P. Franchi
J. Gonzalez
P. Mantey
C. Paoli

A. Parolo

J. Simmons

Design Issues and Architecture of HACIENDA, an
Experimental Image Processing System

The paper provides the rationale for the architecture and design of a color image display and processing system called
HACIENDA. The system was heavily influenced by one of its most important intended applications, the processing of
LANDSAT data, including that to be provided by LANDSAT D. Also considered in the paper are the trade-offs involved in

making the system suitable for a broader range of image processing work without unduly adding to cost or complexity.

1. Introduction

Image processing projects are underway at many IBM
Scientific Centers around the world. These projects often
involve the processing of LANDSAT images, for use pri-
marily in agricultural planning. Also, the Research Division
of IBM is doing extensive work in image processing and
graphics. It had become obvious that a variety of display
systems were being used in these projects, each with its own
software and system support, so that software developed at
one location was not readily usable at another. At the same
time, it was noted that any meaningful distinction between
image processing and graphics was disappearing. It was
apparent that all these graphics and image processing proj-
ects would benefit if they had in common a powerful image
display, graphics, and image processing system. The sys-
tem that evolved to satisfy that need came to be called
HACIENDA [1].

Design of the HACIENDA system began in 1977. The
objective was to design and build a limited number of these
systems for use within IBM and to support joint studies
conducted primarily with universities. The display was to be
configured using available IBM components, so that it could
be reliably maintained in remote locations.

The design group reviewed existing display systems,
requirements of the various image processing projects in
IBM, and the projected requirements for the next decade.
The possible features of an image processing and display
system were categorized and evaluated. The basis for evalua-
tion was heavily weighted toward processing LANDSAT
images, looking forward to the data to be produced by
LANDSAT D, but other applications in image processing
and graphics were to be accommodated where they would not
conflict with support for LANDSAT processing nor signifi-
cantly contribute to cost or complexity.

In parallel with the hardware development, basic support
software (HBUS) and application software (HIPS) were
developed. The host environment was chosen (VM/370),
software design started in late 1979, and coding in early
1980. The first HACIENDA unit was ready in January
1981, along with HBUS and HIPS. A number of the units
are now installed at IBM locations throughout the world.

To prepare the reader for the issues considered later in this
paper, Section 2 provides a general description of the
HACIENDA system. Its three major components (display
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subsystem, image processor, and graphics subsystem) are
discussed in greater detail in Sections 3, 4, and S, respec-
tively. The supporting software is considered briefly in
Section 6. A list of documents available to HACIENDA
users is given in [2]. For general image processing terminol-
ogy and concepts, see [3-5].

2. The HACIENDA system
HACIENDA is physically partitioned into a work station
and a main logic box.

® Work station

The work station is that part of the system most directly in
contact with users. It contains the main human-user inter-
faces (Fig. 1). The work station is a specially designed desk,
housing a local power supply and the equipment for commu-
nication with the main logic box. On the desk top reside a
high-resolution RGB monitor on which image data are
displayed and a conversational terminal allowing alphanu-
meric communication through a standard green phosphor
screen and keyboard (an IBM 3278 Model 3). The high-
resolution color monitor (purchased from an OEM vendor)
employs state of the art display techniques (2:1 interlace, 30
frames/second) and shadow-mask technology [6]. HA-
CIENDA’s work station may interface with other I/O units,
such as light pen, joystick, graphics tablet, and image hard
copy unit.

® Main logic box
The main logic box contains all of HACIENDA except the
work station components. It includes the

e HACIENDA controller and host-system interface (in the
following text, we call this the communication and control
subsystem);

Display subsystem;

Image processing subsystem;

Graphics subsystem; and

Physical support for the above subsystems.

