
Stephen J. P. Todd
Glen G. Langdon, Jr.
G. Nigel N. Martin

A General Fixed Rate Arithmetic Coding Method for
Constrained Channels

This paper extends the result of earlier work on the application of arithmetic codes to the constrained channel problem. We
specifically present a general length-based $xed rate implementation technique which performs the arithmetic coding
recursions during each channel time unit. This technique is superior to an earlier unpublished code for general constrained
channels. The approach permits the design of codes f o r sophisticated channel constraints.

1. Introduction
The constrained channel has been studied by Shannon [I] .
References [2 , 31 show how a fixed rate length-based (L-
based) arithmetic code can be applied to the problem of
coding to a constrained channel, where the constraints are
described by a channel finite state machine (CFSM). We
assume familiarity with a companion paper [3] which pro-
vides references to other approaches to channel coding and
which contains some background material on arithmetic
coding. We employ the same terminology and system of
notation as [31.

In saturation magnetic recording, the media are divided
into channel time units. The events are the occurrence or
nonoccurrence of a flux change, so the elementary symbols
are said to consist of 0’s or 1’s. The well-known run-
length-limited (RLL) constraints are called (d , k) constraints
when there must be at least d and no more than k 0’s between
successive 1’s. Codes for (d , k) constraints are used to maxi-
mize information on the channel and synchronize a clock
(provide self-clocking).

In [2] an L-based channel code for general constraints was
described. Also developed in [2] and published in [3] was a
simpler version applicable only to (d , k) codes.

Many nontrivial constrained channel problems place
restrictions in addition to the (d , k) constraint. Such general-

ized (d , k) problems include a charge-limited constraint [4]
or desired spectral null. In this paper, we extend the simpler
approach of [3] to the general case, resulting in a more
economical realization than that in [2]. For a description of
L-based and P-based (probability-based) arithmetic com-
pression codes, see [5]. The foundation for the application of
arithmetic codes to the constrained channel appears in [3];
however, we provide a brief review.

Arithmetic coding transformations require a symbol
ordering. Let symbol .$ + 1 denote the symbol following .$ in
the ordering. If symbol y precedes .$ in the ordering, let y < .$.
Let w denote the last symbol in the ordering. Let p(i , .$)
denote the probability of symbol .$ in state i . Let P(i,.$) denote
the cumulative probability of the symbols preceding .$ in the
ordering:

P (i , t) = x p (i , y) .
?<I

(In what follows, we loosely identify P(i,.$) with an augend
and p (i , y) with an addend.)

Let channel string u be a sequence of symbols .$ drawn
from channel alphabet {a, ..., .$, ..., u}. The constraints do
not allow all possible sequences of the channel alphabet.
Shannon [11 defines the constraints by a channel finite state
machine (CFSM) whose next state function T when fed

0 Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

IBM J. RES. DEVELOP. VOL. 27 NO. 2 MARCH 1983 STEPHEN J. P. TODD E 4 AL.

string u with the CFSM in its initial state 1 yields CFSM
state T (I p) , which we simply call T (u) when the initial
state is understood.

As in [3], coding to a constrained channel corresponds to
an expansion operation on the source data, and recovering
the source data corresponds to a compression operation. It is
convenient to describe the operations in terms of the com-
pression operation. A channel string u is transformed back
into a data string F (u) by a recursion on u . Let u.[denote
string u with symbol [concatenated to it. Then

F (u . 0 = F (u) + D(u,<),

where quantity D(u.[) is called the augend and is repre-
sented as

D(u . [) = M (T (u) , X (u) , [) x 2”€(”),

where 2 -€‘”’ represents an in tegra l sh i f t and
M (T (u) , X (u) , [) is called the augend factor. The value X (u)
is an internal recursion variable which takes on a finite set of
values. In L-based arithmetic codes X is determined by a
recursion which is viewed as a sum of lengths, or more
precisely as the channel time modulo C, where C is the
cardinality of the set of values of X . In P-based arithmetic
codes the X recursion is reminiscent of a product of probabil-
ities. The L-based arithmetic codes use augends of the form
M (i , X , [) , where i is a typical CFSM state, by table lookup.
The design of L-based codes amounts to determining a table
of augends which satisfy a consistency test. L-based arith-
metic codes for channels are capable of a rational rate J / C ,
where C channel time units carry J bits of information.

An example of a code more complex than (d , k) codes is a
(2,7,8) charge-constrained code using the general fixed rate
approach. In the general case [2] of more complex codes the
size of the table of augends is

Augend table size = n x C x (I [I - l) , (1)

where 15 1 is the cardinality of the set of channel symbols
(typical symbol [), n is the cardinality of the set of states
(typical state i), and C is the denominator of the rational
fixed rate J /C. The multiplier involving the cardinality I [1 of
the symbol alphabet a, ..., w is decreased by one because any
augend M(i ,X ,a) corresponding to the first symbol a has
value 0.

