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A Fair  Carpool Scheduling Algorithm 

We present a  simple carpool  scheduling algorithm in which no penalty is assessed to  a carpool member who does not ride on any 
given day. The algorithm  is shown to be fair, in a certain  reasonable sense. The  amount of bookkeepinggrows  only linearly with 
the number of carpool members. 

1. Introduction 
Suppose  that N people, tired of spending their  time  and 
money in gasoline lines, decide to form  a  carpool. We present 
a  scheduling algorithm for determining which person should 
drive on any given day.  We want  a  scheduling algorithm  that 
will  be perceived as  fair by all the members so as to 
encourage  their  continued  participation.  We begin by pre- 
senting  three  algorithms  (Scheduling  Algorithms 1-3 
below) and discussing  their flaws. We  then present the 
algorithm  (Scheduling Algorithm 4) that we propose. We 
assume for now that on any given day  at most one car is the 
“carpool car.”  This assumption is relaxed later. 

Scheduling  Algorithm 1 (simple  rotation) The simplest 
scheme, and  the  one most often  used, is simply to  rotate 
driving, e.g., in alphabetical  order.  Thus, if there  are N 
members of the carpool,  then person i is responsible  for 
driving on the  ith  day  and every N driving days  thereafter. 
This  scheme  has  the obvious advantage  that it is simple to 
describe and it is easy to  determine who drives  next. The 
difficulty with this  scheme  arises when one or more people do 
not participate in the carpool on a particular  day. If  the 
designated  driver  has to stay  out on the  day  that he  is 
supposed to drive, then he  will have to  swap  days with 
someone else. After a few such  occurrences,  it may become 
difficult to  determine who is to drive the next day. If a 
non-driver misses one or more days, should  he be expected to 
drive in his normal rotation? If so, he may soon perceive the 
carpool to be more of a  burden than a blessing and  drop  out 
altogether. 

Just  as big a problem as  the person who cannot drive on his 
scheduled day is the person who must  (for  personal  reasons) 
drive on someone else’s day  but could otherwise participate in 
the carpool  (for  example,  a person who  is going to work as 
usual but needs to have his car in order  to go to  the bank to 
deposit the money he has saved by carpooling). We want  a 
scheduling algorithm  that will always be tolerant of excep- 
tional  conditions and  that will never discourage  participa- 
tion. In  particular, we want an  algorithm  that is robust, in 
the following sense: A person can drive on a day  that  the 
algorithm says  someone else should  drive, and it is then easy 
to see how to get “back in synch”  later. 

Scheduling  Algorithm 2 (simple  tokens) In order  to cor- 
rect the deficiencies of simple  rotation, we might adopt  the 
following procedure. Each  time a person R rides with a  driver 
D f R ,  then R pays D one  “ride token.” Of course, the 
tokens would not actually need to be handled; each person’s 
current token holding could simply be recorded  somewhere, 
and  that record could be updated daily. Then  the  algorithm 
for determining who drives  next would be to choose, from 
among  the people participating  that  day,  the person with the 
smallest holding of tokens. 

When we formally define fairness, in Section 3, we shall 
see that this  scheduling algorithm is not fair in our sense. In 
the worst case,  some  carpool member  may be forced to drive 
far more than his “fair  share,” as we shall  see. We now 
briefly mention  a few intuitive  reasons why this  algorithm is 
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Figure 2 Books for Scheduling  Algorithm 4. 

not fair. ( 1 )  It is certainly  quite  advantageous  to drive on 
days when many people are  participating  (since  the  driver 
gets  one ride  token  from each of the  other  participants). If a 
carpool member were  unlucky  enough to be the  designated 
driver on several “bad” (sparsely attended) days, then he 
might  decide that  the  algorithm is not fair,  and  might even be 
driven to  drop  out of the carpool. (2) On a “good” day  (a  day 
in which there  are many participants), if two carpool  partici- 
pants A and B were  tied  for the lowest score, then both A and 
B would want very much to drive, and some  tie-breaking 
scheme would have to be devised. (3) Finally, this  algorithm 
is not  robust in the sense we have defined: If A were a carpool 
member, if it were  not A’s turn to drive according  to  the 
algorithm  (that is, A did not  have the lowest score among  the 
participants on that  day),  and if A insisted on driving his car 
on that  day for  personal  reasons, then  the  other carpool 
members would be quite  unhappy if this were  a “good” day. 

