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Arithmetic Codes for Constrained  Channels 

Arithmetic codes  have been studied  in  the  context  of compression  coding, i.e., transformations  to code strings  which take  up less 
storage space or require less  transmission  time over a communications  link.  Another application of coding  theory is  that  of 
noiseless channel coding, where constraints on strings in  the channel symbol alphabet  prevent  an  obvious mapping  of  data 
strings to channel  strings. A n  interesting duality  exists between  compression coding and channel coding. The source alphabet 
and code alphabet of a  compression system correspond,  respectively, to  the channel alphabet and data alphabet of a constrained 
channel system.  The decodability  criterion of compression  codes  corresponds to  the representability  criterion of constrained 
channel  codes, as  the generalized Kraft  Inequality has  a dual  inequality  due  to  the senior author. 

1. Introduction 
The first paper dealing with a systematic  approach  to 
construct fixed rate codes for constrained  channels is [ 1 1. A 
code construction  approach is developed by Franaszek in 
[2, 31. A  different approach, called  sliding block codes, is 
described in [4].  Reference [4] provides an introduction to 
constrained channel coding,  complete with an extensive 
bibliography. It is noted in [4]  that  the  approach in [2, 31 
and  the sliding block approach have a connection via the 
Perron-Frobenius  theory. 

In  this paper we provide another  general viewpoint and 
approach  to  constrained  channel coding, which has a very 
different flavor. The basic  ideas appeared in an unpublished 
work by the senior author  [5].  This  paper includes the work 
in [5], plus extensions due  to  the  coauthors.  The present 
approach is based on arithmetic coding,  a technique origi- 
nally developed for data compression. We extend arithmetic 
compression  coding to  the  constrained  channel. In effect, we 
replace the decodability criterion  (with its  roots in the  Kraft 
Inequality) with  a representability  criterion. The techniques 
apply to a general class of constraints  and provide the 
designer with powerful new tools. With  appropriate  attention 
to precision, the present approach  can achieve very close to 
channel  capacity. 

The task of a channel coding scheme is shown in Fig. 1 .  A 
data  string is mapped to a channel  string which conforms to 
the  constraints.  The  channel  string undergoes an inverse 
mapping to recover the original data  string.  Transformation 
X’  is an expansion operation.  Transformation X’ is a com- 
pression operation. 

A  constrained channel  accepts  strings of symbols  from  a 
channel  alphabet. However the  “constraint” is viewed as a 
mechanism for disallowing certain  substring combinations. 
A  popular constraint, useful in magnetic recording  channels, 
is called a (d ,k )  channel. Information is transmitted  as 
magnetic flux changes within bit times. Due  to intersymbol 
interference (ISI), flux is not permitted  to  change in succes- 
sive bit  times. Flux changes too close together tend to cancel 
each  other, reducing the  amplitude of the signal  peak at  the 
detector.  The IS1 constraint  requires  that d bit times  must 
pass before the next flux change is permitted  to  occur. As a 
consequence, adjacent peaks  occur a t  least d + 1 bit  times 
apart. 

We also require  the information  recorded on the media to 
have a self-clocking property. Although  the information is 
recorded using a clock with a tightly  controlled period (e.g., 
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30 ns), the clock period (bit  time) may skew slightly due  to 
variations in temperature or delays in the clocking  circuits, 
etc.  To  make  any necessary  small adjustments  to  the clock 
phase, a flux change is required  within k bit times of the last 
flux change of constrained  channels called ( d , k )  channels. 

In  terms of 1’s and O’s, ( d , k )  channel  strings  must have at 
least d 0’s following every 1, but no more  than k 0’s following 
each 1. For  example, to be allowable by a (2,4) channel,  the 
channel  string is a concatenation of the following substrings 
of Table 1.  Except possibly for  a  beginning or ending 
substring,  any allowable  channel string  can be parsed into 
this new set of symbols, is.,  the  three symbols of Table 1 
could be considered an  alternative  alphabet  to symbols {0,1]. 

We now examine  sets of allowable channel  strings  to see 
how the  constraints come into play. To  describe a  set of 
strings, we introduce a tree.  Thus, for strings which share a 
common prefix, the prefix is shown only once. 

Consider the  set of channel strings allowed by the (2,4) 
channel.  The  tree shown in Fig. 2 is a representation of Table 
1 and  can serve as a generator for a channel  string  tree.  The 
symbol A is the ‘‘null” string. 

In  Fig. 2, node A is the root, the  other  interior nodes are ( ), 
and  the leaves are [ I .  The path segments  are labeled by either 
symbol 0 or 1. The  concatenation of path  segments gives a 
path. A node or leaf is identified by its path from the root. 
The root and interior nodes are  further identified by the 
numbers 1 through 5 in parentheses.  These nodes are subse- 
quently associated with states of a  finite state  machine. 

The  constrained  channel has been studied by Shannon [6]. 
The  channel is described in terms of a channel finite state 
machine  (CFSM).  The  CFSM differs  from  an ordinary 
FSM.  The  CFSM  “output” is specifically the  identity of its 
internal  state, which places the  CFSM in the Moore machine 
class. However, a CFSM differs  from  a  Moore machine in  
that a  value !? is associated with each  input symbol. In  
magnetic recording, the value !? is the symbol duration 
measured in units of time. 

The description of the  channel  constraint is actually of the 
form of a  finite state transition diagram of “allowed” transi- 
tions. The value !? enters into the  rate  calculation. More 
precisely, the  CFSM is defined as: ( 1 )  a  set of states ( i , j ) ,  (2) 
channel symbols a, @, . .., E ,  .. ., w of respective lengths  (dura- 
tions) Q(a),  !?(p), ..., Q([), ..., Q(w),  and (3)  a state transition 
function T(i,{), where  T(i,E) is the  state reached when 
symbol 5 is received in state i. The channel  symbol  length is 
measured in integral  channel  time units. 

In practice,  the  channel coding  problem is to  map  arbi- 
trary  data  strings  into  strings of allowed channel symbols. 
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Data string 
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Figure 1 A typical  channel  coding  system. 
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Figure 2 A code  string  tree  generator for (2,4) channel 

Table 1 Channel  alphabet of substrings for (2.4) constraints. 

