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Design  Issues and Architecture of HACIENDA,  an 
Experimental Image Processing System 

The paper  provides the rationale for  the  architecture and design of  a  color  image  display and processing system  called 
HACIENDA. The  system  was  heavily influenced by one of  its  most  important intended applications, the  processing of 
LANDSAT data, including that to be provided by LANDSAT  D.  Also considered in the paper are  the  trade-offs  involved in 
making the system  suitable for  a broader range of  image processing work  without unduly adding  to cost or  complexity. 

1. Introduction 
Image processing projects are underway at many IBM 
Scientific Centers  around  the world. These projects  often 
involve the processing of LANDSAT images, for use pri- 
marily in agricultural  planning. Also, the  Research Division 
of IBM is doing  extensive work in image processing and 
graphics.  It  had become obvious that a  variety of display 
systems  were  being used in these projects, each with  its own 
software  and system support, so that  software developed at  
one location was not readily usable at  another.  At  the  same 
time, it  was  noted that  any meaningful  distinction between 
image processing and  graphics was disappearing.  It was 
apparent  that  all these graphics  and  image processing proj- 
ects would benefit if they  had in common  a powerful image 
display, graphics,  and  image processing system.  The sys- 
tem  that evolved to satisfy that need came  to be called 
HACIENDA [ I ] .  

Design of the  HACIENDA system  began in 1977. The 
objective was to design and build a  limited number of these 
systems for use  within IBM  and  to  support  joint  studies 
conducted  primarily with universities. The display  was to  be 
configured using available  IBM components, so that it could 
be reliably maintained in remote locations. 

The design group reviewed existing  display  systems, 
requirements of the various image processing projects in 
IBM,  and  the projected requirements for the next decade. 
The possible features of an  image processing and display 
system  were  categorized and  evaluated.  The basis for evalua- 
tion was heavily weighted  toward processing LANDSAT 
images, looking forward  to  the  data  to be produced by 
LANDSAT D, but  other applications in image processing 
and  graphics were to be accommodated where they would not 
conflict with support for LANDSAT processing nor signifi- 
cantly  contribute  to cost or complexity. 

In parallel with the  hardware development,  basic support 
software  (HBUS)  and application software  (HIPS) were 
developed. The host environment  was  chosen (VM/370), 
software design started in late  1979,  and coding in early 
1980. The first HACIENDA  unit was ready  in January 
1981,  along with HBUS  and  HIPS. A number of the units 
are now installed at  IBM locations throughout  the world. 

To  prepare  the  reader for the issues considered later in this 
paper, Section 2 provides a general description of the 
HACIENDA system. Its  three  major components  (display 
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subsystem, image processor, and  graphics  subsystem)  are 
discussed in greater  detail in Sections 3,  4, and 5, respec- 
tively. The  supporting  software is considered briefly in 
Section 6. A list of documents available to  HACIENDA 
users is given in [2]. For general image processing terminol- 
ogy and concepts,  see [ 3-51, 

2. The HACIENDA system 
HACIENDA is physically partitioned  into a work station 
and a  main logic box. 

Work station 
The work station is that  part of the system most directly in 
contact with users. It contains  the main human-user  inter- 
faces (Fig. I ) .  The work station is a  specially  designed  desk, 
housing a local power supply and  the  equipment for commu- 
nication with the main logic box. On the desk  top  reside  a 
high-resolution RGB monitor on which image  data  are 
displayed and a  conversational terminal allowing alphanu- 
meric  communication through a standard green phosphor 
screen and keyboard (an  IBM 3278  Model 3) .  The high- 
resolution color monitor (purchased  from  an  OEM vendor) 
employs state of the  art display  techniques (2: 1 interlace,  30 
frames/second)  and shadow-mask  technology [6].  HA- 
CIENDA'S work station may interface with other 1 / 0  units, 
such as light  pen,  joystick, graphics  tablet,  and  image hard 
copy unit. 

Main logic box 
The main logic box contains all of HACIENDA except the 
work station components. It includes the 

HACIENDA controller and host-system interface (in the 
following text, we call  this the communication and control 
subsystem); 
Display subsystem; 
Image processing subsystem; 
Graphics subsystem; and 

0 Physical support for the above subsystems. 

The physical partitioning  has been done so that  the 
HACIENDA work station need not be in an air-conditioned 
room; the work station may be placed at  a convenient 
location within 100 meters of the air-conditioned  main logic 
box. 

