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Axisymmetric  Motion of Radially  Polarized Piezoelectric 
Cylinders  Used  in  Ink Jet Printing 

An analysis of the  low  frequency response of  piezoelectric  squeeze tubes  used in drop-on-demand ink jet  printing  is carried out. 
The displacements at inner and outer  boundaries  are  determined  as  a  function  of  voltage and fluid  pressure.  The  results  are 
used to obtain  fluid  pressure  per  applied  voltage  as  a  function of inner and outer  radius.  Numerical  computations  are carried 
out for  PZT-SH,  and  results  are  presented in graphical form which can be used to  optimize  design  dimensions.  The  efect of 
finite electrode  thickness is also  studied. 

1. Introduction 
This  study was carried  out for the purpose of determining  the 
motion of piezoelectric  cylinders used in drop-on-demand ink 
jet  printing technology as described by Zoltan [ 11. A  cylinder 
of this kind is typically made of a  strongly coupled piezoelec- 
tric  ceramic  that is polarized in the  radial direction. The 
cylinder has a concentric cylindrical hole which is filled with 
a fluid (ink)  during  operation.  The inner and  outer cylindri- 
cal boundaries of the  ceramic  are  coated with thin  electrodes 
and  are  thus  constrained  to be electrical equipotential sur- 
faces. The ejection of drops  results  from the  interaction of 
pressure waves due  to  the  radial motion of the cylinder with 
the  free meniscus surface.  This motion is produced by the 
application of an  electric potential  difference between the 
two electrodes. 

From the  general description of the problem given above, 
it is apparent  that a first analysis  should emphasize  the  radial 
motion of the  cylinder. Depending on the specific mounting 
design, the axial motion may, by assumption, be ruled out or 
it may be allowed only as incidental to  and  as a  by-product of 
the  radial motion. In the  former  case, we have  a state of plain 
strain  and in the  latter case,  where we make  the assumption 
of vanishing  normal stress in the  axial  direction,  the  state is 
closer to plane  stress. 

Lazutkin  and Tsyganov [2] considered the  axisymmetric, 
plane  stress, harmonic  radial vibrations of thick-walled short 
cylinders (rings)  and  obtained an exact expression for the 
amplitude of the  radial  displacement  as a  function of radial 
coordinate  and frequency. They also calculated  the values of 
the two lowest open-circuit  mechanical  resonance frequen- 
cies. However, their work was restricted to  the  case of 
stress-free inner and  outer boundaries. Burt  [3] extended the 
solution for the  radial displacement in [2]  to  the  case of 
vanishing  frequency (static  case). But, in attempting  to 
further extend the solution of [2] to  obtain  the voltage 
response to  harmonic excitation by internal pressure,  he 
introduced an artificial  mechanical  condition to  determine 
an unknown electrical parameter  despite  the  fact  that a 
circuit  equation is required  for that  determination.  Adelman, 
Stavsky,  and  Segal [4] obtained solutions for various  bound- 
ary conditions in the plane strain  case for axisymmetric 
harmonic  radial vibrations. 

In  this  paper we restrict  the  study  to  the  quasistatic motion 
of piezoelectric  cylinders.  For the  static  case only, the  plane 
stress idealization and  other  assumptions  made in obtaining 
the  deformation of a  ring are also adequate for  a long 
cylinder. We also carry  out  numerical  calculations with the 
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Figure 1 Cross section of piezoelectric cylinder  used in ink jet 
printing. 

static solution to predict the response of the squeeze tubes  to 
voltage and pressure  excitations at  low frequencies. In addi- 
tion, the mechanical effect of the electrodes on the response 
of the cylinder is determined. Finally, the question of the 
optimal cylinder  dimensions from the point of view of ink jet 
application is considered. 