00 1 
000 1 
00001 

The  channel  capacity is log W bits per channel  time  unit, 
where W is a  growth rate of allowable channel  strings per 
unit  increase in  length [6]. To achieve the  channel  capacity 
rate,  Shannon probabilities p(i ,E) are associated with each 
CFSM transition from channel  state i under  channel symbol 
€. 

Many channel coding approaches [7, 81 approximate  the 
Shannon transition  probabilities with integer  length  code 
word mappings. Guazzo [9] uses the probabilities  directly in 
an  approach more closely related  to this paper. Following 
Guazzo, we use an  “inverted  encoder-decoder  pair.” 

The application of the inverted  encoder-decoder  pair gives 
rise to a dual of decodability  encountered in compression (95 
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Figure 3 Example prefix  code.  Image of source string is single 
leaf. (a) Code table and prefix code; (b) code string tree. 

Table 2 Compression  coding versus channel coding. 

Operation  Input  output 

Compression  encoding Source Code 

Compression  decoding Code Source 

Channel  coding Data Channel 

Channel decoding Channel Data 

(AC* compression) 

(AC expansion) 

(AC expansion) 

(AC compression) 

*AC = arlthmelic coding 

coding  called representability. The  Kraft  Inequality also has 
a dual  inequality.  The analogies of compression  versus 
channel coding are shown in Table 2, which also introduces 
the terminology  employed. 

2. Arithmetic coding preliminaries 
This section is based on [ I O ]  and is included to  make  the 
presentation  more  self-contained. We review arithmetic cod- 
ing for compressing  source strings whose alphabet is {a, @, 
..., w). Let {O, l}  be the code alphabet. A coding  function F 
maps each  string of the source alphabet  to some string in the 
code alphabet: 

{a, @, ..., w)* - {O,l}*. 

Here we use * to  denote  the "star" operator, which generates 
all possible strings  drawn  from  the  alphabet, including null 
string A. To reduce computational complexity, the mapping 
of an arbitrarily long source string is not made  to its image in 
the set of code strings in a single step. Most coding  functions 
are recursive. The  algorithm consists of a series of operations, 
applied to  each successive symbol of the source string,  from 
left to  right.  Figure 3 shows a mapping from a source string 
to a binary code string for a prefix code. Figure 3(a) shows a 
code word table for source symbols a, fl, and w. The coding 
function F proceeds  recursively,  handling  one  source symbol 
per recursion. The first symbol of string s, which is fl, is 
mapped to 10. For the second symbol, string fla is mapped to 
100, by concatenating 0 to 10. We  handle  each next  source 
symbol by a concatenation operation to  the code string.  Thus 
the depth of the code tree increases each recursion. In Fig. 
3(b) we highlight the  branches traveled with dashes  to 
demonstrate  that  the coding process successively identifies 
the underlined nodes in the code string  tree.  The root of the 
code word tree is attached  to  the leaf at  the  current  depth of 
the  tree, as per the previous source  symbol. 

Before encoding the first symbol, we are initialized at  the 
root of the code string  tree.  At  initialization,  the available 
code space ( A )  is a set which consists of all finite code strings 
{0,1]*. Following the encoding of the first source symbol @, 
we are  at node I O ,  i.e., F ( @ )  = 10. A node is identified by its 
path  from  the root. The length of the  path corresponds to  the 
depth of the node; here  the  depth is 2. The  current code space 
available has now been reduced from the initial  code space 
(all code strings)  to  the  smaller set of all  code strings whose 
prefix is 10, denoted 10{0,1)*. Where  the  alphabet upon 
which we apply the  star  operator is understood, we simplify 
the notation to lo*. At  the  current  state, only code strings in 
10* can result from continuing the encoding process. Any 
string belonging to set 10* is a continuation of node 10. We 
recursively subdivide, or subset,  the  current code  space. In 
the  example,  the operation following that which gave us 10* 
delivers a subset;  the result is set loo*, a subset of set lo*. 

A feature of prefix codes is that a single node in the code 
space is identified as the result of the subdivision  operation. 
In general,  each successive source string prefix s of the  input 
string is mapped to a single string in the set of all  code strings 
{0,11*. 
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Arithmetic  codes and  the  code  space 
Arithmetic codes do not map individual  source string pre- 
fixes to individual  code  strings. Instead, they map successive 
source string prefixes s to a current code space A ( $ ) ,  which is 
defined as all continuations of a  set of leaves at  the  current 
code tree  depth.  (We discuss later  the  termination operation 
which converts the final code space  to a  single  code string.) 
In  arithmetic codes, as opposed to prefix codes, the code 
space is a set union, e.g., of 01 I *  and  loo*. 

During  the  sequential encoding and decoding  recursions, 
arithmetic coding represents  the  current code space of the 
current source prefix s as a set of adjacent leaves at  the 
current code tree  depth. A  set of adjacent leaves may be 
identified in  several ways: ( I )  the leftmost leaf and  the 
number of leaves to its right; (2) the  rightmost leaf and  the 
number of leaves to its  left; or (3) the leftmost and  the 
rightmost leaves. 

We represent the set by the first method  above, by 
variables F(s)  and A(s)  defined as follows: 

1. F:  the  path  to  the first (leftmost) leaf in  the code  space; 

2. A :  the  number of leaves in the code  space. 
and 

Following the  step which handles source prefix s, F ( s )  is 
analogous to  the  path  to  the first leaf and A(s)  the  number of 
leaves at  the  current  depth in the  current code space.  See Fig. 
4 for an  example where the  current  depth is 3. As in prefix 
codes, the code space is successively subdivided, as governed 
by each source  symbol  encoded. Note  that  the right  bound- 
ary of the  current code space is just  outside  the interval, so 
the interval is open on the  right.  Since F ( s )  belongs to  the 
interval.  it is closed on the left. 

Termination  operation 
When  the recursion on the  last source symbol has taken 
place, what  remains in the code string  tree analogy of 
arithmetic coding is a  set of nodes at  the  current  depth.  We 
therefore select  a  single  code string from the  current code 
space  during a  code string  termination  operation. In this 
light, we say prefix coding terminates  the  current code space 
to a  single node F following the recursion which encodes each 
source  symbol.  For prefix codes, the coding  process  ensures 
that  the  number A ( s )  is always  unity. 

