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A “Zero-Time” VLSI Sorter 

A hardware sorter  suitable for  VLSI implementation  is  proposed. I t  operates in a  parallel and pipelined  fashion,  with the 
actual  sorting time absorbed by the inputloutput  time. A detailed VLSI implementation  is described  which has a very favorable 
device count compared  to  existing  static RAM. 

1. Introduction 
Sorting is one of the most important  operations in data while the item at  the top cell goes out of the  array in  ‘an 
processing. It is estimated  that in  data processing centers upward data flow.) The initial  sequence is entered  into  the 
over 25 percent of CPU  time is devoted to  sorting [I].  Many  sorter  one item at  each step. After  the last  item has been 
sequential and parallel sorting  algorithms have been pro- entered,  the  data flow direction is reversed, and  the sorted 
posed and studied [2-131. Implementation of various sorting sequence is then  extracted  as  output, also  serially. Each  step, 
algorithms in different hardware  structures has  also been executed  synchronously and simultaneously by all the cells, 
investigated [3 ,4,  6, 1 I ,  13-1 71. has two phases: 

In  this paper, we describe  a sorter in  which the sorting 
time is completely  overlapped with the  input/output  time.  It 
has  complete  parallel  operation and processes data in a 
pipelined fashion. It can  sort in both  ascending and descend- 
ing order  and  can overlap the  sorting  time of two consecutive 
input sequences.  Because of the  regularity of its structure, it 
is most suitable for VLSI implementation. A  detailed  imple- 
mentation is presented to  illustrate  the basic principle. 

1. Compare:  The two items in each  and every cell are 
compared  to  each  other, 

2. Transfer:  Subject  to  the result of the comparison, the 
desired sorting  order (ascending or descend- 
ing),  and  the sorting state  (input or output), 
one or the  other of the two items is transferred 
to a  neighbor cell and  the original cell receives 
an item from  the  other neighbor cell. 

Further optimization in various aspects of the design is 
clearly possible. 

2. Principle 
The  sorter consists basically of a  linear array of n/2 cells (we 
assume n is even), each of which can  store two items of the 
sequence to be sorted (Fig. I ) .  There is only one connection 
between a cell and its  upper and its lower neighbor cell. After 
comparison, one of the two items goes to  the next  neighbor 
cell through this  connection. Since  the  data flow is the  same 
for all cells at  any given time, this removed item  occupies the 
space newly created in the next  cell. (The removed item at  
the bottom cell goes out of the  array in a  downward data flow 

The  sorter not only processes the items of a given sequence in 
a pipelined fashion, but  can also sort different  sequences in a 
pipelined way (provided that some extra  hardware is added 
to  the  sorter), Le., while one  sorted  sequence is being 
produced as  output, a new sequence can be entered  as  input 
at  the  same  time from the  other end of the  sorter. In this way, 
the 110 time of the sequence is completely  absorbed by the 
sorting time needed by another sequence. 

Figure 2 shows an  example of the  sorting of a  sequence in 
ascending  order. Here ‘‘00” represents the  largest item 
possible. At  the input stage  the  larger of the two items in 
each cell is transferred down, while at  the  output  stage  the 
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Figure 1 Block diagram of the sorter. 

smaller of the two is transferred up. Note  that  at  the end of 
the  input  stage  (step 6), the smallest  item must be in the  top 
cell, the second smallest must be in  either  the  top or the 
second cell. In  general,  the  ith  smallest item must be in one of 
the  topi cells. This is why the  output  sequence is sorted. 

The  same principle  applies to  the descending sort; we have 
only to replace "w" by ''-a,'' the  smallest  item,  and 
interchange  larger  and  smaller.  It is shown later  that  it is not 
necessary to flood the  sorter initially  with either ''a" or 
"-w." (See Fig. 14, shown later.) 

