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A General Fixed Rate Arithmetic  Coding  Method for 
Constrained  Channels 

This  paper  extends  the  result of earlier  work on the  application  of  arithmetic  codes to the  constrained channel problem.  We 
specifically  present  a general length-based  $xed  rate  implementation  technique which performs  the  arithmetic  coding 
recursions  during  each channel time  unit.  This technique is superior to an earlier  unpublished  code for  general constrained 
channels.  The  approach  permits  the  design of codes f o r  sophisticated channel constraints. 

1. Introduction 
The constrained channel has been studied by Shannon [I] .  
References [ 2 ,  31 show how a fixed rate length-based (L- 
based) arithmetic code can be applied to  the problem of 
coding to a constrained  channel, where the  constraints  are 
described by a channel finite state  machine (CFSM). We 
assume  familiarity with  a  companion paper  [3] which pro- 
vides references to  other  approaches  to  channel coding and 
which contains  some background material on arithmetic 
coding. We employ the  same terminology and system of 
notation as [ 31. 

In saturation  magnetic recording, the media are divided 
into  channel time units. The events are  the  occurrence or 
nonoccurrence of a flux change, so the  elementary symbols 
are said to consist of 0’s or 1’s. The well-known run- 
length-limited (RLL)  constraints  are called ( d , k )  constraints 
when there must be at  least d and no more than k 0’s between 
successive 1’s. Codes for ( d , k )  constraints  are used to maxi- 
mize  information on the  channel  and  synchronize a clock 
(provide  self-clocking). 

In [2] an L-based channel  code for general  constraints was 
described. Also developed in [2] and published in [3] was a 
simpler version applicable only to ( d , k )  codes. 

Many nontrivial  constrained channel problems  place 
restrictions in addition  to  the ( d , k )  constraint.  Such  general- 

ized ( d , k )  problems  include  a charge-limited  constraint  [4] 
or desired spectral null. In this  paper, we extend the  simpler 
approach of [3]  to  the general  case,  resulting in a  more 
economical  realization than  that in [2]. For a  description of 
L-based and P-based (probability-based)  arithmetic com- 
pression codes, see [5]. The foundation for the application of 
arithmetic codes to  the constrained channel  appears in [3]; 
however, we provide a brief review. 

Arithmetic coding transformations  require a symbol 
ordering. Let symbol .$ + 1 denote  the symbol following .$ in 
the ordering. If symbol y precedes .$ in the  ordering, let y < .$. 
Let w denote  the  last symbol in the  ordering. Let p(i , .$)  
denote  the probability of symbol .$ in state i .  Let P(i,.$) denote 
the  cumulative probability of the symbols preceding .$ in the 
ordering: 

P ( i , t )  = x p ( i , y ) .  
?<I 

( In  what follows, we loosely identify P(i,.$) with an  augend 
and p ( i , y )  with an  addend.) 

Let channel  string u be a  sequence of symbols .$ drawn 
from channel  alphabet {a, ..., .$, ..., u}. The  constraints  do 
not allow all possible sequences of the channel alphabet. 
Shannon [ 11 defines the  constraints by a channel finite state 
machine (CFSM) whose next state function T when fed 
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string u with the  CFSM in its  initial  state 1 yields CFSM 
state T (  I p ) ,  which we simply call T ( u )  when the initial 
state is understood. 

As in [3], coding to a constrained  channel corresponds to 
an expansion operation on the source data,  and recovering 
the source data corresponds to a compression operation.  It is 
convenient to  describe  the  operations in terms of the com- 
pression operation. A channel  string u is transformed back 
into a data  string F ( u )  by a  recursion on u .  Let u.[ denote 
string u with symbol [ concatenated  to  it.  Then 

F ( u . 0  = F ( u )  + D(u,<), 

where quantity D(u.[) is called the  augend  and is repre- 
sented as 

D(u . [ )  = M ( T ( u ) , X ( u ) , [ )  x 2”€(”), 

where   2 -€‘”’   represents   an   in tegra l   sh i f t   and  
M ( T ( u ) , X ( u ) , [ )  is  called the  augend  factor.  The  value X ( u )  
is an  internal recursion variable which takes on a finite set of 
values. In L-based arithmetic codes X is determined by a 
recursion which is viewed as a sum of lengths, or more 
precisely as  the  channel  time modulo C, where C is the 
cardinality of the  set of values of X .  In  P-based arithmetic 
codes the X recursion is reminiscent of a product of probabil- 
ities. The L-based arithmetic codes use augends of the  form 
M ( i , X , [ ) ,  where i is a  typical CFSM  state, by table lookup. 
The design of L-based  codes amounts  to  determining a table 
of augends which satisfy  a  consistency test. L-based arith- 
metic codes for channels  are  capable of a rational  rate J / C ,  
where C channel  time units carry J bits of information. 

