140

A “Zero-Time’’ VLSI Sorter

G. Miranker
L. Tang
C. K. Wong

A hardware sorter suitable for VLSI implementation is proposed. It operates in a parallel and pipelined fashion, with the
actual sorting time absorbed by the input/output time. A detailed VLSI implementation is described which has a very favorable

device count compared to existing static RAM.

1. Introduction

Sorting is one of the most important operations in data
processing. It is estimated that in data processing centers
over 25 percent of CPU time is devoted to sorting [1]. Many
sequential and parallel sorting algorithms have been pro-
posed and studied [2-13]. Implementation of various sorting
algorithms in different hardware structures has also been
investigated [3,4, 6, 11, 13-17].

In this paper, we describe a sorter in which the sorting
time is completely overlapped with the input/output time. It
has complete parallel operation and processes data in a
pipelined fashion. It can sort in both ascending and descend-
ing order and can overlap the sorting time of two consecutive
input sequences. Because of the regularity of its structure, it
is most suitable for VLSI implementation. A detailed imple-
mentation is presented to illustrate the basic principle.
Further optimization in various aspects of the design is
clearly possible.

2. Principle

The sorter consists basically of a linear array of n/2 cells (we
assume n is even), each of which can store two items of the
sequence to be sorted (Fig. 1). There is only one connection
between a cell and its upper and its lower neighbor cell. After
comparison, one of the two items goes to the next neighbor
cell through this connection. Since the data flow is the same
for all cells at any given time, this removed item occupies the
space newly created in the next cell. (The removed item at
the bottom cell goes out of the array in a downward data flow

while the item at the top cell goes out of the array in an
upward data flow.) The initial sequence is entered into the
sorter one item at each step. After the last item has been
entered, the data flow direction is reversed, and the sorted
sequence is then extracted as output, also serially. Each step,
executed synchronously and simultaneously by all the cells,
has two phases:

1. Compare: The two items in each and every cell are
compared to each other,

2. Transfer: Subject to the result of the comparison, the
desired sorting order (ascending or descend-
ing), and the sorting state (input or output),
one or the other of the two items is transferred
to a neighbor cell and the original cell receives
an item from the other neighbor cetl.

The sorter not only processes the items of a given sequence in
a pipelined fashion, but can also sort different sequences in a
pipelined way (provided that some extra hardware is added
to the sorter), i.e., while one sorted sequence is being
produced as output, a new sequence can be entered as input
at the same time from the other end of the sorter. In this way,
the 1/0 time of the sequence is completely absorbed by the
sorting time needed by another sequence.

Figure 2 shows an example of the sorting of a sequence in
ascending order. Here “oo” represents the largest item
possible. At the input stage the larger of the two items in

each cell is transferred down, while at the output stage the

© Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the

Editor.

G. MIRANKER, L. TANG, AND C. K. WONG

IBM J. RES. DEVELOP. » VOL. 27 & NO. 2 « MARCH 1983

e i -
t |
| |
ll Lhem R Item] : Cell 1
I |
| I
| |
I
: I Item X Item] y Cell2 &
| i |
r } |
| . |
| . }
| |
1 # |
| |
! | tem @ liem] | Cell 2
| {
| |
-) ___ .

& Comparator
— Downward data flow
~— Upward data flow

Figure 1 Block diagram of the sorter.

smaller of the two is transferred up. Note that at the end of
the input stage (step 6), the smallest item must be in the top
cell, the second smallest must be in either the top or the
second cell. In general, the ith smallest item must be in one of
the top 7 cells. This is why the output sequence is sorted.

The same principle applies to the descending sort; we have
only to replace “=” by *“—co,” the smallest item, and
interchange larger and smaller. It is shown later that it is not
necessary to flood the sorter initially with either “=c” or
“—o0.” (See Fig. 14, shown later.)

Let A, B be the two items stored in a cell. Let M
= max (A4, B), m = min (A4, B). If we consider the sorting of
an isolated sequence, and the sequence is entered through and
extracted from the top (top sequence), the specific action in the
transfer phase can be summarized as shown in Table 1.

If the sequence is entered through and extracted from the
bottom port of the sorter (bottom sequence), the situation
would be as reflected in Table 2. A fact to be noted is that the
roles of M and m are interchanged when we consider a
descending as opposed to an-ascending sort.