Let A ,  B be  the two items stored in a  cell. Let M 
= max ( A ,  B ) ,  m = min ( A ,  B ) .  If we consider the  sorting of 
an isolated sequence, and the sequence is entered  through and 
extracted from the top (top sequence), the specific action in the 
transfer phase can be summarized as shown  in Table 1. 

If the sequence is entered  through  and  extracted from the 
bottom port of the  sorter  (bottom  sequence),  the  situation 
would be as reflected in Table 2. A fact  to be noted is that  the 
roles of M and m are  interchanged when we consider  a 
descending as opposed to  an ascending sort. 

When we overlap the  output of a  sequence  with the  input 
of another, it is clear from Tables 1 and 2 that  the  transfer 
actions  are different  for the two  sequences. For example, for 
an ascending sort, in the upward  movement, we have m?. for 
the  output  (top) sequence and MI for the  input  (bottom) 
sequence. That is, in each cell containing two items  from  the 
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Figure 2 Example of ascending sort of a single  top  sequence. 

Table 1 Transfer  actions for a single  top  sequence. 

Stage Input (down) Output (up) 

Ascending M moves  down to m moves  up  to next 
next  cell ( M I )  cell ( m f )  

Descending m moves  down  to M moves up to next 
next cell (nzl)  cell ( ~ f )  
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Table 2 Transfer  actions  for  a  single  bottom  sequence. 

Output (down) 

Ascending 
Descending 

Table 3 Transfer  actions for overlapping  sequences. 
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Figure 4 Overall topological layout of sorter. 

top  sequence, we promote the  minimum of the two upwards 
( r n f ) ,  while in each cell containing two items from  the 
bottom  sequence, we promote the  maximum of the two 
upwards ( M t ) .  This is because the top  sequence is in its 
output mode, and items  should  go out in ascending order, 
while the bottom  sequence is still in its input, mode, and 
larger  items should be pushed up  to  the top so that  later in the 
output mode the items of this sequence can come out  (from 
the  bottom) in ascending order. 

For a cell containing an item from  each sequence, we want 
to promote the item from  the top  sequence  up,  whatever the 
relative magnitudes of the two items  may be. Thus we attach 
a flag to  each item when it is entered: “0” (“1”) to  items in 
the top (bottom) sequence. This flag is considered part of the 
item, in the comparison as well as in the  transfer. Conse- 
quently, for  a cell containing  items  from  both  sequences, we 
simply  promote the  minimum of the two up ( r n l ) .  Thus, we 
obtain  Table 3 on transfer actions. The parenthesized entries 
correspond to  the descending  sort. 

The  third column represents  the  frontier cell between the 
two sequences. I f  we include the  tag bit as  the most signifi- 
cant  bit of the items for the purpose of comparison, the item 
from  a  bottom  sequence with tag bit = 1 is always M and  the 
two  sequences are always  kept separate. An example of the 
sorting with the  added  tag bits is shown in Fig. 3. 

IBM J .  RES.  DEVELOP VOL. 27 NO. 2 MARCH 1983 



I /b  

4 

"H SEL 4 + SEL - 
W W  

B 

Output  stage: A > 6 
Input  stage: A < B 

a i 0  

Dlrection of data How durlng  input - Directlon of data Row during  output 

Figure 5 Block diagram of a  dibit cell 

It should be emphasized once again  that  the  sorter  can be 
used to  sort one ascending  and  one descending  sequence with 
the existing flags but without the complexity of the moving 
M f m boundary. 

3. Logic  design 
Throughout this paper,  the cell array of the  sorter is repre- 
sented  vertically. Each cell, containing two w-bit items, is a 
horizontal  linear array (row) of w "dibit" cells. The overall 
topological layout is shown in Fig. 4. In an  actual physical 
layout, a carpenter folding [I81 of the cell array  might be 
needed to  obtain a  more square-shaped  chip. 