The physical partitioning has been done so that the
HACIENDA work station need not be in an air-conditioned
room; the work station may be placed at a convenient
location within 100 meters of the air-conditioned main logic
box.

o Communication and control subsystem

The communication and control subsystem (Fig. 2) is a
modified IBM 3274 unit driven by custom microcode. It
controls HACIENDA operation and interfaces it with the
host computer through a standard channel attachment; it is
directly attached to the HACIENDA conversational termi-
nal and may be used to interface up to six other IBM 3270
display units to the host, independently of HACIENDA.
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Figure 3 Data flow in the display and image processing subsys-
tems. RB indicates a refresh buffer, MB a mask buffer, and SB a
storage buffer.

HACIENDA itself, through its controller, appears to the
host computer to be a peculiar IBM 3278 user terminal
which can accept “structured field” commands.

This setup avoids much work otherwise needed to interface
a new device to a computer and to drive it from application
programs. No substantial development cost was incurred for
this, as would have been the case if an optimal interface
(from a HACIENDA viewpoint) were developed.

HACIENDA is usually driven through its controller by a
user program running in the host. This user program is linked
to a library of host routines making up the HBUS interface.
Alternatively, HACIENDA may operate in a local mode. In
this case, the controller runs an interpreter microprogram
which allows direct execution of a HACIENDA-resident
User Function Program (UFP), stored in controller random
access memory. A UFP is down-loaded to HACIENDA by
the host computer, where the object code is generated by
using the System/370 assembler with a specially written set
of macros.
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HACIENDA capabilities are the same whether a host
program or a UFP is in control. Both options were included,
since either one may be preferred under certain usage
patterns. UFP control minimizes host loading; it is optimal
when a task demands heavy image processing computations
and little or no general purpose processing and mass storage
access. Host program control is far more flexible, but it ties
HACIENDA response time to the speed with which the host
can conduct 1/0 operations; if host load is heavy, response
time can be degraded.

The controller can communicate with all HACIENDA
subunits at a very low level, such as setting the sources to
input buses of an ALU, controlling ALU operation, and
determining the destination of the result. This level of
interface, more akin to microprogramming than to normal
device control, was chosen for maximum flexibility in direct-
ing available processing power to varying application goals.
Specific application software may, of course, shield the user
from this complexity, providing a variety of system settings
already partly tailored to the application at hand.

The controller decides which HACIENDA subsystems
are active at any given moment. The display subsystem is
always active, and, if enabled, builds an image for display on
the high-resolution color monitor, without interfering with
other operations taking place in the rest of the system.
However, actual display of the image may be inhibited.
Activities of the image processing subsystem, the graphics
subsystem, and communication with the host are mutually
exclusive. The controller may start one activity when needed
by request of either a host application program or the UFP
running in the controller itself.

Mutual exclusion among these three activities seemed
rather obvious when the project started. Looking back,
however, we see that it imposes limitations. For instance, it
would be advantageous to the graphics subsystem to use the
image processing subsystem’s interpolator unit (to be
described later) for anti-aliasing purposes.

3. Display subsystem

The display subsystem is that part of HACIENDA which
builds the image displayed on the high-resolution color
monitor screen from data stored in the system (Fig. 3).

® Refresh buffer

The main source of data for display building is the refresh
buffer, a 1024 x 1024-pixel memory. Each pixel has 12
normal bits and one overlay bit. Each pixel of the refresh
buffer which is mapped onto the image at a given instant is
represented thus: If the overlay bit of the pixel is on, then the
corresponding pixel is of the “overlay” color, which is the
same for all pixels on the screen; if the overlay bit is off, then
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the 12 normal bits of the pixel determine its color. Overlay
blinking is also available.

The privileged role of the overlay plane seems justified in
view of the many applications which need a simple way to
write labels, axes, and captions on an image without disturb-
ing the image itself. However, a strong case could be made
for a more regular architecture in which all bit planes had
equal status and an appropriate lookup table was used to
determine which, if any, had overlaying properties. The extra
flexibility would be paid for by the extra complexity in
application programs needed to build the required color
lookup table (discussed more fully later); however, this could
be avoided by providing a suitable “default mode” compara-
ble to the present solution.