When we overlap the output of a sequence with the input
of another, it is clear from Tables 1 and 2 that the transfer
actions are different for the two sequences. For example, for
an ascending sort, in the upward movement, we have m? for
the output (top) sequence and M| for the input (bottom)
sequence. That is, in each cell containing two items from the

IBM J. RES. DEVELOP. ¢ ,VOL. 27 ¢,NO. 2 ¢, MARCH 1983

Input stage (larger items are circled and transterred)
5

2 5 5
6 2 2 5 h)
1 6 6 2 2 5
3 1 I 6 6 2
4 3 3 { I 6
1 1
oc)f oo 4o 4 [4) 3 K
o % | o) o | oc @ £ 4 |
=] o E
Compare Transfer C T C T
—_—
Step | Step 2 Step 3
5
2 5 5
6 2 2 5 5
Y 4) 4
1O 6] 1G IE e (s
4 [(=) 4]3 4) 3 6 (6] 3 2(3
x)l o | o S K 41« 4 e 416
J Y J
o o o
C T C T C T
Step 4 Step S Step 6

Output stage (smailer items are circled and transferred)

1
| 2
1 2 2 3
1) 5 2)s 315 Irxs 415
2) 3 4 406 4)6
416 6 x| oo ol o
3 3
o oc - oc o
C C T C T
Step § Step 9
|
1 | 2
1 1 2 2 3
! 2 2 3 3 4
2 3 3 4 4 5
3 4 4 5 5 6
DE [6]s 6 6] 6 | o
o 6] o oo | cc o o acj
3
oo i o o oc
c T C T C T
Step 10 Step 11 Step 12

Figure 2 Example of ascending sort of a single top sequence.

Table 1 Transfer actions for a single top sequence.

Input (down) Qutput (up)

Sort order

Ascending M moves down to m moves up to next
next cell (M |) cell (m?)

Descending m moves down to M moves up to next

next cell (m|) cell (M1)

1141
|

G. MIRANKER, L. TANG, AND C. K. WONG

142

0,1
0,1 0,2
0,1 a2 0,3
0.1 0,2 0,3 0,4
0,1 0,2 0.3 0.4 0,5
(S T AN T O R W
0.50.0m {058 Ym fospYm josp.dm Po.oim «1.10.9lm
030Am Poalm o.ofdm «0.gr4lm (13 Ym [i3[iem
0.603)m o) 4|m [afidm [LOIm [1afigm [afisfm
Y
1.4 1,1 1.3 1,6 1,5 1,2
1,1 1,3 1,6 1,5 1,2
1,3 1,6 1.5 1,2
1.6 1.5 1.2
1.5 1,2
1,2
(o8})y L)) (L0))] [¢8)]
0.5 0,1
0,1 0,2 0,5
0,4 03 0,1 0,5
0.6 0.4 0.4 01 0.5
0,2 05 0,6 0,4 0,1 0.5
0,3 0,6 0.2 0,6 0,4 0,1 0.5 ?
(N 16]m +os[Cdm o2m o2m BYoolm [oafoar [o.s|m
Q) 1sfm (A rsjm [eliYm «Josjm pos|m [o.3|s 0.Y0.3)m
()12l (G [alm [SEYm (Jio)m ool oo Ym
11 1,2 1,3 1.4 1.5 1.6
11 1,2 1,3 1,4 1,5
1,1 1,2 1,3 1,4
1,1 1.2 1.3
11 1,2
1,1
((»)] (D) (D) (D) D) D))
U=Up
D=Down
Figure 3 Example of sorting overlapping sequences.

Table 2 Transfer actions for a single bottom sequence.

Sort order

Input (up)

Ascending
Descending

Output {down)

m|
M|

Table 3 Transfer actions for overlapping sequences.

Data movement

Tag bits | 0 0

1 1 0 1

Downward
Upward

m| (
Mt (m

M| (M)

M)
)|m? (m?)