Mapping code strings  to the unit interval 
At  the code string root A the initial  code space (0,1}* extends 
from 00 ... 0 to 11 ... 1 a t  some  finite depth.  We  can  map  the 
code space  to  the unit  interval of rational  numbers, beginning 
with value  zero and  extending to, but not including, the value 
one. We  treat code strings  as a fractional  magnitude by 
placing  a binary point on the left. The interval shown in Fig. 
3 is rewritten  as  [.010,  .lOl), where the size of A is  now the 
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Figure 4 Arithmetic  codes  permit  image of source  string in code 
string  tree  to be a  set of leaves. 

number of nodes (3) multiplied by 2" or 3 x yg, which is .011 
in binary  representation. 

This conversion to a new representation that we have just 
made  permits  arithmetic  operations on code strings. In the 
example  tree of Fig. 4, at  a depth of 3, string F(s) is .010, and 
the value of A($) is ,011. Code  string prefix F(s)  + A ( s )  = 

,101 is just  outside  the interval defining the code space at  the 
current  depth. 

Having a  correspondence between nodes of the code string 
tree  and  the  number interval, we subdivide the interval by 
arithmetic operations. The  arithmetic  nature of the subdivi- 
sion recursion gives arithmetic coding its  name.  Each source 
symbol [ is handled by adding  (instead of concatenating) a 
value D(s . [ )  called an augend to  the  right end of the code 
string F(s ) ,  forming F(s.[)  = F(s)  + D(s.{) .  The "." 
between the prefix of a  source string  and  the next symbol 
denotes concatenation  and  illustrates  the source symbol { 
involved in the recursion. 

Subdivision  operation 
For data compression,  one  property we wish to avoid in 
subdividing the code space  (current  interval) is overlap. If 
the code  spaces for two distinct source strings overlap, then 
there will be a  problem  for the decoder upon receipt of a 
string in the overlapping space-which  of two possible source 
string prefixes was encoded?  Thus, for decoding, we require 
a subdivision into nonoverlapping parts.  The  danger of 
overlap  exists between strings which are  adjacent in the 
ordering. 

Consider the  alphabet {a,p,w} and  the set of strings of 
length 3 under  the  ordering a,p,w. The code space is subdi- 
vided according  to this ordering.  We use s + 1 to  denote  the 
next string  after s i n  the  ordering of the  same  length. If string 
s = ppw, then s + 1 = pwa. Thus  the code space assigned to 
s + 1 is immediately  to  the  right of the code space assigned to 

G .  NlGEL N. MARTIN ET AL. 



. . . . . . . . 

.010000 

Figure 5 Code  tree  refinement and subdivision of current space. 

s. Similarly, s - 1 indicates  the  immediately preceding 
string, i.e., Pwa - 1 is ppw. 

Consider the  example of Fig. 4 and  assume  that  the 
subdivision operation does not produce either  an  overlap or a 
gap in the leaves of the  tree between the code space for string 
s and  the code space for s + 1. Such a subdivision is a 
partition. For  a partition,  the sum F(s) + A ( s )  gives the 
value of the code tree leaf just  to  the  right of the  current code 
space. For Fig. 4, F(s + 1) = .101. We  summarize  this 
below: 

Partition (no gap or overlap): F(s + 1) = F(s)  + A(s) .  

In any event, the value F(s + 1) - F(s) defines the size of 
the code space which encoded continuations s* of strings  can 
use without  overlapping the code space assigned to  string 
s +  1. 

'The + 1 notation, when applied to nodes on the  right 
boundary of the code string  tree, is a  special case.  There  are 
no nodes to  the  right of the  rightmost node at  each  depth or 
level. Thus  what  do we mean by www + 1 ? In  reality,  the 
s + 1 notation is used to identify  some property involving the 
left boundary of the code space  to  the  right of string s, e.g., 
F(s + 1). When s = w,  ww, ww, ..., w, etc., that  property is 
obtained by defining 

F(A + 1) = F(o + 1) = F(ww + 1) = ... = 1.000. 

In arithmetic coding, of the initial  code space,  the leftmost 
nodes at  any level are identified as .OOOO ... 0, and  the 
rightmost nodes have the form . 1  1  1  1 . . . 1. We initialize the F 
and A  values to F(A)  = .O, and  A(A) = 1.0. With F ( h  
+ 1) = 1.00, note that F(A) + A(A)  = 1.00 and  that 1.00 is 

98 just  outside  the  current code space,  as  desired. 
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Code space refinement and realignment 
In handling  the next source symbol,  a  problem in subdividing 
the code space occurs when it is represented by too few 
leaves. Consequently we must  increase  the  tree  depth.  Sup- 
pose the two-symbol source  alphabet is {a,w) and  the code 
space in Fig. 4 is to  be  partitioned  according  to a  split  for the 
less probable symbol a in the  range 1/16 to '/32. We lack the 
precision to split three leaves in this  proportion. We  can solve 
the precision problem by increasing the  depth  from 3 to 6; see 
Fig. 5. This figure is very instructive. Each leaf (node) a t  
depth 2 is refined to 23 leaves at  depth 6, without changing 
the value of the  current code  space. By increasing the  depth 
from 3 to 6 for greater  arithmetic precision, the code space 
becomes [.OlOOOO,  .lOlOOO). The effect of an increase in 
depth on the code string F is to  add  more 0's on the  right. 
There  are now 3 x 8 = 24 nodes at  the new depth,  but size  A 
is the  same, 24 x 2-6, because the  depth is now 6. At  depth 6, 
with 24 leaves in the code space, we have  enough precision to 
split the code space in the desired range. In Fig. 5, we assign 
a as  the first symbol  in the  ordering, hence the  left  part of a 
partition is assigned to a and  the  right  part  to w.  

The  partition shown has a  single leaf in one part (in this 
case  the leftmost) and 23 leaves in the second (rightmost) 
part  and achieves  a subdivision whose proportion lies within 
1/16 to Yx.  If the  current source  symbol is a, we keep  the 
smaller  part, so that F(s.a) = .010000 and  A(s.a) is reduced 
to '/26 or .000001. On the  other  hand, if the  current symbol is 
the more probable w, we keep the  current code space  as 
defined by F(s.w) = .010001. and  A(s.w) = .011000 - 
.000001 = .010111. 

