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Fractal Nature of Software-Cache Interaction 

This  paper uses fractals  to  model the  clustering of cache misses. The  clustering of cache misses can be quantified by  a single 
number analog to  a  fractional dimension, and we are  intrigued by the possibility  that  this number can be used as  a measure of 
software  complexity. The  essential  intuition is that cache misses are a direct  reflection of changes in locality  of reference, and 
that  complex  software requires  more frequent  (and  larger) changes in this  locality than simple  software. The  cluster  dimension 
provides  a measure (and  perhaps the  basis for  a  model)  of the  intrinsic differences between workloads. In  this  paper, we focus 
on cache miss  activity  as  a  discriminate between  interactive and batch  environments. 

Introduction 
In  an  earlier  paper, we established that  cache misses occur in 
“bursts” [ l ] .  By burst, we mean  a clustering of misses over 
some measure of time.  When  the intermiss distance is large, 
we call the  intermiss interval  a “gap.” A burst is followed in 
time by a gap, forming  a  primitive burst-gap pair.  lntuitive- 
ly, a burst  denotes a period of time in which a (software) 
process develops a working set, while a gap represents an 
interval in which the process computes within the working  set 
established by the  burst. 

This paper proposes a mathematical model relating  bursts 
to a  programmer’s view of software  structure.  The model 
implies  a definition of reference locality that does not require 
the specification of an a  priori, fixed-size time window to 
compute working sets  and  cache miss ratios.  We view each 
burst-gap pair as defining  a natural working  set (of cache 
lines) gathered  during  the  burst  and used during  the  gap. 

Fractals 
Fractal  geometry is a mathematical theory conceived and 
developed to provide a model for irregularity  and  fragmenta- 
tion in nature  (Ref. [2]). It is beyond the scope of this paper 
to present or summarize  this  theory.  Instead, we attempt in 

this section only to convey an intuitive  justification for its 
application to  the  study of software-cache  interaction. 

As defined by Denning in Ref. [3], the notion of reference 
locality  requires one  to select  a time window within which 
unique memory  references are  counted.  The set of unique 
references  within  a given window is called the “working set 
over  the defined window.” Unfortunately, by varying the 
window size,  one ends  up with different working sets. In 
other words, what is in the window depends on the window 
size. 

This reminds  us of the  arbitrariness encountered in esti- 
mating  the length of a  coastline  using an  arbitrary  measuring 
unit,  as described in Ref. [ 2 ] .  Each  measuring  step consists of 
moving from one point on the coast to  another point lying at  a 
distance of one unit. The  number of such  steps  multiplied by 
the  measuring unit is an  approximate  measure of the  length 
of the  coast. However,  coastlines are often so irregular  that 
this measure is a poor approximation.  Reducing  the  measur- 
ing unit  increases the precision but  the  number of measuring 
steps  increases so rapidly that  the  estimated length  increases 
without  bound. 



Readers interested in  the coastline measurement problem 
should  consult  Ref. [2].  We merely  note here  the analogy 
between the process of measuring working sets with time 
windows of arbitrary size and  the process of measuring 
coastlines with rulers of arbitrary  length. I n  both  cases, the 
end  result is strongly dependent on the size of the chosen 
measuring  unit. 

Furthermore,  this  measuring process uses a  concept of 
“distance” identical to  the topological notion of distance. 
The  mathematical definition of the  fractal dimension of & set 
involves the Hausdorf-Besicovitch measure (or dimension), 
which is a  function of distance in a metric  space.  This 
introduces  the notion of dimension into  the analysis of 
software working sets  as reflected in a  conventional cache 
memory. Our conjecture is that  the  fractal dimension of a 
given distribution of cache misses, as developed below, is a 
measure of the complexity of the underlying software. 

Statistical  background 
The  statistical  distributions of interest in  fractal geometry 
are hyperbolic distributions of the  form 

where very often (depending on the  random set under 
consideration) the exponent can be shown to be identical to a 
dimension. 