An example of a  code  more  complex than ( d , k )  codes is a 
(2,7,8)  charge-constrained code  using the  general fixed rate 
approach. In  the general case  [2] of more  complex codes the 
size of the  table of augends is 

Augend  table  size = n x C x ( I  [ I - l ) ,  (1) 

where 15 1 is the  cardinality of the set of channel symbols 
(typical symbol [), n is the  cardinality of the  set of states 
(typical  state i), and C is the  denominator of the  rational 
fixed rate   J /C.   The multiplier involving the  cardinality I [ 1 of 
the symbol alphabet a, ..., w is decreased by one  because any 
augend M(i ,X ,a)  corresponding to  the first symbol a has 
value 0. 

Let the  transformation of channel  string u to a data  string 
F ( u )  have  recursion variables F ( u ) ,  a(u )  (duration or length 
of u in unit-time symbols) and  CFSM  state T ( u ) .  We 
replace a(u)  by E ( u )  and X ( u )  such that 

J X Q(u) /C  = ( E ( u )  + X ( u ) ) / C ,  

where E ( u )  is an integer and X ( u )  is 0, 1, .. ., or C - 1. To 
transform next  symbol we have 108 
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F(u.a) = F ( u )  + M ( T ( u ) , X ( u ) , ( )  x 2-Q’) (2) 

E(u.a)  = L ( Q ( u )  + a ( ( ) )  x J / C J  , (3a) 

X(u.a)  = ( (Q(u)  + a ( [ ) )  x J )  mod C, (3b) 

where L J denotes the integer part.  Equation ( 3 )  constitutes 
the length  recursion. Martin [2] provides a  procedure for the 
calculation of the  augend  factors M ( i , X , [ ) ,  which is essen- 
tially an  approximation  to p(i,{) x T~’‘. 

Let Fand M be binary  numbers.  The purpose of variable E 
is to  maintain proper alignment between the bits of F and M .  
We  shift  Fleft  one bit for each increase by 1 in the value of E,  
and  thus  the initial  proper alignment is maintained.  The 
value of the  shift  after  iteration u.[ is E ( # . [ )  - E ( u ) .  The 
shift can be determined  from X ( u )  and a ( [ )  as follows: 

E ( u . [ )  - E ( u )  = L((J X a ( [ ) )  + X ( U ) ) / C J  . 

Similarly,  the recursion on X is 

X ( u . [ )  = ( (J  x a ( [ ) )  + X ( u ) )  mod C. 

Shifting  and  alignment,  as well as  the carry-over  problem 
resulting from  the  addition of D(u,[ )  to F(u) ,  are covered in 
[51. 

2. Two approaches to defining the CFSM for 
(d,k) channels 
To describe the  constraints for  a ( d , k )  channel, consider first 
the view that  the  CFSM consists of one  state  and ( k  - d 
+ 1) symbols. These symbols are a result of parsing  the 
binary-valued channel  strings  into  an “extended” alphabet of 
channel phrases. The  duration of a phrase  extends beyond 
one  channel  time  unit. In (d ,k)  channels  the phrases are of 
the form 001, 0001, etc.,  where the phrases are of length 
d + 1 through length k + 1. 

In the  general  approach  to (d ,k)  codes using phrases, the 
number of nonzero augends in the  table for channel parsing 
CFSM’s  and  rate J / C  is 

parsing CFSM table  size: C x ( I [ I - 1) = C x ( k  - d ) .  
(4) 

In a second approach let the (d ,k)  channel be described by 
two symbols and a ( k  + 1)-state CFSM with states 1, 
2, ..., k + 1. The ( d , k )  constraints  admit  binary decisions, 
e.g., “flux change” or “no flux change”  as in magnetic 
recording, and  are such that  the constrained CFSM always 
returns  to  the  same “home” state following a flux change. 
We  denote  the two-symbol version of the  CFSM  to be a 
unit-time  CFSM.  Thus a one-state ( k  - d + 1)-symbol 
parsing  CFSM is  equivalent to  the two-symbol ( k  + 1)-state 
unit-time  CFSM,  where  state I is the “home” state reached 
following a flux change.  In  general  the  table size is 
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( k  + I )  x c x (2  ~ 1) = ( k  + I )  x c. 
Binary alternatives occur at  states d + I ,  d + 2, ..., k.  There 
are k - d information-carrying  states; for the  other  channel 
states  the  channel symbol is a certainty.  The  number of 
nonzero augends, using Eq. ( I ) ,  is now 

( k  ~ d )  x c. (5) 

Thus, a one-state, ( k  - d + 1)-symbol parsing  CFSM  and 
its  equivalent ( k  + 1)-state, two-symbol unit-time  CFSM 
have the  same  augend  table size under  the  general L-based 
approach in [2],  as seen by comparison of Eqs. (4) and (5). 
See  the Appendix for a  general approach  to converting  a 
CFSM governing channel  constraints for multiduration co- 
measurable symbols (the symbol lengths are  rational multi- 
ples of each  other)  to a unit-time  CFSM. 

3. Unit-time fixed rate channel  coding 
For the special case of ( d , k )  channels,  Martin [2, 31 showed 
that  the  number of augends could be reduced to C by 
properly arranging  the  calculations. As seen in [3], the 
augends  are  independent of the k - d states. Upon  analysis, 
it is seen that  the  technique works when the  CFSM  has two 
properties: 

PI.  The  CFSM  can be converted to a I-state  channel 
parsing CFSM. 

