Ronald Fagin
John H. Williams

A Fair Carpool Scheduling Algorithm

We present a simple carpool scheduling algorithm in which no penalty is assessed to a carpool member who does not ride on any
givenday. The algorithm is shown to be fair, in a certain reasonable sense. The amount of bookkeeping grows only linearly with

the number of carpool members.

1. Introduction

Suppose that N people, tired of spending their time and
money in gasoline lines, decide to form a carpool. We present
a scheduling algorithm for determining which person should
drive on any given day. We want a scheduling algorithm that
will be perceived as fair by all the members so as to
encourage their continued participation. We begin by pre-
senting three algorithms (Scheduling Algorithms 1-3
below) and discussing their flaws. We then present the
algorithm (Scheduling Algorithm 4) that we propose. We
assume for now that on any given day at most one car is the
“carpool car.” This assumption is relaxed later.

Scheduling Algorithm 1 (simple rotation) The simplest
scheme, and the one most often used, is simply to rotate
driving, e.g., in alphabetical order. Thus, if there are N
members of the carpool, then person i is responsible for
driving on the ith day and every N driving days thereafter.
This scheme has the obvious advantage that it is simple to
describe and it is easy to determine who drives next. The
difficulty with this scheme arises when one or more people do
not participate in the carpool on a particular day. If the
designated driver has to stay out on the day that he is
supposed to drive, then he will have to swap days with
someone else. After a few such occurrences, it may become
difficult to determine who is to drive the next day. If a
non-driver misses one or more days, should he be expected to
drive in his normal rotation? If so, he may soon perceive the
carpool to be more of a burden than a blessing and drop out
altogether.

Just as big a problem as the person who cannot drive on his
scheduled day is the person who must (for personal reasons)
drive on someone else’s day but could otherwise participate in
the carpool (for example, a person who is going to work as
usual but needs to have his car in order to go to the bank to
deposit the money he has saved by carpooling). We want a
scheduling algorithm that will always be tolerant of excep-
tional conditions and that will never discourage participa-
tion. In particular, we want an algorithm that is robust, in
the following sense: A person can drive on a day that the
algorithm says someone else should drive, and it is then easy
to see how to get “back in synch” later.

Scheduling Algorithm 2 (simple tokens) In order to cor-
rect the deficiencies of simple rotation, we might adopt the
following procedure. Each time a person R rides with a driver
D # R, then R pays D one “ride token.” Of course, the
tokens would not actually need to be handled; each person’s
current token holding could simply be recorded somewhere,
and that record could be updated daily. Then the algorithm
for determining who drives next would be to choose, from
among the people participating that day, the person with the
smallest holding of tokens.

When we formally define fairness, in Section 3, we shall
see that this scheduling algorithm is not fair in our sense. In
the worst case, some carpool member may be forced to drive
far more than his “fair share,” as we shall see. We now

briefly mention a few intuitive reasons why this algorithm is

© Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the

Editor.

IBM J. RES. DEVELOP. ¢ VOL. 27 ¢ NO. 2 ¢« MARCH 1983

1:33

%
\
|

RONALD FAGIN AND JOHN H. WlLLlAMS

134

Den John Phyllis Ron Don John Phyllis Don John Ron

e L1 [l

Don John

MM

Don Phyllis Ron John Phyllis Ron

| o

Don Phyllis Don Ron

John Phyllis

John Ron Phyllis Ron

. (-

Figure 1 Books for Scheduling Algorithm 3.

Date Don John Phyllis Ron

0 0 0 0
May 1 0 8 -4 | -4
May?2 | -3 5 -7 5
May3 | -9 5 -1 5

Figure 2 Books for Scheduling Algorithm 4.

not fair. (1) It is certainly quite advantageous to drive on
days when many people are participating (since the driver
gets one ride token from each of the other participants). If a
carpool member were unlucky enough to be the designated
driver on several “bad” (sparsely attended) days, then he
might decide that the algorithm is not fair, and might even be
driven to drop out of the carpool. (2) On a “good” day (a day
in which there are many participants), if two carpool partici-
pants 4 and B were tied for the lowest score, then both 4 and
B would want very much to drive, and some tie-breaking
scheme would have to be devised. (3) Finally, this algorithm
is not robust in the sense we have defined: If 4 were a carpool
member, if it were not A’s turn to drive according to the
algorithm (that is, 4 did not have the lowest score among the
participants on that day), and if A insisted on driving his car
on that day for personal reasons, then the other carpool
members would be quite unhappy if this were a “good” day.