Scheduling  Algorithm 3 (subsets) The next scheduling 
algorithm  to  be described does turn  out  to  be  fair in our sense; 

134 the problem, as we shall  see, is the  amount of bookkeeping 

required. This  algorithm records,  for each of the 2N 
- ( N  + 1) nontrivial subsets of carpool  members  (subsets of 
two or  more),  the  number of times  that  each member of the 
subset has driven that  particular  group of people. For exam- 
ple, if there  are  four people named  Don, John, Phyllis, and 
Ron in the carpool, then  the books at  a given point might look 
like Fig. 1 (where,  for example, a  tally is entered under 
Phyllis  in the Don-Phyllis-Ron table on a day in which only 
Don,  Phyllis, and Ron participate in the carpool and Phyllis 
drives). If the  table is as in Fig. 1, then on the next day in 
which the only participants  are Don,  Phyllis, and  Ron,  the 
driver  should be the person (in  this  case, Ron) with the least 
number of tallies in the Don-Phyllis-Ron table.  With  this 
method,  it is clear  that a person is not penalized for non- 
participation on any  day.  It is intuitively clear  that  this 
algorithm is fair, since it is essentially  simple  rotation  applied 
separately  to  each of the 2N - ( N  + 1)  nontrivial  subsets. 
Further, it is clear  that  this  algorithm is robust in our sense. 
Unfortunately,  the bookkeeping for this  algorithm becomes a 
nightmare (if the  number N of people is, say, four  or  more) 
because the size of the book grows  exponentially with the size 
of the carpool. Further,  this scheduling algorithm neglects 
certain trade-offs. For example,  Phyllis and  John  appear 
together in four of the  tables in Fig. I ,  but Scheduling 
Algorithm 3 makes no attempt  to  trade off rides in the  tables 
in which Phyllis and  John  appear  together. In fact, in Fig. 1, 
Phyllis has driven  more times  than  John in each of the  four 
tables in which they  both appear. 

2. The  proposed scheduling algorithm 
We now give our proposed scheduling algorithm. 

Scheduling  AIgorithm 4 (fair carpool  scheduling algo- 
rithm) We begin by defining U to be a  value that,  intui- 
tively, represents the  total cost of a trip.  It is convenient to 
take U to be the least  common  multiple of 1, 2, ..., m, where 
m is the  largest  number of people who ever ride together  at a 
time in the carpool. In  the  running  example we shall give, we 
assume  that  this  number m is taken  equal  to  the  total  number 
N of members of the carpool, which in turn is assumed to be 
4. Thus, U is taken  to be the least  common  multiple of 1,2 ,3 ,  
and 4; that is, U is 12. As  drawn in Fig. 2, the books consist of 
a  single table, with one column  for the  date  and  one column 
for each carpool participant.  Each  day  that  the carpool 
drives,  a new  row is entered  into  the  table.  The  table is 
initialized with a row  of all 0’s (the first row of the  table in 
Fig. 2). If, on a given day,  there  are k participants in the 
carpool and A is the driver, then  the A entry is increased by 
U ( k  - l ) / k  units (that is, the  entry for that  day in the A 
column is U ( k  - I ) / k  more than  the A entry in the previous 
row), and  the  entries of the riders who do not  drive are  each 
decreased by U / k .  For  example, in Fig. 2, the first day of the 
carpool  was May 1, and  John was the  driver.  On  that  day, 
Phyllis and Ron  rode  in John’s car.  Thus,  John  gained 8 
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units,  and Phyllis and Ron each lost 4 units. On the next day, 
May 2, all four carpool members  participated,  and Ron was 
the driver. (The  algorithm says that  either Phyllis or Ron 
should be the  driver on May 2, since they  are tied for the 
lowest score, with -4 units each.)  Since Ron drove, he 
gained 9 units, and  each of the  others lost 3 units. On the next 
day,  May 3, only Don and Phyllis participated.  Since Phyllis 
had a lower score than Don ( -  7 versus - 3), she was the 
driver. She gained 6 units and Don lost 6 units. Note  that by 
choosing U as we have (in this  case, U = 12), every entry of 
the  table is an  integer. 

An intuitive  way to view this  scheduling algorithm is that 
the “cost” of driving is taken  to be U units, and this cost is 
divided equally among  each of the  participants. So, if there 
are k participants,  then  the cost to  each  participant is U / k .  
Thus,  each of the  participants who is not the  driver “pays” 
U l k  units to  the driver. 