0 Communication and control subsystem 
The communication and control  subsystem (Fig. 2) is a 
modified IBM 3274 unit  driven by custom microcode. It 
controls HACIENDA operation and  interfaces it with the 
host computer  through a standard  channel  attachment; it is 
directly attached  to  the  HACIENDA conversational termi- 
nal and may be used to  interface  up  to six other  IBM 3270 
display  units to  the host, independently of HACIENDA. 
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Figure 2 Communication-and-control view of the  system 
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Figure 3 Data flow in the  display  and  image  processing  subsys- 
tems. RB indicates  a  refresh  buffer, MB a  mask  buffer, and SB a 
storage  buffer. 

HACIENDA itself, through its controller,  appears  to  the 
host computer  to be a  peculiar IBM 3278  user terminal 
which can  accept  "structured field" commands. 

This  setup avoids  much work otherwise  needed to  interface 
a new device to a computer  and  to drive  it from application 
programs. No  substantial development cost was incurred for 
this,  as would have been the  case if an  optimal  interface 
(from a HACIENDA viewpoint)  were  developed. 

HACIENDA is usually  driven through its  controller by a 
user program  running in the host. This user program is linked 
to a library of host routines making  up  the  HBUS  interface. 
Alternatively, HACIENDA may operate in a local mode. In 
this  case, the controller runs  an  interpreter  microprogram 
which allows direct execution of a HACIENDA-resident 
User  Function Program  (UFP), stored in controller random 
access  memory.  A UFP is down-loaded to HACIENDA by 
the host computer, where the object  code is generated by 
using the  System/37O  assembler with a  specially written  set 
of macros. 

HACIENDA  capabilities  are  the  same whether  a host 
program or a UFP is in control. Both options  were  included, 
since either one may be preferred under  certain usage 
patterns.  UFP control  minimizes host loading;  it is optimal 
when a task  demands heavy image processing computations 
and  little or no general purpose processing and mass storage 
access. Host  program  control is far more flexible, but it  ties 
HACIENDA response time  to  the speed with which the host 
can conduct 1 / 0  operations; if host load is heavy, response 
time  can be degraded. 

The controller can  communicate with all HACIENDA 
subunits  at a very low level, such as  setting  the sources to 
input buses of an  ALU, controlling ALU  operation,  and 
determining  the  destination of the result. This level of 
interface, more akin  to  microprogramming  than  to normal 
device  control, was chosen for maximum flexibility in direct- 
ing available processing power to varying  application  goals. 
Specific  application software  may, of course,  shield the user 
from this complexity, providing a  variety of system settings 
already  partly tailored to  the application at  hand. 

The controller  decides which HACIENDA subsystems 
are active at  any given moment. The display  subsystem is 
always  active, and, if enabled, builds an  image for display on 
the high-resolution color monitor,  without interfering with 
other operations taking place in the rest of the system. 
However, actual display of the  image  may be inhibited. 
Activities of the  image processing subsystem, the  graphics 
subsystem, and communication with the host are  mutually 
exclusive. The controller may  start  one activity when needed 
by request of either a host application  program or the  UFP 
running in the controller itself. 

Mutual exclusion among these three activities  seemed 
rather obvious when the project started. Looking  back, 
however, we see that it imposes limitations.  For instance, it 
would be advantageous  to  the  graphics subsystem to use the 
image processing subsystem's interpolator  unit  (to be 
described later) for anti-aliasing purposes. 

3. Display subsystem 
The display  subsystem is that  part of HACIENDA which 
builds the  image displayed on the high-resolution color 
monitor  screen from  data stored in the system (Fig.  3). 

Refresh buffer 
The main  source of data for  display  building is the refresh 
buffer,  a 1024 x 1024-pixel memory. Each pixel has  12 
normal  bits and one  overlay  bit. Each pixel of the refresh 
buffer which is mapped onto  the  image at  a given instant is 
represented thus: If the overlay  bit of the pixel is on, then  the 
corresponding pixel is of the "overlay" color, which is the 
same for all pixels on the screen; if the overlay  bit is off, then 
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D . the 12 normal bits of the pixel determine its  color.  Overlay 
blinking is also  available. 

The privileged role of the overlay plane seems  justified in 
view  of the  many  applications which need a  simple way to 
write  labels,  axes, and  captions on an  image without disturb- 
ing the  image itself. However,  a strong  case could be  made 
for a more  regular  architecture in which all bit planes had 
equal  status  and  an  appropriate lookup table was used to 
determine which, if any, had  overlaying  properties. The  extra 
flexibility would be paid for by the  extra complexity in 
application  programs needed to build the  required color 
lookup table (discussed  more  fully later); however, this could 
be avoided by providing  a suitable  “default mode” compara- 
ble to  the present  solution. 