Scheduling Algorithm 3 (subsets) The next scheduling
algorithm to be described does turn out to be fair in our sense;
the problem, as we shall see, is the amount of bookkeeping

RONALD FAGIN AND JOHN H. WILLIAMS

required. This algorithm records, for each of the Y
— (IV + 1) nontrivial subsets of carpool members (subsets of
two or more), the number of times that each member of the
subset has driven that particular group of people. For exam-
ple, if there are four people named Don, John, Phyllis, and
Ron in the carpool, then the books at a given point might look
like Fig. 1 (where, for example, a tally is entered under
Phyllis in the Don-Phyllis-Ron table on a day in which only
Don, Phyllis, and Ron participate in the carpool and Phyllis
drives). If the table is as in Fig. 1, then on the next day in
which the only participants are Don, Phyllis, and Ron, the
driver should be the person (in this case, Ron) with the least
number of tallies in the Don-Phyllis-Ron table. With this
method, it is clear that a person is not penalized for non-
participation on any day. It is intuitively clear that this
algorithm is fair, since it is essentially simple rotation applied
separately to each of the 2" — (N + 1) nontrivial subsets.
Further, it is clear that this algorithm is robust in our sense.
Unfortunately, the bookkeeping for this algorithm becomes a
nightmare (if the number N of people is, say, four or more)
because the size of the book grows exponentially with the size
of the carpool. Further, this scheduling algorithm neglects
certain trade-offs. For example, Phyllis and John appear
together in four of the tables in Fig. 1, but Scheduling
Algorithm 3 makes no attempt to trade off rides in the tables
in which Phyllis and John appear together. In fact, in Fig. 1,
Phyllis has driven more times than John in each of the four
tables in which they both appear.

2. The proposed scheduling algorithm
We now give our proposed scheduling algorithm.

Scheduling Algorithm 4 (fair carpool scheduling algo-
rithm) We begin by defining U to be a value that, intui-
tively, represents the total cost of a trip. It is convenient to
take U to be the least common multiple of 1, 2, ---, m, where
m is the largest number of people who ever ride together at a
time in the carpool. In the running example we shall give, we
assume that this number m is taken equal to the total number
N of members of the carpool, which in turn is assumed to be
4. Thus, U is taken to be the least common multiple of 1, 2, 3,
and 4; thatis, Uis 12. As drawn in Fig. 2, the books consist of
a single table, with one column for the date and one column
for each carpool participant. Each day that the carpool
drives, a new row is entered into the table. The table is
initialized with a row of all 0’s (the first row of the table in
Fig. 2). If, on a given day, there are k participants in the
carpool and A is the driver, then the 4 entry is increased by
U(k — 1)/k units (that is, the entry for that day in the 4
column is U(k — 1)/k more than the A4 entry in the previous
row), and the entries of the riders who do not drive are each
decreased by U/k. For example, in Fig. 2, the first day of the
carpool was May 1, and John was the driver. On that day,
Phyllis and Ron rode in John’s car. Thus, John gained 8

IBM J. RES. DEVELOP. « VOL. 27 « NO. 2 « MARCH 1983

units, and Phyllis and Ron each lost 4 units. On the next day,
May 2, all four carpool members participated, and Ron was
the driver. (The algorithm says that either Phyllis or Ron
should be the driver on May 2, since they are tied for the
lowest score, with —4 units each.) Since Ron drove, he
gained 9 units, and each of the others lost 3 units. On the next
day, May 3, only Don and Phyllis participated. Since Phyllis
had a lower score than Don (—7 versus —3), she was the
driver. She gained 6 units and Don lost 6 units. Note that by
choosing U as we have (in this case, U = 12), every entry of
the table is an integer.

An intuitive way to view this scheduling algorithm is that
the “cost” of driving is taken to be U units, and this cost is
divided equally among each of the participants. So, if there
are k participants, then the cost to each participant is U/k.
Thus, each of the participants who is not the driver “pays”
U/ k units to the driver.

