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Fractal Nature of Software-Cache Interaction

This paper uses fractals to model the clustering of cache misses. The clustering of cache misses can be quantified by a single
number analog to a fractional dimension, and we are intrigued by the possibility that this number can be used as a measure of
software complexity. The essential intuition is that cache misses are a direct reflection of changes in locality of reference, and
that complex software requires more frequent (and larger) changes in this locality than simple software. The cluster dimension
provides a measure (and perhaps the basis for a model) of the intrinsic differences between workloads. In this paper, we focus

on cache miss activity as a discriminate between interactive and batch environments.

Introduction

In an earlier paper, we established that cache misses occur in
“bursts” [1]. By burst, we mean a clustering of misses over
some measure of time. When the intermiss distance is large,
we call the intermiss interval a “gap.” A burst is followed in
time by a gap, forming a primitive burst-gap pair. Intuitive-
ly, a burst denotes a period of time in which a (software)
process develops a working set, while a gap represents an
interval in which the process computes within the working set
established by the burst.

This paper proposes a mathematical model relating bursts
to a programmer’s view of software structure. The model
implies a definition of reference locality that does not require
the specification of an a priori, fixed-size time window to
compute working sets and cache miss ratios. We view each
burst-gap pair as defining a natural working set (of cache
lines) gathered during the burst and used during the gap.

Fractals

Fractal geometry is a mathematical theory conceived and
developed to provide a model for irregularity and fragmenta-
tion in nature (Ref. [2]). It is beyond the scope of this paper
to present or summarize this theory. Instead, we attempt in

this section only to convey an intuitive justification for its
application to the study of software-cache interaction.

As defined by Denning in Ref. {3], the notion of reference
locality requires one to select a time window within which
unique memory references are counted. The set of unique
references within a given window is called the “working set
over the defined window.” Unfortunately, by varying the
window size, one ends up with different working sets. In
other words, what is in the window depends on the window
size.

This reminds us of the arbitrariness encountered in esti-
mating the length of a coastline using an arbitrary measuring
unit, as described in Ref. [2]. Each measuring step consists of
moving from one point on the coast to another point lying at a
distance of one unit. The number of such steps multiplied by
the measuring unit is an approximate measure of the length
of the coast. However, coastlines are often so irregular that
this measure is a poor approximation. Reducing the measur-
ing unit increases the precision but the number of measuring
steps increases so rapidly that the estimated length increases
without bound.
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Readers interested in the coastline measurement problem
should consult Ref. [2]. We merely note here the analogy
between the process of measuring working sets with time
windows of arbitrary size and the process of measuring
coastlines with rulers of arbitrary length. In both cases, the
end result is strongly dependent on the size of the chosen
measuring unit.

Furthermore, this measuring process uses a concept of
“distance” identical to the topological notion of distance.
The mathematical definition of the fractal dimension of a set
involves the Hausdorf-Besicovitch measure (or dimension),
which is a function of distance in a metric space. This
introduces the notion of dimension into the analysis of
software working sets as reflected in a conventional cache
memory. Our conjecture is that the fractal dimension of a
given distribution of cache misses, as developed below, is a
measure of the complexity of the underlying software.

Statistical background
The statistical distributions of interest in fractal geometry
are hyperbolic distributions of the form

u\-?

P(U>u) =(—) ; (1)
U,

where very often (depending on the random set under

consideration) the exponent can be shown to be identical to a

dimension.

To establish the fractal structure of bursts of misses, we
must show that the intermiss distance U, expressed as a
number of memory references, satisfies Eq. (1) asymptoti-
cally (i.e., for large values of ©). One way to verify such a
behavior is to plot log P(U > u) as function of log u, and to
look for a reasonably straight line of slope 6 over two or three
decades.

The hyperbolic distributions are closely associated with an
important concept called statistical self-similarity. Let Sbe a
set of points x = (x,, x,, -+, x,). The similarity transforma-
tion in geometry transforms point x into point r(x) =
(rx,, rx,, -+, rx,). Hence the set S is transformed into the set
r(S). In the same way, following Ref. [2], a bounded random
set S is statistically self-similar, with respect to the ratio r
and an integer N, when S is the union of N non-overlapping
subsets, each of which is of the form r(S) and has the same
distribution as S, except for displacement and/or rotation.