2. Theoretical background 
The problem is analyzed in  terms of the three-dimensional 
linear  theory of piezoelectricity. This theory can  be  summa- 
rized by the following system of 22 field equations in 22 
variables that  are functions of time t and position (x,, x2, x3) 
as  determined with respect to a Cartesian system of coordi- 
nates: 

= p U J ,  (1 )  

D,,, = 0, (2) 

= ' r j k l   T k l   g k i ]   D k  7 (3) 

= -gtk/ T k l  + f l t ~ ~ j ,  (4) 

1 
' k g  = 2 ('k.P + ' f .k)? (5) 

E ,  - I # J , ~ .  (6) 

The lower case  latin indices range over 1, 2, 3; summation of 
repeated indices is implied;  a comma  denotes  partial differ- 
entiation,  and a  superposed dot  indicates differentiation with 
respect to time. 

The  terms  that  appear in these equations  are  Cartesian 
components of tensors as listed below: 

T ,  stress  tensor, 172 
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electric  displacement vector, 

strain tensor, 

electric field intensity  vector, 

displacement vector, 

electric  scalar potential, 

mass  density, 

elastic material tensor, 

piezoelectric material tensor, 

dielectric material tensor. 

We  assume  that  the  material is homogeneous, in which case 
p, syk,, g,,,, and pi j  are  constant. 

Equations ( 1  ) are  the local stress equations of motion in 
the  absence of body forces. The condition (2) on the  electric 
displacement vector involves the assumption of a quasistatic 
electric field. Equations (3) and (4) are  the constitutive 
equations relating strain  and  electric field intensity to  stress 
and  electric  displacement.  Through  the  material  constants, 
these equations  characterize  the behavior of the piezoelectric 
material. Finally,  Eqs. ( 5 )  and (6) give the definitions of the 
mechanical strain  and  the  electric field intensity in terms of 
the mechanical  displacement  components and  the  electric 
potential, respectively. 

It is convenient to express the constitutive  relations (3) 
and (4) in the usual  compressed subscript notation: 

' 1  = ' I J  T J  + g k l D k ,  ( 7 )  

' 8  = - g i J T J  + Pl j '~ '  (8) 

In (7) and (8) ,  capital  Latin indices have  replaced  pairs of 
lower case  Latin indices.  Accordingly,  these capital indices 
take values 1 to 6. 

The behavior of the piezoelectric material  can also be 
characterized by the following alternate set of constitutive 
equations, which have the  mechanical  strain tensor and  the 
electric field intensity vector as  independent variables: 

TI = c,SJ - eJ,Ej ,  (9) 

D, = e,,S, + c i j E j ,  (10) 

where this  time cIJ ,  e iJ ,  and cij are  elastic, piezoelectric, and 
dielectric  material  constants, respectively. 

3. Analysis of the problem 
We now apply the theory of piezoelectricity summarized 
above to  the problem of determining  the response of a hollow 
piezoelectric  cylinder to voltage and pressure  excitations. 
Figure 1 shows the cross  section of the cylinder. The inner 
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and  outer radii of the piezoelectric layer,  the  inner  radius of 
the  inner electrode, and  the  outer radius of the  oute 
electrode are denoted by rl  , r 2 ,   r 3 ,  and r4 ,  respective1 
Figure 2 shows the perspective view  of the cylinder alon 
with a  cylindrical  polar coordinate system. Also shown in thib 
figure is the driving circuit  that includes  a  voltage  source. In 
the analysis that follows we use Eqs. (I)-(  I O )  in their 
equivalent polar form whenever it is necessary. 

.i 
The piezoelectric material we are interested in is PZT-SH. 

This  ceramic effectively has the  symmetry of a  hexagonal 
crystal in class C, (or 6mm).  The restrictions on the  elastic, 
piezoelectric, and  dielectric  constants of a material possess- 
ing this  symmetry  are expressed by the following arrays, in 
which the direction of the x2 axis of the  Cartesian  coordinate 
system is taken  to coincide with the direction of polariza- 

‘ 1 1  ‘12 ‘13 

CI2 c 2 2   c 1 2  

‘13 ‘12 ‘ 1 1  

0 0 0  

0 0 0  

0 0 0  

The  alternate  set of constants s,,, g,J ,  and p,, also  exhibit the 
same  symmetries  as those  expressed by the above arrays. 