We now show that for each row, the checksum (the sum of
the entries) is zero. For example, on May 2, the entries are
—3,5, -7, and 5, which add to 0. This property provides a
redundancy check on the arithmetic.

® Proposition 1
In each table generated by Scheduling Algorithm 4, the
checksum of each row is zero.

Proof When k people participate, one of them (the driver)
gains U(k — 1)/k units, the other k — 1 participants each
lose U/k units, and the values of the nonparticipants are
unchanged. Thus, the ret gain or loss is 0, and since the table
is initialized to all 0’s, the checksum is always 0. (]

We now show that the entries in the table are bounded for
each N (where NV is the number of members of the carpool).
We shall make use of this result later, in our proof of
fairness.

The schedule of arrivals is a finite sequence (S|, S,, ---,
S,), where S, is the set of participants in the carpool on day {
(or as we may also say, af time i). Intuitively, the schedule of
arrivals tells who participated in the carpool, day by day. For
example, the schedule of arrivals { ABC, BD, ACD), where
ABC is an abbreviation for {4, B, C}, etc., corresponds to
persons A, B, and C participating in the carpool (riding in the
carpool car) on the first day, persons B and D participating
on the second day, and so on.

® Theorem 2

Let NV, the number of members of the carpool, be fixed. Then
there is a number M such that, for each schedule of arrivals,
the table derived by applying Scheduling Algorithm 4 con-
tains no entry larger than M.

IBM J. RES. DEVELOP. e VOL. 27 ¢ NO. 2 ¢« MARCH 1983

Proof Assume that the theorem is false; we shall derive a
contradiction. Find N such that, for each M, there is a table
T (which can be derived by applying Scheduling Algorithm 4
to some schedule of arrivals) with an entry larger than M.

Define the sequence a,, ‘-, a, recursively by letting a, =
O,anda,, =1 +ia,forl <i<<N.LetMbea,U Let The
a table (that is derived by applying Scheduling Algorithm 4)
with an entry larger than M. Let us call the top row (with all
zeros as entries) of table 7 row 0, the next row of the table
row I, and so on. If the N entries of row t are b, = b, = ---
= b,, then define s(i) to be b. Thus (with ties properly
accounted for), s,(/) is the ith largest entry of row r. We think
of row ¢ as containing the scores of members of the carpool
just after the carpool has driven on time ¢ (that is, the scores
after time ¢ but before time ¢ + 1).

Since table T contains an entry larger than M, we know
that s,(j) > M, for some ¢ and j. Hence, s(1) > M, since
5,(1) = s5,(j). Let ¢, be the least f such that 5,(1) > M. We
now show that there are 7,, ---, 1, where t, > 1, > -+ > ¢,
such that foreach i (1 <7 < N),

s,‘(i) >M —-al. 1)

We already know that (1) holds when i = 1, since ¢, = 0.
Assume inductively that we have found ¢, > ¢, > --- > 1,
such that s, >M-al for 1 < p < i;in particular (when p
= i) we see that (1) holds. We must find z, | <C ¢, such that

i+1

s, G+ 1)>M—a, U 2)

i+1

Now s,(j) = s,(i) when | < j < i. Hence,
s(1) + -+ 5,(0) = is,(0). 3)
By (1) and (3), it follows that when ¢ = t,, we have

s(1) + -+ 5,(0) > iM — iaU. (4)

Let k£ be the least value of r such that (4) holds. Note for
later use that k > 0, since s,(/) = O for each j. We now show
that

s > M — iaU. (5)

Ifi =1, then k = ¢, by definition of ¢, (since ¢, = 0). So, if {
= 1, then (5) holds. We now show that (5) holds if i > 1. We
know that k < ¢, since, as we showed, (4) holds when t = ¢,
Since k =< 1, < 1, it follows by minimality of ¢, that s,()
= M, for 1 < j < N.In particular,

s =M forl =j=<i-1 (6)
By (4), with 1 = k, and by (6), it follows that (5) holds,

which was to be shown.