In arithmetic coding, the source and code  symbols are 
ordered,  an  ordering which extends lexicographically to  the 
strings.  The  arithmetic coding  compression operation  recur- 
sively maps a  source string  to a subset of code strings of a 
given length. For each new source symbol, this code string 
subset is subdivided. The length of the code string subset is 
possibly increased by an operation  called  realignment. Re- 
alignment essentially makes more strings available in the 
subset, so that  the subdivision operation can achieve finer 
proportions. 

The code string is generated recursively.  A first arithmetic 
recursion adds a  value D (augend)  to  the previous code 
string. A  second arithmetic recursion on code space A 
controls the  realignment. In probability-based arithmetic 
codes, the second recursion is a product of probabilities. In 
length-based arithmetic codes, the second recursion is a sum 
of lengths. See [ 111. 

Arithmetic coding equations 
The  number A is a fraction of q significant digits, whose 
value  corresponds  roughly to  the probability p ( s )  of the 
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source string.  More formally, the code string subset is the  set 
of code strings c such that Q(c) = Q ( F ( s ) ) ,  and F(s)  5 c 
< F(s)  + A@). 

Given a next symbol E to encode, [F(s) ,F(s)  + A(s))  is 
subdivided into  as  many subsets as  there  are symbols in the 
alphabet. For compression  purposes A(s.t) should be such 
that A(s.( ) /A(s)  = p ( ( / s ) ,  where p ( ( / s )  denotes  the  state 
dependent probability of symbol ( given the  context defined 
by strings. 

Let subdivision operation S act upon value A(s) to  deter- 
mine  values A(s.a),  A(s.P), ..., A(s.w):  S(A(s),P) = A(s.0). 
Consider the  case where the  space A(s) is partitioned; we 
have 

A(s) = A(s.a) + A(s.0) + ”. + A(s.() + . ”  + A(3 .w) .  

For the first symbol, F(s.a) is F(s)  so the subset is 
[F(s) ,F(s)  + A(s.a)) .  For the second symbol @, the subset is 
[ F ( s )  + A(s.a),A(s.P)). In general, 

= F ( s )  + D(s,O, (1) 

where D(s, t )  is the  sum of the code space sizes A(s.7) of all 
symbols y < E.  The  term  addend  may be applied  to values 
A(s.y). Also, 

A(s.0 = D(sJ  + 1) - D(s,E). (2) 

Except for the  last symbol, Eq. (2) serves as a definition of 
the code space  available for string s.E. The  available code 
space for s.w is 

A(s.w) = F(s + 1) - ( F ( s )  + D(s,w)). 

For the decompression operation, we begin with a  code 
string F treated  as a fraction. To decode the first  symbol, we 
apply the subdivision operation to A ( A )  and  determine  the 
largest  augend D(A,E) less than F. We decode ,$ such that 

D(A,()  5 F < D(AJ + 1) .  (3) 

To decode the second  symbol,  it is convenient to  subtract 
augend D(A,()  from F and  compare  the  augends D((,y)  
against F - D(A.f ) .  

In compression  coding, the  transformation is decipherable 
i f  the subdivision operation  satisfies the following inequality 
for the  addends: 

A(s) 2 A(s.a) + A($.@) + “ ’  + A(s .w) .  (4) 

Here Eq. (4) is called the  decodability  criterion. 

P-based  coding  equations 
There  are basically  two ways to subdivide the interval A(s) 
according  to a set of probabilities. We first  perform the 
subdivision with the probability-based (P-based)  technique 
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4 s . E )  = 4 s )  x P ( E / S ) >  ( 5 )  

where “E” includes the necessary approximation such that 
the precision of A($.()  is not allowed to grow, and where 
p ( { / s )  is the portion of the  current code space allocated to 
symbol for the  iteration following those which have  handled 
string prefix s. In  general,  the  binary representation of A(s.E) 
will have a number of leading 0’s followed by a  q-bit 
mantissa whose leading  bit  value is 1. The subdivision 
operation is then performed on the  mantissa.  Equation (1) is 
used to encode,  where augend D(s,() is the  sum of A(s.7) for 
symbols y < (. 

L-based coding  equations 
A second approach  to  the subdivision operation is the basis 
for the length-based (L-based)  arithmetic codes. Each value 
p ( ( / s )  is represented as a  length Q ( E / s ) ,  where 

W s )  = -log P ( E / S ) .  (6) 

The lengths are  rational,  to  some integer denominator C. The 
size of the code space for continuations of string s is kept as 
the  sum L(s)  of the lengths of the encoded symbols compris- 
ing string s, where E($)  is the integer part  and X ( s ) / C  is the 
fractional  part. X ( s )  takes on values 0, 1, . . ., C - 1. The E(s)  
of L-based arithmetic codes  corresponds to  the  number of 
leading 0’s of A(s) in P-based arithmetic codes, and  the 
mantissa of A($)  corresponds  roughly to  the value 2?)’c. 
The  augends D(s,() are of the  form 

D(s.[) = M(X,E) x 2-E(s ) ,  (7 )  

where augend  mantissas M are typically  precomputed  for 
each symbol and  each  value of Xand  are stored in an  augend 
table. 

3. An arithmetic  coding  overview of channel cod- 
ing 
In  compression  coding, if the subdivision operation partitions 
the subset and assigns  a partition (no gap, no overlap) to  each 
source  symbol,  then the code is decipherable  and  the avail- 
able code space is completely  utilized. If the subdivision 
operation leaves no overlap but allows a gap  (a subset 
assigned to no next input symbol), the code is still decipher- 
able. However the  gaps  do not utilize  code space  and give less 
compression. If the subdivision operation permits  the  subsets 
corresponding to two distinct  input  strings  to overlap, then 
the code is undecipherable. 

In  channel coding, if the subdivision operation leaves gaps, 
the code is not representable.  If the  channel code subdivision 
operation partitions  the subset a t  each  step,  the code is 
representable. If the subdivision operation leaves overlapping 
subsets, the code is still representable  but  there is a  reduction 
in information rate. P9 
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In the following sections we describe the coding  recursions 
and establish the  requirements for representability.  Arith- 
metic  coding provides more than  one solution  for channel 
coding. One solution  employs approximations  to  the  Shannon 
probabilities and a subdivision operation which recursively 
partitions  the  subset of channel  strings. A  second  solution is 
reminiscent of a  length-based arithmetic code [7]. The 
second solution offers a fixed rate code. 