G. MIRANKER, L. TANG, AND C. K. WONG

CGolgg?)ll Top 1/0 leads
lines t t
Cell 1 Control gg’“ Dibit ees Dibit |
7] }‘ - -- - - -=
. Y t
3 L 4 i
Dibit Dibit Dibit
Control ibi
Cell 2 ntro o] g |a- | e U e 1“1
.
Dibit Dibit Dibit
Cell n/2 Control y .
-] 92 |e-] ! |e-- i <__j w __l

P

Bottom 1/0 leads

===> Clock and global control
=—=> Local (cell control

- - (Comparison carry

— Data

Figure 4 Overall topological layout of sorter.

top sequence, we promote the minimum of the two upwards
(m1), while in each cell containing two items from the
bottom sequence, we promote the maximum of the two
upwards (M1). This is because the top sequence is in its
output mode, and items should go out in ascending order,
while the bottom sequence is still in its input mode, and
larger items should be pushed up to the top so that later in the
output mode the items of this sequence can come out (from
the bottom) in ascending order.

For a cell containing an item from each sequence, we want
to promote the item from the top sequence up, whatever the
relative magnitudes of the two items may be. Thus we attach
a flag to each item when it is entered: “0” (““1”°) to items in
the top (bottom) sequence. This flag is considered part of the
item, in the comparison as well as in the transfer. Conse-
quently, for a cell containing items from both sequences, we
simply promote the minimum of the two up (m1). Thus, we
obtain Table 3 on transfer actions. The parenthesized entries
correspond to the descending sort.

The third column represents the frontier cell between the
two sequences. If we include the tag bit as the most signifi-
cant bit of the items for the purpose of comparison, the item
from a bottom sequence with tag bit = 1 is always M and the
two sequences are always kept separate. An example of the
sorting with the added tag bits is shown in Fig. 3.

IBM J. RES. DEVELOP. & VOL. 27 @ NO. 2 « MARCH 1983

I/b

WRT

 —— B\ S e I
\

Output stage: A > B
Input stage: A < B

a/O

——»» Direction of data flow during input
—— Direction of data flow during output

Figure 5 Block diagram of a dibit cell.

It should be emphasized once again that the sorter can be
used to sort one ascending and one descending sequence with
the existing flags but without the complexity of the moving
M /m boundary.

3. Logic design

Throughout this paper, the cell array of the sorter is repre-
sented vertically. Each cell, containing two w-bit items, is a
horizontal linear array (row) of w “dibit” cells. The overall
topological layout is shown in Fig. 4. In an actual physical
layout, a carpenter folding [18] of the cell array might be
needed to obtain a more square-shaped chip.

Dibit cell Each such cell is a compare/steer unit for two
bits, one from each of the two items 4 and B, representing the
same bit position. For simplicity, these bits are referred to as
bit 4 and bit B, respectively. Figure 5 is the block diagram of
a dibit cell. In downward (upward) movements, after com-
parison, one of the two bits is shifted out on line a (b) to the
next (previous) cell, while a bit from the previous (next) cell
is being shifted in on line I (O). In this figure, the terms
“input” and “output” refer to a top sequence, and the
controls are indicated for an ascending sort. For example, at
the input stage, if 4 < B, then the signal from the compara-
tor is 1, which sets off the selector (SEL), allowing bit B to go
down line a and a new bit to come in from I. The case 4 = B
also generates signal 1.

The comparators of the dibit cells in a cell row are chained
as in Fig. 6. C is the comparison result of items 4 and B, i.e.,
C =1 if item A = item B and C = O otherwise. The
comparison carry chain is precharged during clock phase ¢,
(gates W and Y in Fig. 7).

[BM J. RES. DEVELOP. e VOL. 27 ¢ NO. 2 « MARCH 1983

A 4 A4 A4 A 4, A,
Cou[Bit G Cou[Bit Cin Coue[Bit G CouBir Can
C com- com- | om- je—eeea—com- |a——0 1
parator parator parator| parator
B() E() Bl BI BZ BZ Bw Bw
T
Tag bits Most # —~ —— —— ——— — —— — ——— » L east
significant significant
bit bit

Figure 6 Overall comparator structure.

out

Figure 7 Circuit schematic of a dibit cell.

A circuit schematic of a dibit cell is shown in Fig. 7. The
precharged carry-propagate-type comparator is shown
together with the two bit cells. It should be noted that every
bit cell of item A4 (B) in a cell row is controlled by the same
four signals C,, C,, €, and C, (C}, C3, (3, and C,), so that all
the bits of an item are recycled or shifted at the same time.