We know that & is the least value of such that (4) holds,
and that, as noted, k > 0. Therefore,

135

RONALD FAGIN AND JOHN H. WILLIAMS

136

(1) + -+ 5,0 > 5, ,(1) + - +5,,0). 7
We now show that (7) implies that
s+ 1) + U= s5,0). (8)

Now (7) says that the sum of the i biggest scores strictly
increases between rows k — 1 and k. How can this happen?
Let A be the driver of the carpool at time k. Thus, A4 has the
lowest score in row k ~ 1 among those who participate in the
carpool on day k. It is not hard to see that for the sum of the i
biggest scores to strictly increase between rows Kk — 1 and k,
it is necessary that

1. A’sscoreinrow k — liss,_,(j) for some j > i; thatis, A’s
score is one of the lowest N — i scoresinrow k — 1, and

2. A’s score in row k is s,(m) for some m = i; that is, A’s
score is one of the biggest i scores in row k.

Now the driver’s score increases by less than U when he
drives. Therefore, A’s score just before he drove [that is,
5,_(N] differs from his score just after he drove [that is,
5,(m)] by less than U. Hence,

5., () + U>s,(m). 9)

Now s, (i + 1)=s, ,(j),sincej > i, and so (by adding U
to both sides), we get

s, i+ DH)+U=s,_,(H)+ U (10)
Further,
s, (m) = s5,(i), (11)

since m = i. Clearly, (8) follows immediately from (9), (10),
and (11). Now (5) and (8) together imply that

S, (i + 1) > M — (ia, + DU,

that is,
s, i+ Y)y>M—aq, U (12)
Define ¢,,, to be kK — 1. Then (12) tells us that (2) holds.

Further, t,,, < t, since we already showed that £ < ¢, This
completes the induction. Hence, (1) holds for each i
(1 =i=<N).Lett =1, Weseefrom (1), wheni = N, that

s(N) > M — a,U.But M = a,U, and so
5(N)>0. (13)

Since 5(i) = s5,(N) for 1 < i =< N, it follows from (13) that
5,(i) > Oforeachi (1 =i =< N). Thus, every entry of row t is
strictly positive, and so the checksum of row ¢ is strictly
positive. But this contradicts Proposition 1, which says that
the checksum of every row is 0. This contradiction completes
the proof. O

e Corollary 3
Let N, the number of members of the carpool, be fixed. Then
there is a number M’ such that for each schedule of arrivals,

RONALD FAGIN AND JOHN H. WILLIAMS

the table derived by applying Scheduling Algorithm 4 con-
tains no entry whose absolute value is larger than M’

Proof Let M be as in Theorem 2, and let T be a table
derived by applying Scheduling Algorithm 4 to some sched-
ule of arrivals. By Theorem 2, we know that no positive entry
in the table can be larger than M. How large in absolute
value can the smallest entry (the negative entry with the
biggest absolute value) in the table be? Let r be a row of the
table. Now no entry of the table can be larger than M, and
there can be at most N — 1 positive entries in row r (because,
by Proposition 1, the checksum of row r is 0). Hence, the sum
of the positive entries in row r is at most (N — 1) M. Since the
checksum of row r is Q, the absolute value of the sum of the
negative entries in row r is equal to the sum of the positive
entries in row 7, and so is also at most (N — 1)M. Therefore,
the absolute value of the smallest (‘“‘most negative’”) member
of row r is at most (N — 1)M. Thus, we can take M’ to be
(N-1M. O

It follows from our proof of Theorem 2 that an upper
bound M on the size of the biggest entry that can ever appear
in the table is a,U, where NV is the number of carpool
members and wherea, = 0anda,,, = 1 + ia, (1 =i =< N).
This bound is not the best possible. For example, if N = 2,
then our upper bound is U, whereas it is very easy to see that
in this case the actual upper bound is only U/2. If N = 3,
then our upper bound is 2U, whereas a careful examination
of the possibilities shows that the actual upper bound is
(5/6)U. Let us define the function f by letting f(V)U be the
actual upper bound if there are N carpool members. Thus,
f(2) = 1/2 and f(3) = 5/6. We note that f(4) = 7/6 and
f(5) = 8/5. We have not found f(N) exactly for N = 6.

® Proposition 4
The function fis monotone and unbounded.

Note By monotone, we mean that if N| = N,, then f(V,)
= f(N,). By unbounded, we mean f(N) gets arbitrarily large
as N gets large.