Instead of determining how to encode data  strings  to  the 
channel, let us first consider translating  channel  strings back 
to  data  strings, i.e., the  mappingX2 of Fig. 1. This  mapping is 
the  arithmetic coding  operation.  A  constrained channel  can 
only accept a subset of strings consisting of symbols drawn 
from  the  channel  alphabet.  The  channel  alphabet is ordered, 
so we can  order  the  channel  strings u. The  data  string 
corresponding to u is F(u) .  In ordinary  arithmetic coding 
where the probability of each  string is known, F ( u )  is the 
probability of all strings less than u in the  ordering. For 
channel coding, the corresponding  intuitive  property is: of all 
long, acceptable  channel  strings  starting with prefix u, a 
fraction F(u)  of acceptable  channel  strings precede u in the 
ordering.  This  fraction  can be expressed as a fractional 
number whose radix is the  cardinality of the  data  alphabet. 
For practical purposes, we assume  the  data  string  alphabet  to 
be binary and  the  data  string  to be a binary  fraction. As with 
compression  coding, the  mapping is order preserving; thus, u' 
< u2 implies ~ ( u ' )  < ~ ( u ' ) .  

To transform a data  string  into a channel  string u, we treat 
the  data  string  as a binary  fraction F(u) .  We  then find 
channel  string u such that of all long, acceptable  channel 
strings,  the portion F(u)  have an P(u)-symbol prefix which is 
less than u. We perform this  transformation recursively, 
generating  one  channel symbol per  recursion. The  binary 
representation of the  fraction is decompressed by arithmetic 
coding; each newly decompressed channel symbol is the next 
symbol of the  channel  string. 

Thus  to  transform a channel  string u back  into a data 
string, we find the  binary  representation of fraction F ( u )  
such that of all  long, acceptable  channel  strings F(u)  have an 
Q(u)-symbol prefix less than u. Again,  the  transformation is 
performed  recursively on each  channel symbol, this  time by 
AC compression. 

Some  notation is needed. Let  string u.E result  from  concat- 
enating symbol E to  string u. Let  strings u + 1 and u - 1, 
respectively, denote  the  strings of length P(u) next higher 
than u in the  ordering  and next lower than u in the  ordering. 
Let A denote  the  empty  string.  The  initial conditions are 

F(A)  = 0 and A ( A )  = 1.00, (8) 

so that  the initial space is the  number line of fractional 

numbers including 0: [0, 1). If uw is the highest string of 
length $!(uw) in the  ordering,  then uy + 1 is undefined. By 
definition 

F(u, + 1) = F(A + 1) = 1.00. (9) 

4. Channel  coding  with  arithmetic  codes 
The  arithmetic decompression  recursion generates  the  chan- 
nel string  from a data  string.  The compression  recursion 
recovers the  data  string  from  the  channel  string.  We  assume 
that  the  channel finite state  machine model for the  channel 
constraints has been calculated. For convenience, we assume 
that  the  CFSM begins in state 1, and we receive channel 
string u. We  can simplify the next state function notation 
T( 1,u) by simply using T(u).   The  state dependent  Shannon 
probability  for symbol following string u may be denoted 
P(El T(u) ) .  

The key idea in the application of arithmetic coding to  the 
constrained  channel is the definition of F as  the  fraction of 
long, acceptable  channel  strings whose P(u)-symbol prefix is 
lower than u. It  can be shown that  from  the  channel  state 
T ( u ) ,  in which channel code symbol occurs, the value of 
Shannon probability p ( [ , T ( u ) )  is the fraction of all long, 
allowable channel  strings from state T(u)  under symbols 
preceding symbol E.  Arithmetic coding provides a  simple way 
to implement the correspondence  between an  acceptable 
channel  string u and  the  number  representation F(u) .  The 
coding  recursion is as follows: 

F ( U . 8  = F(u)  + D(u,E), (10) 

where D(u,E) is the  state  dependent  augend representing the 
portion of all  channel  strings which are  continuations of 
channel  strings u.a through u.E - 1. 

Representability of data  strings 
In applying the  arithmetic encoding and decoding  functions 
to  channel coding, we must  ensure  that  all  data  strings  can be 
represented as  channel  strings  and  that  the  data  string  can be 
recovered from  the  channel  string. 

Just  as  channel coding is a dual of compression  coding, the 
inverted order of the compression and expansion  phases 
creates a dual  to  the notion of decodability. Each  data  string 
must be representable  as a channel  string. If there is a data 
string prefix which is not the  image F(u)  of some channel 
string u, that  data  string is not  representable. 

Decodability  implies that  the subdivision operation  must 
not create  an overlap of code  intervals. Similarly, in the  dual 
situation of channel coding, representability  states  that  the 
subdivision operation  must not leave any  gaps in its range, 
the set of all the  data strings. For channel coding, we may 
subdivide  a current code space A ( u )  such  that  the sum of the 
sizes of the  subintervals exceeds the original  interval. 
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We  study  the  representability  criterion for the subdivision 
operation with the  aid of Fig. 6 .  We consider an interval 
between F(u)  and F(u + 1)  and  the subdivision which 
defines F(u.6) and F(u.( + 1). Following the subdivision 
operation for channel  string u.6, the size of the interval  taken 
up by continuations of u.6 is seen to be D(u&w) + A(u.6.w). 
If this value  does  not exceed the value F(u.( + 1) - F (u . [ ) ,  
corresponding to  the interval to  be  spanned 

[F(u.F), F(u.F + 111, 

then a  nonzero gap  appears  as identified in Fig. 6. This  gap is 
zero if 

F(u.F + 1) - F(u.6) = D(u.l,w) + A(u.6.w). (1 la) 

The  left-hand side may be rewritten in terms of the  augend 
and  addend values as D(u,[ + 1) - D ( u . 0 ,  but  the  right- 
hand  side contains  term A(u.(.w). Since w is the  last symbol 
in the  alphabet, we have not yet defined D(u.(,w + 1)  and 
hence A(u.(.w). Define 