Dibit cell Each such cell is a compare/steer unit for two 
bits, one from each of the two items A and B,  representing  the 
same bit position. For simplicity,  these  bits are referred to  as 
bit A and bit B, respectively. Figure 5 is the block diagram of 
a dibit cell. I n  downward (upward) movements, after com- 
parison,  one of the two bits is shifted out on line  a (b)  to  the 
next  (previous)  cell, while a  bit  from the previous (next) cell 
is being  shifted in on line I (0). In this figure, the  terms 
"input" and "output"  refer to a top sequence, and  the 
controls are  indicated for an  ascending sort. For example,  at 
the  input  stage, if A < B, then  the signal from  the  compara- 
tor is 1, which sets off the selector (SEL), allowing bit B to go 
down line  a and a new bit to come in from I. The  case A = B 
also generates signal 1. 

The  comparators of the dibit cells in a cell row are  chained 
as in Fig. 6. Cis  the comparison  result of items A and B, i.e., 
C = 1 if item A 2 item B and C = 0 otherwise. The 
comparison carry  chain is precharged  during clock phase 
(gates Wand Y in Fig. 7). 

t 

c; ~ 

bii 

Overall  comparator  structure. 

Bit A 
r""""""""" 

Figure 7 Circuit  schematic of a  dibit cell. 

A circuit  schematic of a dibit cell is shown in Fig. 7. The 
precharged  carry-propagate-type  comparator is shown 
together with the two bit cells. It should be noted that every 
bit cell of item A ( B )  in a cell row is controlled by the  same 
four signals C,, C,, C,, and C, (Ci, C;,  C;, and Ci), so that  all 
the bits of an item are recycled or shifted at  the  same  time. 

Since  the  comparator  circuit in Fig. 7 is very important for 
implementation, we give a more detailed  explanation of its 
action  here. The comparison  result is as follows: If bit A 43 
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Down: Bit A 

c, =+* c e= I + , = I  
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C2=+* C (A  2 E )  L.T, L1 I+, 

Write in 
1 

Read  out 
Bit B - 

Recycle  Recycle 

Read out Write In 

Figure 8 Required gatings for the A 1 B. 

> bit B, then Caul = 1 ;  i f  bit A < bit B, then C,,, = 0; and if 
bit A = bit B, then Cou, = Gin. To verify this, we just consider 
the  case when A = 1 ,  B = 0. Other cases are  similar. A = 1 ,  
B = 0 implies that  gate U is grounded;  thus  the signal at U is 
1. The U, Q pair  form  an  inverter.  Consequently,  the signal a t  
Q is 0. On the  other  hand Caul is precharged  to 1 at  4, = 1. 
Now that B = 0,z = 0, Q = 0, we have COu, = 1 whatever 
the value of Cjn may be. 

The  other  parts (i.e., the bit  cells) of Fig. 7 are explained in 
the next paragraph. 

Control To illustrate, let us consider an  ascending  sort 
with a top sequence. Each cell is a  two-inverter loop con- 
trolled by four  gates using  a two-nonoverlapping-phase 
clock. Note  that for the global  control of the  sorter, we need 
one extra clock phase, in which one  can  change from the up 
to  the down phase, or the down to  the up. It  can also be used 
for initialization.  But  more importantly, it is needed to  make 
sure  that a racing condition does not occur.  (See  the section 

on timing.)  The required gatings for  different situations with 
A 2 B (i.e., comparison  result C = 1) are shown in Fig. 8. 

More specifically, C = l ( A  2 B )  in the down phase 
generates  the following signals: 

c, = d2 7 

c2 = 0, 

c, = 1, 

C, = 4, 

for bit A and 

c; = 0, 

c; = 42 > 

c; = 1, 

c; = 0 

for bit B. Thus, a t  4, = 1 ,  only gates C,, C, are connected for 
bit A and only gate C; is connected for bit B, corresponding 
to reading out bit A and recycling bit B. At 42 = 1, gates C,, 
C, are connected  for  bit A and  gates C;, C; are connected for 
bit B, corresponding to writing in a new bit to  replace bit A 
and continuing recycling bit B. The  up phase is similar. In 
the  case of A < B, just  interchange  the  gatings for A and B. 
The boolean expressions for generating  the  correct signals in 
all situations  are  as follows: 

C, = 4*Ia + Qa, C; = 4 2 ~ ~  + 4,ia; 
c, = ~ , I Z  -t 7, c; = 4 2 ~ ~  + i; 
C, = I + 42ia, C; = I + 42iz; 
C, = 4 , I a  + 42ia, C; = ~ , I Z  + 4,ia. 