In short: statistical self-similarity involves sets with in-
variant probability distributions under scaling, and hyper-
bolic distributions are shown, in Ref. [2], to satisfy the
requirements of self-similarity. We model our application of
self-similarity and hyperbolic distribution to the analysis of
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cache reference patterns on the techniques discussed in Ch.
32 of Ref. [2], being motivated by the following conjecture:

Ifthe distribution of intermiss distances is hyperbolic, the
bursts are statistically self-similar. That is, any given burst
is itself made up of smaller bursts, while bursts themselves
come in clusters (bursts of bursts). We identify this structure
with the natural layering of software itself; the burst created
by a major component is made up of bursts created by
individual modules, themselves made up of bursts created
by subroutine calls within this module, etc.

In other words, the hierarchical structure of contemporary
software projects itself onto a hierarchy of imbedded bursts
of misses. Indeed, intuition tells us that this effect will be
enhanced by the increased use of “Structured Program-
ming” techniques in software development.

This paper describes initial attempts to use the slope (or
dimension) # to discriminate between different types of
workloads by measuring the complexity of the bursts they
trigger in the cache. If our interpretation of 8 is correct, it
may provide a much-sought-after answer to the question of
the intrinsic difference (if any) between workloads that leads
to different cache miss rates. We propose a geometric
representation of the bursts of misses, to which the notion of
dimension can be associated. Our hope is that the fractal
dimension of this representation of cache misses captures an
essential relation between program structure and memory
organization, thus simplifying the study of software-hard-
ware interaction (see Appendix).

Experiments

We based our initial analysis on three frequently used traces,
each of which is representative of a corresponding environ-
ment (data-base-interactive, time-sharing, and scientific).
These traces are used to drive a simulation model of a
64K-byte cache organized into 128 congruence classes, each
containing four 128-byte lines. The machine simulator pro-
duced the distribution, over “time” measured in storage
references, of cache hits and misses for each input trace
under the above cache organization. Figures 1(a)—(c) show
the cumulative probability distributions resulting from these
simulations (i.e., the probabilities that the intermiss distance
U will be bigger than a given value u for the three respective
environments). All three graphs are presented in log-log
coordinates, and it is clear by inspection that they approxi-
mate straight lines over a large range of intermiss distances
(indeed, this range is much larger than the span of intermiss
distances which we can hope to affect by changes to either
hardware or machine architecture).
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Figure 1 Probability data for (a) data-base-interactive, (b) time-sharing, and (c) scientific environments.
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Figure 2 Flights for (a) data-base-interactive (6 = —1.250), (b) time-sharing (# = ~1.167), and (c) scientific (§ = — 1.000) environments.

As shown by Mandelbrot in [2], the absolute slope mea-
sures the degree of clustering, and is the fractal analog of a
dimension. When @ gets smaller, the long intermiss distances
get longer and the short intermiss distances get shorter.
Thus, the most extreme clustering occurs in the scientific
trace [Fig. 1(c)], with very short bursts and very long gaps.
Here, the slope has a value of one (computed using a least
square fit). There is a degree of arbitrariness to this analysis,
since the endpoints of the range over which the curve is
deemed flat were estimated—as opposed to algorithmically
determined by minimizing the residual error of the least
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square fit. However, the practical range of interest is con-
strained more by architectural considerations than by math-
ematics (possible analysis and interpretation of these boun-
dary values is not pursued in this study).

The data-base-interactive trace [Fig. 1(a)] has a slope of
1.25, which we interpret as indicating a more complex burst
structure than the scientific trace. This conforms to our
intuitive expectation that data base software generates a far
more scattered locality of reference than scientific software.
Figure 1(b) (time-sharing environment) has an intermediate
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slope of 1.167, indicating a somewhat more complex cluster-
ing structure than the scientific software, but less complex
clustering than the data-base-interactive software.

Random flights

In order to provide a geometric representation of these
varying degrees of clustering, we borrow from Mandelbrot
the notion of flights and stopovers, which he uses to describe
the “lumpiness” of galactic matter. A flight is a sequence of
long jumps, each terminated by a stopover. A “flight” here
will be what we have previously called a gap: i.e., an interval
of many memory references without any miss. When we
encounter a burst, we “stopover” until the reference locality
has been absorbed by the cache.