D(u,w + 1) = D(u,w) + D(u.w,w) + D(u.o.w,w) + ... 
( I l b )  

such that 

A(u.w) = D(u,w + 1) - D(u,w) 

= D(u.w,w) + D(u.w.w,w) + ’.. . (1 IC) 

D(u,F + 1 )  ~ D(u,[) = D(u.F,w + 1).  (12) 

In view  of Fig. 5 and  the above, we may  rewrite  Eq. (1 la)  as 

We leave a gap if D(u,( + 1) - D(u,{) > D(u,(,w + 1). In 
compression  coding, the problem to avoid is an overlap 
during  the subdivision operation,  but  gaps  are not disastrous. 
In channel coding, the overlap is not harmful, but gaps  are 
disastrous.  Since  the decompression  recursion is performed 
on all  data  strings,  the effect of overlap is to exclude certain 
channel  strings from the  output of the  channel encoder. The 
greater  the overlap, the less the  rate. For representability, 
overlap is permitted, so the  equal sign of Eq. (12)  can be 
replaced by the 5 sign. The result is an  important  inequality 
due  to [ 5 ]  (a  dual  to a  generalized Kraft  Inequality for 
compression): 

D(u,E + 1) - D(UJ)  5; D(u&w + 1). (13) 

When  Eq.  (13) is met with equality for  all  values of u and E.  
the subdivision operation always yields a partition with zero 
overlap and zero gap. Subdivision operations which partition 
the code space  are  suitable for either compression  coding or 
channel coding. Such compression  codes, e.g., Guazzo [9j, 
are also suitable for channel coding. Also in this  category is 
an  arithmetic compression  code due  to  Martin [ 121. In this 
case  the code is designed to use the  Shannon probabilities 
directly [9]. However,  it is more  interesting  to consider 
techniques which provide a fixed rate. 
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Figure 6 Subdivision  notation  and  illustration of gap. 

For arithmetic codes, the subdivision operation is suitable 
for channel coding if the sense of the decodability  inequality 
of Eq. (4) is reversed: 

A(u)  5 A(u.1)  + ... + A(u.w).  (14) 

For length-based arithmetic codes which use augend  tables, 
the  addend values in Eq. ( 1  4) may be obtained  from  Eqs. (2) 
or (1  lc). 

Fixed rate channel codes for  (d.k) constraints 
The  arithmetic codes of the previous section can be employed 
in channel coding provided the interval subdivision process 
conforms to  (13).  There is no guarantee, however, that 
the result provides a fixed rate. Moreover, the  general 
approaches  are designed  for handling general  probabilities. 
Since  the  Shannon probabilities are not arbitrary, i.e., are 
derived in a structured way, some implementation advantage 
is to be gained. 

In this  section, we study fixed rate codes in the  context of 
the (d ,k)  constraints.  There is a particularly simple way to 
take  advantage of the  nature of the  Shannon probabilities 
while at  the  same  time providing a fixed rate code. The basis 
for this approach  depends upon the following: 

For any  CFSM, if string u of length Q(u) takes  the 
CFSM from  initial state 1 back to  state 1, then  current 
interval sizeA(u) is W-’”). Thus A(u)  is dependent only 
on value i?(u). 

To show the above, a t  initial state I ,  the code space is the  set 
of all  allowable channel  strings  from  that  state. Asymptoti- 
cally, there  are WP(”) such  strings of length Q(u).  Since u is 
one such string, u represents W-“”)  of the code space from 
state 1,  because we have returned  to  state 1. (State 1 where 
we ended  “spawns” the  same relative number of channel 
strings per unit length as  the  state we started with.) 

For (d ,k)  codes, the  CFSM is systematically returning  to 
state 1  upon receipt~of a 1. We  can  take  advantage of this fact 
by assigning to symbol 1 the left part of the result of a 
subdivision operation. 
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Figure 7 Finite  state  machine for (2,4) channel  constraint.  The 
channel  string  tree  appears  as in Fig. 8. 
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Figure 8 Channel  string  tree  for (2,4) constraints, 1 on left,  to 
depth 5. 

I 

A ( u , l ) =  W-"u'l'  A ( ~ . O ) = ( A ( ~ ) - W - ' ( '  I)) 

Figure 9 Subdivision  operation for (d ,k)  constraints. 

For the  (2,4)  constraints,  the CFSM  appears in  Fig. 7. 
This  CFSM  acts in unit time,  that is, upon the basic channel 
time  unit symbols 0 and 1. A one-state three-symbol "ex- 
tended alphabet" or parsed phrase  CFSM could be defined 
using the  three  phrases 001, 0001, and 00001. The  channel 
string  tree  appears  as in Fig. 8. 

The  data  string corresponding to a (d,k) channel  string is 
constructed  as follows. For nodes (states) where the  channel 
symbol is certain  (no choice, only one possible value),  the 
interval is not  subdivided and nothing is added  to  the  data 
string. For states where there is a  choice, then  the interval is 
subdivided into two parts,  and  the size of the left part is 102 
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W-"'). In  other words, whenever the  current  interval is 
subdivided, it is  subdivided as shown  in  Fig. 9. 

The only time  the  data  string value is changed is when a 
nonzero augend is added  to it. Since  the nonzero augend is 
always W-*(".'), the only interval subdivision operation 
required is to  maintain  the  current value of 

A(u.1) = D(u.0) = W-a(u.o) = W-*(")+l. (15) 

A(u .1 )  is implementable  as follows with  a symbol-wise 
recursion: 

Since W-I is constant,  the value of recursion variable  A(u.1) 
depends only on Q(u)  + 1 : we denote  the recursion variable  as 
A(Q(u)  + 1).  At  any  channel  time  unit, we add  to F(u)  either 
nothing or the value of recursion variable A .  If the  binary 
choice  selects the  right  part of Fig. 9 (the symbol is a 0), we 
add A(Q(u)  + 1) to F(u) to  obtain F(u.0). For the  (2,4) 
constraints, a  choice can only occur  for transitions  from 
states 3 or 4. Suppose  a (2,4)  channel  string u is as follows: 

0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 .  (17) 