The  analytical results  derived in this paper hold for  all 
piezoelectric materials in class C,,, even though  the specific 
material  constant values for PZT-SH are used in the  numer- 
ical calculations. 

The  assumptions of the analysis are  the following: 

1. The motion of the cylinder is axisymmetric. Associated 
with this assumption  are  (a)  the  absence of dependence of 
field variables on the  circumferential  coordinate 0 and  (b) 
the vanishing of the  circumferential  displacement u8. 

Figure 2 Coordinate system of piezoelectric cylinder and sche- 
matic of driving circuit. 

2. In order  to avoid the complications  resulting  from  cou- 
pling with the axial modes of motion, we make  the 
assumptions  that  the  radial displacement u, and  the  scalar 
electric potential 4 do not depend on the axial coordinate 
z and also that  the axial  displacement uL does not depend 
on the  radial  coordinate r. 

3. We  assume  the condition of plane  stress, Le., the normal 
stress in the axial  direction is zero. The  shearing  stress 
components vanish due  to  the  kinematical  assumptions 1 
and 2 and  the  constitutive  equations for the piezoelectric 
ceramic. 

4. With assumption 3, we can satisfy the  equation of motion 
for the axial  direction only in the  static case.  Physically, 
this is associated with the  fact  that axial  resonance can 
result from electrical or pressure  excitation in the  radial 
direction.  But, for frequencies that  are small in compari- 
son with the  axial resonance  frequency, the cylinder may 
be assumed  to behave quasistatically.  We  restrict  the 
analysis to such low frequencies and use the  static solution 
in studying  the  deformation of the cylinders. 

In order  to  obtain  an  estimate of the frequency range of 
validity of the analysis to be presented, we derive  next the 
lowest axial resonance by considering  one-dimensional wave 
propagation  for  a  cylinder of length II. 

Starting with the  kinematical assumptions, 

ur = un = 0; uz = u,(z,t); 4 = 0, (12) 

constitutive Eqs. (9) and (10) with arrays ( 1  1) yield the 
following nonvanishing stress  and electric  displacement  com- 
ponents: 

TBB = c13uz,z; Trr = c!2uz,z* 

T, = c l l ~ z , z ~  D, = e21u*,*. (1 3) 

When (13) are  substituted  into  the polar version of the 
equations of motion ( l ) ,  we obtain 
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The  circumferential  equation of motion and  the  charge 
equation  are trivially  satisfied. For  this  initial  estimate, we 
can consider the first of ( 1  4)  as essentially  satisfied,  since c12 
and c ,  are  almost  equal.  (For  PZT-SH,  the difference is less 
than 5% of the  material  constant values.) For harmonic  time 
dependence, the second of ( I  4) gives with Eq. ( I  3) 

uz,zz t -uz = 0, 
PW2 

(1 5 )  

where u, now stands for the  amplitude of the displacement in 
the  axial  direction, p is the  density,  and w is the  radial 
frequency. With  the  boundary conditions, 

Tz, = 0 at  z = 0, Q, (16) 

the  natural frequencies of vibration are found to be 

CI I 

(17) 

E, -g21Too - g22Trr + P22Dr. (22) 

We also  note that a  simple expression can be derived for Dr 
by inspecting the polar  cylindrical version of Eq. (2)  and 
using the last two of Eqs.  (20)  and also the  fact  that D, is 
independent of the 0-coordinate,  i.e., 

D, = Do/r ,  (23) 

where Do is a constant.  We now derive  stress-displacement 
type relations  for T,, and To, by solving the first two of (22) 
for these variables and  substituting expressions from  Eqs. 
(1 9) for S,, and S,, and  Eq.  (23) for Dr.  