Let the transformation of channel string u to a data string
F (u) have recursion variables F (u) , a(u) (duration or length
of u in unit-time symbols) and CFSM state T (u) . We
replace a(u) by E (u) and X (u) such that

J X Q(u) /C = (E (u) + X (u)) / C ,

where E (u) is an integer and X (u) is 0, 1, .. ., or C - 1. To
transform next symbol we have 108

, STEPHEN J . P. TODD ET P

F(u.a) = F (u) + M (T (u) , X (u) , () x 2-Q’) (2)

E(u.a) = L (Q (u) + a (()) x J / C J , (3a)

X(u.a) = ((Q(u) + a ([)) x J) mod C, (3b)

where L J denotes the integer part. Equation (3) constitutes
the length recursion. Martin [2] provides a procedure for the
calculation of the augend factors M (i , X , [) , which is essen-
tially an approximation to p(i,{) x T~’‘.

Let Fand M be binary numbers. The purpose of variable E
is to maintain proper alignment between the bits of F and M .
We shift Fleft one bit for each increase by 1 in the value of E,
and thus the initial proper alignment is maintained. The
value of the shift after iteration u.[is E (# . [) - E (u) . The
shift can be determined from X (u) and a ([) as follows:

E (u . [) - E (u) = L((J X a ([)) + X (U)) / C J .

Similarly, the recursion on X is

X (u . [) = ((J x a ([)) + X (u)) mod C.

Shifting and alignment, as well as the carry-over problem
resulting from the addition of D(u,[) to F(u) , are covered in
[51.

2. Two approaches to defining the CFSM for
(d,k) channels
To describe the constraints for a (d , k) channel, consider first
the view that the CFSM consists of one state and (k - d
+ 1) symbols. These symbols are a result of parsing the
binary-valued channel strings into an “extended” alphabet of
channel phrases. The duration of a phrase extends beyond
one channel time unit. In (d ,k) channels the phrases are of
the form 001, 0001, etc., where the phrases are of length
d + 1 through length k + 1.

In the general approach to (d ,k) codes using phrases, the
number of nonzero augends in the table for channel parsing
CFSM’s and rate J / C is

parsing CFSM table size: C x (I [I - 1) = C x (k - d) .
(4)

In a second approach let the (d ,k) channel be described by
two symbols and a (k + 1)-state CFSM with states 1,
2, ..., k + 1. The (d , k) constraints admit binary decisions,
e.g., “flux change” or “no flux change” as in magnetic
recording, and are such that the constrained CFSM always
returns to the same “home” state following a flux change.
We denote the two-symbol version of the CFSM to be a
unit-time CFSM. Thus a one-state (k - d + 1)-symbol
parsing CFSM is equivalent to the two-symbol (k + 1)-state
unit-time CFSM, where state I is the “home” state reached
following a flux change. In general the table size is

iL. 1BM J . RES. DEVELOP. VOL. 27 NO. 2 MARCH 1983

(k + I) x c x (2 ~ 1) = (k + I) x c.
Binary alternatives occur at states d + I , d + 2, ..., k. There
are k - d information-carrying states; for the other channel
states the channel symbol is a certainty. The number of
nonzero augends, using Eq. (I) , is now

(k ~ d) x c. (5)

Thus, a one-state, (k - d + 1)-symbol parsing CFSM and
its equivalent (k + 1)-state, two-symbol unit-time CFSM
have the same augend table size under the general L-based
approach in [2], as seen by comparison of Eqs. (4) and (5).
See the Appendix for a general approach to converting a
CFSM governing channel constraints for multiduration co-
measurable symbols (the symbol lengths are rational multi-
ples of each other) to a unit-time CFSM.

3. Unit-time fixed rate channel coding
For the special case of (d , k) channels, Martin [2, 31 showed
that the number of augends could be reduced to C by
properly arranging the calculations. As seen in [3], the
augends are independent of the k - d states. Upon analysis,
it is seen that the technique works when the CFSM has two
properties:

PI. The CFSM can be converted to a I-state channel
parsing CFSM.

P2. The 1-state CFSM has no more than one symbol of a
given duration.

In this section, we remove these restrictions in order to
implement a code using the simpler unit-time CFSM and
reduced table size.

Recursions based on W-""'
The advantage in [3] is achieved by keeping a recursion
variable which approximates the value W -'('I, where W is
the growth factor (the largest real root of a determinant
equation of Shannon [I]) and Q (u) is the length of channel
string u. We extend the use of this recursion variable, call it
R (u) , to both the P-based and L-based approaches for the
general fixed-rate case. We update the recursion variable
each channel time unit and calculate an addend, which is
added or not to the data string F (u) as dictated by the
relevant unit-time CFSM transition.

To understand the technique, first, note that the CFSM
cannot ''loop" among intermediate states. A home state must
be reached once a phrase has been parsed from the channel
string. Let state I be the initial home state. Order the
alphabet of phrases according to symbol duration or length.
Thus, let the alphabet of channel phrases be ordered a,
@, ...,u, where Q(a) < a (@) < ... < Q(u). The symbol
ordering extends naturally to give a lexicographical ordering
on all channel strings.