Since the comparator circuit in Fig. 7 is very important for
implementation, we give a more detailed explanation of its
action here. The comparison result is as follows: If bit 4

G. MIRANKER, L. TANG, AND C. K. W#NG

143

144

Down;
C=¢,C Cc=1 ¢, =1 b, =1
C2=d>2 ¢ (A=B) L l L .
C3=1 L L_> L
C=¢,C] _]
Read out Write in
Bit B
C=9,C c=1 ¢, =1 b, =1
G=¢,C A=z B) L L
G ol
Ci=0, 7 7
Recycle Recycle
Up: Bit A
Cl=¢]C c=1 L_ ¢l=1 L d)2=l
C,=1 (A= B)
2
C=0, € 1ol
6= ¢ B]
Recycle Recycle
Bit B
C1,=¢1C C=1 ¢l=1 ¢2=1
G=1 azp L E L
=6, C
C4=d)2 C j -
Read out Write in

Figure 8 Required gatings for the 4 = B.

o = 1;if bit A < bit B, then C,, = 0; and if
bit 4 = bit B, then C,, = C,,. To verify this, we just consider
the case when 4 = 1, B = 0. Other cases are similar. 4 = 1,
B = 0 implies that gate U is grounded; thus the signal at U is
1. The U, Q pair form an inverter. Consequently, the signal at
Q is 0. On the other hand C_, is precharged to 1 at ¢, = 1.

Now that B = 0, A= 0, Q@ = 0, we have C_,, = 1 whatever
the value of C,, may be.

> bit B, then C

The other parts (i.e., the bit cells) of Fig. 7 are explained in
the next paragraph.

Control To illustrate, let us consider an ascending sort
with a top sequence. Each cell is a two-inverter loop con-
trolled by four gates using a two-nonoverlapping-phase
clock. Note that for the global control of the sorter, we need
one extra clock phase, in which one can change from the up
to the down phase, or the down to the up. It can also be used
for initialization. But more importantly, it is needed to make
sure that a racing condition does not occur. (See the section

G. MIRANKER, L. TANG, AND C. K. WONG

on timing.) The required gatings for different situations with
A = B (i.e., comparison result C = 1) are shown in Fig. 8.

More specifically, C = 1(4 = B) in the down phase
generates the following signals:

C =9,
C,=0,
C, =1,
C,= o,

for bit 4 and

¢l =0,
G, =9,
C, =1,
C,=0

for bit B. Thus, at ¢, = 1, only gates C;, C, are connected for
bit 4 and only gate C; is connected for bit B, corresponding
to reading out bit 4 and recycling bit B. At ¢, = 1, gates C|,
C, are connected for bit 4 and gates C,, C; are connected for
bit B, corresponding to writing in a new bit to replace bit 4
and continuing recycling bit B. The up phase is similar. In
the case of A < B, just interchange the gatings for 4 and B.
The boolean expressions for generating the correct signals in
all situations are as follows:

C, = d,da+ ola, C|=¢,la+ ¢la

C,=¢,la+1, C, = ¢la+ T,

C,=1+ ¢,la, C, =1+ ¢la

C,= ¢da+ p,a, C,=¢la+ ¢la

I = 1(0) indicates the downward (upward) movement; a is

the boolean variable which takes opposite values (0 and 1) in
opposite situations:

% Ascending (Opt = 0) versus descending sort (Opt = 1),

Top (SR = 0) versus bottom sequences (SR = 1),

% And 4 = B (comparison carry C = 1) versus 4 < B (C
= 0).

It follows that a is the exclusive-OR of C, SR, and Opt,

1

0
0 ICE

C C

See Fig. 9 for the circuit schematic of the cell control.

To have homogeneous and regular cells, we have avoided
the explicit use of the tag bit combination to distinguish top

IBM 1. RES. DEVELOP. o VOL. 27 ¢ NO. 2 « MARCH 1983

Opt &, 9, b, 1 i

SR

Figure 9 Circuit schematic of the cell control.

Table 4 Transfer actions and corresponding shift register control
for overlapping sequences.

Ascending Descending
Tag bits 00 11 01 00 11 01
Down M l ml M l ml M l M l
Up mt M1 m? M1 mi m?
SR 0 1 0 0 1 1

and bottom sequences (Table 3); instead we have a bidirec-
tional double shift-register chain,whose contents move up
and down in synchrony with those of the cells and whose
output at each level is taken to be SR, as shown in Fig. 10, so
that an item of a top (bottom) sequence is always chaperoned
by SR = 0 (1). A slight complication occurs at the frontier.
The desired transfer action then is shown in Table 4. The
reader can easily check from Fig. 10 that the two extra
unidirectional shift registers at the two ends are needed to
fulfill the requirement of the third column in both ascending
and descending sort.