The refresh buffer is a flexible digital  store with read- 
modify-write capability.  Its  contents, besides being used for 
image building, may be fed to  either of the two HACIENDA 
main internal buses (the processor bus and  the buffer bus). A 
new value for a pixel may be loaded from  the processor bus, 
and  then 

The new data for the pixel are mixed with the old data for 
the  same pixel by any  one of a  variety of operations, 
including  “overwrite” (new replaces old)  and  arithmetic 
and boolean operations; 
The result is selectively overwritten to  the “old” data only 
for those bit planes which are  enabled for this rewriting. 

While  the refresh buffer is usually  accessed in a raster 
scan pass (just like other buffers),  it can be randomly 
addressed when data  are loaded into it by use of an  image 
processing subsystem X /  Y processor. 

Pixel  color  determination 
Normal color determination is accomplished through  table 
lookup, with the  table  continually accessed at video rate 
during  image display. This kind of display architecture is 
becoming standard for  high-quality  displays [7, 81. 

Table lookup in this  case  means  that  the 12 normal  bits 
from  a  refresh buffer pixel are used to  address a 4096-word 
memory, the color lookup table  (CLUT), previously down- 
loaded by the host; the word held in the  CLUT  at  the  address 
given by the pixel value is used to yield the pixel color. 

Colors are  obtained  as 15-bit words, with 5 bits  for each of 
the  primary RGB components; 32 intensity  steps are  thus 
available for each component and 32 768 colors altogether, 
although only 4096 different  ones can be active at  any given 
time,  since  the  CLUT only has 4096 entries. 

This  number of colors may  appear  to be an overkill, since 
the  human eye cannot directly  distinguish that  many colors 

[9]. However, many  gradually  changing hues may be needed 
in such applications  as  texturing or anti-aliasing in vector- 
to-raster conversion. 

The color determination words (CLUT  entries, overlay 
color register,  cursor color register)  are  actually 16 bits wide. 
The most significant  bit is normally off, but if it is on, then 
the pixels which have that “color” are “blinked,”  i.e., flashed 
off and on between black and  the color hue given by the  other 
15 bits. The blinking feature was  introduced at  the specific 
request of prospective  users, despite such obvious disadvan- 
tages  as  the impossibility of reproducing the effect in hard 
copy and  the possibility of operator discomfort if used too 
extensively. 

The  CLUT  can be bypassed. In this case  the 12-bit pixel is 
used directly  as a data word,  partitioned so as  to provide 4 
bits for each  primary RGB component; 16 intensity steps  are 
available for each component, 4096 different  colors altogeth- 
er. Blinking is  off in this  case. 

The  same effect as  CLUT bypassing could obviously have 
been obtained with a  different  design of the  CLUT  that was 
built.  However, the bypass may be used as  the  “standard” 
display  mode in applications where multispectral  data  are 
directly assembled and displayed. In this  case  the  CLUT  can 
be used for a spectral distortion for some specific purpose, 
such as histogram equalization. CLUT bypass mode allows 
standard display  mode to be resumed instantaneously, with- 
out  disturbing  the “distortion” CLUT.  The spectrally altered 
image  may  thus also be recovered at once. It was  decided that 
the frequency of use of this application deserved making a 
special case  out of it. 

Other display  subsystem characteristics 
All or part of the refresh buffer can be mapped onto  the 
screen image  at  any  instant;  the portion  depends on the 
“zoom factor”  (ZF), which can be 1, 2,  4, or 8. To  obtain a 
pixel on the  screen,  the corresponding  refresh buffer pixel is 
replicated Z F  times in both the horizontal and vertical 
directions. Thus  the screen may represent  from 128 x 128 
(ZF = 8) to 1024 x 1024 (ZF = 1) refresh buffer pixels. 

The position in the refresh buffer corresponding to  the 
screen’s origin  (lower  left corner) is determined by the 
“scroll factor”  (SF). Different windows in the refresh buffer 
may be displayed on the screen at  different  times. Window 
size depends on ZF,  and window position in the refresh 
buffer depends on SF. 

To mark a  point on the  screen, a cursor is available. This is 
a  figure  which, if enabled, is superimposed on the image. 
Cursor  coordinates  may be derived  from  a  variety of sources, 
such as a host application program, a UFP, or the  graphics 
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subsystem.  The user may be given direct control of the  cursor 
coordinates  through joystick or graphic  tablet  action.  When 
the joystick is used to control the  cursor, its angular position 
determines  cursor movement rate  according  to a  user- 
defined table; this makes for maximum flexibility in this very 
common situation. 