AT,,, = % ( U T  - g21Do)Ir - SIZ(U,., - g22Do/r)3 
(24) 

= -SI*(% - gz1Do)Ir + SII(Ur.,  - g22Do/r), 

where 

A = S , , S ~ ~  -- s:, . (25) 
For a PZT-5H cylinder with Q = 25 mm  the lowest natural 
frequency of vibration in the axial  direction is calculated to 
be 81 kHz. Therefore, in such a  cylinder, the  analysis  that 
follows can be expected to be valid for frequencies that  are 
small in comparison  with that value. 

Using assumptions 1 and 4 the mechanical  polar  displace- 
ment  components and  the  electric potential can be repre- 
sented by the following functions: 

u, = u,(r);  u,, = 0; uz = u,(z); 4 = 4 ( r ) .  (18) 

The mechanical strain tensor and  electric field intensity 
vector components  then become 

s,, = ur,, ; s,, = - , szz = u . ur . 
r I, I 

s, = srz = s, = 0, 

E,, = E, = 0; E, = -4. I .  

Establishing  a local correspondence  between the polar 0, r ,  
and z axes  and  the  Cartesian xI, x 2 ,  and x3 axes,  respectively, 
and  substituting  (19) in constitutive Eqs. (9)  and ( I O )  with 
the use of arrays in (1 I ) ,  we obtain 

T = T  = T  = 0 ,  

D, = Dz = 0. 

rn 81 rz 

We also  recall here  assumption 3: 

T, = 0. (21 1 
Now, we substitute Eqs. (20)  and  (21)  into  constitutive Eqs. 
(7) and (8) to produce the following relations: 

’ R H  s l l T & l  + s12Trr + g21Dr> 

s,, = SlZTBB + S?2Tr, + g22Dr, 

SZZ = S13TBB + SI2Trr + g2141 

With assumptions ( I )  to (4)  and results (20),  the polar 
form of the  stress  equations of motion ( I )  give the following 
stress equation of equilibrium in the  radial direction: 

We  obtain  the  radial displacement equation of equilibrium 
by substituting  (24)  and  (25)  into  (26): 

where 

Equation  (27) has the following solution: 

The  constants el, c2, and Do are  to  be  determined  from  the 
mechanical  boundary  conditions and  the driving circuit 
equation.  The  mechanical  boundary conditions consist of the 
specification of the pressure at  the cylindrical boundary 
surfaces: 

In  (30) pI and p 2  are  the pressures on the inside and  outside 
surfaces, respectively. The equivalent  conditions on the 
radial  displacement  at  the  cylindrical  boundaries  are 
obtained by substituting  the second of (24) into (30): 
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where 

at  r = rl  

I+ a t r  = r 2 ,  

response. The results can  then be substituted  into  (28)  and 
(29) to yield the displacement u,. Since we are primarily 
interested in the motions at  the inner and  outer  surfaces,  this 
displacement  function has been evaluated at  r, and  r2,  and 
the results are 

When the solution (29) is substituted  into  boundary condi- 
tions (31),  the following two relations are  obtained between 
constants cI,  c2, and Do: 

a = 1,2,  (33) 

where 

(34) 

The third  condition needed in the  determination of the 
arbitrary  constants of the solution is provided by the voltage 
equation of the driving circuit shown in Fig. 2. This condition 
is the specification of the  electric potential  ‘difference V 
across the electrodes. We now derive an expression for V in 
terms of the  radial displacement  function. From (6), we 
have 

Substituting  (23)  and  (24)  into  the  fourth of (22)  and  then 
using the result in (35), we obtain 

(36) 

where 

dl = (g22s11 - ~2ISl,)/A~ 

d2 = (S22821 - s 1 2 g 2 2 ) / 4  

d3 = I(2s,,g22g21 - g:,.,, - g:,J,,)/AI - P 2 2  ’ (37) 

Substitution of the expression (29)  into  (36) yields 

cl(ri - ry)(dl + d2/u) + c2(r2” - r,”)(d, - d2/u) 

+ Do(d3 + d;A/s22)Qn(r2/rl) = V. (38) 

The set of three  equations  (33)  and  (38)  can be solved for the 
constants cI, c2, and Do to completely determine  the  static 