The refresh buffer is a flexible digital store with read-
modify-write capability. Its contents, besides being used for
image building, may be fed to either of the two HACIENDA
main internal buses (the processor bus and the buffer bus). A
new value for a pixel may be loaded from the processor bus,
and then

® The new data for the pixel are mixed with the old data for
the same pixel by any one of a variety of operations,
including “overwrite” (new replaces old) and arithmetic
and boolean operations;

® The result is selectively overwritten to the “old” data only
for those bit planes which are enabled for this rewriting.

While the refresh buffer is usually accessed in a raster
scan pass (just like other buffers), it can be randomly
addressed when data are loaded into it by use of an image
processing subsystem X /Y processor.

® Pixel color determination

Normal color determination is accomplished through table
lookup, with the table continually accessed at video rate
during image display. This kind of display architecture is
becoming standard for high-quality displays [7, 8].

Table lookup in this case means that the 12 normal bits
from a refresh buffer pixel are used to address a 4096-word
memory, the color lookup table (CLUT), previously down-
loaded by the host; the word held in the CLUT at the address
given by the pixel value is used to yield the pixel color.

Colors are obtained as 15-bit words, with 5 bits for each of
the primary RGB components; 32 intensity steps are thus
available for each component and 32 768 colors altogether,
although only 4096 different ones can be active at any given
time, since the CLUT only has 4096 entries.

This number of colors may appear to be an overkill, since
the human eye cannot directly distinguish that many colors
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[9]. However, many gradually changing hues may be needed
in such applications as texturing or anti-aliasing in vector-
to-raster conversion.

The color determination words (CLUT entries, overlay
color register, cursor color register) are actually 16 bits wide.
The most significant bit is normally off, but if it is on, then
the pixels which have that “color” are “blinked,” i.e., flashed
off and on between black and the color hue given by the other
15 bits. The blinking feature was introduced at the specific
request of prospective users, despite such obvious disadvan-
tages as the impossibility of reproducing the effect in hard
copy and the possibility of operator discomfort if used too
extensively.

The CLUT can be bypassed. In this case the 12-bit pixel is
used directly as a data word, partitioned so as to provide 4
bits for each primary RGB component; 16 intensity steps are
available for each component, 4096 different colors altogeth-
er. Blinking is off in this case.

The same effect as CLUT bypassing could obviously have
been obtained with a different design of the CLUT that was
built. However, the bypass may be used as the “standard”
display mode in applications where multispectral data are
directly assembled and displayed. In this case the CLUT can
be used for a spectral distortion for some specific purpose,
such as histogram equalization. CLUT bypass mode allows
standard display mode to be resumed instantaneously, with-
out disturbing the “distortion” CLUT. The spectrally altered
image may thus also be recovered at once. It was decided that
the frequency of use of this application deserved making a
special case out of it.

® Other display subsystem characteristics

All or part of the refresh buffer can be mapped onto the
screen image at any instant; the portion depends on the
“zoom factor” (ZF), which can be 1, 2, 4, or 8. To obtain a
pixel on the screen, the corresponding refresh buffer pixel is
replicated ZF times in both the horizontal and vertical
directions. Thus the screen may represent from 128 x 128
(ZF = 8) to 1024 x 1024 (ZF = 1) refresh buffer pixels.

The position in the refresh buffer corresponding to the
screen’s origin (lower left corner) is determined by the
“scroll factor” (SF). Different windows in the refresh buffer
may be displayed on the screen at different times. Window
size depends on ZF, and window position in the refresh
buffer depends on SF.

To mark a point on the screen, a cursor is available. This is
a figure which, if enabled, is superimposed on the image.
Cursor coordinates may be derived from a variety of sources,
such as a host application program, a UFP, or the graphics
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subsystem. The user may be given direct control of the cursor
coordinates through joystick or graphic tablet action. When
the joystick is used to control the cursor, its angular position
determines cursor movement rate according to a user-
defined table; this makes for maximum flexibility in this very
common situation.