We now  show that for each row, the checksum (the  sum of 
the  entries) is zero. For example, on May 2, the  entries  are 
-3, 5 ,  -7 ,  and 5 ,  which add  to 0. This property provides a 
redundancy check on the  arithmetic. 

Proposition 1 
In  each  table  generated by Scheduling  Algorithm 4, the 
checksum of each row  is zero. 

Proof When k people participate,  one of them  (the driver) 
gains U ( k  - l ) / k  units,  the  other k - 1 participants each 
lose U / k  units, and  the values of the  nonparticipants  are 
unchanged.  Thus,  the net gain or loss is 0, and since the  table 
is initialized to  all O’s, the checksum is always 0. 0 

We now show that  the  entries in the  table  are bounded for 
each N (where N is the  number of members of the  carpool). 
We shall make use of this  result later, in our proof of 
fairness. 

The schedule of arrivals is a  finite  sequence (SI, S,, ..., 
Sn), where Si is the  set of participants in the carpool on day i 
(or as we may  also say, at time i). Intuitively, the schedule of 
arrivals tells who participated in the carpool, day by day. For 
example,  the  schedule of arrivals (ABC, BD, A C D ) ,  where 
ABC is an  abbreviation for {A, B, C}, etc.,  corresponds to 
persons A,  B, and C participating in the carpool (riding in the 
carpool car) on the first day, persons B and D participating 
on the second day,  and so on. 

Theorem 2 
Let N ,  the  number of members of the carpool, be fixed. Then 
there is a number M such  that,  for  each  schedule of arrivals, 
the  table derived by applying Scheduling  Algorithm 4 con- 
tains no entry  larger  than M .  
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Proof Assume that  the theorem is false; we shall  derive  a 
contradiction. Find N such that, for each M ,  there is a table 
T (which  can be derived by applying Scheduling Algorithm 4 
to some  schedule of arrivals) with an  entry  larger  than M .  

Define the sequence a,, ..., aN recursively by letting a ,  = 

O,anda,+, = 1 + i a , , f o r l   i i < N . L e t M b e a , U . L e t T b e  
a table  (that is derived by applying  Scheduling  Algorithm 4) 
with an entry  larger  than M .  Let us call the top row (with all 
zeros as  entries) of table T row 0, the next row of the  table 
row I ,  and so on. If the N entries of row t are b, 2 b, 2 ... 
2 b,, then define s,(i) to be b,. Thus  (with ties  properly 
accounted for), s, ( i )  is the  ith  largest  entry of  row t .  We  think 
of row t as containing the scores of members of the carpool 
just  after  the carpool  has  driven on time t (that is, the scores 
after  time t but  before time t + 1). 

Since  table T contains  an  entry  larger  than M ,  we know 
that sr( j)  > M ,  for some t and j .  Hence, s,( 1) > M ,  since 
s , ( l )  2 s , ( j ) .  Let t ,  be the least t such that s,(l) > M .  We 
now show that  there  are t,, ”1, t,, where t ,  > t ,  > ... > t,, 
such that for each i ( 1  I i 5 N), 

sz( i) > M - aiU. (1) 

We  already know that ( 1 )  holds when i = 1, since a, = 0. 
Assume  inductively that we have found t ,  > t ,  > ... > ti  
such that s > M - a,U for 1 5 p 5 i; in particular (when p 
= i) we see that (1)  holds. We must find t , + ,  < t t  such that 

s ( i  + I )  > M - a,+, U. 

‘r 

f ,+ I  (2) 

Now s , ( j )  2 s,(i) when 1 5 j 5 i. Hence, 

$ , ( I )  + .’. + s,(i) 2 is,(i). (3) 

By (1)  and (3), it follows that when t = t , ,  we have 

SI( 1) + . ’ ‘ + s,(i) > iM - ;up .  (4) 

Let k be the least  value o f t  such that (4) holds. Note for 
later use that k > 0, since s, ( j )  = 0 for eachj.  We now show 
that 

S k ( i )  > M - i a p .  ( 5 )  

If i = 1, then k = t , ,  by definition of t ,  (since a ,  = 0). So, if i 
= 1, then (5) holds. We now show that (5) holds if i > 1. We 
know that k 5 t , ,  since, as we showed, (4) holds when t = t , .  
Since k 5 t ,  < t , ,  it follows by minimality of t ,  that s k ( j )  
I M ,  for 1 I j 5 N .  In  particular, 

s , ( j ) < M , f o r I  i j l i -  1 .  (6) 

By (4), with t = k,  and by ( 6 ) ,  it follows that ( 5 )  holds, 
which was to be shown. 