Many of the  numerical results to be presented are for a 
PZT-5H cylinder with r l  = 0.38 mm and r2 = 0.62 mm. For ~175 
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PZT-SH I 
Applied  voltage: I V 
Internal  pressure: 0 

- 0.4 
E 

?- 

3- I I I 

0.4 0 s  0.6 
rI =0.38 r,=O.63 

r (mm) 

Figure 3 Radial  displacement profile across  thickness of cylinder. 

t 
PZT-SH 
Internal  pressure: 0.1 MPd 
Applied voltage: 0 

0 - 

r ,  =0.38 r2 =0.635 

I- (mrn)  

Figure 6 Electrical  potential profile across  thickness of cylinder. 

these parameters  the coefficients a,,  a*, PI, &, y,,  and yz 
have values as follows: 

a l r l  = 0.166 x lo-’, a2rl = 0.115 x 

P,r, = -0.191 x IO”, P,r, = -0.171 x (45) 

with units of m/MPa,  and 

yI = 0.815 x yz = 0.240 x (46) 

with units of m/volt. 
0- I I I 

I 0.4 0.5  0.6 
r2=0.63 

Figure 4 Radial  displacement profile across  thickness of cylinder. 

4. Numerical results 
Numerical  calculations using the  static solution  were carried 
out for a PZT-5H cylinder with 0.75  mm  inner  diameter  and 
1.25 mm outer  diameter.  These  are typical parameters used, 
for example, in Zoltan [ 11. Figure 3 shows the  radial 
displacement profile across the thickness of a  cylinder which 
has I volt electric potential  difference between its  electrodes 
and no pressure on its surfaces.  Figure 4 shows the displace- 
ment profile across the thickness of a  cylinder with shorted 
electrodes and a  pressure of 0.1 MPa applied on its  inner 

Applied  voltagc: I V 
PZT-SH 

Internal  pressure: 0 

I I 
0.4 n 5  0 6 

I .0 - PZT-SH 
Applied  voltagc: I V 
Internal  pressure: 0 0.8 - 

L 0.6 - 
rJ 

I I 
0.4 n 5  0 6 

rl =0.38 

r (mm) 

surface. Figures 5-10 show the profiles of electric  potential, 
radial  stress,  and hoop stress‘  across the thickness of the 
cylinder for both the  case in which 1 volt is applied  between 
the electrodes and no pressure is on the  surfaces  and  the  case 
in which the electrodes are shorted and a  pressure of 0.1 MPa 
is applied on the inner surface. Because of linearity,  one  can 
obtain from  these graphs  the  radial dependence of the above 
variables for arbitrary  combinations of applied  voltage and 
internal pressure. 

~~ 

r, =0.635 
5. Optimization  of  cylinder dimensions: maxi- 
mum fluid pressure 

Figure 5 Electrical  potential profile across  thickness of cylinder. Two  assumptions were made in the investigation of the 176 
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problem  of finding the  optimal cylinder  dimensions  for the 
ink jet application: 

1. The cylinder was assumed to behave quasistatically. 
2. The  amount of pressure  produced in the fluid in a 

completely  enclosed  cylinder  was used as  the  criterion of 
optimization. 

If we take for the fluid equation of state, 

du dp 
u B '  
" - (47) 

where u is the volume of the cylindrical  cavity filled by the 
liquid, p is the liquid pressure and B is the liquid bulk 
modulus, we can, by integrating  (47)  and expressing the 
volume change in the cavity in terms of the  displacement of 
the inner surface of the cylinder, arrive at  the following 
result: 

Since u,(r , ) / r ,  << 1, (48) is approximately equivalent to 

p = -2Bu , ( r , ) / r1  . (49) 

The first of (39) gives for the  case of no outside pressure on 
the cylinder, 

= q r , p  + YIV, (50)  

where a,  and yI  are given in Eqs.  (40)-(44). Equations  (49) 
and (50) combined yield the following expression  for pres- 
sure produced per volt applied: 
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Applied  voltage: 0 
Internal pressure: 0.1 MPa 

1 
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Figure 9 Hoop  stress profile across  thickness of cylinder. 