P2. The  1-state  CFSM has no more than  one symbol  of  a 
given duration. 

In this section, we remove these  restrictions in order  to 
implement  a  code  using the simpler unit-time  CFSM  and 
reduced table size. 

Recursions based on W-""' 
The  advantage in [3]  is achieved by keeping a  recursion 
variable which approximates  the value W -'('I, where W is 
the  growth  factor  (the  largest real root of a determinant 
equation of Shannon [I])  and Q ( u )  is the  length of channel 
string u. We  extend  the use of this  recursion variable, call it 
R ( u ) ,  to both the P-based and L-based approaches for the 
general fixed-rate  case. We  update  the recursion variable 
each  channel  time unit and  calculate  an  addend, which is 
added or not to  the  data  string F ( u )  as  dictated by the 
relevant unit-time  CFSM  transition. 

To  understand  the  technique, first, note  that  the  CFSM 
cannot ''loop" among  intermediate  states. A home  state must 
be reached  once  a phrase  has been parsed from  the  channel 
string. Let state I be  the initial  home state.  Order  the 
alphabet of phrases  according  to symbol duration or length. 
Thus, let the  alphabet of channel  phrases  be  ordered a, 
@, ...,u, where Q(a) < a ( @ )  < ... < Q(u). The symbol 
ordering  extends  naturally  to give a  lexicographical ordering 
on all channel  strings. 
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The  transformation of channel  string u to  data  string F ( u )  
follows Martin's idea [3]  that of all long channel  strings [of 
some length suitably longer than Q ( u ) ] ,  a portion F ( u )  
precede u in the lexicographic  ordering. Now suppose the 
next symbol to be encoded is a. Since a is the first symbol in 
the  ordering,  the portion of channel strings preceding u.a is 
still F ( u ) ,  so the  augend  has value 0. 

Instead, suppose the next symbol to be encoded is P. 
Observe that  continuations of channel  string u.01 will precede 
continuations of u.P in the  ordering. F ( u )  accounts for 
channel  strings beginning with a prefix less than u, but not 
for strings whose prefix is u.01. 

We need to know what portion of channel  strings begin 
with prefix u.a. This value for the  augend M(u,P) to be 
added  to F ( u ) ,  is the  addend A (u,.). The question of how to 
determine this  value has been neatly  answered by Theorem 4 
in Shannon [ l ] ;  of all channel  strings beginning in initial 
state I ,  fraction 

A(u ,a )  = ( B ( T ( u . c u ) ) / B ( l ) )  x W-P(u.a)  ( 6 )  

have prefix u.a. In  Eq. ( 6 ) ,  state T(u .0~)  is determined by the 
CFSM  next-state function Tacting on string u.a from  initial 
channel  state I .  For  convenience, let the eigenvector compo- 
nent  for state I be unity, so that  augend 

M(u,P) = A(u,a)  = B(T(z4.a)) x w-p(".m). ( 7 )  

Now suppose  instead that  the symbol to be encoded following 
u is y. We  must now account for the portions of the  channel 
strings whose prefixes are u.a and u.P. Equation (7) takes 
care of the first term,  and  the second term is taken care of  by 
adding 

A(u,P)  = B(T(l4.P)) x W-a("oB). (8) 

These  equations hold for both the parsing CFSM  and  the 
unit-time  CFSM.  Were  there more than  three symbols in  the 
parsed alphabet, this process would continue. For each 
symbol y < (, where ( is to be encoded, an  addend  term 
A (U.Y)* 

A(u .7 )  = B(T(u .7) )  X W-P(u'y) ,  (9) 

is added  to F ( u ) .  Thus  to  transform  channel  string u.(, 
following the  transformation of channel string u to F ( u ) ,  we 
have 

F(u . ( )  = F ( u )  + 1 B ( T ( u . y ) )  x W-a(u.y) .  (10) 
(74) 

Equation  (10) is independent of the  number of symbols in the 
channel  string  alphabet for the parsing CFSM, which is the 
basis for our generalization.  There is one distinct addend 
factor B(T(u .7) )  for each home state T(u.7).  The  other 
addend  factor W-a(uy)  is approximated by a  recursion  vari- 
able.  The recursion  may be handled in an L-based or P-based 
manner,  as we explain later. 
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General L-based unit-time codes 

Recursion variable for  L-based approach 
I n  the L-based approach, W p(’’7) is approximated by  use of 
the  rate J I C  4 log W. Value W” is approximated by 2~ Jic, 
so that W-p(u.7) is approximately 2-P(u’7)xJ’C.  D~~~~~ 2 - P i ~ ) x J i c  

by R’(u) ,  which is not yet the desired recursion variable: 

2 ;  I 

-w = R’(u)  = 2 P(u)nJ/C 
(1  1 )  

To  obtain  R’(u.7) from R’(u) ,  we have 

H ’ ( u . 7 )  = R’(u)  x p ( 7 ) “ J ’ c .  (12) 

In  L-based codes, the recursion variable is R = -log R‘.  
Taking logs of both sides of Eq. ( I  2), we have 

R(u.7) = R ( u )  + Q(y) X J / C ,  ( 1  3) 

which is the length  recursion characteristic of L-based 
arithmetic  channel codes. Now 
w~ P i u 7 )  2-xi”7) = 2 - x ( u 7 )  x 2 E(U.71, 

(14) 

where the value of R(u.7) is split into  an integer part E ( u . 7 )  
and a  fraction part X(u.7) ;  see Eq. (3). 