We know that k is the least  value o f t  such that (4) holds, 
and  that,  as noted, k > 0. Therefore, 1 
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We now show that (7) implies that 

Now (7) says  that  the  sum of the i biggest scores strictly 
increases between rows k - 1 and k .  How can  this  happen? 
Let A be  the driver of the carpool at  time k .  Thus, A has  the 
lowest score in row k - 1 among those who participate in the 
carpool on day k .  It is not hard  to see that for the  sum of the i 
biggest scores to  strictly increase between rows k - 1 and k ,  
it is necessary that 

1. A’s score in row k - 1 is sk- , ( j )  for  some j > i; that is, A’s 
score is one of the lowest N - i scores in row k - 1, and 

2. A’s score in row k is sk(m) for some m 5 i; that is, A’s 
score is one of the biggest i scores in row k.  

Now the driver’s score  increases by less than U when he 
drives. Therefore, A’s score  just before he drove [that is, 
sk-,(j)] differs from his score  just  after  he drove [that is, 
sk(m)]  by less than U. Hence, 

s k - , ( j )  + U >  s,(m).  (9) 

Now s k - , ( i  + 1) 1 s, - , ( j ) ,  since j > i, and so (by  adding U 
to both  sides), we get 

s,-, (i + 1 )  + U L sk - ,  ( j )  + U. (10) 

Further, 

sk(m) 2 sk(i), ( 1  1) 

since m 5 i. Clearly, (8) follows immediately  from (9), ( I O ) ,  
and (1 I ) .  Now (5) and (8) together imply that 

sk- ,  (i + 1 )  > M - (ia, + 1)U, 

that is, 

s,-, ( i  + 1) > M - a,,, U. (12) 

Define t i+ ,  to  be k - 1. Then (12)  tells us that ( 2 )  holds. 
Further, t i+ ,  < ti, since we already showed that k I t , .  This 
completes the induction.  Hence, (1) holds for each i 
(1  5 i I N ) . L e t t = t , . W e s e e f r o m ( l ) , w h e n i = N , t h a t  
s I ( N )  > M - a#. But M = a,U, and so 

s,(N) > 0. ( 1 3 )  

Since s,(i) 2 s,(N) for 1 5 i 5 N ,  it follows from (1  3 )  that 
s,(i) > 0 for each i (1  5 i 5 N ) .  Thus, every entry of  row t is 
strictly positive, and so the  checksum of  row t is strictly 
positive. But this  contradicts Proposition 1, which says  that 
the  checksum of every row is 0. This  contradiction completes 
the proof. 0 

Corollary 3 
Let N ,  the  number of members of the carpool, be fixed. Then 

136 there is a number  “such  that for each  schedule of arrivals, 

the  table derived by applying Scheduling Algorithm 4 con- 
tains no entry whose absolute value is larger  than M‘. 

Proof Let M be as in Theorem 2, and let T be a table 
derived by applying Scheduling  Algorithm 4 to some  sched- 
ule of arrivals. By Theorem 2, we know that no positive entry 
in the  table  can be larger  than M .  How large in absolute 
value can  the  smallest  entry  (the negative entry with the 
biggest absolute value) in the  table  be?  Let r be a row  of the 
table. Now no entry of the  table  can be larger  than M ,  and 
there  can be at  most N - 1 positive entries in row r (because, 
by Proposition 1, the checksum of row r is 0). Hence,  the  sum 
of the positive entries in row r is a t  most ( N  - 1)M. Since  the 
checksum of  row r is 0, the  absolute value of the  sum of the 
negative entries in row r is equal  to  the  sum of the positive 
entries in row r, and so is also at  most ( N  - 1)M. Therefore, 
the  absolute value of the smallest  (“most  negative”) member 
of  row r is a t  most ( N  - 1)M. Thus, we can  take M’ to be 
( N  - 1)M. 0 