To establish the  fractal  structure of bursts of misses, we 
must show that  the intermiss distance U, expressed  as  a 
number of memory  references,  satisfies Eq. ( 1 )  asymptoti- 
cally (i.e., for large values of u) .  One way to verify such  a 
behavior is to plot log P(U > u )  as function of  log u, and  to 
look for a  reasonably straight line of slope %over two or three 
decades. 

The hyperbolic distributions  are closely associated  with an 
important concept  called statistical self-similarity. Let S be a 
set of points x = ( x , ,  x*, ..., x”) .  The  similarity  transforma- 
tion in geometry  transforms point x into point r ( x )  = 

(rx, ,   rx, ,  ..., rx,,). Hence  the set S is transformed  into  the set 
r ( S ) .  In the  same way, following Ref.  [2], a  bounded random 
set S is statistically self-similar,  with  respect to  the  ratio r 
and  an integer N ,  when S is the union of N non-overlapping 
subsets,  each of which is  of the  form r ( S )  and  has  the  same 
distribution  as S ,  except  for displacement  and/or  rotation. 

In short:  statistical self-similarity involves sets with in- 
variant  probability  distributions  under scaling, and hyper- 
bolic distributions  are shown, in Ref.  [2],  to  satisfy  the 
requirements of self-similarity. We model our application of 
self-similarity and hyperbolic distribution  to  the analysis of 
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cache reference patterns on the techniques discussed in Ch. 
32 of Ref.  [2], being motivated by the following conjecture: 

If the distribution of intermiss distances is  hyperbolic, the 
bursts are statistically  self-similar.  That  is. any given burst 
is  itself  made up of  smaller  bursts, while bursts  themselves 
come in clusters  (bursts  of  bursts).  We  identify  this  structure 
with the  natural  layering of  software i tsew the  burst  created 
by a  major component is  made up of bursts created by 
individual  modules,  themselves  made up of  bursts created 
by subroutine calls within this  module,  etc. 

In other words, the  hierarchical  structure of contemporary 
software projects itself onto a hierarchy of imbedded bursts 
of misses. Indeed,  intuition  tells us that  this effect will be 
enhanced by the increased  use of “Structured  Program- 
ming”  techniques in software development. 

This paper  describes  initial attempts  to use the slope (or 
dimension) 0 to  discriminate between different  types of 
workloads by measuring  the complexity of the  bursts  they 
trigger in the  cache. If our interpretation of 8 is correct, it 
may provide a much-sought-after  answer  to  the question of 
the intrinsic difference (if any) between workloads that leads 
to different cache miss rates.  We propose a geometric 
representation of the  bursts of misses, to which the notion of 
dimension can be associated. Our hope is that  the  fractal 
dimension of this  representation of cache misses captures  an 
essential  relation between program  structure  and memory 
organization,  thus simplifying the  study of software-hard- 
ware  interaction (see Appendix). 

Experiments 
We based our initial  analysis on three  frequently used traces, 
each of which is representative of a  corresponding  environ- 
ment  (data-base-interactive,  time-sharing,  and scientific). 
These  traces  are used to drive  a  simulation model of a 
64K-byte  cache organized into 128 congruence classes, each 
containing four  128-byte lines. The  machine  simulator pro- 
duced  the  distribution, over “time” measured in storage 
references, of cache hits and misses for each  input  trace 
under  the above cache  organization. Figures l(a)-(c) show 
the  cumulative probability distributions resulting from these 
simulations (i.e., the probabilities that  the intermiss distance 
U will be bigger than a given value u for the  three respective 
environments).  All three  graphs  are presented in log-log 
coordinates, and it is clear by inspection that  they approxi- 
mate  straight lines over a large  range of intermiss  distances 
(indeed,  this  range is much larger  than  the  span of intermiss 
distances which we can hope to affect by changes  to  either 
hardware or machine  architecture). 
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Figure 1 Probability  data for (a)  data-base-interactive,  (b)  time-sharing,  and  (c)  scientific  environments. 
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Figure 2 Flights for (a)  data-base-interactive (0 = ~ 1.250), (b)  time-sharing (0 = - 1.167), and  (c)  scientific (0 = - 1.000) environments, 