To implement Eq. ( I O ) ,  we replace  factor W ~’”’) by the 
right  side of Eq. (14): 

F(u.5) = F ( u )  + Z : B ( T ( u . y ) )  x 2 x 2 - E ( u . 7 ) .  
, ,  

Next we replace the  factor B ( T ( u . 7 ) )  x 2~ above with a 
value m ( i , X )  obtained by table lookup on i (one of n channel 
states)  and X (a value 0, 1, . . ., C - 1). The  remaining  factor 

performs  a data  handling function. The  addend  factor 
m ( i , X )  is “scaled” by multiplication by 2-E(u.7) ,  which 
amounts  to an  integer right  shift.  This right shift aligns 
addend  factor m ( i , X )  to the right  end of F ( u ) .  In  practice, 
this  data  handling function  is  more easily performed by a  left 
shift of F(u .7 )  by the  amount E ( u . 7 )  - E ( u ) .  The result is 
the same-the  proper  relative position of the looked-up 
addends m ( i , X )  and  the right  end of F ( u ) .  The L-based 
qmbodiment of Eq. (10) now yields 

F(u.[ )  = F ( u )  -t x m ( i ( u . y ) , X ( u . y ) )  X 2 (15)  

2- E(U 7 )  

. .  : .  , 
7 4  

I ’  If there  are  n  states i n  the parsing CFSM,  then a table of n 
2:’c addend  factors m ( i , X )  is sufficient to  implement Eq. 
(%). This gives the desired  result of making the  table size 
ihdependent of the  cardinality of the parsed symbol alphabet 
for  the parsing CFSM. 

.,A 
Consistency  test 
One of the most important  aspects of this  paper is the 
consistency  test which addend  factors m ( i , X )  must  satisfy. 
I n  [3] we introduced the notion of a  code space of finite 
strings which at  each  iteration is subdivided into  as  many 
parts  as  there  are next symbols. Since we are inverting the 

ii ’, 
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operations, the code space of compression codes corresponds 
here  to  the  data  strings.  Here we employ the  term  “data” 
space. Channel  strings which are  continuations of channel 
string u are mapped to  the  data  space between F ( u )  and F ( u  
+ 1). For representability, the subdivision operation on the 
data  space  cannot leave a gap. In  L-based (length-oriented) 
codes, the size of the  data  space which is subdivided, in order 
to  determine  the  gap, is difficult to  calculate precisely. After 
encoding prefix u,  the left  (lower)  side of the  data  space is 
F ( u ) .  The  extent of the  right  (upper)  boundary of the  data 
space used by continuations of u is F(u.ww ...), i.e., at  each 
symbol position one  adds  the  largest  augend.  Thus, F(u.ww 
...) is a  never-ending sum. For channel codes, we must ensure 
that  there is no gap in the  data space, Le., that F(u.ww ...) is 
equal  to or larger  than F ( u  + 1). If F(u.ww ...) is less than 
F ( u  + l ) ,  then we have  a gap in the  data space. Data  strings 
whose values lie in this  gap [between F(u.ww ...) and up to 
but not including F ( u  + l)]   are not representable.  Let 
D ( u , w w . . . )  bedefinedasF(u.ww...) ~ F(u),whereF(u.ww 
...) is calculated by first obtaining F ( u )  by transforming 
string u and  then by adding a succession of augends  to F ( u ) .  
In other words D(u,ww ...) must equal or exceed the differ- 
ence F ( u  + 1 )  - F ( u )  to prevent a gap, where F ( u  
+ 1 ) is obtained by transforming  string u + 1. 

A  consistency  test guarantees  that  there is no gap.  The  test 
is discussed in [ 2, 31. The  test on augends M is 

The  left-hand side is the difference between the  augends of 
adjacent symbols y and y + 1, hence is an  addend m ( i , X ) .  
The  right-hand side of this inequality is described as follows. 
The value M ( j , X , w  + I )  is an  approximation  (from below) 
to  the value of D(u,ww ...) = D(u,w + I ) ;  see [3].  Let u 
applied to  the  CFSM in its initial state  and  initial value for 
the  internal  variable leave the  CFSM in s ta te j   and internal 
value X .  Now D(u,ww ...) becomes F ( w w  ...I;, X ) .  We 
approximate F ( w w  . . . / j ,  X )  from below simply by taking a 
finite number of terms. 

For our unit-time  algorithm, we modify this test  to use 
addends  directly.  We still  perform the consistency  test only 
on the home states of the parsing CFSM  and  the parsed 
phrases. We must  also reformulate  the  test. 