IBM J. RES. DEVELOP. VOL. 27 NO. 2 MARCH 1983

The transformation of channel string u to data string F (u)
follows Martin's idea [3] that of all long channel strings [of
some length suitably longer than Q (u)] , a portion F (u)
precede u in the lexicographic ordering. Now suppose the
next symbol to be encoded is a. Since a is the first symbol in
the ordering, the portion of channel strings preceding u.a is
still F (u) , so the augend has value 0.

Instead, suppose the next symbol to be encoded is P.
Observe that continuations of channel string u.01 will precede
continuations of u.P in the ordering. F (u) accounts for
channel strings beginning with a prefix less than u, but not
for strings whose prefix is u.01.

We need to know what portion of channel strings begin
with prefix u.a. This value for the augend M(u,P) to be
added to F (u) , is the addend A (u,.). The question of how to
determine this value has been neatly answered by Theorem 4
in Shannon [l] ; of all channel strings beginning in initial
state I , fraction

A(u ,a) = (B (T (u . c u)) / B (l)) x W-P(u.a) (6)

have prefix u.a. In Eq. (6) , state T(u .0~) is determined by the
CFSM next-state function Tacting on string u.a from initial
channel state I . For convenience, let the eigenvector compo-
nent for state I be unity, so that augend

M(u,P) = A(u,a) = B(T(z4.a)) x w-p(".m). (7)

Now suppose instead that the symbol to be encoded following
u is y. We must now account for the portions of the channel
strings whose prefixes are u.a and u.P. Equation (7) takes
care of the first term, and the second term is taken care of by
adding

A(u,P) = B(T(l4.P)) x W-a("oB). (8)

These equations hold for both the parsing CFSM and the
unit-time CFSM. Were there more than three symbols in the
parsed alphabet, this process would continue. For each
symbol y < (, where (is to be encoded, an addend term
A (U.Y)*

A(u .7) = B(T(u .7)) X W-P(u'y) , (9)

is added to F (u) . Thus to transform channel string u.(,
following the transformation of channel string u to F (u) , we
have

F(u . () = F (u) + 1 B (T (u . y)) x W-a(u.y) . (10)
(74)

Equation (10) is independent of the number of symbols in the
channel string alphabet for the parsing CFSM, which is the
basis for our generalization. There is one distinct addend
factor B(T(u .7)) for each home state T(u.7). The other
addend factor W-a(uy) is approximated by a recursion vari-
able. The recursion may be handled in an L-based or P-based
manner, as we explain later.

STEPHEN J . P. TODD

109

. AL.

General L-based unit-time codes

Recursion variable for L-based approach
I n the L-based approach, W p(’’7) is approximated by use of
the rate J I C 4 log W. Value W” is approximated by 2~ Jic,
so that W-p(u.7) is approximately 2-P(u’7)xJ’C. D~~~~~ 2 - P i ~) x J i c

by R’(u) , which is not yet the desired recursion variable:

2 ; I

-w = R’(u) = 2 P(u)nJ/C
(1 1)

To obtain R’(u.7) from R’(u) , we have

H ’ (u . 7) = R’(u) x p (7) “ J ’ c . (12)

In L-based codes, the recursion variable is R = -log R‘.
Taking logs of both sides of Eq. (I 2), we have

R(u.7) = R (u) + Q(y) X J / C , (1 3)

which is the length recursion characteristic of L-based
arithmetic channel codes. Now
w~ P i u 7) 2-xi”7) = 2 - x (u 7) x 2 E(U.71,

(14)

where the value of R(u.7) is split into an integer part E (u . 7)
and a fraction part X(u.7) ; see Eq. (3).

To implement Eq. (I O) , we replace factor W ~’”’) by the
right side of Eq. (14):

F(u.5) = F (u) + Z : B (T (u . y)) x 2 x 2 - E (u . 7) .
, ,

Next we replace the factor B (T (u . 7)) x 2~ above with a
value m (i , X) obtained by table lookup on i (one of n channel
states) and X (a value 0, 1, . . ., C - 1). The remaining factor

performs a data handling function. The addend factor
m (i , X) is “scaled” by multiplication by 2-E(u.7) , which
amounts to an integer right shift. This right shift aligns
addend factor m (i , X) to the right end of F (u) . In practice,
this data handling function is more easily performed by a left
shift of F(u .7) by the amount E (u . 7) - E (u) . The result is
the same-the proper relative position of the looked-up
addends m (i , X) and the right end of F (u) . The L-based
qmbodiment of Eq. (10) now yields

F(u.[) = F (u) -t x m (i (u . y) , X (u . y)) X 2 (15)

2- E(U 7)

. . : . ,
7 4

I ’ If there are n states i n the parsing CFSM, then a table of n
2:’c addend factors m (i , X) is sufficient to implement Eq.
(%). This gives the desired result of making the table size
ihdependent of the cardinality of the parsed symbol alphabet
for the parsing CFSM.