The  cursor  can  take  either of two shapes:  a cross-hair, with 
screen-spanning  horizontal and vertical segments crossing at  
the  cursor  coordinates, or any symbol mapped  from  a dedi- 
cated  64 x 64-bit  matrix originally  down-loaded  from the 
host and  centered  at  the  cursor  coordinates. In  either case,  a 
color from the  cursor color register is shown at all  points 
where the  cursor  must be displayed, while the  image shows 
through elsewhere. 

Zooming,  scrolling, and  cursor mixing  all take place, 
conceptually, “on the  screen”;  the refresh buffer is never 
affected by any of this. This concept might have been 
extended to  emulate a direct-view storage  tube display’s 
distinction between stored and refreshed strokes, which 
would have allowed a few extra useful application features, 
such as  “rubber-banding’’ in graphics. However,  it was 
finally decided that potential advantages were  outweighed by 
the  extra complexity. 

4. Image processing subsystem 
The  image processing subsystem provides storage for image 
data.  When  enabled by the controller,  it can  transfer  and 
manipulate those data  (Fig. 3). An image processing “cycle” 
is an event in  which up  to  one million pixels are  taken from 
some buffers, processed by the  image processor, possibly 
interpolated  and/or  histogrammed,  and finally returned  to 
some other buffers. 

Storage buffers 
The  architecture allows up  to  eight  scratch pad buffers; they 
are  1024 x 1024 memories  with  8  bits per pixel, called  band 
or storage buffers.  Two to six storage buffers can be physi- 
cally  present  inside the main logic box  in the present  imple- 
mentation;  space  limitations forbid the use of all the  eight 
storage buffers allowed for in the  architecture. 

Like the refresh  buffer, storage buffers can provide or 
accept  data  to or from the processor bus, which provides 
communication between all of HACIENDA’S subsystems. 
They  can  store  image  data, results or partial results of 
operations, or data or programs for the  graphics  subsystem. 

All special  refresh buffer features discussed earlier would 
also be desirable for scratch pad memories: direct  address- 
ing,  read-modify-write capability  through a local ALU, 
selective  bit plane overwriting.  However,  it was decided that 
the  added cost would not be justified by the  added usefulness, 

and moreover, cheaper memory was a better investment a t  
this state of technology than a smaller  quantity of sophisti- 
cated  feature-laden  storage. 

When  participating in image processing operations, all 
buffers (refresh  and  storage buffers) are addressed in a 
raster  scan pass within a  “processing window,” which is any 
rectangular subset of the buffer.  Windows are independently 
set  for each buffer and  may  include different amounts of 
data  and/or have  different  origins and aspect  ratios  for each 
buffer. 

A  more radical  break with respect to existing practice 
would have been to provide an  “undifferentiated  storage 
resource,” an N ,  x N ,  store with N,-bit words, allowing 
arbitrary  rectangular  subsets of this to be used for processing 
and display. Keeping the  maximum  at  around  the present 7.5 
megabytes, the  store could have been a  2048 x 2048 memory 
with 16-bit words. Display window and processing windows 
would have taken nonoverlapping slices of this as determined 
by the user. 

However appealing this scheme  may be, with its greater 
flexibility, it does not appear  to be cost-effective at  the 
present  time. It allows for no modularity in storage growth, 
as  can be done with the present scheme by the  addition of 
storage buffers. It also  presents the  programmer with serious 
storage allocation  problems and  may give practically  insur- 
mountable  bandwidth problems i f  several windows fall  inside 
a  single physical memory device. Therefore, no further 
consideration was given to this  scheme. 

Buses and lookup tables 
The processor bus is HACIENDA’S main  communication 
highway. All storage buffers and  the refresh buffer can load 
or unload to or from  it.  The controller and  the  graphics 
subsystem  use  it  for  high-speed,  cycle-stealing, bulk I/O; the 
image processor returns  its results via the processor bus. 

Buffers involved as  data sources in an  image processing 
cycle (there  may be up  to 9) feed their  contents  to  the buffer 
bus. From  there,  the  8-bit or 12-bit data  are  transferred  to 
the  16-bit  ALU bus with one of three possible protocols: 

Data  are padded with zeros on the most  significant  bits, 
0 Data  are sign-extended to 16 bits, or 

Data  are used to  address one of several lookup tables 
(ILUT)  input  to  the  image processor. 

The  buffer-bus-to-ALU-bus protocol may differ for each 
source  buffer,  since data on the buffer bus are tagged 
according  to  their source. 

Each  ILUT is a  256-entry store with 16-bit words. Lookup 
table  operations  can be thought of as implementations of any 
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desired  function of one variable; the  variable is used as  an 
address  and  the corresponding  result is fetched  from that 
address. Lookup tables  are usually  down-loaded  from the 
host before actual  operation. 