4. Timing

As mentioned in the previous section, we use a three-
nonoverlapping-phase clock, as shown in Fig. 11. During

IBM J. RES. DEVELOP. e VOL. 27 ¢ NO. 2 « MARCH 1983

1 Cell

1 Cell

1 Cell

1 Cell

o
by

Figure 10 Bidirectional double shift-register chain to control the
transfer action.

L

o —] 1] [

|
b
|
|
|
i
|
|
|
|
|
1

Figure 11 Three-phase clock.

phase ¢,, the transfer bit is read out from cell (i), while the
other bit is recycled and the comparison carry chain pre-
charged [Fig. 12(a)]. During ¢,, the transfer bit is written 1

G. MIRANKER, L. TANG, AND C. K. WQ

a5

ING

146

Compare Transfer

Pre. C Control R. w.

¢, b, by b, b, ¢,

c R. Ww.
Pre. out | Control Cir. Cir
LTI ST N
(a)
to [R. w.
" . .
Pre. control Cir. Cir.
LT PR TR
C to|R. W.
Pre. cg;jnllrol Cir. Cir.
LT PR TR
(b)
Pre. =Precharging the comparisorn carry line.
C,i =Compute C_ in the comparators for bit pairs, obtaining C.
Control =C is fed into the control circuit of C], Cz, Cy. Gy and
G G CL Gy .
R. =Read the transfer bit out to the next cell (down or up).
W. =Write in the transfer bit from the other next celt
(up or down).

Cir. =The stay bit is recycled in the cell.

Figure 12 (a) Action taken at different clock phases. (b) Racing
condition would occur without phase 3.

Sorting begins Up | Down
PR o B B
4, 1 -

20 I e | I

[
[

[

(Reset) R [
Initialization [

L

Figure 13 Action taken at phase 3.

into the next cell (i + 1 or i — 1), while the other bit is
making a full recycle and the comparison is taking place. At
¢,, the comparison result signal is fed into the control circuit
of each cell.

In addition, phase ¢, is needed (see Fig. 13),

1. For the transition from the up to down and down to up
stages,

G. MIRANKER, L. TANG, AND C. K. WONG

0
o)
— 1-- -
X X— —cx —o0
O0-—<-
(a) (b)
o o
—oc —o0
(c) (d)
Q
0— -
0 A 0
XX -
1 o

! (e)

=zero, X =don’t care, ®=1, A=item from sequence

Figure 14 [nitialization for different sorting situations. (a) Initial-
ization 1 for ascending sort (f = 0). (b) Initialization 2 for
ascending sort (¢ = 0). (c) Initialization 2 for descending sort
(t = 0). (d) Initialization 1 for descending sort (¢ = 0). (e) Sorting
from configuration (a) at 1 = 1+ (one clock cycle afterward).

2. For the initialization,
3. And to avoid a racing condition in the loop of the
comparator, control, and bit cell.

Specifically, at ¢, = 1, we obtain the value of C (see Fig. 9),
and it goes to the control at ¢, = 1. At the next ¢, = 1, bit 4
and bit B begin their transfer phase while the C line (or the
C,, line in the individual bit comparators) is precharged.
[See Fig. 12(a).] At ¢, = 1, a new bit is written in (the other
has been circulating) and compared with the other bit.
Without ¢,, we would have the situation in Fig. 12(b). Thus,
at the second ¢, = 1, while writing out according to a
previous set of signals C, C/, i = 1, 2, 3, 4, a comparison

IBM J. RES. DEVELOP. & VOL. 27 » NO. 2 « MARCH 1983

R
—F_h

J IES
&
0

i

—L_Hf[ﬁj
=

l Q
o — At
=
o— C'—l
C3'— ——C'-l
Tl

Figure 15 Circuit schematic of a dibit cell with comparison done
on complemented bits.

would be made, C,, (or C) would go to the control, and a new
set of signals C, C}, i = 1, 2, 3, 4, would be generated. A

racing condition would have occurred.

5. Initialization

Before the beginning of a sort, instead of initializing all the
cells with “es” or “—c0,” it is necessary only to fill in the two
border cells with tags, distinct from the tags of the sequence
coming in, together with appropriate setting of the compari-
son shift registers as in Fig. 14. Recall that top (bottom)
sequences have tag bit “0” (“1”). So here *“eo” (*“~")
represents any number with tag bit “1” (“07). It could be
easily checked from Table 4, and, e.g., Fig. 14(e) that these
initializations are indeed adequate.