We use polar coordinates to represent gaps and burstsin a
plane. A gap (flight or jump) is a line segment represented by
the couple (p, ). p is simply the intermiss distance, in
references, for the gap. The definition of ¢ is less straightfor-
ward. The congruence class of a line is the least residue,
including 0, of the line address and the number of congruence
classes (i.e., mod (line — address, 128) in our machine
simulation). We start with an arbitrary angle ¢ for the first
jump. Thereafter, ¢ is computed as

congruence class x (w/64). 2)

In his book, Mandelbrot uses a uniform random number
for ¢, whereas we treat ¢ as a measure of locality within the
cache itself. If adjacent misses are to sequential line-
addresses, their computed directions will be close, so
that flights resulting from misses to sequential appear
“straight”—and are barely distinguishable from a single,
longer flight. Adjacent misses to non-sequential line-
addresses result in visibly broken flights, indicating a dis-
persed locality of reference.

Figures 2(a)—(c) show the resulting graphs for the data-
base-interactive, time-sharing, and scientific environments.
These pictures are graphic representations of changes of
locality. The bursts of misses do appear as clusters, and what
we called “gaps” are simple, reasonably unbroken long lines.
The result is that the visual complexity of the locality graph
for data-base-interactive software contrasts with the visual
simplicity of the locality graph for scientific software. Using
this graphical presentation, it is easy to “see” the difference
between various environments.

The statistical self-similarity of the underlying stochastic
process is illustrated by expanding a small part of Fig. 2(a),
shown in Fig. 3. Figure 3 represents a part, which looks
similar, in terms of its overall complexity, to the whole made
up by Fig. 2(a).
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Figure 3 Enlargement of a section of Fig. 2(a) showing the similar
random features.
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Figure 4 Data-base-interactive archipelagos; § = —1.250

The data-base-interactive archipelago
Figure 4, which is simply Fig. 2(a) with the connecting lines
between points removed, is shown to highlight the structure 1
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Figure 5 Enlargement of a section of Fig. 4.
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Figure 6 Enlargement of the gaps within an island.

of the miss clusters, rather than that of the gaps. The result
looks very much like a set of clustered islands, or an
archipelago.
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The self-similarity property of these islands is shown in
Fig. 5, which is an enlargement of one cluster (arbitrarily
selected). Both exhibit similar random features.

More interesting, however, is the analysis of the software
events associated with each “island” of cache misses. We
were able to identify the bursts forming this island with
invocations of various modules listed in the memory map for
the benchmark. The island begins to form at memory refer-
ence number 110071 and ends at reference number
182 049—i.e., it is 71 978 references “long” on a straight
time-line. During its life, the island exhibits a buffer miss
ratio of 4.72%, in comparison to the overall buffer miss ratio
of 4.19%. Moreover, the island is followed by a flight (gaps)
beginning at memory reference number 182 050 and ending
at reference number 199 894. This flight has, as expected, a
much lower cache miss ratio of 0.43%. It consists of three
long gaps (respectively 4224, 3976, and 5339 memory refer-
ences), and is shown enlarged in Fig. 6. The tracing program
indicates that the flight corresponds (for the most part) to
user code whose locality of reference is easily captured by the
cache.

By contrast, the “sub-archipelago” islands (Fig. 5) have a
much more complex locality. A detailed module-by-module
analysis reveals the conventional transfer pattern: 1) entry
into the input/output supervisor; 2) entry into the buffer
handler of the data base subsystem; 3) calls to a search
function; and 4) showers of misses triggered by the return to
the user code.

Obviously, this sub-archipelago corresponds to active
transfers between the data base subsystem code and the
operating system code. This underscores the fact that while
getting a segment from a data base into the user’s area is a
simple concept, it is a very complicated process. This is one
reason why data-base-interactive loads have intrinsically
higher buffer miss ratios than most other types of work. Seen
from a different viewpoint, the user interface in this data
base system is a high-level interface, the simplicity of which
hides the complexity of the task to be performed on the
system side of the interface.

Within the 71 978 memory references in the sub-archi-
pelago, there are 2512 module invocations, which amounts to
28.65 references per invocation. Given the inherent cost (in
references) of linkage between modules, only a very small
quantity of useful work done remains per module invocation!
Even if this overhead could be reduced by repartitioning (an
open question to which there are few ready answers), it is
clear that a complex sequence of relatively simple functions
is needed to complete execution of typical data-base-interac-
tive tasks.
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Another definition of the working set

We define a working set as being the number of distinct
cache lines referenced in a gap. A more exact definition
would be to include in this window the burst preceding this
gap. It is, however, straightforward to compute working sets
in any intermiss distance, and only to consider the subset of
these numbers which correspond to gaps that are big enough
to belong to the “straight” (i.e., fractal) part of the probabil-
ity distribution.