Eight  ILUTs  are available; each  storage buffer may use 
any one of them,  and  each  ILUT may be used by more than 
one  storage buffer. The  storage buffer to  ILUT mapping is 
accomplished through a look-aside buffer (LASB) which 
associates one  ILUT with each  storage buffer. The  LASB is 
usually  down-loaded by the host before actual  operation. 

This  scheme is far more flexible than one in which each 
storage buffer has  a fixed associated ILUT,  as originally 
envisaged. If the  same  ILUT  transformation is to be applied 
to several storage buffers, the  scheme allows for ILUT 
sharing. I f  HACIENDA is to operate in a local mode, the 
host can pre-load  all ILUTs with several useful transforma- 
tion functions;  a UFP  can easily  switch storage buffers 
between pre-loaded ILUTs as  needed,  since the mass of data 
to be actually exchanged is minimal (just  the  contents of one 
LASB word). 

X/Y processor 
Data on the  ALU  bus  can be processed by either  the X I Y  
processor (XYP) or the  image processing ALU  (IPALU). 

The X /  Y processor treats  ALU bus data  as  addresses for 
random access to  the refresh  buffer. This overrides  normal 
raster scanning and is only available when the refresh buffer 
is used as  the  destination for output of an  image processing 
cycle. Two  storage buffers (possibly modified by ILUTs) 
may be designated  as  the source of X and Y coordinates;  they 
select the  destination pixel in the refresh  buffer, either in  a 
direct  address mode or as an offset from the refresh buffer 
pixel addressed immediately before. 

A  randomly addressable mode would also be useful when 
data  are read  from the refresh  buffer, and we originally 
planned to implement  this. However, the  bandwidth of the 
refresh buffer is already overtaxed as things stand,  and it 
cannot  support  the  extra load. 

Image  processing ALU 
The  IPALU  operates on N corresponding pixels of input 
data,  one from each source  buffer, to produce one resulting 
pixel of output. For each pixel, operation is as follows. 

First,  the  IPALU  accumulator is loaded from a constant 
register. Then,  the  contents of the  accumulator  are  operated 
on N times with an incoming data pixel, intermediate results 
being  stored  back into  the  accumulator. Incoming data may 
arrive in any  order, which restricts  the  IPALU  to  symmetri- 
cal  operations,  such  as  addition  and boolean operations. This 

is not a limitation;  subtraction, for example, may be per- 
formed by adding  one unchanged  value (the minuend) to  the 
other one on which a  negation  operation is performed 
through  ILUT processing (the  subtrahend). 

An  IPALU operation that was not considered for inclusion 
at  design time now appears  desirable.  This is a  function that 
would select the higher (MAX) of the words applied to  it;  an 
obvious dual  to  this is a MIN function. Both were  rejected 
originally as not being  generally useful processing primitives. 
However,  some image processing algorithms  (such as  simple 
nonlinear  filters) rely on these operations. Since, in the 
present architecture, they are not supported in a pipelined 
image processing cycle (as is, for  example, addition), they 
must be provided by software at  the expense of several image 
processing cycles. 

The final result left in the  accumulator when the N input 
pixels have been processed may be used as is (to 16-bit 
precision) or be further processed by another  LUT  opera- 
tion. 

OLUT and contourJilling 
The  output lookup table  (OLUT) may be applied at  the 
IPALU’s  output.  It has  4096 entries of 16 bits each,  and is 
thus addressed by the least  significant 12 bits of the final 
result of the  IPALU for each pixel. 

Alternatively, the  OLUT  may allow selective processing 
according  to a  “contour filling” operation. A  section of the 
graphics subsystem,  described in more detail below, produces 
for each pixel one bit which is 0 for pixels outside  a 
pre-drawn  contour and 1 for pixels inside  it. This bit may 
optionally be used as  the most significant one in the  OLUT 
address, with the  IPALU result giving only the 1 1  least 
significant  bits. This allows different output functions for 
pixels inside and  outside  the pre-drawn  contour [ 101. 

As an  example of the power of lookup table processing, 
consider approximate multiplication of pixel values. One 
ILUT is loaded with the  logarithm of input values (ad- 
dresses); the  OLUT is loaded with the  antilogarithm of input 
values (addresses).  After  this initialization operation,  multi- 
plication can be performed by adding in the  IPALU  the 
logarithms of the  factors  and  taking  the  antilogarithm of the 
result  as the final product.  The speed of this operation,  after 
initial lookup table loading, is the  same  as for normal 
addition. 