Consider the  addend m ( i , X ) .  This corresponds to a subin- 
terval  size on the unit line. From state i, we have a  set a&, 
etc., of allowed channel (extended alphabet) symbols. 
Denote this set  (which depends on i )  as [ ( i ) ,  with typical 
member y: 
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The  right-hand side of Eq. (16) is a lower bound  (we take a 
finite number of terms) on F ( w w  .../ i , X )  starting in state i 
with internal length variable value X. 

See Section 4 for the  mechanization of the encoder and 
decoder transformations. Section 5 generalizes the  transfor- 
mations  to include  symbols of the  same  length by applying 
their  addends in order in a  single channel  time unit. 

P-based  unit-time  arithmetic  codes 
The fixed rate L-based arithmetic  channel code extends  to 
fixed rate P-based  codes. Earlier we described the basics of 
the  approach for  both  L-based and P-based codes. In the 
P-based approach, we implement Eq. ( I O )  differently. Let 
the recursion variable be R'(u).  Find  a suitable q-bit frac- 
tional  value Q > W". Let  recursion variable R ' ( u )  be the 
product of repeated  multiplication by Q: 
w-P'"' 2 R ' ( u )  = Q""'. (17) 

Since R'(u)  must have a fixed precision, the  product 

R'(u.y) = ( R ( u )  X Q), (18) 

must be appropriately rounded. The notation ( x )  means  that 
the result x is rounded to q-bit  precision. To  implement Eq. 
( I O ) ,  when we reach an  intermediate  state of the  unit-time 
CFSM transition  to  state T(u.7) under symbol 7,  an  addend 
is required. We  must  form  the  product B ( T ( u . 7 ) )  x R(u.7) 
and  add  the result to F ( u ) .  

The  data  handling  aspect is no different  from ordinary 
P-based arithmetic compression  codes [SI. The left-shifting 
of F is controlled by a  corresponding realignment  to F 
whenever the  value in R' is renormalized.  The  renormaliza- 
tion is a  consequence of  new leading  zeros  introduced by the 
product of Eq. ( 1  8). 

4. Mechanization of the L-based unit time code 
I n  this section we describe the  operations involved in the 
fixed rate L-based approach for constrained channels with 
Property P2. We discuss the steps  performed during encod- 
ing/decoding,  then  the method to  calculate  the  addends, 
followed by an example. The next  section extends  the tech- 
nique to codes without Property  P2. 

Implementation 
We describe the  channel coder and decoder  for  generalized 
run  length  limited codes. The  hardware described can be 
used to implement any CFSM for which there is a t  most one 
symbol of  a given length  from  a given state. 

The  hardware  generates a channel  string  as a  sequence  of 
symbols 0 and 1. We let variable t remember  the  channel unit 
time modulo C. The unique symbol of length t + 1 from  state 
s is generated as  t O s  followed by one 1. 

We discuss the coder, then  the decoder, and finally the 
sizes of tables  and  arithmetic needed to implement particular 
codes. 

The channel coder 
The  channel coder consists of the following: 

Four  registers i, t, F, and X, respectively, for  the variables 
i (about 4 bits) 
t (about 4 bits) 
F (about 10  bits) 
X (about 2  bits) 

Two constants: J ,  C (about 3 bits  each) 

Two ROM arrays: 
T*(s,n)  (about 16 x 16 x 4 bits) 
m ( s , X )  (about 16 x 4 x 8 bits) 

i is set by table lookup  from T*. 
t is set by addition of 1 or setting  to 0. 
F is set by subtraction of a  value  from m and by shifting. 

0 X is set by addition of constant J modulo constant C. 

The coder generates one channel bit for each major 
iteration.  It consumes one source bit synchronously  for C of 
each J iterations.  The coder algorithm is as follows: 

Step I Initialize  variables  as follows: F with the leading I F I 
bits of source data, set X = J ,  i = 1, t = 0. 

Step 2 Check for  end of source data. If it is the  end, go to 
step  6. 

Step 3 Compare F with m ( T * ( i , t ) , X ) .  
If F 2 m ( T * ( i , t ) X )  

then 
output 0 
F = F - m ( T * ( i , t ) , X )  
t = t + l  

else 
output 1 
i = T*( i , t )  (update new value of i from old 

value) 
t = 0. 

Step 4 Add J to X .  The result of the  sum mod C is retained 
as  the new value of X ,  and  the  carry governs a  shift. If 
a carry occurs, then  shift F left one bit and  shift  the 
next bit of source data  into  the  right of F. (The bit 
shifted out of F will always be 0.) This  addition may 
be carried  out using an  adder.  (Alternatively,  since 
step 4 cycles and is independent of the  data values,  a 
circular shift  register of the  correct  length could be 
preloaded with the  correct new values of X and 
carry. 

Step 5 Go to  step 4. 
Step6 Handle  end of source  data, Le., handle  the end 

e8ect. 
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One option  is to  let  the  coder run for additional cycles until 
it  has consumed Q dummy bits of source. These bits are set to 
1. Q is code dependent. 

The channel decoder 
The  channel decoder has  the  same  registers  as  the encoder. It 
consumes one  channel  bit for each  major  iteration.  It  gener- 
ates  one  tentative  reconstructed  source bit at  the  rate of J for 
each C iterations.  With  the  algorithm  as we describe  it  here, 
the  reconstructed source must  be buffered to  handle  certain 
overflows. 