.,A
Consistency test
One of the most important aspects of this paper is the
consistency test which addend factors m (i , X) must satisfy.
I n [3] we introduced the notion of a code space of finite
strings which at each iteration is subdivided into as many
parts as there are next symbols. Since we are inverting the

ii ’,

110

STEPHEN J . P. TODD ET P LL

operations, the code space of compression codes corresponds
here to the data strings. Here we employ the term “data”
space. Channel strings which are continuations of channel
string u are mapped to the data space between F (u) and F (u
+ 1). For representability, the subdivision operation on the
data space cannot leave a gap. In L-based (length-oriented)
codes, the size of the data space which is subdivided, in order
to determine the gap, is difficult to calculate precisely. After
encoding prefix u, the left (lower) side of the data space is
F (u) . The extent of the right (upper) boundary of the data
space used by continuations of u is F(u.ww ...), i.e., at each
symbol position one adds the largest augend. Thus, F(u.ww
...) is a never-ending sum. For channel codes, we must ensure
that there is no gap in the data space, Le., that F(u.ww ...) is
equal to or larger than F (u + 1). If F(u.ww ...) is less than
F (u + l) , then we have a gap in the data space. Data strings
whose values lie in this gap [between F(u.ww ...) and up to
but not including F (u + l)] are not representable. Let
D (u , w w . . .) bedefinedasF(u.ww...) ~ F(u),whereF(u.ww
...) is calculated by first obtaining F (u) by transforming
string u and then by adding a succession of augends to F (u) .
In other words D(u,ww ...) must equal or exceed the differ-
ence F (u + 1) - F (u) to prevent a gap, where F (u
+ 1) is obtained by transforming string u + 1.

A consistency test guarantees that there is no gap. The test
is discussed in [2, 31. The test on augends M is

The left-hand side is the difference between the augends of
adjacent symbols y and y + 1, hence is an addend m (i , X) .
The right-hand side of this inequality is described as follows.
The value M (j , X , w + I) is an approximation (from below)
to the value of D(u,ww ...) = D(u,w + I) ; see [3]. Let u
applied to the CFSM in its initial state and initial value for
the internal variable leave the CFSM in s ta te j and internal
value X . Now D(u,ww ...) becomes F (w w ...I;, X) . We
approximate F (w w . . . / j , X) from below simply by taking a
finite number of terms.

For our unit-time algorithm, we modify this test to use
addends directly. We still perform the consistency test only
on the home states of the parsing CFSM and the parsed
phrases. We must also reformulate the test.

Consider the addend m (i , X) . This corresponds to a subin-
terval size on the unit line. From state i, we have a set a&,
etc., of allowed channel (extended alphabet) symbols.
Denote this set (which depends on i) as [(i) , with typical
member y:

IBM J . RES. DEVELOP. VOL. 27 NO. 2 MARCH 1983

The right-hand side of Eq. (16) is a lower bound (we take a
finite number of terms) on F (w w .../ i , X) starting in state i
with internal length variable value X.

See Section 4 for the mechanization of the encoder and
decoder transformations. Section 5 generalizes the transfor-
mations to include symbols of the same length by applying
their addends in order in a single channel time unit.

P-based unit-time arithmetic codes
The fixed rate L-based arithmetic channel code extends to
fixed rate P-based codes. Earlier we described the basics of
the approach for both L-based and P-based codes. In the
P-based approach, we implement Eq. (I O) differently. Let
the recursion variable be R'(u). Find a suitable q-bit frac-
tional value Q > W". Let recursion variable R ' (u) be the
product of repeated multiplication by Q:
w-P'"' 2 R ' (u) = Q""'. (17)

Since R'(u) must have a fixed precision, the product

R'(u.y) = (R (u) X Q), (18)

must be appropriately rounded. The notation (x) means that
the result x is rounded to q-bit precision. To implement Eq.
(I O) , when we reach an intermediate state of the unit-time
CFSM transition to state T(u.7) under symbol 7, an addend
is required. We must form the product B (T (u . 7)) x R(u.7)
and add the result to F (u) .

The data handling aspect is no different from ordinary
P-based arithmetic compression codes [SI. The left-shifting
of F is controlled by a corresponding realignment to F
whenever the value in R' is renormalized. The renormaliza-
tion is a consequence of new leading zeros introduced by the
product of Eq. (1 8).

4. Mechanization of the L-based unit time code
I n this section we describe the operations involved in the
fixed rate L-based approach for constrained channels with
Property P2. We discuss the steps performed during encod-
ing/decoding, then the method to calculate the addends,
followed by an example. The next section extends the tech-
nique to codes without Property P2.

Implementation
We describe the channel coder and decoder for generalized
run length limited codes. The hardware described can be
used to implement any CFSM for which there is a t most one
symbol of a given length from a given state.

The hardware generates a channel string as a sequence of
symbols 0 and 1. We let variable t remember the channel unit
time modulo C. The unique symbol of length t + 1 from state
s is generated as t O s followed by one 1.