The symbols governing the  transitions from states 3 or 4 
are checked and  are those at  lengths 3, 6,  7, 10,  11, and 15. 
The symbols a t  lengths  1, 2, 4, 5,  8, 9,  12,  13,  and 14 are 
constrained transitions and  do not cause a subdivision; there 
is no choice as  to  the symbol value.  Of the unconstrained 
transitions (involving a binary choice), only the symbols a t  
lengths 6, 10, and 11 are assigned the  right  part of a 
subdivision. At these  lengths, the subdivision operation 
creates  strings of portions 

W - 6 ,  W-", and W - " ,  

which are lower than  string u in the  ordering  and  require a 
nonzero augend.  We  deduce 

4 4 4 4  .4 4 

F(u)  = w-6 + w-1° + w-". (18) 

Our observations for the (d ,k)  constraints  are  summarized 
by Eq. (19).  We describe the recursion on Q(u) ,  the  length of 
the prefix of string u.  If Q(v) is 1, then u is the first symbol of 
U. 

F(u)  = x 6" x W-*("), 
W U )  

(19) 
Q(") = I 

where 6" is zero if the  last symbol of u is 1 and 6" is unity only 
if u ends in 0 and T(u - 1,O) is among  states d + 1 through k .  
6" is normally  zero,  but it is one when the P(u)th channel 
string symbol is 0 and not constrained to be 0. 

Equation  (19) is valid for all (d ,k)  constraints  and is an 
interesting way of viewing (d,k) codes from  an  arithmetic 
coding  perspective. E Q .  (19) generalizes to  constrained 
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channels whose allowable strings  can be parsed to give a 
one-state  CFSM.  When weighted by eigenvector  compo- 
nents of multi-state  CFSM's, Eq. (1 9) generalizes to more 
economical  coding implementations in a  companion paper 
~ 3 1 .  

The  implementation of channel coding  for (d ,k )  codes is 
thus  quite simple. The  internal  variable for the subdivision 
recursion at  each  channel  time  unit involves only multiplying 
the  current value of W-"") by W" to obtain  the new value. 
Although  this value only coincides  with addend A(u.1)  from 
states which have  a binary choice, we use the  notation A ( u )  
for the  internal recursion  variable. 

There  are  three problems: 
1 .  W is an  irrational  number. 
2. We  must avoid a "growing precision" problem. In using 

finite precision arithmetic, we would prefer to keep  a 
fixed rate. 

3. We must approximate W" and  carry  out  the subdivision 
operation such that no gaps  are left, i.e., we must satisfy 
the  representability inequality of Martin [SI. 

Two means of using finite precision and performing the 
subdivision suggest themselves-a multiplicative approach 
and a  length-oriented approach. In either  case, we should 
approximate  Wwith a number slightly smaller, which means 
W" should be approximated with a number slightly larger. 
This  ensures  that  the size of the interval will be slightly 
larger  than  the  ideal. 

P-based  binary  codes for   (d ,k)  constrained  channels. 
In the P-based approach, we seek a q-bit  binary  factor P such 
that 

P >  w-I. (20) 

For each  channel  time  unit, i f  the symbol  indicates  a 
binary choice 0, recursion variable A is added  to F(u) .  We 
also  multiply A by P to  obtain  the  intermediate  (unnormal- 
ized) product A x P. This product may have  a  leading 0, 
which means  the  intermediate product is normalized by a  left 
shift  before  placing  it in A. Normalizing A(Q(u)  + 1) also 
calls for a  left shift of F(u) .  Without a leading 0 in the 
intermediate  product, no normalization  shift is needed. 

Since Q(A) = 0, we initialize  recursion variable A ( A )  to P. 
Note  that were we to initialize A to 1.00, then  the  result of 
the first product would be P. By initializing to P, we are  one 
channel  time  unit "ahead" in calculating  the  augend.  That is, 
after II time  units  the  value in A corresponds to W-"'. In this 
way, we always have the nonzero augend  precalculated.  This 

yields an  implementation  advantage;  the product for the new 
A(!?(u) + 2) can  be performed concurrently with the  sum 
F(u.0) = F ( u )  + A(Q(u)  + 1) if required. 

L-based  binary  codes for   (d ,k)  channels 
The L-based (d ,k )  approach [5] precedes the P-based 
approach.  The  factor  W-l is approximated  to  the  number 
base 2, as a  negative rational power - J / C :  

2- JIC ~ w- 1. (21) 

For best efficiency, J / C  should be such that 2J'c  is very close 
to, but slightly smaller  than, W. For ease of implementation 
the value of C should be small, e.g., 2, 3, or 4. 

In a  sense, the information value of each  channel  time unit 
is J / C  bits. For a channel  string of length u, the value W-"") 
is approximately 2-Jx'(u)'c , which we can represent as 
2-E(u) x 2-X(u)/C 

where the  integral division of J x Q(u)  by C yields quotient 
E ( u )  and  remainder  X(u). Values of X belong to  the  set {O, 
1, .. ., C - 11. Note  that for fixed rate, L-based arithmetic 
channel codes, E ( u )  and  X(u)  are  actually independent of 
the  particular  sequence of channel symbols comprising u and 
depend only on the  channel  string length Q(u). In this 
context, we may equivalently employ the  argument Q ( u )  in 
functions E and X without introducing  ambiguities. 

We  generate  the  data  string from the  channel  string 
according  to Eq. (22) below, which is Eq. (19) with our 
approximation: 

P(") = I 

We  can  factor  augend  terms 

q u )  = 2-JX'(W 

into  an  integral  shift 2-€@) and  fractional power 2-"")/C. 
Unfortunately, most  values  2-x(")/c are  irrational  and  must 
be approximated by rational  augend  factor M(X,O): 

M(X,O) = K X 2-x'c, X = 0, 1 ,  ..., C - 1, (23) 

where K is a scale  factor.  (The  augend  factors  are relative, 
i.e., each  can  undergo  the  same relative shift.) Now D(u.0) is 
represented as 

D(u.0) = M(X(u),O) x 2-€("). (24) 

We  can  rewrite  Eq.  (22) in light of this second approxima- 
tion: 

As in [lo], from  one recursion to  the next we need only 
remember  the  numerator  Xof  the  fractional power, provided 
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we shift left F ( u )  to  maintain proper  relative alignment of 
the  string F with the  augend  factors M.  Since  the  shift is 
relative, alternatively  the  augend  factors M may be viewed as 
being shifted  right. Following treatment of symbol l ,  the 
value of the  shift is E(u.{) - E(u) ,  and  the new value of the 
numerator of the  fractional power is X(u.{). These values are 
determined  from  the previous value of fractional  partX(u)  as 
follows: 

E(2d.t) - E ( u )  = L(J  X Q ( E )  + X(U))/CJ , 

X(u.{) = ( J  x Q ( E )  + X ( u ) )  mod C. 