The decoder algorithm is as follows: 

Step 1 Initialize F = 0, X = J, i = 1, t = 0. 
Step 2 Check for end of channel  data. If it is the  end,  go  to 

Step 3 Read next channel bit.  If 0 

F = F + m ( T * ( i , t ) , X )  
t = t + l  

step 6.  

then 

else 
i = T*( i , t )  
t = 0. 

An overflow may occur in the  addition  to F. In  this 
case, 1 is added  to  the  rightmost bit of the  tentative 
reconstructed source. This  addition  may  cause propa- 
gation  up  to  the  top of this  string. 

Step 4 Add  J to X mod C. If there is a carry,  shift F left one 
bit, introducing a 0 in the  right.  The leftmost bit 
shifted out is concatenated  to  the  right of the recon- 
structed source. 

Step 5 Go to  step 2. 
Step 6 Handle  the  end effect  in  a  way compatible with the 

encoder.  For the method  described  above, decode 
until  the  end of channel  string is reached,  and ignore 
the  trailing Q bits of reconstructed source. 

Sizes 
Sizes of the  registers  and  tables depend on the code to  be 
implemented.  Let  the  CFSM defining the model have n 
states  and  the longest  symbol be of length k.  

J / C  is a rational  approximation  from below to  the  rate W 
of the code. The sizes  needed  for J and C depend on this 
approximation. 

0 i must  be  large enough to define the  states, 1 s i 5 n. 
t must be large enough to  describe symbol length so far, 

T* has n x k entries,  each  large  enough  to hold next  statej, 
O s t < k .  

0 s j s : n .  
X must  be  large enough to hold 0 s X < C.  
m requires n x C entries; i.e., each  requires  approximately 
- log 2[((log W ) - J / C ) / l o g  W] bits, where  the  number 

in square  brackets is the ineficiency of the  approximation 
J I C  to W. 
F requires  approximately two more bits than m. 

As  an  example, consider the  charge-constrained  (2,7,8) 
code. There  are 14 states ( n  = 14), so register i has 4  bits. 
The  maximum symbol length is 8, so register t is 4  bits. Table 
T* has 14 x 8 entries,  each of 4 bits. Rate  JIC is y2, so 
register X is one bit. Growth  rate W is  1.415, so channel 
capacity log W is 0.501 information  bits per channel  time 
unit. The inefficiency is -0.001/0.5 or 0.002. Register F 
should therefore have about 9 + 2 = 1 1  bits. 

We have great  freedom in what code to choose, as  any code 
is implementable.  We  may often choose a  weaker  code with 
greater  theoretical  capacity log W but  use  the  same J / C .  
Thus we are working with greater inefficiencies and  can  use 
fewer  bits  in F, m, and  the  adder. 

For example, a (2,8,8) code has  theoretical  capacity  0.510. 
At  rate 0.5 this gives inefficiency about (O.OlO/O.S) or 0.02. 
This  requires  an F register size of about 8 bits  instead of 11 
bits  for (2,7,8). 

Computing the table  lookup  data 

Basic steps 
We  compute  the  table lookup data  in  the following steps. 
They  are based on data  from  the given (parsed  form)  CFSM. 
Computation of m involves experimental  iteration on a  value 
“scale.” 

Computation of T*: 
T*( i , t )  = T(i , t ) ,  where  there is a  symbol of 

length t + 1 from  state i .  
= 0, otherwise. 

Computation of m (four steps): 
Step 1. Choose  some scale  factor “scale.” 
Step 2. Set m ( j , x )  = Lscale - B, - 2-x’c~ . (19) 
Step 3. Check  the consistency of these values  for m.   We 

wish 

m ( j A  5 x m ( T ( j , y ) , ( J  x Q ( Y )  + X )  mod C )  
7 

x 2-L(JxQ,)tX)ICJ (20) 

where y ranges over all  phrases in the parsing CFSM 
alphabet.  [See  Eq. (16).] 

Step 4. If the  check succeeds  for all j , X ,  we are  done. If not, 
we retry with  a larger scale.  Theoretically this 
iteration should terminate for  “scale” sufficiently 
large. 

The  iteration  to find m may  be modified with the  aim of 
finding  a set of smaller values of m following the  techniques 
of Todd and  Langdon [6]. 
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Example 
Consider the finite state  machine with four  states I ,  2, 3, and 
4 and  three symbols, a, 0, and 7, of length 2, 3, and 4, 
respectively. The transitions are given in the following 
matrix. 

state j 
from to state T ( j , ( )  
- 

1 2 3 4  
1 
2 

- . . o r  
a - r P  

3 
4 

- p a -  
a P r -  

We  compute a rate  and find eigenvector  components. We 
find 

W = 1,42065,  rate = 0.50655 
B(  I )  = 1.00000 
B(2) = 1.01680 
B(3) = 0.70289 
B(4) = 1.02266 