It follows from our proof of Theorem 2 that  an  upper 
bound M o n  the size of the biggest entry  that  can ever appear 
in  the  table is aNU, where N is the  number of carpool 
members and where a,  = 0 and a,+, = 1 + iai (1 5 i 5 N ) .  
This bound is not the best possible. For example, if N = 2, 
then our upper bound is U, whereas it is very easy to see that 
in  this case  the  actual upper  bound is only U/2.  If N = 3 ,  
then our upper bound is 2U, whereas a careful  examination 
of the possibilities shows that  the  actual upper  bound is 
(5 /6)U.  Let us define the function f by letting f ( N ) U  be the 
actual  upper bound if there  are N carpool  members. Thus, 
f ( 2 )  = 1/2 and f ( 3 )  = 5 /6 .  We  note  that f(4) = 7/6 and 
f ( 5 )  = 8 / 5 .  We have  not  found f ( N )  exactly for N 2 6. 

Proposition 4 
The function f is monotone and unbounded. 

Note By monotone, we mean that if N ,  5 N,, then f ( N , )  
5 f ( N 2 ) .  By unbounded, we mean f(N) gets  arbitrarily  large 
as N gets large. 

Proof Any score that  can be obtained in a  carpool  with N ,  
members can be obtained in a carpool with N2 N ,  
members: we can simply assume  that N2 - N ,  members of 
the  larger carpool never participate. Monotonicity follows 
immediately. 

We now show unboundedness. Let N = 2‘, and  assume 
that  the carpool members  are A , ,  ..., A,. Assume that on the 
first day,  the  participants  are A,  and A,, and  the  driver is A,; 
on the second day,  the  participants  are A, and A,, and  the 
driver is A,; and so on for  a total of N / 2  days. Then  there is a 
second round that begins on the ( ( N / 2 )  + I)th  day. On the 
first day of the second round,  the  participants  are A,  and A,, 
and  the  driver is A,;  on the next day,  the  participants  are A, 
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and A,, and  the  driver is A,; and so on. Then  there is a  third 
round; on the first day of the  third  round,  the  participants  are 
A,  and A,, and  the  driver is A,; and so on. This  continues for a 
total of L log, NJ rounds,  where L XJ is the  greatest integer 
not exceeding x. It is straightforward  to see that  after  the 
final round, A,’s score is r / 2  (where N = 2‘). Thus, f(2‘) 
I r / 2 .  Hence, f is unbounded. 

We close the proof by noting another way of showing 
unboundedness. As before,  let A,, ..., A ,  be the carpool 
members. Assume that on the first day, everyone  partici- 
pates, and  the  driver is A,. Assume that on the second day, 
the  participants  are A , ,  ..., A,- , ,  and  the  driver is A,_,, and 
so on. Thus, on the  ith  day (1 5 i 5 N - I ) ,  the  participants 
are A, ,  ..., A,-,+,, and  the driver is A,-,+,. It is clear  that 
A,’s score after N - 1 days is - U / N  - U / ( N  - 1) 
- U / ( N  - 2 )  - ... - U / 2 ,  which gets  arbitrarily  large in  
absolute value as N increases (and which, in particular, is 
asymptotic  to - U log N ) .  0 

It follows from  the proof of Proposition 4 that f ( N )  
2 (1 / 2 )  L log, N J . D. Coppersmith  (private  communica- 
tion) has improved this  logarithmic lower bound to a  linear 
lower bound by using the following argument.  Let N be the 
number of members of the carpool.  As in the proof of 
Theorem 2, let the scores just  after  time t be sr( 1) 2 s f ( 2 )  2 

... 2 s , ( N ) .  Define the “figure of merit”  just  after  time t to 
be ( N  - I)s,(l) + ( N  - 2)s , (2)  + ... + (O)s , (N).  We now 
define the  schedule of arrivals. On each  day,  the  set of 
participants consists of two members with the  same score. If 
there  are no two members with the  same score,  then the 
carpool  stops running. If  i and j ride  together,  and i is the 
driver,  then i’s score  increases by U / 2  and j ’ s  score  decreases 
by U/2 .  The net effect on the figure of merit of increasing 
one  value s , ( i )  by U / 2  and decreasing s , ( i  + I )  by U / 2  is to 
increase the figure of merit by U / 2 .  Further, it is easy to see 
that  the net effect of reshuffling the scores to keep the s , ( i ) ’s  
nondecreasing can only increase the figure of merit  further. 
Keep the carpool running until either no two participants 
have the  same score, or until the figure of merit  has gone 
beyond N ’ U ,  whichever comes first. In the first case  (where 
the carpool is run until no two participants have the  same 
score), we know that  since all  carpool members  started with a 
score of 0, and since  scores change by U / 2  at  a time,  the 
scores will  be a t  least U / 2  apart.  That is, no two  scores will 
be closer together in value than U / 2 .  It is not hard  to verify 
that  this  fact,  along with the  fact  that  the  sum of the scores is 
0, implies that  the  largest score is a t  least ( N  - I)U/4. In the 
second case  (where  the carpool is run until the figure of merit 
has  gone beyond N ’ U ) ,  it is clear  that  the  largest score is 
greater  than NU. So in either case, the largest score is at least 
( N  - 1) U/4, which is linear in N ,  as promised. Note  that 
the  linear lower bound is attained even when no more than 
two carpool members ever ride together.  Coppersmith also 