The cursor can take either of two shapes: a cross-hair, with
screen-spanning horizontal and vertical segments crossing at
the cursor coordinates, or any symbol mapped from a dedi-
cated 64 x 64-bit matrix originally down-loaded from the
host and centered at the cursor coordinates. In either case, a
color from the cursor color register is shown at all points
where the cursor must be displayed, while the image shows
through elsewhere.

Zooming, scrolling, and cursor mixing all take place,
conceptually, “on the screen”; the refresh buffer is never
affected by any of this. This concept might have been
extended to emulate a direct-view storage tube display’s
distinction between stored and refreshed strokes, which
would have allowed a few extra useful application features,
such as “rubber-banding™ in graphics. However, it was
finally decided that potential advantages were outweighed by
the extra complexity.

4. Image processing subsystem

The image processing subsystem provides storage for image
data. When enabled by the controller, it can transfer and
manipulate those data (Fig. 3). An image processing “cycle”
is an event in which up to one million pixels are taken from
some buffers, processed by the image processor, possibly
interpolated and/or histogrammed, and finally returned to
some other buffers.

& Storage buffers

The architecture allows up to eight scratch pad buffers; they
are 1024 x 1024 memories with 8 bits per pixel, called band
or storage buffers. Two to six storage buffers can be physi-
cally present inside the main logic box in the present imple-
mentation; space limitations forbid the use of all the eight
storage buffers allowed for in the architecture.

Like the refresh buffer, storage buffers can provide or
accept data to or from the processor bus, which provides
communication between all of HACIENDA’s subsystems.
They can store image data, results or partial results of
operations, or data or programs for the graphics subsystem.

All special refresh buffer features discussed earlier would
also be desirable for scratch pad memories: direct address-
ing, read-modify-write capability through a local ALU,
selective bit plane overwriting. However, it was decided that
the added cost would not be justified by the added usefulness,
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and moreover, cheaper memory was a better investment at
this state of technology than a smaller quantity of sophisti-
cated feature-laden storage.

When participating in image processing operations, all
buffers (refresh and storage buffers) are addressed in a
raster scan pass within a “processing window,” which is any
rectangular subset of the buffer. Windows are independently
set for each buffer and may include different amounts of
data and/or have different origins and aspect ratios for each
buffer.

A more radical break with respect to existing practice
would have been to provide an “undifferentiated storage
an N, x N, store with V,-bit words, allowing
arbitrary rectangular subsets of this to be used for processing
and display. Keeping the maximum at around the present 7.5
megabytes, the store could have been a 2048 x 2048 memory
with 16-bit words. Display window and processing windows
would have taken nonoverlapping slices of this as determined
by the user.

L}

resource,’

However appealing this scheme may be, with its greater
flexibility, it does not appear to be cost-effective at the
present time. It allows for no modularity in storage growth,
as can be done with the present scheme by the addition of
storage buffers. It also presents the programmer with serious
storage allocation problems and may give practically insur-
mountable bandwidth problems if several windows fall inside
a single physical memory device. Therefore, no further
consideration was given to this scheme.

& Buses and lookup tables

The processor bus is HACIENDA’s main communication
highway. All storage buffers and the refresh buffer can load
or unload to or from it. The controller and the graphics
subsystem use it for high-speed, cycle-stealing, bulk 1/0O; the
image processor returns its results via the processor bus.

Buffers involved as data sources in an image processing
cycle (there may be up to 9) feed their contents to the buffer
bus. From there, the 8-bit or 12-bit data are transferred to
the 16-bit ALU bus with one of three possible protocols:

& Data are padded with zeros on the most significant bits,

e Data are sign-extended to 16 bits, or

& Data are used to address one of several lookup tables
(ILUT) input to the image processor.

The buffer-bus-to-ALU-bus protocol may differ for each
source buffer, since data on the buffer bus are tagged

according to their source.

Each ILUT is a 256-entry store with 16-bit words. Lookup
table operations can be thought of as implementations of any
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desired function of one variable; the variable is used as an
address and the corresponding result is fetched from that
address. Lookup tables are usually down-loaded from the
host before actual operation.