Proof Any score that can be obtained in a carpool with V,
members can be obtained in a carpool with N, = N,
members: we can simply assume that N, — N, members of
the larger carpool never participate. Monotonicity follows
immediately.

We now show unboundedness. Let N = 2’, and assume
that the carpool members are 4, -+, A,. Assume that on the
first day, the participants are 4, and A4,, and the driver is 4,;
on the second day, the participants are 4, and A,, and the
driver is A,; and so on for a total of NV /2 days. Then there is a
second round that begins on the ((V/2) + 1)th day. On the
first day of the second round, the participants are 4, and A4,,
and the driver is 4,; on the next day, the participants are A,

IBM J. RES. DEVELOP. e VOL. 27 ¢ NO. 2 « MARCH 1983

and A,, and the driver is A,; and so on. Then there is a third
round; on the first day of the third round, the participants are
A, and A, and the driver is 4,; and so on. This continues for a
total of L log, NV rounds, where L xJ is the greatest integer
not exceeding x. It is straightforward to see that after the
final round, A,’s score is r/2 (where N = 2). Thus, f(2")
= r/2. Hence, f is unbounded.

We close the proof by noting another way of showing
unboundedness. As before, let 4, .-+, 4, be the carpool
members. Assume that on the first day, everyone partici-
pates, and the driver is 4,. Assume that on the second day,
the participants are 4,, ---, 4,_,, and the driver is 4, _,, and
so on. Thus, on the ithday (1 < i =< N — 1), the participants

are A,, -+, Ay_,,,» and the driver is 4, _, . It is clear that
As score after N — 1 days is —U/N — U/(N -~ 1)
— U/(N —~ 2) — --- — U/2, which gets arbitrarily large in

absolute value as NV increases (and which, in particular, is
asymptotic to —Ulog V). O

It follows from the proof of Proposition 4 that f(N)
= (1/2) Llog, N1 . D. Coppersmith (private communica-
tion) has improved this logarithmic lower bound to a linear
lower bound by using the following argument. Let N be the
number of members of the carpool. As in the proof of
Theorem 2, let the scores just after time ¢ be 5,(1) = 5,(2) =
-+ = 5,(N). Define the “figure of merit” just after time ¢ to
be (N — D)s,(1) + (N = 2)5,(2) + --- + (0)s5,(N). We now
define the schedule of arrivals. On each day, the set of
participants consists of two members with the same score. If
there are no two members with the same score, then the
carpool stops running. If i and j ride together, and i is the
driver, then i’s score increases by U/2 and j’s score decreases
by U/2. The net effect on the figure of merit of increasing
one value s,(/) by U/2 and decreasing s,(i + 1) by U/2is to
increase the figure of merit by U/2. Further, it is easy to see
that the net effect of reshuffling the scores to keep the s,(i)’s
nondecreasing can only increase the figure of merit further.
Keep the carpool running until either no two participants
have the same score, or until the figure of merit has gone
beyond N *U, whichever comes first. In the first case (where
the carpool is run until no two participants have the same
score), we know that since all carpool members started with a
score of 0, and since scores change by U/2 at a time, the
scores will be at least U/2 apart. That is, no two scores will
be closer together in value than U/2. It is not hard to verify
that this fact, along with the fact that the sum of the scores is
0, implies that the largest score is at least (IV — 1)U /4. In the
second case (where the carpool is run until the figure of merit
has gone beyond N’U), it is clear that the largest score is
greater than NU. So in either case, the largest score is at least
(N — 1) U/4, which is linear in NV, as promised. Note that
the linear lower bound is attained even when no more than
two carpool members ever ride together. Coppersmith also

IBM J. RES. DEVELOP. » VOL. 27 « NO. 2 ®« MARCH 1983

shows (by a more detailed analysis) a lower bound of
(N — 1)U/3, which is attained even with no more than three
carpool members ever riding together.

Coppersmith’s argument, taken together with the proof of
Theorem 2, shows that (N — 1}/3 < f(N) = a,, where g,
=0anda,,, =1+ ia,(1 =i =< N). Thereisan exponential
gap between these lower and upper bounds. It is an interest-
ing combinatorial problem to tighten these bounds [1].