shows (by a  more  detailed analysis) a lower bound of 
( N  - 1)U/3, which is attained even with no more than  three 
carpool members ever riding together. 

Coppersmith’s argument,  taken together with the proof of 
Theorem 2, shows that ( N  - 1)/3 If ( N )  5 a,, where a ,  
= 0 and a,+, = 1 + iai (1  5 i 5 N ) .  There is an exponential 
gap between these lower and  upper bounds. It is an interest- 
ing combinatorial problem to  tighten  these bounds [ I ] .  

We close this  section by noting another interesting  combi- 
natorial problem. Let us say that a vector (a , ,  ..., a,), where 
a,  1 ... 2 aN, is an  attainable  vector of scores if there is a 
schedule of arrivals such that,  starting with a  score of 0 for 
every member of the carpool, and always applying  Schedul- 
ing Algorithm 4, there is a time t where the vector ( s f (  I ) ,  . .., 
s , ( N ) )  of scores is equal  to (a,,  ..., a,). We  conjecture  that if 
(a,,  ..., a,) is an  attainable vector of scores, then so is the 
negation (--a,, ..., -a , ) .  If the  conjecture is true,  then  the 
M’ of Corollary 3 and  the M of Theorem 2 can, of course, be 
taken  to be the  same. 

3. Fairness 
In this section, we discuss  a  concept of fairness  and show that 
our scheduling algorithm  (Scheduling  Algorithm 4) is fair. 
However, we shall see that  Scheduling  Algorithm 2 (simple 
tokens) is not fair. We shall  also see that  Scheduling Algo- 
rithm 1 (simple rotation) is fair (when  it can be applied),  and 
that  Scheduling Algorithm 3 (subsets) is fair  (but it  requires 
too much  bookkeeping). 

To help us understand fairness,  let us first consider 
Scheduling  Algorithm 3 (subsets).  Scheduling Algorithm 3 
is fair in the sense that  among  the times that person A rides 
precisely with, say, B and C, the driver is person A approxi- 
mately 113 of the  time (with the obvious generalization that 
A is the driver approximately I l k  of the  time  that he rides 
with a fixed subset of k - 1 others.) Less restrictively, we 
might  consider  a  scheduling algorithm  fair if each person is 
the driver approximately I / k  of the  time  that  he rides with 
k - 1 others  (not necessarily  a fixed subset of k - 1 
others.) Thus, i f  the carpool  consists precisely of A, B, C, and 
D, then A might be expected to drive approximately 1/3 of 
the  time  that he  rides with precisely two among B, C, and D. 
In  other words, let cx be the  number of times  (through  time 
t )  that X is precisely the set of those participating in the 
carpool on that  day.  Then  during those days  that A rides with 
precisely two among B, C, and 0, the  number of times that 
we might  want A to drive is approximately 

1 5 (cABC + cABD + ~ A c o ) .  

Even less restrictively, assume  that  through  time t ,  person 
A has  participated in the carpool on b ,  days when exactly 2 137 
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persons participated in the carpool, on b,  days when exactly 3 
persons participated in the carpool, and so on. Let us define 
A’s ideal number of  drives to be the  number 

1 1 
- b, + - b,  + ... 
2 3  

1 + -b, , , .  
N 

Our notion of fairness is that A should be the driver of the 
carpool car  approximately  this  number of times. 

We  are now ready to give our formal  definition of fairness. 
We say that a  carpool  scheduling algorithm is fair if for each 
N (where N is the  number of members of the  carpool),  there 
is a  number P such that whatever the schedule of arrivals, it 
is the  case  that  at each time t and for each carpool member 
A,  the  number of times  that A has actually driven  differs 
from his ideal number of drives in absolute value by no more 
than P. 