As shown by Mandelbrot in [2], the  absolute slope mea- 
sures  the  degree of clustering,  and is the  fractal  analog of a 
dimension. When 0 gets  smaller,  the long intermiss  distances 
get longer and  the  short intermiss  distances get  shorter. 
Thus,  the most extreme  clustering occurs in the scientific 
trace [Fig. I(c)], with very short  bursts  and very long gaps. 
Here,  the slope has a value of one  (computed using a least 
square  fit).  There is a degree of arbitrariness  to this  analysis, 
since the  endpoints of the  range over which the curve is 
deemed  flat were estimated-as opposed to  algorithmically 
determined by minimizing the residual error of the least 

square fit. However, the  practical  range of interest is con- 
strained more by architectural considerations than by math- 
ematics (possible  analysis and  interpretation of these boun- 
dary values is not pursued in this  study). 

The  data-base-interactive  trace  [Fig. 1 (a)] has a slope of 
1.25, which we interpret as indicating a  more  complex burst 
structure  than  the scientific trace.  This conforms to our 
intuitive  expectation that  data base software  generates a far 
more scattered locality of reference than scientific software. 
Figure 1 (b)  (time-sharing  environment)  has  an  intermediate 
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slope of 1.167, indicating a  somewhat  more  complex cluster- 
ing structure  than  the scientific software,  but less complex 
clustering  than  the  data-base-interactive software. 

Random flights 
In order  to provide a geometric  representation of these 
varying degrees of clustering, we borrow from  Mandelbrot 
the notion offlights  and  stopovers, which he uses to describe 
the “lumpiness” of galactic  matter. A flight is a  sequence of 
long jumps,  each  terminated by a  stopover.  A  “flight” here 
will be what we have previously called  a gap: i.e., an interval 
of many  memory  references  without any miss. When we 
encounter a burst, we “stopover” until the  reference locality 
has been absorbed by the  cache. 

We use polar coordinates  to  represent  gaps  and  bursts in a 
plane.  A gap (flight or jump) is a  line segment represented by 
the couple ( p ,  4). p is simply the intermiss distance, in 
references, for the  gap.  The definition of 4 is less straightfor- 
ward.  The  congruence class of a  line is the least  residue, 
including 0, of the line address  and  the  number of congruence 
classes (i.e., mod (line - address,  128) in our machine 
simulation).  We  start with an  arbitrary  angle 4 for the first 
jump.  Thereafter, 4 is computed  as 

congruence class x (?r/64). (2) 

In his book, Mandelbrot uses a  uniform random  number 
for 4, whereas we treat 4 as a measure of locality  within the 
cache itself. If adjacent misses are  to  sequential line- 
addresses,  their computed directions will be close, so 
that flights  resulting from misses to  sequential  appear 
“straight”-and are barely distinguishable  from a single, 
longer  flight. Adjacent misses to non-sequential  line- 
addresses  result in visibly broken  flights, indicating a dis- 
persed locality of reference. 

Figures 2(a)-(c) show the resulting graphs for the  data- 
base-interactive, time-sharing,  and scientific  environments. 
These  pictures  are  graphic  representations of changes of 
locality. The  bursts of misses do  appear  as  clusters,  and  what 
we called  “gaps” are simple,  reasonably  unbroken long lines. 
The result is that  the visual complexity of the locality graph 
for data-base-interactive  software  contrasts with the visual 
simplicity of the locality graph for  scientific software. Using 
this  graphical  presentation, it is easy to “see” the difference 
between various  environments. 