We discuss the coder, then the decoder, and finally the
sizes of tables and arithmetic needed to implement particular
codes.

The channel coder
The channel coder consists of the following:

Four registers i, t, F, and X, respectively, for the variables
i (about 4 bits)
t (about 4 bits)
F (about 10 bits)
X (about 2 bits)

Two constants: J , C (about 3 bits each)

Two ROM arrays:
T*(s,n) (about 16 x 16 x 4 bits)
m (s , X) (about 16 x 4 x 8 bits)

i is set by table lookup from T*.
t is set by addition of 1 or setting to 0.
F is set by subtraction of a value from m and by shifting.

0 X is set by addition of constant J modulo constant C.

The coder generates one channel bit for each major
iteration. It consumes one source bit synchronously for C of
each J iterations. The coder algorithm is as follows:

Step I Initialize variables as follows: F with the leading I F I
bits of source data, set X = J , i = 1, t = 0.

Step 2 Check for end of source data. If it is the end, go to
step 6.

Step 3 Compare F with m (T * (i , t) , X) .
If F 2 m (T * (i , t) X)

then
output 0
F = F - m (T * (i , t) , X)
t = t + l

else
output 1
i = T*(i , t) (update new value of i from old

value)
t = 0.

Step 4 Add J to X . The result of the sum mod C is retained
as the new value of X , and the carry governs a shift. If
a carry occurs, then shift F left one bit and shift the
next bit of source data into the right of F. (The bit
shifted out of F will always be 0.) This addition may
be carried out using an adder. (Alternatively, since
step 4 cycles and is independent of the data values, a
circular shift register of the correct length could be
preloaded with the correct new values of X and
carry.

Step 5 Go to step 4.
Step6 Handle end of source data, Le., handle the end

e8ect.

IBM J . RES. DEVELOP. VOL. 27 NO. 2 MARCH 1983 STEPHEN J. P. TODD Ed AL

One option is to let the coder run for additional cycles until
it has consumed Q dummy bits of source. These bits are set to
1. Q is code dependent.

The channel decoder
The channel decoder has the same registers as the encoder. It
consumes one channel bit for each major iteration. It gener-
ates one tentative reconstructed source bit at the rate of J for
each C iterations. With the algorithm as we describe it here,
the reconstructed source must be buffered to handle certain
overflows.

The decoder algorithm is as follows:

Step 1 Initialize F = 0, X = J, i = 1, t = 0.
Step 2 Check for end of channel data. If it is the end, go to

Step 3 Read next channel bit. If 0

F = F + m (T * (i , t) , X)
t = t + l

step 6.

then

else
i = T*(i , t)
t = 0.

An overflow may occur in the addition to F. In this
case, 1 is added to the rightmost bit of the tentative
reconstructed source. This addition may cause propa-
gation up to the top of this string.

Step 4 Add J to X mod C. If there is a carry, shift F left one
bit, introducing a 0 in the right. The leftmost bit
shifted out is concatenated to the right of the recon-
structed source.

Step 5 Go to step 2.
Step 6 Handle the end effect in a way compatible with the

encoder. For the method described above, decode
until the end of channel string is reached, and ignore
the trailing Q bits of reconstructed source.

Sizes
Sizes of the registers and tables depend on the code to be
implemented. Let the CFSM defining the model have n
states and the longest symbol be of length k.

J / C is a rational approximation from below to the rate W
of the code. The sizes needed for J and C depend on this
approximation.

0 i must be large enough to define the states, 1 s i 5 n.
t must be large enough to describe symbol length so far,

T* has n x k entries, each large enough to hold next statej,
O s t < k .

0 s j s : n .
X must be large enough to hold 0 s X < C.
m requires n x C entries; i.e., each requires approximately
- log 2[((log W) - J / C) / l o g W] bits, where the number

in square brackets is the ineficiency of the approximation
J I C to W.
F requires approximately two more bits than m.

As an example, consider the charge-constrained (2,7,8)
code. There are 14 states (n = 14), so register i has 4 bits.
The maximum symbol length is 8, so register t is 4 bits. Table
T* has 14 x 8 entries, each of 4 bits. Rate JIC is y2, so
register X is one bit. Growth rate W is 1.415, so channel
capacity log W is 0.501 information bits per channel time
unit. The inefficiency is -0.001/0.5 or 0.002. Register F
should therefore have about 9 + 2 = 1 1 bits.

We have great freedom in what code to choose, as any code
is implementable. We may often choose a weaker code with
greater theoretical capacity log W but use the same J / C .
Thus we are working with greater inefficiencies and can use
fewer bits in F, m, and the adder.

For example, a (2,8,8) code has theoretical capacity 0.510.
At rate 0.5 this gives inefficiency about (O.OlO/O.S) or 0.02.
This requires an F register size of about 8 bits instead of 11
bits for (2,7,8).