I r ( m m )  

Figure 10 Hoop  stress profile across  thickness of cylinder. 1177 
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- Fluid inside  and  mechanical cffect 
of electrode5  neglected 

0.2 0.4 0.6 0.8 I .0 

I ', 'rz  

Figure 11 Pressure/volt  inside the fluid as a function of r , / r , .  

In Fig. 11 we show graphs  that give the values of this 
expression  for typical values of the  inner  and  outer  radii. In 
the  calculations associated with these graphs,  the value 
2.23 x lo3  MPa was used for the bulk  modulus B of the 
liquid. The  graphs show that for a fixed ratio of r l / r 2  the 
pressure/volt  increases as r2 decreases. This  can be seen in 
(51). For fixed r2,  we find that p / V  is a minimum for r l / r 2  
near 0.6 and increases as r l   / r 2  approaches  either zero or one. 
Neither of these  two  limiting  cases is feasible,  since if r ,  is too 
small, insufficient volume would be  available for forming 
drops, whereas if r ,  approaches r2,  the  critical field strength 
for depolarization of the piezoelectric tube is  exceeded. 
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In manufacturing piezoelectric  cylinders, there is a lower 
limit on the inside radius for ensuring  that a good electrode 
will be obtained from the  plating process. For  the  case  that r ,  
is fixed at, say,  0.381 mm,  and r2 is allowed to  vary,  the 
dashed  curve in Fig. 1 1 for p /  Vis  obtained.  The best  design 
at  fixed rl  is found by choosing r2 as  small  as possible without 
exceeding the  safe level of electric field strength. For values 
of rl  greater  than 0.381, the  dashed  curve in Fig. 11 is 

translated  to  the  right  and downward. We  therefore conclude 
that r ,  should be  made as small  as possible from a manufac- 
turing viewpoint. It should be pointed out, however, that 
viscous effects in the fluid may  invalidate  the  last conclu- 
sion. 

6. Optimization of cylinder dimensions:  minimum 
OD displacement 
In  some designs  it may  be  desirable  to have the  radial 
displacement vanish at  the  outer  surface of the piezoelectric 
cylinder. From (39) it is seen that u,(rz) depends on pI ,  p z ,  
and V. In order for u,(r2) to vanish for arbitrary values of 
these three forcing  functions, it would be necessary  for all 
three of the coefficients az, &, and y2 to vanish. It is clear 
from (41)  that these  conditions cannot  all be met with the 
same value of x. However, under most conditions the  major 
contribution  to  the  radial motion of the piezoelectric  cylinder 
is the applied voltage, and it is possible to find a ratio r , / r 2  
such that y2 vanishes. 

The condition for yz = 0 is obtained  from  (41)  as 

A2y2 - $y - A, = 0, (52 )  

where 

y = xu. (53) 

Solving the  quadratic  equation  (52)  and  substituting  from 
(43)  and  (44)  the definitions of A , ,  A2, and 4, we obtain  the 
two  solutions 

JJ = 1, (g22 + gz,~)/(gzz - g21v). (54) 

The first  solution yields x = r l / r 2  = 1, and it is not 
physically meaningful. The second solution yields 

For PZT-5H cylinders this condition requires 

x = r , / r ,  = 0.38. (56 )  

Therefore, if the  radial motion of the  outside  surface of a 
PZT-SH cylinder is to vanish for any value of applied 
voltage,  in the  absence of applied  pressures, the  ratio of 
inside to  outside  radius  has  to be considerably less than  the 
value r 1 / r 2  = 0.6 used in the  calculations presented in 
Figs. 3-10. 