We close this section by noting another interesting combi-
natorial problem. Let us say that a vector (a,, -+, a,), where
a, = --- = a,, is an attainable vector of scores if there is a
schedule of arrivals such that, starting with a score of 0 for
every member of the carpool, and always applying Schedul-
ing Algorithm 4, there is a time ¢ where the vector (s, (1), ---,
s5,(N)) of scores is equal to (a,, - -+, a). We conjecture that if
(a,, -+, ay) is an attainable vector of scores, then so is the
negation (—a,, ---, —a,). If the conjecture is true, then the
M’ of Corollary 3 and the M of Theorem 2 can, of course, be
taken to be the same.

3. Fairness

In this section, we discuss a concept of fairness and show that
our scheduling algorithm (Scheduling Algorithm 4) is fair.
However, we shall see that Scheduling Algorithm 2 (simple
tokens) is not fair. We shall also see that Scheduling Algo-
rithm 1 (simple rotation) is fair (when it can be applied), and
that Scheduling Algorithm 3 (subsets) is fair (but it requires
too much bookkeeping).

To help us understand fairness, let us first consider
Scheduling Algorithm 3 (subsets). Scheduling Algorithm 3
is fair in the sense that among the times that person A rides
precisely with, say, B and C, the driver is person A4 approxi-
mately 1/3 of the time (with the obvious generalization that
A is the driver approximately 1/k of the time that he rides
with a fixed subset of k — 1 others.) Less restrictively, we
might consider a scheduling algorithm fair if each person is
the driver approximately 1/k of the time that he rides with
k — 1 others (not necessarily a fixed subset of k — |
others.) Thus, if the carpool consists precisely of 4, B, C, and
D, then 4 might be expected to drive approximately 1/3 of
the time that he rides with precisely two among B, C, and D.
In other words, let ¢, be the number of times (through time
t) that X is precisely the set of those participating in the
carpool on that day. Then during those days that A rides with
precisely two among B, C, and D, the number of times that
we might want A to drive is approximately

]
5 (CABC + Capp t+ CACD)'

Even less restrictively, assume that through time ¢, person
A has participated in the carpool on b, days when exactly 2

RONALD FAGIN AND JOHN H. WILLIAMS

13

138

persons participated in the carpool, on b, days when exactly 3
persons participated in the carpool, and so on. Let us define
A’s ideal number of drives to be the number

1 i 1
—2'b2+§b3+"'+NbN. (14)

Our notion of fairness is that 4 should be the driver of the
carpool car approximately this number of times.

We are now ready to give our formal definition of fairness.
We say that a carpool scheduling algorithm is fair if for each
N (where N is the number of members of the carpool), there
is a number P such that whatever the schedule of arrivals, it
is the case that at each time ¢ and for each carpool member
A, the number of times that 4 has actually driven differs
from his ideal number of drives in absolute value by no more
than P.

We shall show that our scheduling algorithm is fair. We
first prove a simple proposition.

® Proposition 5

Let x be the number of times that A4 has actually driven
through time ¢, and let y be A’s ideal number of drives
through time ¢. Then the number (x — y)U is A’s entry in
row ¢ of the table in Scheduling Algorithm 4.

Proof We prove the proposition by induction on ¢. It is
obviously true for ¢ = 0, since every entry inrow 0is 0, and in
this case x = y = 0. Assume inductively that the statement
of the proposition is true for ¢ = m; we shall show that it
holds for £ = m + 1. Let x, be the number of times that 4 has
actually driven through time ¢, let y, be 4’s ideal number of
drives through time ¢, and let A4, be A’s entry in row ¢ of the
table. By inductive assumption, the number (x, — y, U
equals 4, (thatis, A’s entry in row m of the table). We must
show that the number (x,,,, — y,.,)Uequals 4, (thatis,
A’s entry inrow m + 1 of the table). Assume that there are &
participants in the carpool at (on the day corresponding to)
time ¢ + 1. There are two cases, depending on whether A4 is
the driver at time m + 1.

m+

Casel Aisthedriverattimem + 1. Thenx,,, = x, + 1,
andy, ., =y, + (1/k). Hence,

(x — Yo WU = (x,, ~ U+ Ulk —) /k. (15)

m+1
But by assumption,

(x, -y)U=A4,. (16)
Since A4 is the driver at time m + 1, it follows from
Scheduling Algorithm 4 that