Eight ILUTs are available; each storage buffer may use
any one of them, and each ILUT may be used by more than
one storage buffer. The storage buffer to ILUT mapping is
accomplished through a look-aside buffer (LASB) which
associates one ILUT with each storage buffer. The LASB is
usually down-loaded by the host before actual operation.

This scheme is far more flexible than one in which each
storage buffer has a fixed associated ILUT, as originally
envisaged. If the same ILUT transformation is to be applied
to several storage buffers, the scheme allows for ILUT
sharing. If HACIENDA is to operate in a local mode, the
host can pre-load all ILUTs with several useful transforma-
tion functions; a UFP can easily switch storage buffers
between pre-loaded ILUTSs as needed, since the mass of data
to be actually exchanged is minimal (just the contents of one
LLASB word).

® X/Y processor
Data on the ALU bus can be processed by either the X/Y
processor (XYP) or the image processing ALU (IPALU).

The X/Y processor treats ALU bus data as addresses for
random access to the refresh buffer. This overrides normal
raster scanning and is only available when the refresh buffer
is used as the destination for output of an image processing
cycle. Two storage buffers (possibly modified by ILUTs)
may be designated as the source of X and Y coordinates; they
select the destination pixel in the refresh buffer, either in a
direct address mode or as an offset from the refresh buffer
pixel addressed immediately before.

A randomly addressable mode would also be useful when
data are read from the refresh buffer, and we originally
planned to implement this. However, the bandwidth of the
refresh buffer is already overtaxed as things stand, and it
cannot support the extra load.

® [mage processing ALU

The IPALU operates on N corresponding pixels of input
data, one from each source buffer, to produce one resulting
pixel of output. For each pixel, operation is as follows.

First, the IPALU accumulator is loaded from a constant
register. Then, the contents of the accumulator are operated
on N times with an incoming data pixel, intermediate results
being stored back into the accumulator. Incoming data may
arrive in any order, which restricts the IPALU to symmetri-
cal operations, such as addition and boolean operations. This
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is not a limitation; subtraction, for example, may be per-
formed by adding one unchanged value (the minuend) to the
other one on which a negation operation is performed
through ILUT processing (the subtrahend).

An IPALU operation that was not considered for inclusion
at design time now appears desirable. This is a function that
would select the higher (MAX) of the words applied to it; an
obvious dual to this is a MIN function. Both were rejected
originally as not being generally useful processing primitives.
However, some image processing algorithms (such as simple
nonlinear filters) rely on these operations. Since, in the
present architecture, they are not supported in a pipelined
image processing cycle (as is, for example, addition), they
must be provided by software at the expense of several image
processing cycles.

The final result left in the accumulator when the N input
pixels have been processed may be used as is (to 16-bit
precision) or be further processed by another LUT opera-
tion.

® OLUT and contour filling

The output lookup table (OLUT) may be applied at the
IPALU’s output. It has 4096 entries of 16 bits each, and is
thus addressed by the least significant 12 bits of the final
result of the IPALU for each pixel.

Alternatively, the OLUT may allow selective processing
according to a “contour filling” operation. A section of the
graphics subsystem, described in more detail below, produces
for each pixel one bit which is 0 for pixels outside a
pre-drawn contour and 1 for pixels inside it. This bit may
optionally be used as the most significant one in the OLUT
address, with the IPALU result giving only the 11 least
significant bits. This allows different output functions for
pixels inside and outside the pre-drawn contour [10].

As an example of the power of lookup table processing,
consider approximate multiplication of pixel values. One
ILUT is loaded with the logarithm of input values (ad-
dresses); the OLUT is loaded with the antilogarithm of input
values (addresses). After this initialization operation, multi-
plication can be performed by adding in the IPALU the
logarithms of the factors and taking the antilogarithm of the
result as the final product. The speed of this operation, after
initial lookup table loading, is the same as for normal
addition.