7. Mechanical effect of electrodes 
The mechanical effect of the electrodes on the response of the 
cylinder has so far been  neglected. We now attempt  to  get  an 
estimate of this effect on the  static response, and on the 
results in the optimization study, by coupling  Eqs. (39), 
which describe the  boundary behavior of a  piezoelectric 
cylinder,  with the well known solutions [5] for the elasto- 
static  deformation of a hollow isotropic  cylinder under 
internal  and  external pressure. This solution is summarized 
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by the following expression for the  radial displacement: , 

1 - u a'p, - 6'p0 
E (6' - a') 

u,(r )  = - 
, 

in which E and u are Young's modulus and Poisson's ratio, a 
and 6 are  the  inner  and  outer  radii, while p ,  and p, are  the 
inner and  outer pressures. I n  our calculations  the following 
values for pure nickel were used for the  material  constants of 
the electrodes: 

E = 21.6 x I O 4  MPa, 

c = 0.31. ( 5 8 )  

With some manipulation, (57) can be put into  the follow- 
ing form: 

u,(r) = h(r;a,b)p,  + h(r;b,a)p, ,  (59) 

where the function h is given by 

Denoting the pressures a t  radial  distances r l ,  r z ,  r3 ,  and r4 by 
pI, pz,  p3 ,  and p4, respectively, we apply the result (59) to 
obtain  the two relations, 

Next recall  from (39) that 

I f  V and p4 are given, the set of equations (61)-(64) 
constitutes a  linear  system of seven equations in seven 
unknowns, u,(rI), ur(r2) ,  u,(r3), ur(r4).  pI, p2 ,  andp,.  Taking 
p4 = 0 and V = 1 volt, we can solve, in particular, for p3 to 
obtain  the pressure  produced in  the liquid per voltage  applied 
between the electrodes.  Figure 12 shows three curves giving 
this  pressure as a  function of internal  radius for a  cylinder 
with outside  radius of 0.635 mm.  The upper curve shows the 
results of the analysis in which the mechanical effect of the 
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electrodes  was  neglected, while the lower curves show the 
results in cases  where  the  mechanical effects of electrodes of 
0.0125 mm and 0.0250 mm thickness  were  taken into 
account.  Comparison of these three curves shows that  the 
pressure is reduced  considerably due  to  the presence of the 
electrodes. The curves in Fig. 13 correspond to thqse in Fig. 
11  except that in this  case  the  mechanical effect of 0.025- 
mm-thick electrodes was included in the analysis. The  earlier 
conclusion, that  the  smaller  the  outside  radius  the more 
pressure is produced for the  same  amount of voltage applied, 
still holds true, even though  the  absolute values for the 
pressures are lower when the electrodes are  taken  into 
account. 

8. Summary 
Using  the  axisymmetric  quasistatic solution  for the motion of 
radially  polarized hollow piezoelectric  cylinders, we were 
able  to  make  certain predictions on the low frequency 
behavior of squeeze  tubes used in ink jet  printing technology. 
Of  particular  interest was the finding that for  a  cylinder of 
typical  dimensions the  magnitude of the  displacement of the 
inner surface in deformation  caused by a  voltage  difference 
between the electrodes  was  more than  three times the 
magnitude of the  displacement of the  outer  surface.  Since  the 
outer  surface is the only one accessible  for experimental 
measurements, whereas  it is the motion of the  inner  surface 
that drives the fluid, the  importance of this  result in the 
interpretation of experimental  data is evident. 

In  the investigation of the question of optimal cylinder 
dimensions,  it was found that  the  smaller  the cylinder, Le., 
the  smaller its outer  radius,  the more fluid pressure  was 
produced per unit  voltage applied.  When  the mechanical 
effects of the electrodes  were taken  into  account,  this result 
still held true,  but  the fluid pressure  was less sensitive to  the 
value of the  inner  radius,  depending on the thickness of the 
electrode. The obvious  implication of these  results for the 
design of the  squeeze  tubes used in drop-on-demand ink jet 
printing is that, in order  to  reduce  the voltage requirements 
for the  printers,  the  tubes should be made  as  small  as 
practicable. However,  problems  with volume supply of ink 
and clogging of the  tubes  can  be expected to  arise if this 
prescription is followed to  the  extreme. 

N. BUCDAYCI ET AL. 
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