Computing the table lookup data

Basic steps
We compute the table lookup data in the following steps.
They are based on data from the given (parsed form) CFSM.
Computation of m involves experimental iteration on a value
“scale.”

Computation of T*:
T*(i , t) = T(i , t) , where there is a symbol of

length t + 1 from state i .
= 0, otherwise.

Computation of m (four steps):
Step 1. Choose some scale factor “scale.”
Step 2. Set m (j , x) = Lscale - B, - 2-x’c~ . (19)
Step 3. Check the consistency of these values for m. We

wish

m (j A 5 x m (T (j , y) , (J x Q (Y) + X) mod C)
7

x 2-L(JxQ,)tX)ICJ (20)

where y ranges over all phrases in the parsing CFSM
alphabet. [See Eq. (16).]

Step 4. If the check succeeds for all j , X , we are done. If not,
we retry with a larger scale. Theoretically this
iteration should terminate for “scale” sufficiently
large.

The iteration to find m may be modified with the aim of
finding a set of smaller values of m following the techniques
of Todd and Langdon [6].

STEPHEN J. P. TODD ET P iL. I BM J. RES. DEVELOP. \ rOL. 21 NO. 2 MARCH 1983

Example
Consider the finite state machine with four states I , 2, 3, and
4 and three symbols, a, 0, and 7, of length 2, 3, and 4,
respectively. The transitions are given in the following
matrix.

state j
from to state T (j , ()
-

1 2 3 4
1
2

- . . o r
a - r P

3
4

- p a -
a P r -

We compute a rate and find eigenvector components. We
find

W = 1,42065, rate = 0.50655
B(I) = 1.00000
B(2) = 1.01680
B(3) = 0.70289
B(4) = 1.02266

Given this rate, we choose J = 1 and C = 2. We now
compute values for m from Eq. (19), and the “check” from
Eq. (20). With scale = 32 we have the following:

j X rn check
1 0 32 31.5 *
1 1 22 22.75
2 0 32 32.5
2 1 23 22.75 *
3 0 22 22.5
3 I 15 15.5
4 0 32 33
4 1 23 22.75 *

We see that inequality Eq. (1 6) fails for three values of m.
We try scale = 64 to get

j X m check
1 0 64 64.25
1 1 45 45.5
2 0 65 65.5
2 1 46 46.25
3 0 44 45
3 1 31 31.75
4 0 65 66
4 1 46 46.5

5. General CFSMs with symbols of same dura-
tion
In Section 4, we dealt only with constrained channels whose
channel symbol alphabet permitted only one parsed phrase of
a given length (Property P2). To generalize the above
hardware for a general CFSM where the symbols have
co-measurable length and more than one symbol of the same
length (Property P2 does not hold), we operate as follows.

Let there be G (t) symbols of length t + 1. The gth CFSM
symbol of length t + 1 (sym(t,g)) will be generated in the

channel string as t O s followed by symbol g. T* is now
indexed by state i, length count t , and g. We replace step 3 in
the coder by an iteration:

d o g = 1 to G(n)
if rn(T*(i,t,g),X) < F
then go to gfound
F = F-rn(T*(i , t ,g) ,X)
end of “do” loop

output channel symbol 0 / * fell out of the loop as F large */
t = t + l
go to end-step-3

gfound:
output channel symbol g
i = T*(i,t,g)
t = 0
go to end-step-3

We replace step 3 in the decoder by an iteration:

collect channel symbol gg
if gg = 0 then num = G(t) ; else num = gg
d o g = 1 tonum

F = F+m(T*(i,t,g),X)
end of “do” loop

ifgg = 0
then t = t+ 1
else do

i = T*(i,t,gg)
t = O
end

6. Summary

1

We have extended Martin’s original L-based fixed rate
unit-time (d , k) channel code approach [2, 31. The extension
is in two directions. First the simpler unit-time approach now
can be used on any CFSM-defined constrained channel with
symbols of co-measurable durations. We do this by causing
the addend to depend only on the parsing CFSM home state.
Second, the above improvement for fixed rate L-based
arithmetic codes for channels extends to fixed rate P-based
arithmetic codes for channels. The major advantage of the
unit-time technique is evident when applied to an L-based
(2,7,8) code. The method in [2] requires a table size, per Eq.
(11, of

14 x 5 x 2 = I40 entries.

Our approach only requires 14 x 2 = 28 entries for the
addend table. Moreover, the code is more easily realized in
digital system components. For channel constraints yielding
a rate where the value of C is large, a P-based approach may
offer the simpler implementation.

Appendix: Conversion to unit-time CFSM
We show here how to trade fewer channel states for more
channel symbols and vice versa. The basis of the unit-time

STEPHEN 1. P. TODD

~113

~

$T AL. IBM J. RES. DEVELOP. VOL. 21 NO. 2 MARCH 1983

r p q p ” f ma
Y

a=01

y = 0001
p = 001

(a) (b)

Figure 1 Conversion of parsing 1-state CFSM to unit-time
CFSM: (a) parsing CFSM; (b) unit-time CFSM.

