is followed to the extreme.
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