We shall show that our scheduling algorithm is fair.  We 
first prove a  simple proposition. 

Proposition 5 
Let x be the  number of times  that A has  actually driven 
through  time t ,  and let y be A’s ideal number of drives 
through  time t .  Then  the  number (x - y)U is A’s entry in 
row t of the  table in Scheduling  Algorithm 4. 

Proof We prove the proposition by induction on t .  It is 
obviously true for t = 0, since  every entry in  row 0 is 0, and in  
this case x = y = 0. Assume  inductively that  the  statement 
of the proposition is true for t = m; we shall show that it 
holds for t = m + I .  Let x, be the  number of times  that A has 
actually driven through  time t ,  let y, be A’s ideal number of 
drives through  time t ,  and let A ,  be A’s entry in row t of the 
table. By inductive assumption,  the  number (x, - y,)U 
equals A ,  (that is, A’s entry in  row m of the  table).  We must 
show that  the  number (X,+, - y,,,)Uequals A,, ,  (that is, 
A’s entry in  row m + 1 of the  table). Assume that  there  are k 
participants in  the carpool at (on the  day corresponding to) 
time t + 1 .  There  are two  cases,  depending on whether A is 
the driver a t  time m + 1. 

Case I A is the driver at  time m + 1. Then x,+ , = x, + I ,  
and y,,, = y, + ( i / k ) .  Hence, 

(x,,, ~ Y,,,)U = (x, - Y , W  + U ( k  - 1)/k. ( 1 5 )  

But by assumption, 

(x, - Y , W  = A ,  ‘ (16) 

Since A is the driver at  time m + 1 ,  it follows from 
Scheduling  Algorithm 4 that 

A, , ,   A ,  + U ( k  - l ) / k .  (17) 

It follows from (15), (16), and (17) that (x,+, - y,+,)U 
138 = A,, , ,  which was to be shown. 

Case 2 A is not the driver at  time m + 1. Then x,+, = x,, 

= (x, - y,)U - U / k .  As in Case 1 ,  it follows easily that 
(x ,+ l  - y,+,)Uis A’s entry in row m + 1. 0 

and Y,,, = Y ,  + ( l / k ) .  Hence, (x,+, - Y,+,)U 

The next theorem discusses the fairness or unfairness of 
the scheduling algorithms we have  discussed. We  are most 
interested in the result that  Scheduling Algorithm  4 is fair. 

Theorem 6 
Scheduling Algorithm 1 (when it  applies),  Scheduling Algo- 
rithm 3, and  Scheduling  Algorithm 4 are  fair,  but  Schedul- 
ing Algorithm 2 is not fair. 

Proof Recall that a  carpool  scheduling algorithm is fair if 
for each N (where N is the  number of members of the 
carpool), there is a  number P such  that whatever the 
schedule of arrivals,  it is the  case  that  at  each  time t and for 
each  carpool  member A ,  the  number of times that A has 
actually driven differs from his ideal number of drives in 
absolute value by no more than  P. 

Scheduling  Algorithm I (simple  rotation)  is  fair (when it 
applies) Of course, Scheduling  Algorithm 1 is very lim- 
ited,  since  it is not even defined unless every carpool member 
participates in the carpool on every day. If  so, then it is easy 
to see that  the desired number P above can be taken  to be 1. 