All the initial values are injected into the sorter during
clock phase ¢,.

6. Concluding remarks

1. The circuits are drawn up as if the wires connecting dibit
cells of rows i and i + 1 have enough capacitance to store
the transfer bit. If they do not, it would be a simple matter
to add to them connection inverters. Without the invert-

IBM J. RES. DEVELOP. e VOL. 27 ¢ NO. 2 ¢« MARCH 1983

ACEN b |
optid)| 1] ! Lo !

0 * * ‘ l—Tag bits —s=+e——Bits | ——#{e o ¢ la— Bits w —-1
A | [| I

R

-

SR | Control
row 1

Control
row 2

Control
row n/2-1

Ay YA
Control |C Cout Ciy
row n/2 _

4

Figure 16 Overall sorter structure.

ers, comparisons on adjacent row cells must be imple-
mented differently. Indeed, as can be seen in Fig. 6, a bit
leaving a cell is in complemented form in comparison to
when it was entered. Therefore, to produce the same
comparison carry output we need to invert the roles of A
and 4, and also B and B, as in Fig. 15. A redrawn global
block diagram is shown in Fig. 16, where the alternation
between adjacent rows is clearly indicated. Note also that
an even number of rows is recommended so that data are
entered and extracted in “true” form. (Otherwise either
the top or bottom would be in “false,” i.e., negated
form.)

2. For our implementation (Fig. 6) we have a device count of
26 for a dibit cell, i.e., 13 per bit versus 6 in today’s 16K
static RAM. So a sorter chip would very likely have a

G. MIRANKER, L. TANG, AND C. K. W

147

DNG

148

capacity of up to 8K bits or 256 32-bit cells. The sorter
can be trivially extended to handle key/pointer pairs by
simply omitting the compare logic on the portion of the
storage cell associated with the pointer. (Then it will
require only eight devices per pointer bit.)

3. We can use the sorter to merge two sorted strings by
repeatedly passing them through the sorter in an appro-
priate way. For example, the generalized odd-even merge
algorithm described in [6, p. 241, Exercise 38] can be
employed for this purpose. Reference [6] has a detailed
description and timing analysis of this merging algo-
rithm.

References

1. D. E. Knuth, The Art of Computer Programming, Vol. 3,
Sorting and Searching, Addison-Wesley Publishing Co., Read-
ing, MA, 1973.

2. K. E. Batcher, “Sorting Networks and their Applications,”
AFIPS Conf. Proc. 32, 307-314 (1968).

3. T.C.Chen, V. Y. Lum, and C. Tung, “The Rebound Sorter: An
Efficient Sort Engine for Large Files,” Proceedings of the
Fourth International Conference on Very Large Data Bases,
ACM, New York, September 1978, pp. 312-318.

4. K. Chung, F. Luccio, and C. K. Wong, “On the Complexity of
Sorting in Magnetic Bubble Memory Systems,” /IEEE Trans.
Computers C-29, 553—-563 (July 1980).

5. D. S. Hirschberg, “Fast Parallel Sorting Algorithms,” Com-
mun. ACM 21, 657-661 (August 1978).

6. D.T. Lee, H. Chang, and C. K. Wong, “An On-Chip Compare/
Steer Bubble Sorter,”” IEEE Trans. Computers C-30, 396—405
(June 1981).

7. H. Lorin, Sorting and Sort Systems, Addison-Wesley Publish-
ing Co., Reading, MA, 1975.

8. D. E. Muller and F. P. Preparata, “Bounds to Complexities of
Networks for Sorting and for Switching,” J. ACM 22, 195-201
(April 1975).

9. D. Nassimi and S. Sahni, “Bitonic Sort on a Mesh-Connected
Parallel Computer,” IEEE Trans. Computers C-28, 2—7 (Janu-
ary 1979).

10. F.P.Preparata, “New Parallel-Sorting Schemes,” IEEE Trans.
Computers C-27, 669-673 (July 1978).

11. Y. Tanaka, Y. Nozaka, and A. Masuyama, “Pipelined Search-
ing and Sorting Modules as Components of a Data Flow
Database Computer,” Proc. IFIP °80, October 1980, pp. 427
432,

12. C. D. Thompson and H. T. Kung, “Sorting on a Mesh-
Connected Parallel Computer,” Commun. ACM 20, 263-271
(April 1977).