The  statistical self-similarity of the underlying stochastic 
process is illustrated by expanding a  small part of Fig. 2(a), 
shown in Fig. 3. Figure 3 represents a part, which looks 
similar, in terms of its  overall  complexity, to  the whole made 
up by Fig. 2(a). 
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Figure 3 Enlargement of a section of Fig. 2(a) showing the similar 
random features. 
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Figure 4 Data-base-interactive  archipelagos; 0 = - 1.250 

The data-base-interactive  archipelago 
Figure 4, which is simply  Fig. 2(a) with the connecting lines 
between points  removed, is shown to highlight the  structure 1167 
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Figure 5 Enlargement of a section of Fig. 4. 
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Figure 6 Enlargement of the gaps  within  an island. 

of the miss clusters,  rather  than  that of the  gaps.  The result 
looks very much like a set of clustered islands, or an 
archipelago. 
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The self-similarity  property of these  islands is shown in 
Fig. 5, which is an  enlargement of one  cluster  (arbitrarily 
selected). Both exhibit similar  random  features. 

More interesting, however, is the  analysis of the  software 
events  associated with each “island” of cache misses. We 
were able  to identify the  bursts forming this island with 
invocations of various  modules  listed in the memory map for 
the  benchmark.  The island  begins to  form  at memory refer- 
ence number  110  071  and  ends  at reference number 
182 049-i.e., it is 71 978 references ‘‘long’’ on a straight 
time-line. During  its life, the island exhibits  a buffer miss 
ratio of 4.72%, in comparison to  the overall buffer miss ratio 
of 4.19%. Moreover, the island is followed by a flight (gaps) 
beginning at  memory  reference number 182 050  and  ending 
at  reference number 199 894.  This flight has, as expected,  a 
much lower cache miss ratio of 0.43%. It consists of three 
long gaps (respectively  4224,  3976, and 5339  memory  refer- 
ences), and is shown enlarged in Fig. 6.  The  tracing  program 
indicates that  the flight corresponds  (for the most part)  to 
user  code whose locality of reference is easily captured by the 
cache. 

By contrast,  the “sub-archipelago”  islands (Fig.  5) have  a 
much  more  complex  locality. A detailed module-by-module 
analysis  reveals the conventional transfer  pattern: 1) entry 
into the  input/output supervisor; 2)  entry  into  the buffer 
handler of the  data base  subsystem; 3) calls to a search 
function;  and  4) showers of misses triggered by the  return  to 
the user  code. 

Obviously, this sub-archipelago corresponds to active 
transfers between the  data base  subsystem  code and  the 
operating system code. This underscores the  fact  that while 
getting a segment  from a data base into  the user’s area is a 
simple  concept,  it is a very complicated process. This is one 
reason why data-base-interactive loads  have  intrinsically 
higher buffer miss ratios  than most other types of work. Seen 
from a  different viewpoint, the user interface in this  data 
base  system is a high-level interface,  the simplicity of which 
hides the complexity of the task to be performed on the 
system side of the  interface. 

Within  the 71 978 memory  references in the  sub-archi- 
pelago, there  are 251 2 module  invocations, which amounts  to 
28.65 references per invocation. Given the  inherent cost  (in 
references) of linkage between modules, only a very small 
quantity of useful work  done remains per module invocation! 
Even if this  overhead could be reduced by repartitioning  (an 
open question to which there  are few ready  answers),  it is 
clear  that a complex sequence of relatively  simple functions 
is needed to complete  execution of typical data-base-interac- 
tive tasks. 
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Another definition of the  working  set 
We define  a  working  set  as being the  number of distinct 
cache lines referenced in a gap. A more exact definition 
would be to include in this window the  burst preceding  this 
gap.  It is, however, straightforward  to  compute working sets 
in any intermiss distance,  and only to consider the subset of 
these numbers which correspond to  gaps  that  are big enough 
to belong to  the  “straight” (i.e., fractal)  part of the probabil- 
ity distribution. 

Computations were made for all three  traces; these were 
checked to see if the working set  sizes correlated, in any way, 
with the corresponding gap sizes. They indeed  do. The 
correlation coefficients for the  interactive,  time-sharing,  and 
scientific  environments are  0.773,  0.794,  and 0.906, respec- 
tively. Let WS be the working set  size  expressed in a number 
of cache lines; the corresponding  relationships for the  three 
traces  are 

u = A( WSy,  (3) 

where the respective values of A and B are: interactive- 
1.09, 1 S O ;  time-sharing- 1.59, 1.34; scientific-1.30, 
1.49. 