I = l(0) indicates the downward (upward) movement; a is 
the boolean variable which takes opposite  values (0 and I )  in 
opposite situations: 

Ascending (Opt = 0) versus  descending sort (Opt = l ) ,  
Top ( S R  = 0) versus  bottom  sequences (SR = l ) ,  
And A I B (comparison carry C = 1) versus A < B ( C  
= 0) .  

It follows that a is the exclusive-OR of C, SR, and Opt, 
I&., 9 - 

See Fig. 9 for the  circuit  schematic of the cell control. 

To have homogeneous and  regular cells, we have avoided 
the explicit  use of the  tag bit  combination to distinguish top 
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Figure 9 Circuit  schematic of the cell control. 

Table 4 Transfer  actions  and  corresponding  shift  register  control 
for  overlapping  sequences. 

S R  

and  bottom sequences (Table 3); instead we have  a  bidirec- 
tional double  shift-register chain,whose contents move up 
and down in synchrony with those of the cells and whose 
output a t  each level is taken  to be SR, as shown in Fig. 10, so 
that  an item of a top  (bottom)  sequence is always  chaperoned 
by S R  = 0 (1). A slight complication  occurs at  the  frontier. 
The desired transfer action then is shown in Table 4. The 
reader  can easily check  from Fig. 10  that  the two extra 
unidirectional shift registers at  the two ends  are needed to 
fulfill the  requirement of the  third column in both  ascending 
and descending sort. 

4. Timing 
As mentioned in the previous section, we use a three- 
nonoverlapping-phase  clock, as shown in Fig. 11 .  During 
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I Cell 

I Cell 
L 

Figure 10 Bidirectional  double  shift-register  chain to control  the 
transfer  action. 

Figure 11 Three-phase  clock. 

phase bl, the  transfer bit is read out from cell (i), while the 
other bit is recycled and  the comparison carry  chain pre- 
charged  [Fig.  12(a)].  During b2, the  transfer bit is written 

I Cell 

1 Cell 
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Comoare Transfer 
A h r -. 

$ 1  4* +, $ 2  

Pre. =hecharging the comparison carry line. 
C,,, =Compute Caul in the comparators for bit pairs,  obtaining C. 
Control=C is fed into the control circuit of C , ,  C2, C3. C4. and 

R.  =Read the transfer bit out to the next cell (down or up). 
W. =Write in the transfer bit from the other next cell 

Cir. =The stay bit is recycled in the cell. 

Figure 12 (a)  Action  taken at  different clock phases. (b) Racing 
condition would occur  without  phase 3. 

c;, c;. c;, c;. 

(up or  down). 

Sorting  begms 

$ 1  

Up Down 

I ' I  
I 

Figure 13 Action  taken at  phase 3. 

-I 
0 

-w " (e) 

0 =zero, x =don't  care, = I .  A =  item from sequence 

Figure 14 Initialization for different  sorting  situations. (a) Initial- 
ization 1 for ascending  sort ( t  = 0). (b) Initialization 2 for 
ascending  sort (Z = 0). (c)  Initialization 2 for  descending  sort 
( t  = 0). (d)  Initialization 1 for descending  sort ( t  = 0). ( e )  Sorting 
from configuration (a)  at t = 1 + (one clock cycle  afterward). 

2. For the initialization, 
3. And  to avoid a racing condition in the loop of the 

comparator, control, and bit cell. 

into  the next cell (i + 1 or i - I ) ,  while the  other bit is 
making a  full  recycle and  the comparison is taking place. At 
43, the comparison  result  signal is fed into  the control circuit 
of each cell. 