® [nterpolator and histogrammer

Results from the IPALU (and possibly the OLUT) are fed
back to the processor bus via an interpolator unit. This unit
works as a programmable digital filter [11] with 12 stages (8
forward and 4 feedback) and a magnification factor up to 32.
Its coeflicients are down-loaded by the host, as is the chosen
magnification factor.
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Figure 4 The graphics subsystem.

The interpolator is a one-dimensional unit and in principle
cannot be applied to two-dimensional spatial filtering prob-
lems, unless the kernel of the 2D filter happens to be
decomposable. However, 2D FIR filtering is possible using
the interpolator in several image processing cycles (as many
cycles as the number of kernel rows or columns, whichever is
smaller) [12]. On the other hand, providing to a filtering unit
the 3 x 3-or 5 x 5-pixel matrix surrounding every pixel to be
operated on would require a major overhaul of the
HACIENDA architecture, which is based on raster scan
processing.

Once back on the processor bus, the results may be loaded
into any or all buffers, except those that are producing data
in the same image processing cycle. Image processing results,
or any other data flowing on the processor bus, may also be
fed to another special purpose hardware unit that may be
considered a part of the image processing subsystem, the
histogrammer.

The histogrammer unit has 4096 32-bit registers that may
count in various ways according to the data flowing on the
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processor bus. This allows statistics to be gathered about
data being loaded, unloaded, or processed. Histogrammer
registers may be set up and read by the controller, and its
exact operation programmed.

This “on-the-fly” histogrammer is not common in previous
architectures. We believe it is quite useful, given the impor-
tance of statistics gathering in classification and pattern
recognition tasks.

5. Graphics subsystem

The graphics subsystem functions described here reflect
mainly the architecture of HACIENDA as planned in the
design phase, with some desirable features that experience
has suggested. Due to cost and time constraints, the actual
system offers only a subset of these functions. The improved
function and performance of the planned architecture were
based primarily on a dedicated microprocessor for graphics.
The main function of the graphics subsystem is to generate
graphics in the form of characters, vectors, and other primi-
tives. It interprets an IBM 3277 Graphics Attachment data
stream [13]. Some extra primitives are offered for direct
curve generation. The main improvement, however, is a new
subroutine-like “sub-data-stream” concept. Together with
scaling, translation, and rotation settings, it allows for great
flexibility in handling replicated subsets in one or more
drawings (mechanical parts, symbols, logos, etc.).

These functions are performed by a dedicated Zilog
microprocessor (Z80) interfaced with the HACIENDA sys-
tem so as to be able to control all of its operations when
enabled by the controller. With respect to controller opera-
tion, the only limitation of the graphics subsystem is that it
cannot start its own operation nor an image processing cycle,
nor can it communicate with the host (Fig. 4).

Dedicated hardware would offer a higher processing band-
width, but we judged that it would not be worth the
additional development and production cost, especially since
it would also offer less flexibility.

® Graphics interpreter and other operations

Graphic operation of the subsystem is driven by a resident
graphics interpreter. In addition to the above mentioned
primitives, it is meant to give the user ample room for
expansion by allowing extra primitives to be added as Z80
machine code subroutines.

Another important function of the graphics interpreter is
memory management. The storage buffers may hold data
and programs for the graphics subsystem. Storage buffers
are 1M byte each; they cannot be randomly accessed but
must be raster scanned. Thus they have the characteristics of
a peculiar “mass memory” to the Z80. The graphics inter-
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preter handles them as such, providing the *‘peripheral
drivers” for them that an operating system would supply if it
were present.

® Contour filling

In the main graphic mode, directly driven by the graphics
intepreter, the graphics subsystem function is graphic trans-
lation. It converts vectors, characters, and curves to sets of
pixels to be overwritten or merged with images in the refresh
buffer and/or storage buffers. A particular operation inter-
acts heavily with image processing: the contour filling opera-
tion.