!3

I a I

I Ua
Figure 2 Generalized (1,3) constrained channel with four home
states.

Table 1 Converting parsing CFSM to unit-time CFSM.

1. Begin with new home state i,O (i = 1 initially).
2. Begin with longest parsed phrase w , of length Q (w) , and generate

intermediate states i,I, i,2, . . ., i,Q(w - I) . Intermediate state
i,Q(w - 1) goes to state T(i,w). For symbols [, where a ([) < Q (w) ,
new intermediate states are not generated. Rather, for each
symbol (, the new transition implemented is from state i ,Q ([) - 1
to home state T(i,E),O.

3. Continue the process of step 2 above with other states. Beginning
with the longest allowed symbol first, generate the intermediate
states.

4. After the transitions of the allowed symbols from state i of the
parsing CFSM have been converted, if the last home state has not
been converted, go to step 1 to handle next home state i + I .

conversion is that neither the encoder nor the decoder is
operating on the CFSM which defines the code. Code
definition is more easily done with fewer channel states on an
“extended” alphabet of parsed phrases. Following the code
design (see Section 5) , we allow the encoder/decoder to
operate on a machine with simpler symbols, each of unit
duration, but with more states. The original CFSM is the
parsing CFSM, and the new CFSM is a unit-time CFSM. In
order to take advantage of an easier code design process,
while also taking advantage of an easier implementation

method, we must be able to convert between the equivalent
parsing CFSM and the unit-time CFSM.

In this section we show how (d ,k) constrained channel
CFSMs with n home states in the parsing CFSM can be
systematically converted to unit-time CFSMs. This is a
preparatory step to a realization with a fixed rate J/C
L-based arithmetic code with augend table size of n x C
entries instead of n x C x (I ,$ I - 1) entries.

We first describe the conversion process of a one-state
(k - d + 1)-symbol (symbols of multiple unit duration)
parsing CFSM to a (k + 1)-state two-symbol (each of unit
duration) unit-time CFSM. See Fig. 1. Consider the 1-state
(1,3) channel whose three symbols are denoted a, @, and y,
shown in Fig. 2. This is exactly the transformation used by
Martin in his unit-time code for (d ,k) codes.

We can describe the states of the unit-time CFSM with
two components, the first of which is the last home state. The
second component is the distance, in channel time units, from
the occurrence of that state. The unit-time CFSM is defined
if we define all its states and state transitions.

We keep existing home state 1 and call it 1,O. Begin with
the longest symbol y first. Symbol y is converted to its
unit-time equivalent of symbol 0001, which has a length Q(y)
= 4. We create Q(y) - 1 = 3 intermediate states: state l , I ,
state 1,2, and state 1,3. The next state function for the
parsing CFSM is T, and T (1,y) is state l , O . So from state
l ,Q(y) - 1 , the transition to T (1,y) is drawn. Now consider
the next shortest symbol @, which is 001. We begin in state
l,O, and deal with each unit-time symbol. First symbol 0
already takes the CFSM to state 1, l . For the second 0, we
travel two channel time units from the home state to interme-
diate state 1,2, which is state l ,Q@ - 1. The third symbol is 1,
which returns the CFSM to home state 1,O. The trajectory
for symbol a = 01 is handled the same way; i.e., when state
l,C!(y) - 1 is reached, the next symbol (1) takes the
unit-time CFSM to state T(1,a) = 1,O.

The rules for the unit-time CFSM transitions governing
each parsed phrase a from state i are as follows. As long as
state i,Q(y) - 1 has not been reached, the transition is by
unit-time symbol 0 from state i,j to i j + 1 . The transition
from state i,Q(y) - 1 is by unit-time symbol 1 to home state
T(i,a),O.

We have described the process in such a way that it is
easily generalized to parsing channel CFSMs which have
more than one “home” state. The rules for the general case
are shown below in Table 1. The method works because no
parsed phrase is permitted to be the prefix of another parsed
phrase.

Example
W e s h o w a generalized (1,3) parsing channel CFSM in Fig.
2. The CFSM has four home states, I , 2, 3, and 4. T h e first
s ta te I is converted to intermediate states as shown in Fig.
3.

O t h e r parsing CFSM home state t ransi t ions are similarly
converted to uni t - t ime CFSM t ransi t ions. In Fig. 4 we show
how state 3 is converted. In s ta te 3, symbol y is not allowed,
so tha t t he re is no intermediate s ta te 3,3.

For s ta te 2, all three symbols are al lowed, so tha t t h ree
intermediate s ta tes are generated. For s ta te 4 , al l three
symbols are allowed, so that three intermediate s ta tes are
generated. Thus, the total number of s ta tes in the uni t - t ime
CFSM is 15: t h e 4 home states plus 1 1 intermediate states.

The p rocedure of T a b l e 1 need not require Property P2.
T h a t is, there can be two parsed phrases of t h e same length.
S u c h is the case where three levels of magnet ic recording are
permitted. The parsed phrases must have dist inct unit-t ime
transitions. The method of T a b l e 1 generates a unit-time
CFSM provided t h a t no parsed phrase is t h e prefix of
another phrase from the s a m e home state .