Specifically, a t  42 = 1, we obtain  the value of C (see  Fig. 9), 
and it goes to  the control a t  43 = 1. At  the next c#+ = 1, bit A 
and bit B begin their  transfer phase while the C line (or the 
C,,, line in the individual bit  comparators) is precharged. 
[See Fig. I2(a).]  At I#J2 = 1,  a new bit is written in (the  other 
has been circulating)  and  compared with the  other bit. 
Without @3, we would have the  situation in Fig. 12(b).  Thus, 

1. For  the  transition  from  the  up  to down and down to  up at  the second 4, = 1, while writing out  according  to a 
stages, previous set of signals Ci, C;, i = 1, 2, 3, 4, a  comparison 

In addition,  phase 43 is needed  (see  Fig. 13), 
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Figure 15 Circuit  schematic of a dibit cell  with  comparison  done 
on complemented  bits. 

would be  made, C,,!, (or C) would go to  the control, and a new 
set of signals ki, C,’, i = 1, 2, 3, 4, would be  generated. A 
racing condition would have occurred. 

5. Initialization 
Before the beginning of a sort,  instead of initializing all  the 
cells with “03” or “- w,” it is necessary only to fill in the two 
border  cells with tags,  distinct  from  the  tags of the sequence 
coming in,  together with appropriate  setting of the  compari- 
son shift registers as in Fig. 14. Recall  that  top  (bottom) 
sequences  have tag bit “0” ( “ I ” ) .  So here ‘‘m” (‘“a’’) 

represents any  number with tag bit “1” (“0”). It could be 
easily checked from  Table 4, and, e.g., Fig. 14(e)  that these 
initializations are indeed adequate. 

~ 1 1  the initial  values are injected into  the  sorter  during 
clock phase &. 

6. Concluding remarks 
1. The  circuits  are  drawn  up  as if the wires  connecting dibit 

cells of rows i and i + 1 have  enough capacitance  to  store 
the  transfer bit. I f  they do  not,  it would be a  simple matter 
to  add  to  them connection  inverters. Without  the invert- 

I I  I 

“..I 

4 5 ... 
... 
... 

Figure 16 Overall sorter structure. 

ers, comparisons on adjacent row cells must be imple- 
mented differently. Indeed,  as  can be seen in Fig. 6, a  bit 
leaving a cell is in complemented form in comparison to 
when it was entered.  Therefore,  to produce the  same 
comparison carry  output we need to invert the roles of A 
and 2, and also B and 3, as in Fig. 15. A redrawn global 
block diagram is shown in Fig.  16, where  the  alternation 
between adjacent rows is clearly  indicated.  Note also that 
an even number of rows is recommended so that  data  are 
entered  and  extracted in “true” form. (Otherwise  either 
the  top or bottom would be in “false,” i.e., negated 
form.) 

2. For our  implementation  (Fig.  6) we have  a device count of 
26 for  a dibit cell, Le., 13 per bit  versus  6 in today’s 16K 
static RAM. So a sorter  chip would very likely have  a 17 
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capaci ty  of u p   t o  8K bits or 256  32-bit  cells.  The  sorter 
c a n  be trivially  extended  to  handle  key/pointer  pairs  by 
simply  omitt ing  the  compare  logic on the  portion of t h e  
s torage cell associated  with  the  pointer.  (Then  it  will 
require  only  eight  devices  per  pointer  bit .)  
We   can   u se   t he   so r t e r   t o   merge   two   so r t ed   s t r i ngs   by  
repeatedly  passing  them  through  the  sorter  in an appro-  
priate  way. For example,   the  generalized  odd-even  merge 
algorithm  described  in [6, p. 241, Exercise  381  can be 
employed for this  purpose.  Reference [6] h a s  a detailed 
description  and  t iming  analysis of  this  merging  algo- 
r i thm. 
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