The main hardware component for contour filling is a
1024 x 1024 dedicated store, the mask buffer. Each mask
buffer pixel is a 2-bit word holding two flags indicating
whether the pixel is on the contour or off it and whether itis a
point where a horizontal ray intersects the contour. These
values are determined for each pixel by the graphics subsys-
tem during vector-to-raster conversion (i.e., contour draw-
ing) and merged with previous values through a read-
modify-write machine coupled to the mask buffer.

During a subsequent image processing cycle, another
finite state machine raster scans the mask buffer, using the
flags to give image processing logic a single bit per pixel
denoting whether it is inside or outside the contour.

The parity flag algorithm adopted for contour filling is
particularly appropriate to the raster scan environment
where the image processing is done. It maximizes usefulness
of the two mask buffer bits by allowing filling of any curve
whatsoever, with or without such peculiarities as self-
tangency and self-intersection.The contour itself may also
optionally be considered inside or outside the curve. Finally,
storage buffers may play the role of mass memories in this
case too, allowing several partly drawn curves to coexist
and/or be merged.

Particular attention was devoted to the contour filling
features because of their usefulness in image processing and
especially in raster graphics applications.

6. System software support

HACIENDA is locally attached to a System/370 (or to
IBM 3081, 303X, 4331, or 4341) channel via 3274 controller
logic and microcode. The application program controls the
HACIENDA system by sending/receiving outbound/
inbound 3270 data streams [14].

® Design issues

Two approaches were possible for supporting HACIENDA:
the alphanumeric terminal (3278) and the HACIENDA
subsystems could be treated as a single device with escape
code imbedded in the data stream for accessing the
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HACIENDA subsystems; conversely, two independent
devices could be defined with two device addresses, one for
the terminal and one for the HACIENDA subsystems. One
approach leads to different implementation of a significant
portion of 3274 interface microcode than the other. In
principle a scheme in which the definition of either mode is
made at device initialization time would also have been
possible. However, time and resource constraints led us to
implement only one of the two alternatives. The two-device
scheme was eventually chosen as offering easier maintaina-
bility of the HACIENDA-unique software and better isola-
tion from the host operating system and 3274 microcode
evolution.

The second decision was which host operating system
should be selected for HACIENDA application program-
ming. The decision was in favor of VM /370, because this was
the system preferred, almost universally, by those expected
to receive HACIENDA. This decision, along with the two-
device approach, made it quite obvious that VM /370 should
be left to support the display terminal as a standard virtual
machine [15] console and to support the HACIENDA
subsystem *“‘device” under CMS as a special device, dedi-
cated to the user’s virtual machine. The two devices are
declared as two 3278s at system generation time.

A third and more difficult decision was where to put the
borderline between the so-called “basic” and “application?
software. In other words, the HACIENDA Basic User
Software (HBUS) should be easy to use for application
programmers (be user-friendly) but, at the same time, be
sufficiently low-level to give access to all the capabilities of
the machine (be complete) with appropriate performance.

Completeness was chosen as the first criterion. As a
matter of fact the HBUS interface allows the application
programmer to activate and make use of all the functions of
HACIENDA, without any restriction. G

The friendliness target was pursued by designing a user’s
function library built on top of the HBUS interface (see Fig:
5). This library (HFUL) provides the user with a simplified
view of HACIENDA, by higher level routines, where the
most commonly used sequences of HBUS calls are coded.
The application program can intermix calls to the library
with HBUS interface routines. e

The HACIENDA Function User Library (HFUL) is
expected to expand, hosting the contributions of the
HACIENDA user community. The first set of routines \;é§
designed having in mind the requirements of the Hacienda
Image Processing System (HIPS). HIPS is an application
subsystem which, even though primarily designed for analy-
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Figure 5 The system software layers.

sis of multispectral image data such as LANDSAT, can be
used with all types of images [16].