A=A, + Uk - 1)k an
It follows from (15), (16), and (17) that (x,., — »,.,)U

= A which was to be shown.

m+1°

RONALD FAGIN AND JOHN H. WILLIAMS

Case2 Aisnot thedriver at timem + 1. Thenx,,,, = x,,
and y,,, = y, + (1/k). Hence, (x,,, — y,.,)U
= (x,, — ¥,)U — U/k. As in Case 1, it follows easily that
(X1 = VmoDUis A’sentryinrow m + 1. O

The next theorem discusses the fairness or unfairness of
the scheduling algorithms we have discussed. We are most
interested in the result that Scheduling Algorithm 4 is fair.

® Theorem 6

Scheduling Algorithm 1 (when it applies), Scheduling Algo-
rithm 3, and Scheduling Algorithm 4 are fair, but Schedul-
ing Algorithm 2 is not fair.

Proof Recall that a carpool scheduling algorithm is fair if
for each V. (where N is the number of members of the
carpool), there is a number P such that whatever the
schedule of arrivals, it is the case that at each time ¢ and for
each carpool member A, the number of times that A has
actually driven differs from his ideal number of drives in
absolute value by no more than P.

Scheduling Algorithm 1 (simple rotation) is fair (when it
applies) Of course, Scheduling Algorithm 1 is very lim-
ited, since it is not even defined unless every carpool member
participates in the carpool on every day. If so, then it is easy
to see that the desired number P above can be taken to be 1.

Scheduling Algorithm 2 (simple tokens) is not fair As-
sume that there are 6 carpool members 4, B, C, 4’, B’, and
C’, and that the schedule of arrivals is (4A4', ABC, AB, AC,
A'B'C', A'B', A'C', ABC, AB, AC, A’B'C', A'B', A'C, ---,
ABC, AB, AC, A'B'C’, A'B’, A'C’), where the sequence
ABC, AB, AC, A'B'C', A'B’, A’C’ repeats over and over a
total of m times after the initial 44’ (and so the number of
days is 6m + 1.) We shall show that there is no number P as
defined above that works for every m. On the first day, when
AA' is the set of carpool participants, either 4 or A4’ is the
driver. Assume without loss of generality that 4 is the
driver; otherwise, everything we now say holds when we
replace A4, B, C by (respectively) A’, B’, C'. We leave to the
reader the simple verification that under Scheduling Algo-
rithm 2 it follows that on each of the m days the set of carpool
participants is precisely ABC (respectively, AB or AC), the
driver is always A (respectively, B or C.) Now there are
exactly 2m + 1 days that A4 participates in the carpool when
precisely 2 people participate (namely, 4 and one of 4’, B, or
(), and there are exactly m days that A participates in the
carpool when precisely 3 people participate (namely A4, B,
and C). Thus, A’s ideal number of drives is (1/2)(2m + 1)
+ (1/3)m, which equals (4/3)m + (1/2). The number of
times that A actually drives is m + 1. The difference between
ideal and actual is (m/3) — (1/2), which is not bounded by
any fixed number P (as m gets large.) This was to be shown.

IBM J. RES. DEVELOP. & VOL. 27 & NO. 2 » MARCH 1983

Scheduling Algorithm 3 (subsets) is fair 1t is easy to see
that P can be taken to be equal to the number of subsets that
contain a given member A, that is, P can be taken to be bR
where N is the number of carpool members.

Scheduling Algorithm 4 is fair As in the statement of
Proposition 5, let x be the number of times that A4 has
actually driven through time ¢, and let y be 4’s ideal number
of drives through time z. By Proposition 5, the number
(x — y)Uis A’s entry in row t of the table. By Corollary 3, we
can find a positive number M’ (which depends only on NV, the
number of members of the carpool) such that no entry in the
table is larger in absolute value than M’. Thus, | (x — y) U]
=< M’. Hence, |(x — y)| =< M’'/U. So, we can take P to be
M/U. O

4. Further observations

As well as being both fair and manageable, our carpool
scheduling algorithm (Scheduling Algorithm 4) has some
additional attractive features. First, although it will always
determine whose turn it is to drive on a particular day, it is
robust in the presence of deliberate imbalance. Thus a person
could drive (or not drive) for several days in a row if he
needed to, regardless of whether the scheduling algorithm
says he should or should not drive, and the imbalance would
eventually be eliminated. (It is beyond the scope of this paper
to make this last sentence precise. One meaning is that after
the driving table is artificially made imbalanced, the entries
will remain bounded from then on, as in Theorem 2, provided
the scheduling algorithm is faithfully adhered to from then
on.)