Interpolator and histogrammer 
Results from the  IPALU  (and possibly the  OLUT)  are fed 
back to  the processor bus via an interpolator  unit. This unit 
works as a programmable  digital filter [ 1 I ]  with 12 stages (8 
forward and 4 feedback)  and a  magnification factor  up  to 32. 
Its coefficients are down-loaded by the host, as is the chosen 
magnification factor. 
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Figure 4 The graphics subsystem. 

The  interpolator is a  one-dimensional  unit and in principle 
cannot be applied to two-dimensional spatial filtering prob- 
lems,  unless the kernel of the  2D filter happens  to be 
decomposable.  However, 2D FIR filtering is possible using 
the  interpolator in several image processing cycles (as  many 
cycles as  the  number of kernel rows or columns, whichever is 
smaller) [ 121. On the  other  hand, providing to a  filtering  unit 
the 3 x 3- or 5 x 5-pixel matrix  surrounding every pixel to be 
operated on would require a major  overhaul of the 
HACIENDA  architecture, which is based on raster  scan 
processing. 

Once back on the processor bus, the results may be loaded 
into  any or all  buffers,  except  those that  are producing data 
in the  same  image processing cycle. Image processing results, 
or any  other  data flowing on the processor bus,  may also be 
fed to  another special  purpose hardware  unit  that  may be 
considered  a part of the  image processing subsystem, the 
histogrammer. 

The  histogrammer unit has 4096 32-bit  registers that  may 
122 count in various ways according  to  the  data flowing on the 
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processor bus. This allows statistics  to be gathered  about 
data being loaded, unloaded, or processed. Histogrammer 
registers may be set up  and read by the controller, and its 
exact operation programmed. 

This "on-the-fly'' histogrammer is not common in previous 
architectures.  We believe it is quite useful, given the impor- 
tance of statistics  gathering in classification and  pattern 
recognition  tasks. 

5. Graphics subsystem 
The  graphics subsystem  functions  described here reflect 
mainly the  architecture of HACIENDA  as planned in the 
design  phase, with some desirable  features  that experience 
has  suggested. Due  to cost and  time  constraints,  the  actual 
system offers only a  subset of these functions. The improved 
function and  performance of the planned architecture were 
based  primarily on a dedicated microprocessor  for graphics. 
The main  function of the  graphics subsystem is to  generate 
graphics in the form of characters, vectors, and  other  primi- 
tives. It interprets  an  IBM 3277 Graphics  Attachment  data 
stream [ 131. Some  extra primitives are offered for direct 
curve generation.  The main  improvement, however, is a new 
subroutine-like "sub-data-stream" concept. Together with 
scaling, translation,  and  rotation  settings, it allows  for great 
flexibility in  handling  replicated subsets in  one or more 
drawings  (mechanical  parts, symbols, logos, etc.). 

These functions are performed by a dedicated Zilog 
microprocessor (280)  interfaced with the  HACIENDA sys- 
tem so as  to be able  to control all of its  operations when 
enabled by the  controller.  With respect to controller opera- 
tion, the only limitation of the  graphics subsystem is that it 
cannot  start its own operation nor an  image processing cycle, 
nor can it communicate with the host (Fig. 4). 

Dedicated hardware would offer a  higher processing band- 
width,  but we judged  that it would not be worth the 
additional development and production  cost,  especially  since 
it would also offer less flexibility. 

0 Graphics  interpreter and other  operations 
Graphic operation of the subsystem is driven by a  resident 
graphics  interpreter. In addition to  the above  mentioned 
primitives,  it is meant  to give the user ample room for 
expansion by allowing extra primitives to be added  as 280 
machine code  subroutines. 

Another  important function of the  graphics  interpreter is 
memory management.  The  storage buffers may hold data 
and  programs for the  graphics  subsystem.  Storage buffers 
are  1M byte each;  they  cannot be randomly  accessed  but 
must be raster  scanned.  Thus  they have the  characteristics of 
a  peculiar "mass memory" to  the  280.  The  graphics  inter- 
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preter handles them  as  such, providing the “peripheral 
drivers” for them  that  an  operating system would supply i f  it 
were  present. 

Contourfilling 
In the main graphic mode, directly driven by the  graphics 
intepreter,  the  graphics subsystem  function is graphic  trans- 
lation. It  converts  vectors, characters,  and curves to  sets of 
pixels to be overwritten or merged with images in the refresh 
buffer  and/or  storage buffers. A particular  operation  inter- 
acts heavily with image processing: the  contour filling opera- 
tion. 