® HBUS routines

All the routines of HBUS are invoked via the standard 1BM
call interface and as such can be used by image processing
applications written in Assembler, PL/I, FORTRAN, Pas-
cal, etc. Two types of routines exist: interface routines,
available to the user, and internal routines, for service and
1/0 operations. Three types of interface routines exist:

® Control routines: used to initialize hardware and software,
make available to the application status and asynchronous
interruptions, handle errors, etc.

® Define routines: used to set up and prepare the
HACIENDA logical subunits for subsequent execution
commands.

® Operate routines: used to command the execution of the
HACIENDA hardware functions.

Typical examples of operate routines are: load buffers,
start image processor cycles, set zoom and scroll, load
interpolator coefficients, load/unload histogrammer regis-
ters, execute UFP.
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Examples of define routines are: define load/unload mode
for buffers, define windows, define histogrammer operation
mode.

® UFP support

Software for supporting local operations (or UFP mode) is
based on the following tools, which help the programmer to
build, load, and debug user function programs:

® A macro-language to be used in conjunction with a subset
of System/370 assembler for coding UFPs. It offers pseu-
do-instructions such as MOVE, DOWHILE, RETURN,
etc.

e A second library to help the programmer to prepare data
structures (structured fields) for activating the
HACIENDA functions. Names and calling lists are the
same as the corresponding HBUS routines, in order to
facilitate programming.

e [n addition to the above libraries (FPUL), a set of HBUS
routines is provided to Load/Unload UFP object code
to/from HACIENDA controller storage, Execute and
Resume UFPs.

® A controller resident interpreter is provided for execution
and interactive debugging of UFP code.

Programming of UFP based on FPUL may appear to be a
complex task compared to host programming based on
HBUS. However, as already mentioned in Section 2, the key
issue for UFP is not functionality but performance. This fact
can make the increased programming complexity of the
machine, in UFP mode, more acceptable.

7. System performance

The HACIENDA controller provides information to, and
accepts information from, the host at an instantaneous byte
rate established by the channel or controller, whichever is
slower. The instantaneous data transfer rate for write opera-
tions is a maximum of 0.65M bytes per second and for read
operations is a maximum of 0.4M bytes per second. The
transfer rate between controller storage and HACIENDA
buffers is of the same order of magnitude. It is independent
of write or read operations but varies according to the pixel
format (16, 8, or 1 bit per pixel) and the destination
buffer(s): refresh, storage, or lookup tables.

The image processing loop is fully asynchronous and
employs high-speed processing hardware. Accordingly, it is
currently limited by memory access time. An IPALU cycle
involving several storage buffers with one million pixels
being processed from each takes 3.4 seconds, including
possible simple interpolation, contour filling, and histogram-
ming, which add no time to the operation. The time rises to
up to 5.4 seconds if the refresh buffer is involved (this
includes possible read-modify-write operation on the RB).
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The time may rise again if interpolation algorithms are very
complex; each million multiplications needed for intefpolat-
ing adds 0.2 second.

If fewer than one million pixels are involved, time needed
decreases almost linearly with the number of pixels. To
appreciate the extent to which memory access contributes to
processing time, consider that a one-million-pixel operation
with ““zero-access-time” memory but other hardware
unchanged would take 0.2 second for each buffer involved.

The graphics subsystem is limited in speed by the Z80
microprocessor’s operations themselves. It takes from 15 to
35 microseconds to plot one pixel, depending on vector
characteristics such as length and orientation. This time
includes the flag-setting computations for the contour-filling
first pass algorithm.

8. Concluding remarks

Although the initial idea of HACIENDA originated more
than five years ago, its architecture is still current [17]. In
addition to HIPS, other software for remote sensing applica-
tions has been developed (DIMAPS-II), which has revealed
more clearly other advantages as well as some limitations of
HACIENDA [18]. Image processing algorithms specifically
designed for HACIENDA are under development [12].
Applications are also in progress in areas quite apart from
the original scope, such as seismic data processing for the oil
industry and interactive systems for model analysis. Other
application possibilities appear quite promising.

Intensive use of HACIENDA throughout the world is
bringing to IBM a valuable amount of experience in a variety
of image processing applications.
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