Computations were made for all three traces; these were
checked to see if the working set sizes correlated, in any way,
with the corresponding gap sizes. They indeed do. The
correlation coefficients for the interactive, time-sharing, and
scientific environments are 0.773, 0.794, and 0.906, respec-
tively. Let WS be the working set size expressed in a number
of cache lines; the corresponding relationships for the three
traces are

U= A(WS)®, 3)

where the respective values of A4 and B are: interactive—
1.09, 1.50; time-sharing—1.59, 1.34; scientific—1.30,
1.49.

Therefore, if the intermiss distances are fractally distrib-
uted (which implies a power law for their probability distri-
bution), so are the corresponding working set sizes. This
makes the working sets statistically self-similar, and subject
to a power or hyperbolic law. We can now use this result in
the following. Figures 1(a)—(c) show that the linear relation-
ship breaks down at some threshold value. For the data-
base-interactive trace, this value is around 3000 references.
The question is raised as to the meaning of this physical
discontinuity. From the relationship between intermiss dis-
tance and working set size, a first answer links the threshold
value to half the size of the simulated cache; 1.09 x (3000)2/3
= 225 lines, where the size of the cache is 512 lines.

This seems to imply that working sets are unlikely to be
larger than half the size of the cache, for this type of
workload and the specific cache simulated in our experi-
ments.

Questions

This method of differentiating between workloads raises
many questions. For example, a batch trace analyzed in the
same way did not produce an intermiss distribution with an
asymptotic straight line. However, when another simulation
was run using a much smaller cache of 16K bytes, the
distribution did exhibit an asymptotic straight line, with a
slope equal to 1.4. This suggests (but is not sufficient to
prove) that when the cache is not stressed, the distribution of
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intermiss distances is no longer hyperbolic—exhibiting a
more regular behavior corresponding to a thin-tail versus
fat-tail distribution.

Further experimentation is required to determine the
influence of the cache design parameters on the existence of a
“straight line” hyperbolic miss distribution and the value of
its slope. In particular, the (non-hyperbolic) distributions of
intermiss distances for very large caches may not follow the
model presented here.

Conclusions

In summary, we propose a geometry of software behavior,
which visualizes changes of locality, and helps to pinpoint
problems in software taxonomy.

The revised notion of a working set is helpful in thinking
about memory hierarchy design. Our notion of working set is
defined by the memory hierarchy studied and by the soft-
ware involved. It is therefore more intrinsic to the problem,
having no dependence on an a priori window. A similar
concept of “resident” set is defined for paging environment
by Bard in Ref. [4].

This use (and possibly abuse) of the notion of dimension
appears to be an effective measure of software complexity,
where complexity is understood as structural in contrast to
the classical computational complexity. The self-similarity
property intuitively evokes a natural hierarchy of working
sets, each induced from a previous level by a self-similarity
ratio defined by the workload characteristic. It is significant
that the model itself “involves no explicit hierarchy, only
built-in stochastic self-similarity” [2}].

Finally, we are satisfied that the interaction of software
with memory hierarchies is naturally modeled by a stochastic
process having a larger than usual amount of irregularity.
The degree to which this phenomenon is captured by our
fractal model in turn implies that it belongs to a very large
class of natural processes.

Appendix

Reference [2] goes in depth into a discussion on what the
proper definition of a fractal should be. As we stated earlier,
this paper is neither an introduction nor a treatise on
fractals.

However, for interested readers we excerpt from Ref. [2,
p- 361], that a fractal set is a set, in a metric space, for which
the Hausdorf-Besicovitch dimension is bigger than its topo-
logical dimension.

The exponent # has been shown, for many specific sets
described by hyperbolic distributions, to coincide with the
Hausdorf-Besicovitch measure (dimension) of the set.
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In this paper, we abuse the language (and, perhaps, the
state of the art), by calling all hyperbolic exponents “dimen-
sions.” This terminology both fits our intuition and helps us
make the geometric interpretation specific.
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