Scheduling  Algorithm 2 (simple  tokens)  is not fair As- 
sume  that  there  are 6  carpool  members A ,  B, C, A’,   B’ ,  and 
C‘, and  that  the schedule of arrivals is (AA’,   ABC,  AB,   AC,  
A‘B‘C‘,  A‘B‘,  A’C’,  ABC,  AB,  AC,  A‘B‘C‘,  A’B’,  A‘C’, ..., 
ABC,  AB,   AC,   A’B‘C’,   A‘B‘,   A’C’) ,  where the sequence 
ABC,  AB,  AC,  A‘B‘C’,  A’B‘,  A’C’ repeats over and over a 
total of m times  after  the initial AA’  (and so the  number of 
days is 6m + 1 .) We shall show that  there is no number P a s  
defined above that works for every m. On  the first day, when 
AA’ is the set of carpool participants,  either A or A ’  is the 
driver. Assume  without loss of generality  that A ’  is the 
driver;  otherwise,  everything we  now say holds when we 
replace A ,  B, C by (respectively) A’,   B‘ ,  C’. We leave to  the 
reader  the simple verification that  under  Scheduling Algo- 
rithm 2 it follows that on each of them days  the set of carpool 
participants is precisely ABC (respectively, AB or A C ) ,  the 
driver is always A (respectively, B or C.) Now there  are 
exactly 2m + 1 days  that A participates in the carpool when 
precisely 2 people participate  (namely, A and one of A’,  B, or 
C), and  there  are exactly m days  that A participates in the 
carpool when precisely 3 people participate  (namely A ,  B, 
and C ) .  Thus, A’s ideal number of drives is ( 1 / 2 ) ( 2 m  + 1) 
+ (1/3)m, which equals  (4/3)m + ( 1 / 2 ) .  The  number of 
times  that A actually drives is m + 1. The difference between 
ideal and  actual is ( m / 3 )  - ( 1  / 2 ) ,  which is not bounded by 
any fixed number P (as m gets large.) This was to be shown. 
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Scheduling  Algorithm 3 (subsets)  is  fair It is easy to see 
that P can be taken  to be equal  to  the  number of subsets  that 
contain  a given member A ,  that is, P can be taken  to be 2N”,  
where N is the  number of carpool  members. 

Scheduling  Algorithm 4 is  fair As in the  statement of 
Proposition 5 ,  let x be the  number of times that A has 
actually driven through  time t ,  and let y be A’s ideal  number 
of drives through  time t .  By Proposition 5, the  number 
(x - y )U is A’s entry in row t of the  table. By Corollary 3, we 
can find a positive number M’ (which depends only on N ,  the 
number of members of the carpool)  such that no entry in the 
table is larger in absolute value than M’. Thus, I (x - y )  U I 
5 M‘. Hence, I (x - y )  1 5 M’IU. So, we can  take P to be 
“/U.  0 

4. Further observations 
As well as being  both fair  and  manageable, our carpool 
scheduling algorithm  (Scheduling  Algorithm 4) has some 
additional  attractive  features. First, although it will always 
determine whose turn it is to drive on a particular  day, it is 
robust in the presence of deliberate  imbalance.  Thus a person 
could drive (or not drive) for several days in a row if he 
needed to,  regardless of whether the scheduling algorithm 
says  he  should or should not drive, and  the  imbalance would 
eventually be eliminated.  (It is beyond the scope of this paper 
to  make  this last sentence precise. One meaning is that  after 
the driving table is artificially made  imbalanced,  the  entries 
will remain bounded from then on, as in Theorem 2, provided 
the scheduling algorithm is faithfully  adhered  to from then 
on.) 

Second,  the  “ride units” of the method can become a 
commodity that  can be bought and sold. This  can also allow 
for “carpool  members” who never drive at  all.  Thus, i f  A does 
not have  a car but wishes to  participate in the carpool, if B is 
a  carpool participant (with  a car),  and i f  A and B can  agree 
on a fair  market value for a ride  unit, then B can sell ride 
units to A, and A need never drive. (In effect, B is “driving 
for” A.) In fact,  the  group for which this scheme was 
developed had  such  a participant. His name being Don and 
twelve being the least  common  multiple of the possible subset 
sizes of the carpool, the  “ride  unit” became  affectionately 
known as  the Duodecadon. 

Finally, although we derived this scheduling algorithm on 
the assumption that  there would be only one official carpool 
car on any  one  day,  that assumption turned  out  to be 
superfluous! I n  fact,  there  can be as many  carpool cars  as 
there  are people driving.  Each  driver of a car containing k 
participants  gets  credited with U(k  - I ) /k  units, and each 

rider who does not drive in such  a car  gets  debited U / k  units 
in some master  (perhaps company-wide!) record. Note  that a 
person driving  alone gets 0 units, or no change  to  the record. 
In this  generalized  scheduling algorithm,  an  arbitrary  group 
of people, who had never previously carpooled with one 
another, could decide to ride to work together,  and it would 
make perfect  sense for them to ask,  “Whose  turn is it to drive 
today?” 
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Note 
I .  After  this  paper went to  press,  Coppersmith lowered the  upper 

bound to (N ~ l ) /2 .  Thus we  now  know that ( N  - 1)/3 5 f ( N )  
5 (N - l ) /2 .  
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