Given this  rate, we choose J = 1 and C = 2. We now 
compute values  for m from Eq. (19),  and  the “check”  from 
Eq. (20).  With  scale = 32 we have the following: 

j X rn check 
1 0 32 31.5 * 
1 1 22 22.75 
2 0 32 32.5 
2 1 23 22.75 * 
3 0 22 22.5 
3 I 15 15.5 
4 0 32 33 
4 1 23 22.75 * 

We see that inequality  Eq. (1 6) fails for three values of m. 
We  try scale = 64  to  get 

j X m check 
1 0 64 64.25 
1 1 45 45.5 
2 0 65 65.5 
2 1 46 46.25 
3 0 44 45 
3 1 31 31.75 
4 0 65 66 
4 1 46 46.5 

5. General CFSMs with symbols of same dura- 
tion 
In  Section 4, we dealt only with constrained channels whose 
channel symbol alphabet  permitted only one parsed phrase of 
a given length (Property P2). To  generalize  the above 
hardware for a general  CFSM  where  the symbols  have 
co-measurable length and more than one symbol of the  same 
length (Property P2 does not hold), we operate  as follows. 

Let  there be G ( t )  symbols of length t + 1.  The  gth  CFSM 
symbol of length t + 1 (sym(t,g)) will be generated in the 

channel  string  as t O s  followed by symbol g. T* is  now 
indexed by state i, length count t ,  and  g.  We replace step 3 in 
the coder by an  iteration: 

d o g  = 1 to G(n) 
if rn(T*(i,t,g),X) < F 
then go to gfound 
F = F-rn(T*( i , t ,g ) ,X)  
end of “do” loop 

output  channel symbol 0 / *  fell out of the loop as F large */ 
t = t + l  
go to  end-step-3 

gfound: 
output  channel symbol g 
i = T*(i,t,g) 
t = 0 
go to  end-step-3 

We replace step 3 in the decoder by an  iteration: 

collect channel symbol gg 
if gg = 0 then  num = G(t) ;  else num = gg 
d o g  = 1 tonum 

F = F+m( T*(i,t,g),X) 
end of “do” loop 

ifgg = 0 
then t = t+ 1 
else do 

i = T*(i,t,gg) 
t = O  
end 

6. Summary 

1 

We have  extended  Martin’s  original L-based fixed rate 
unit-time ( d , k )  channel code approach [2, 31. The extension 
is  in two directions. First  the simpler unit-time  approach now 
can be used on any  CFSM-defined  constrained  channel with 
symbols of co-measurable  durations.  We  do this by causing 
the  addend  to depend only on the parsing CFSM home state. 
Second, the above  improvement for fixed rate L-based 
arithmetic codes for channels  extends  to fixed rate P-based 
arithmetic codes for channels.  The  major  advantage of the 
unit-time  technique is evident when applied to  an L-based 
(2,7,8) code. The method in [2] requires  a table size, per Eq. 
(11, of 

14 x 5 x 2 = I40  entries. 

Our  approach only requires  14 x 2 = 28 entries for the 
addend  table. Moreover, the code is more  easily  realized in 
digital system  components.  For channel  constraints yielding 
a rate where the value of C is large, a  P-based approach  may 
offer the simpler implementation. 

Appendix: Conversion to unit-time CFSM 
We show here how to trade fewer channel  states for more 
channel symbols and vice versa. The basis of the  unit-time 
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Figure 1 Conversion of parsing  1-state CFSM to  unit-time 
CFSM:  (a) parsing CFSM;  (b)  unit-time  CFSM. 

!3 

I a I 

I Ua 
Figure 2 Generalized (1,3) constrained  channel  with  four  home 
states. 

Table 1 Converting  parsing  CFSM  to  unit-time  CFSM. 

1. Begin with new home  state i,O ( i  = 1 initially). 
2. Begin with longest  parsed  phrase w ,  of length Q ( w ) ,  and  generate 

intermediate  states i,I,  i,2, . . ., i,Q(w - I ) .  Intermediate  state 
i,Q(w - 1) goes to  state T(i,w). For  symbols [, where a ( [ )  < Q ( w ) ,  
new intermediate  states  are not generated.  Rather, for each 
symbol (, the new transition  implemented is from  state i ,Q ( [ )  - 1 
to  home  state T(i,E),O. 

3. Continue  the process of step 2 above  with  other  states.  Beginning 
with  the longest allowed  symbol  first,  generate  the  intermediate 
states. 

4. After  the  transitions of the  allowed  symbols  from  state i of the 
parsing CFSM have  been  converted, if the  last  home  state  has not 
been  converted,  go  to  step  1  to  handle  next  home  state i + I .  

conversion is that  neither  the encoder  nor the decoder  is 
operating on the  CFSM which defines the code. Code 
definition is more  easily  done with fewer channel  states on an 
“extended”  alphabet of parsed  phrases. Following the code 
design  (see Section 5 ) ,  we allow the  encoder/decoder to 
operate on a machine with simpler symbols, each of unit 
duration,  but with more  states.  The original CFSM is the 
parsing CFSM,  and  the new CFSM is a unit-time  CFSM. In 
order  to  take  advantage of an easier  code  design process, 
while also taking  advantage of an easier implementation 

method, we must be able  to convert  between the equivalent 
parsing CFSM  and  the  unit-time  CFSM. 