The des ign advantage can be explained in terms of t h e
previous example. We ca lcu la t e t he g rowth f ac to r Wand t he
4 associated eigenvector components B (1) , B (2) , B (3) , and
B (4) for the 4 -s ta te pars ing CFSM. This is a simpler task
than for the equivalent 14-state uni t - t ime CFSM. In our
technique, only W and the home state eigenvector compo-
nents need be known. Next we convert the 4-s ta te CFSM to a
14-state CFSM, which is easier to realize.

References
I . C. E. Shannon, “A Mathematical Theory of Communication,”

BellSyst. Tech. J. 27, 379-423 (July 1948).
2. G. Nigel N. Martin, “Range Encoding for Discrete Noiseless

Channels,” unpublished internal memorandum, IBM UK Scien-
tific Centre, March 1980.

3. G. Nigel Martin, Glen G. Langdon, Jr., and Stephen J. P. Todd,
“Arithmetic Codes for Constrained Channels,” Research Report
RJ-3381, IBM San Jose Research Laboratory, January 21.
1982.

4. S. J. Hong and D. L. Ostapko, “Codes for Self-Clocking,
AC-Coupled Transmission: Aspects of Synthesis and Analysis,”
IBM J . Res. Develop. 19, 358-365 (July 1975).

5. G . Langdon, “Tutorial on Arithmetic Coding,” Research Report
RJ-3128, IBM San Jose Research Laboratory, May 6, (1981).

6. Stephen J . P. Todd and Glen G. Langdon, Jr., “Augend Compu-
tations for Arithmetic Channel Codes,” IBM Tech. Disclosure
Bull. 25, 1 127-1 129 (August 1982).

Received January 22, 1982; revised September 29, 1982

Glen G. Langdon, Jr. IBM Research Division, 5600 Cottle
Road, San Jose, California 95193. Dr. Langdon received the B.S.
from Washington State University, Pullman, in 1957, the M S . from
the University of Pittsburgh, Pennsylvania, in 1963, and the Ph.D.
from Syracuse University, New York, in 1968, all in electrical
engineering. He worked for Westinghouse on instrumentation and

IBM J. RES. DEVELOP VOL. 27 NO. 2 MARCH 1983

Figure 3 Conversion of state 1 of 4-state parsing CFSM to unit-
time CFSM intermediate states.

n
Figure 4 Conversion of state 3 of 4-state parsing CFSM to unit-
time CFSM intermediate states.

data logging from 1961 to 1962 and was an application programmer
for the PRODAC computer for process control for most of 1963. In
1963 he joined IBM at the Endicott, New York, development
laboratory, where he did logic design on small computers. In 1965 he
received an IBM Resident Study Fellowship. On his return from
Syracuse University, he was involved in future system architectures
and storage subsystem. During 197 I , 1972, and part of 1973, he was
a Visiting Professor at the University of Sao Paulo, Brazil, where he
developed graduate courses on computer design, design automation,
microprogramming, operating systems, and MOS technology. The
Brazilian computer called Patinho Feio (Ugly Duckling) was devel-
oped by the students at the University of Sao Paulo during his stay.
He is author of Logic Design: A Review of Theory and Practice, an
ACM monograph, and coauthor of the Brazilian text Project0 de
Sistemas Digitais; he has recently published Computer Design. He
joined the IBM Research laboratory in 1974 to work on distributed
systems and later on stand-alone color graphic systems. He has
taught graduate courses on logic and computer design at the
University of Santa Clara, California. He is currently working in
data compression. Dr. Langdon received an IBM Outstanding
Innovation Award for his contributions to arithmetic coding com-
pression techniques. He holds eight patents.

G. Nigel N. Martin IBM United Kingdom Laboratories Ltd.,
Hursley House, Hursley Park, Winchester, Hampshire SO21 2JN.
England, Mr. Martin joined IBM Information Services in 1968 as a
systems programmer. In 1973, he joined the IBM United Kingdom
Scientific Center, where he worked with others to provide a
relational database interface to IMS. He took a year at Warwick
University in 1978 to research data access techniques. He is
currently working on data channels at Hursley. Mr. Martin received
a B.A. from Cambridge University and an M.A. in 1968.

Stephen J. P. Todd IBM United Kingdom Scientific Centre,
Athelstan House, St. Clement Street. Winchester, Hants SO23 9DR.
England. Mr. Todd joined the IBM Scientific Center in 1971 and
has worked there since except for a two-year assignment at the
Research Division in San Jose, California. During this assignment,
he researched text processing and coding theory. Most of his other
work with IBM has been on relational data base systems, with some
work on automated offices and image processing. He is currently
working on graphics. Mr. Todd received a B.A. in mathematics from
Oxford University, England, in 1968, and an M.A. in 1969.

STEPHEN J . P. TODD ET AL.