Therefore, if the intermiss distances  are  fractally  distrib- 
uted  (which  implies  a power law for their probability distri- 
bution), so are  the corresponding  working set sizes. This 
makes the working sets  statistically self-similar, and  subject 
to a power or hyperbolic law. We  can now use this result in 
the following. Figures 1 (a)-(c) show that  the  linear relation- 
ship  breaks down at  some  threshold  value.  For the  data- 
base-interactive trace,  this value is around  3000 references. 
The question is raised as to the  meaning of this physical 
discontinuity. From  the relationship between intermiss dis- 
tance  and working set  size,  a first answer links the threshold 
value to half the size of the  simulated cache; 1.09 x (3000)2’3 
= 225 lines, where the size of the  cache is 5 12 lines. 

This seems to imply that working sets  are unlikely to be 
larger  than half the size of the  cache, for this type of 
workload and  the specific cache  simulated in our experi- 
ments. 

Questions 
This method of differentiating between workloads  raises 
many  questions.  For example, a batch  trace  analyzed in the 
same way did  not  produce an intermiss distribution with an 
asymptotic  straight line. However, when another simulation 
was run using  a much  smaller  cache of 16K bytes, the 
distribution  did  exhibit  an  asymptotic  straight line, with a 
slope equal  to 1.4. This suggests (but is not sufficient to 
prove) that when the  cache is not  stressed, the  distribution of 
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intermiss  distances is no longer hyperbolic-exhibiting a 
more regular behavior corresponding to a thin-tail versus 
fat-tail  distribution. 

Further  experimentation is required to  determine  the 
influence of the  cache design parameters on the existence of a 
“straight line”  hyperbolic miss distribution  and  the value of 
its slope. In  particular,  the (non-hyperbolic) distributions of 
intermiss distances for very large  caches  may not follow the 
model presented  here. 

Conclusions 
In summary, we propose a geometry of software behavior, 
which visualizes changes of locality, and helps to pinpoint 
problems in software taxonomy. 

The revised notion of a  working  set is helpful in thinking 
about memory hierarchy design. Our notion of working set is 
defined by the memory hierarchy studied and by the soft- 
ware involved. It is therefore more intrinsic  to  the problem, 
having no dependence on an  a  priori window. A similar 
concept of “resident” set is defined for paging  environment 
by Bard in Ref.  [4]. 

This use (and possibly abuse) of the notion of dimension 
appears  to be an effective measure of software complexity, 
where  complexity is understood as  structural in contrast  to 
the classical computational  complexity.  The self-similarity 
property  intuitively evokes a natural  hierarchy of working 
sets, each  induced  from  a previous level by a  self-similarity 
ratio defined by the workload characteristic.  It is significant 
that  the model itself “involves no explicit hierarchy, only 
built-in stochastic self-similarity’’ [2]. 

Finally, we are satisfied that  the  interaction of software 
with memory hierarchies is naturally modeled by a stochastic 
process having  a larger  than usual amount of irregularity. 
The  degree  to which this  phenomenon is captured by our 
fractal model in turn implies that it belongs to a very large 
class of natural processes. 

Appendix 
Reference [2] goes in depth  into a discussion on what  the 
proper definition of a fractal should be. As we stated  earlier, 
this  paper is neither an introduction nor a treatise on 
fractals. 

However, for interested readers we excerpt  from Ref.  [2, 
p. 3611, that a fractal set is a set, in a metric space,  for which 
the Hausdorf-Besicovitch  dimension is bigger than  its topo- 
logical dimension. 

The exponent 0 has been shown, for many specific sets 
described by hyperbolic distributions,  to coincide with the 
Hausdorf-Besicovitch measure (dimension) of the  set. 
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In this paper, we abuse  the  language  (and,  perhaps,  the 
state of the  art), by calling all  hyperbolic  exponents  “dimen- 
sions.’’ This terminology  both fits our intuition and helps us 
make  the  geometric  interpretation specific. 
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