In  this section we show how (d ,k)  constrained channel 
CFSMs with n home states in the parsing CFSM  can  be 
systematically converted to  unit-time  CFSMs.  This is a 
preparatory  step  to a  realization  with  a fixed rate J/C 
L-based  arithmetic code with  augend  table size of n x C 
entries instead of n x C x ( I ,$ I - 1)  entries. 

We first  describe the conversion process of a one-state 
( k  - d + 1)-symbol  (symbols of multiple  unit  duration) 
parsing CFSM  to a ( k  + 1)-state two-symbol (each of unit 
duration)  unit-time  CFSM.  See Fig. 1. Consider the  1-state 
(1,3)  channel whose three symbols are denoted a, @, and y, 
shown  in  Fig. 2. This is exactly  the  transformation used by 
Martin in his unit-time code  for (d ,k)  codes. 

We  can describe the  states of the  unit-time  CFSM with 
two  components, the first of which is the  last home state.  The 
second component is the  distance, in channel  time  units,  from 
the  occurrence of that  state.  The  unit-time  CFSM is defined 
if  we define all  its  states  and  state transitions. 

We keep  existing  home state 1 and  call  it 1,O. Begin with 
the longest  symbol y first. Symbol y is converted to  its 
unit-time equivalent of symbol 0001, which has a length Q(y) 
= 4. We  create Q(y) - 1 = 3 intermediate  states:  state l , I ,  
state 1,2, and  state 1,3. The next state function for  the 
parsing CFSM is T, and T (  1,y) is state l , O .  So from  state 
l ,Q(y) - 1 ,  the  transition  to T (  1,y) is drawn. Now  consider 
the next shortest symbol @, which is 001. We begin in state 
l,O, and  deal with each  unit-time symbol. First symbol 0 
already  takes  the CFSM  to  state 1, l .  For the second 0, we 
travel  two channel  time  units  from  the home state  to  interme- 
diate  state 1,2, which is state l ,Q@ - 1. The  third symbol is 1, 
which returns  the  CFSM  to  home  state 1,O. The  trajectory 
for symbol a = 01 is handled the  same way; i.e., when state 
l,C!(y) - 1 is reached,  the next  symbol (1) takes  the 
unit-time  CFSM  to  state T(1,a)  = 1,O.  

The rules for the  unit-time  CFSM  transitions governing 
each parsed phrase a from  state i are  as follows. As long as 
state i,Q(y) - 1 has not been reached,  the transition is by 
unit-time symbol 0 from state i,j  to i j  + 1 .  The  transition 
from  state i,Q(y) - 1 is by unit-time symbol  1 to home state 
T(i,a),O. 

We  have  described  the process  in such a way that  it is 
easily  generalized to parsing channel  CFSMs which have 
more than one  “home” state.  The rules  for the  general  case 
are shown below in Table 1. The method works because no 
parsed phrase is permitted  to  be  the prefix of another  parsed 
phrase. 



Example 
W e   s h o w  a generalized (1,3) parsing  channel CFSM in  Fig. 
2. The CFSM has four home  states,  I ,  2, 3, and 4.  T h e  first 
s ta te  I is converted  to  intermediate  states as shown in Fig. 
3. 

O t h e r  parsing CFSM home state   t ransi t ions  are  similarly 
converted  to   uni t - t ime  CFSM  t ransi t ions.  In Fig. 4 we  show 
how  state 3 is converted. In  s ta te  3, symbol y is not  allowed, 
so tha t   t he re  is no intermediate   s ta te  3,3. 

For s ta te  2, all   three  symbols  are  al lowed, so tha t   t h ree  
intermediate   s ta tes  are generated. For s ta te  4 ,  al l   three 
symbols  are  allowed, so that   three  intermediate   s ta tes   are  
generated.   Thus,   the   total   number  of s ta tes  in the  uni t - t ime 
CFSM is 15: t h e  4 home  states  plus 1 1  intermediate  states.  

The   p rocedure  of T a b l e  1 need not  require  Property  P2. 
T h a t  is, there   can be two  parsed  phrases of t h e  same length. 
S u c h  is the  case  where  three  levels  of magnet ic   recording  are  
permitted. The parsed phrases must  have  dist inct   unit-t ime 
transitions. The method of T a b l e  1 generates  a unit-time 
CFSM provided t h a t  no parsed phrase is t h e  prefix of 
another phrase from the s a m e  home state .  

The   des ign   advantage   can  be explained  in  terms of t h e  
previous  example. We ca lcu la t e   t he   g rowth   f ac to r   Wand   t he  
4 associated  eigenvector  components B ( 1 ) ,  B ( 2 ) ,   B ( 3 ) ,  and 
B ( 4 )  for the   4 -s ta te   pars ing   CFSM.   This  is  a simpler task 
than  for the  equivalent   14-state   uni t - t ime  CFSM. In  our  
technique,  only W and the  home  state  eigenvector compo- 
nents  need be known.   Next   we  convert   the   4-s ta te  CFSM to  a 
14-state CFSM, which is easier  to  realize. 
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