Second, the “ride units” of the method can become a
commodity that can be bought and sold. This can also allow
for “carpool members” who never drive at all. Thus, if 4 does
not have a car but wishes to participate in the carpool, if B is
a carpool participant (with a car), and if 4 and B can agree
on a fair market value for a ride unit, then B can sell ride
units to 4, and A4 need never drive. (In effect, B is “‘driving
for” A.) In fact, the group for which this scheme was
developed had such a participant. His name being Don and
twelve being the least common multiple of the possible subset
sizes of the carpool, the “ride unit” became affectionately
known as the Duodecadon.

Finally, although we derived this scheduling algorithm on
the assumption that there would be only one official carpool
car on any one day, that assumption turned out to be
superfluous! In fact, there can be as many carpool cars as
there are people driving. Each driver of a car containing k
participants gets credited with U(k — 1)/k units, and each

IBM J. RES. DEVELOP. 4 VOL. 27 ¢« NO. 2 4 MARCH 1983

rider who does not drive in such a car gets debited U/k units
in some master {perhaps company-wide!) record. Note that a
person driving alone gets O units, or no change to the record.
In this generalized scheduling algorithm, an arbitrary group
of people, who had never previously carpooled with one
another, could decide to ride to work together, and it would
make perfect sense for them to ask, “Whose turn is it todrive
today?”

Acknowledgments

The first author would like to acknowledge his former
Berkeley roommates, Larry Carter and John Gill, who
successfully implemented with him Scheduling Algorithm 3
(to determine whose turn it was to cook). Further, the
authors thank Phyllis Reisner, Don Stanat, and Jim Sutton,
who at various times participated with the authors in the
carpool in which Scheduling Algorithm 4 was developed. We
are grateful to Carl Hauser for calculating f(5) and to Don
Coppersmith for proving the linear lower bound on f in
Section 2.

Note

1. After this paper went to press, Coppersmith lowered the upper
bound to (N — 1)/2. Thus we now know that (N — 1)/3 = f(N)
=(N-1/2

Received July 6, 1982; revised September 13, 1982

Ronald Fagin IBM Research Division, 5600 Cottle Road,
San Jose, California 95193. Dr. Fagin is the manager of the
foundations of computer science group in the Computer Science
Department in San Jose. He joined IBM in 1973 at the Thomas J.
Watson Research Center, Yorktown Heights, New York. While
there, he did research on storage management analysis. In 1975, he
transferred to San Jose, where most of his research has centered on
the theory of relational data bases. He has received two IBM
Outstanding Innovation Awards. The first, received in 1981, was for
fundamental contributions to relational data base theory. The sec-
ond, also received in 1981, was for his joint research on extendible
hashing, a fast access method for dynamic files. He received his B.A.
in mathematics from Dartmouth College, Hanover, New Hamp-
shire, in 1967, and his Ph.D. in mathematics from the University of
California at Berkeley in 1973. Dr. Fagin is a member of the
Association for Computing Machinery and its special interest groups
on the Management of Data and on Automata and Computability
Theory.

John Hayden Williams 1BM Research Division, 5600 Cottle
Road, San Jose, California 95193. Dr. Williams is a Research staff
member in San Jose, where he is working with IBM Fellow John
Backus on the development of Functional Programming Languages,
an alternative to conventional programming languages. He joined
IBM in 1978; prior to that, he was an Associate Professor of
Computer Science at Cornell University, Ithaca, New York. Dr.
Williams received his B.S. and M.S. in mathematics and his Ph.D. in
computer science in 1969 from the University of Wisconsin at
Madison.

RONALD FAGIN AND JOHN H. WILLIA

39

MS