The main hardware component  for contour ‘filling is a 
1024 x 1024 dedicated  store,  the mask  buffer. Each mask 
buffer pixel is a  2-bit word holding two flags indicating 
whether the pixel is on the contour or off it and  whether it is a 
point where  a  horizontal  ray intersects  the  contour.  These 
values are  determined for each pixel by the  graphics subsys- 
tem  during  vector-to-raster conversion (i.e., contour  draw- 
ing) and merged with previous values through a read- 
modify-write machine coupled to the mask  buffer. 

During a subsequent  image processing cycle, another 
finite state  machine  raster  scans  the mask buffer, using the 
flags to give image processing logic a single bit per pixel 
denoting whether it is inside or outside  the  contour. 

The  parity flag algorithm  adopted for contour filling is 
particularly  appropriate to the  raster scan  environment 
where the  image processing is done.  It maximizes  usefulness 
of the two  mask  buffer  bits by allowing filling of any curve 
whatsoever, with or without  such  peculiarities as self- 
tangency and self-intersection.The  contour itself may also 
optionally be considered  inside or outside  the  curve. Finally, 
storage buffers may play the role of mass memories in this 
case too, allowing  several partly  drawn curves to coexist 
and/or be merged. 

Particular  attention was devoted to  the contour filling 
features because of their usefulness in image processing and 
especially in raster  graphics  applications. 

6. System software support 
HACIENDA is locally attached to a System/370 (or to 
IBM 308 I ,  303X,  433 I ,  or 434 I )  channel via 3274  controller 
logic and microcode. The  application program  controls the 
HACIENDA  system by sending/receiving  outbound/ 
inbound 3270  data  streams [ 141. 

Design  issues 
Two approaches were possible for supporting  HACIENDA: 
the  alphanumeric  terminal  (3278)  and  the  HACIENDA 
subsystems could be treated  as a  single  device  with  escape 
code  imbedded in the  data  stream for accessing the 
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HACIENDA  subsystems; conversely,  two independent 
devices could be defined with two device  addresses, one for 
the  terminal  and one for the  HACIENDA subsystems. One 
approach leads to different  implementation of a  significant 
portion of 3274 interface microcode than  the  other. In 
principle  a scheme in which the definition of either mode is 
made  at device  initialization time would also have been 
possible. However, time  and resource constraints led  us to 
implement only one of the two alternatives.  The two-device 
scheme was eventually  chosen as offering easier  maintaina- 
bility of the  HACIENDA-unique  software  and  better isola- 
tion from the host operating system and  3274 microcode 
evolution. 

The second decision was which host operating system 
should be selected for HACIENDA application program- 
ming. The decision was in favor of VM/370, because  this was 
the system preferred, almost  universally, by those  expected 
to receive HACIENDA.  This decision, along with the two- 
device approach,  made it quite obvious that  VM/370 should 
be left to  support  the display terminal as a standard  virtual 
machine [ I S ]  console and  to  support  the  HACIENDA 
subsystem  “device”  under CMS  as a  special device, dedi- 
cated to the user’s virtual  machine.  The two devices are 
declared as two 3278s at system  generation time. 

A third  and more difficult decision was where to put the 
borderline between the so-called “basic” and “application” 
software. In other words, the  HACIENDA Basic User 
Software  (HBUS) should be easy to use for application 
programmers  (be user-friendly) but,  at  the  same time, be 
sufficiently low-level to give access to all the capabilities of 
the  machine  (be complete) with appropriate  performance. 

Completeness was chosen as the first criterion. As a 
matter of fact  the  HBUS  interface allows the application 
programmer to activate  and  make use of all the  functions of 
HACIENDA, without any restriction. i 

The friendliness target was pursued by designing  a user’s 
function library built on top of the  HBUS  interface (see  Fig. 
5 ) .  This  library  (HFUL) provides the user with a simplified 
view of HACIENDA, by higher level routines,  where the 
most commonly used sequences of HBUS calls are coded. 
The application  program can  intermix calls to  the  library 
with HBUS  interface routines. 

The  HACIENDA Function  User Library  (HFUL) is 
expected to  expand, hosting the  contributions of the 
HACIENDA user community.  The first set of routines was 
designed  having in mind the  requirements of the Hacienda 
Image Processing System  (HIPS).  HIPS is an  application 
subsystem which, even though  primarily  designed for analy- 
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sis of multispectral image  data such as  LANDSAT,  can be 
used with all types of images [ 161. 