13. H. Yasuura, N. Takagi, and S. Najima, “The Paralle! Enumer-
ation Sorting Scheme for VLSI,” I[EEE Trans. Computers (to
appear).

14. M. J. Foster and H. T. Kung, “The Design of Special-Purpose
VLSI Chips,” IEEE Computer 13, 26—40 (January 1980).

15. H. T. Kung, “The Structure of Parallel Algorithms,” 4dvances
in Computers, Vol. 19, Academic Press, Inc., New York, 1980,
pp. 65-112.

16. C. Mead and L. Conway, Introduction to VLSI Systems,
Addison-Wesley Publishing Co., Reading, MA, 1980.

17. A. Mukhopadhyay, “Hardware Algorithms for Nonnumeric
Computation,” IEEE Trans. Computers C-28, 384—394 (June
1979).

18. C. E. Leiserson, “Area-Efficient Graph Layouts (for VLSI),”
Proc. 21st Annual Sym. on Foundations of Computer Science,
IEEE, New York, Oct. 13-15, 1980, pp. 270-281.

G. MIRANKER, L. TANG, AND C. K. WONG

Received April 13, 1982, revised October 7, 1982

Glen S. Miranker Valid Logic Systems, Inc., 650 North
Mary Avenue, Sunnyvale, California 94086. Dr. Miranker is an
engineering group leader at Valid Logic Systems. From 1979 to
1981, he was with IBM at the Thomas J. Watson Research Center in
Yorktown Heights, New York. While there he worked on the
simulation engine and single chip 801. He also taught VLSI design
for the IBM Education Department at the Research Center. From
1980 to 1981 he was an adjunct professor at Columbia University,
New York. Dr. Miranker received a B.S. in computer sciences in
1975 from Yale University, New Haven, Connecticut, an M.S. in
1977 and a Ph.D. in 1979, both from the Massachusetts Institute of
Technology, Cambridge. He was a Hertz scholar while at college.
Dr. Miranker is a member of the Association for Computing
Machinery, the Institute of Electrical and Electronics Engineers,
and Tau Beta Phi.

Luong Tang Switchco Inc., 329 Alfred Avenue, Teaneck,
New Jersey 07666. Mr. Tang has been development manager at
Switchco since March 1982. He is also a Ph.D. candidate in the
Electrical Engineering Department at Columbia University, New
York. His principal interest is in computer communications. This
work was pursued while on summer leave at the IBM Thomas J.
Watson Research Center, Yorktown Heights, New York. Mr. Tang
received his Engineer Diploma from the Ecole Supérieure d’Elec-
tricité in France in 1972.

Chak-Kuen Wong IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Wong joined IBM in 1969
as a member of the Computer Sciences Department at the Thomas J.
Watson Research Center. His current interests include VLSI design
algorithms, abstract and concrete computational complexity theory,
optimization problems related to data allocation, magnetic bubble
memory structures, theory of fuzzy sets, and satellite switching/time
domain multiple-access systems. Dr. Wong received a B.A. in
mathematics from the University of Hong Kong in 1965 and an
M.A. and a Ph.D. in mathematics from Columbia University, New
York, in 1966 and 1970, respectively. For the academic year 1972 to
1973, he was a Visiting Associate Professor of Computer Science in
the Department of Computer Science at the University of Illinois,
Urbana. For the academic year 1978 to 1979, he was a Visiting
Professor of Computer Science in the Department of Electrical
Engineering and Computer Science at Columbia University, New
York. Dr. Wong received an IBM Outstanding Invention Award in
1971 for a new family of sorting methods and two IBM Invention
Achievement Awards. He holds three U.S. patents and is currently
writing a book on algorithms in mass storage systems. Dr. Wong is a
member of the Association for Computing Machinery and the New
York Academy of Sciences, and a senior member of the Institute of
Electrical and Electronics Engineers. He is also an editor of the
IEEFE Transactions on Computers, an Advisory Editor of the
international journal Fuzzy Sets and Systems, and a Foreign Editor
of the Chinese journal Fuzzy Mathematics.

IBM J. RES. DEVELOP. @ VOL, 27 e NO. 2 « MARCH 1983