HBUS routines 
All the routines of HBUS  are invoked via the  standard  IBM 
call interface  and  as such can be used by image processing 
applications written in Assembler, PL/I,  FORTRAN, Pas- 
cal,  etc. Two  types of routines  exist: interface routines, 
available to  the user, and  internal routines,  for  service and 
1/0 operations. Three types of interface routines  exist: 

Control routines: used to initialize hardware  and  software, 
make  available  to  the application status  and asynchronous 
interruptions,  handle  errors,  etc. 
Define  routines: used to  set  up  and  prepare  the 
HACIENDA logical subunits for subsequent  execution 
commands. 
Operate routines: used to  command  the execution of the 
HACIENDA  hardware functions. 

Typical  examples of operate routines are: load buffers, 
start image processor cycles, set zoom and scroll, load 
interpolator coefficients, load/unload  histogrammer regis- 

124 ters,  execute  UFP. 

Examples of define routines are: define load/unload mode 
for buffers, define windows, define histogrammer operation 
mode. 

UFP support 
Software for supporting local operations (or UFP mode) is 
based on the following tools, which help the  programmer  to 
build,  load, and  debug user  function  programs: 

A macro-language  to be used  in conjunction with a  subset 
of System/370 assembler for coding UFPs.  It offers pseu- 
do-instructions  such  as MOVE,  DOWHILE,  RETURN, 
etc. 

0 A second library  to help the  programmer  to  prepare  data 
structures  (structured  fields)  for  activating  the 
HACIENDA functions. Names  and calling  lists are  the 
same  as  the corresponding HBUS routines, in order  to 
facilitate  programming. 

0 In addition  to  the above libraries  (FPUL), a  set of HBUS 
routines is provided to  Load/Unload  UFP object  code 
to/from  HACIENDA controller storage,  Execute  and 
Resume  UFPs. 

0 A  controller  resident interpreter is provided for  execution 
and  interactive debugging of UFP code. 

Programming of UFP based on FPUL may appear  to be a 
complex  task compared  to host programming based on 
HBUS. However, as  already mentioned in Section 2, the key 
issue for UFP is not functionality  but  performance. This  fact 
can make  the increased programming complexity of the 
machine, in  UFP mode,  more acceptable. 

7.  System performance 
The  HACIENDA controller provides information to, and 
accepts information from,  the host at  an  instantaneous byte 
rate established by the  channel or controller, whichever is 
slower. The  instantaneous  data  transfer  rate for write opera- 
tions is a maximum of 0.65M bytes per second and for  read 
operations is a maximum of 0.4M bytes per second. The 
transfer  rate between controller storage  and  HACIENDA 
buffers is  of the  same  order of magnitude. It  is independent 
of write or read  operations but varies  according to  the pixel 
format (16, 8, or 1 bit per pixel) and  the  destination 
buffer(s): refresh,  storage, or lookup tables. 

The  image processing loop is fully  asynchronous and 
employs high-speed processing hardware. Accordingly, it is 
currently limited by memory  access time. An IPALU cycle 
involving several storage buffers with one million pixels 
being processed from each  takes 3.4  seconds,  including 
possible simple interpolation,  contour filling, and histogram- 
ming, which add no time  to  the  operation.  The  time rises to 
up  to 5.4 seconds i f  the refresh buffer is involved (this 
includes possible read-modify-write  operation on the  RB). 
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The  time may rise again if interpolation algorithms  are very 
complex; each million multiplications needed for inteipolat- 
ing adds 0.2 second. 

I f  fewer than  one million pixels are involved, time needed 
decreases almost linearly with the  number of pixels. To 
appreciate  the  extent  to which memory  access contributes  to 
processing time,  consider that a  one-miilion-pixel  operation 
with  “zero-access-time’’ memory  but  other  hardware 
unchanged would take 0.2 second for each buffer involved. 

The graphics subsystem is limited in speed by the 280  
microprocessor’s operations  themselves. It  takes from 15 to 
35 microseconds to plot one pixel, depending on vector 
characteristics such as length and  orientation.  This  time 
includes the flag-setting computations for the contour-filling 
first pass algorithm. 

8. Concluding remarks 
Although the initial idea of HACIENDA originated  more 
than five years  ago, its architecture is still current [ 171. In 
addition to  HIPS,  other  software for remote sensing applica- 
tions has been developed (DIMAPS-II), which has revealed 
more clearly  other  advantages as  well as some limitations of 
HACIENDA [ 181. Image processing algorithms specifically 
designed for HACIENDA  are  under development [12]. 
Applications are also in progress in areas  quite  apart from 
the original scope, such as seismic data processing for the oil 
industry and  interactive systems for model analysis. Other 
application possibilities appear  quite promising. 

Intensive use of HACIENDA  throughout  the world is 
bringing to  IBM a valuable  amount of experience in a  variety 
of image processing applications. 
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