The notation “L J ” denotes  the  integer  part of the  number 
inside. 

We must make  approximations  such  that  the M(X,O) 
satisfy the  representability  criterion of Eq.  (13).  The test 
which guarantees  representability is a  self-consistency test. 
Equation  (26) below is derived from  Eq. (1 3). Setting .$ to 1 
and [ + 1 to 0, we have 

D(u,O) - D(u,l) 5 D ( u . 1 , ~  + l ) ,  which,  since D ( u , l )  = 

0, 

yields D( u,O) 5 D( u. 1 ,w + I ). (26) 

[Note  that if  we set { to w in Eq. (13),  the self-consistency 
test is D(u,w + 1) - D(u,w) 5 D(u.w,w + I ) ,  which is true 
by  def ini t ion  s ince D ( u , w  + 1 )  = D ( u , w )  + 
D(u.w,w + l ) . ]  

Equation  (26)  may be rewritten using  Eq. (24)  and 
factoring  out  the  integral power of  2: 

M(X,O) 5 M(X,w + I ) .  (27) 

Factor M(X,O) is the  augend  factor corresponding to D(u,O) 
where u is any  channel  string  such  that X = J x Q ( u )  mod C. 
Equation  (27)  gives  rise  to C inequalities.  Factor 
M(X,w + 1) is calculated with the help of Eq. (1  lb).  String 
u.1 takes  the  CFSM  to  state I .  We  can begin in state 1 with 
numerator X, assume receipt each  channel  unit  time of 
symbol w = 0 (when  allowed), and  accumulate  the  sum of 
Eq.  (25). In forming the  sum we must add nothing when in 
states for which 6z, is 0. We  may  take  the first C nonzero 
terms of the  sum, or until the CFSM returns  to  state 1. There 
is some leeway here because the set of augend  factors  are 
self-consistent if each M(X,O) is less than or equal  to a 
number which itself is slightly less than M(X,w + 1). 

We use Eq. (23) to assign  values to M(X,O). Let  the values 
of M be q-bit binary  representations of integers by a suitable 
pick of K :  

M(X,O) = round ( K  x 2-x).  (28) 

We next test for  self-consistency  using  Eq. (27).  This 
104 requires  the  calculation of M(X,w + 1) from  Eq.  (25), 

assuming proper  initial  conditions, as a  finite number of 
terms M(X(v) ,w)  shifted by 2-E(i’). If Eq.  (27) fails, perhaps 
some of the values of M can be adjusted.  Otherwise,  the 
number of bits in the  representation may be increased. 
Alternatively,  the  rate could be reduced. 

An example with (5.1 2) constraints 
Consider the  (5,12) code, whose rate is 0.3369  bits  per 
channel  time unit. Let  rate J / C  = 1/3.  This means  a rate of 
one data bit for three  channel  time  units.  The  unit-time 
CFSM  has  states 1,  2, . . ., 13. 

Symbol 0 is allowed in any  state except 13: 

0 5 i 5 11: T(i,O) = i +1. 

Symbol 1 is not allowed in states 1 through 5. When symbol 1 
is allowed, the next state is always state 1: 

6 I i 5 1 3 :  T(i , I )  = 1. 

The nonzero augends D are  approximations  to  the values 
W-a(u)  which correspond to symbol 0 occurring when there is 
a binary choice; recall Eq. (24). 

With  denominator C for the  rate,  there  are only three 
distinct values for the  augend  factors: M(O,O), M(1 ,0) ,  and 
M(2,O). To be self-consistent these values must satisfy 
inequality (27).  We employ Eq. (1 Ib)  as  the basis  for 
conservatively approximating M(X,w + 1) by taking  the 
first three nonzero terms of Eq.  (25). 

We  can  relate  this  approach  to  the derivation of Eq. (27) 
from Eq. (26)  as follows. For the  (5,12) code, five 0’s are 
required following the  occurrence of a 1. Therefore,  the first 
nonzero augend  term following u.1 occurs at  the sixth 0, i.e., 
a t  string u. 1 .O.O.O.O.O.O. E ( u )  introduces a  common factor on 
each side of Eq. (26) which cancels, and  the  left-hand side of 
Eq. (26)  thus becomes the  same  as in Eq.  (27).  Equation  (29) 
below results, showing the  approximation  to M(X,w + 1)  as 
a sum of three  terms: 

M(X,O) 5 M ( X  + 6 mod 3,O) x 2- LX+6J  

+ M ( X  + 7 mod 3,O) x 2-LX+7J 

+ M ( X  + 8 mod 3.0) x 2-Lx+8J 

< M(X,w + 1).  (29) 

Let M(X,O) be integers, and  try  to find the  smallest  value 
for M(0,O). Smaller integer  values  for M minimize the 
maximum  number of bits needed for the  binary  representa- 
tion to represent each M(X,O). For the  (5,12) code example, 
the smallest  integer augend  factor M(0,O) is 5, which works 
with M(1,O) = 4 and M(2,O) = 3. 
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0 Example channel string 
Let the  data  string  to be encoded be 101010101010101010 
.”. The column  headed i in Table 3 gives the  state of the 
channel, assumed to be “home” state 1 initially. The column 
headed X gives the value of the  internal  variable X ,  which 
need not be initialized to 0. Column M gives the aligned 
value of the  augend.  Column [ gives the  channel symbol 
generated.  The initial  conditions for E and X must be such 
that D ( h , w  + 1 )  equals or exceeds  unity when the  data 
string is viewed as a fraction.  (Otherwise,  data  string 11 11 11 
. . . will not be representable  as a channel  string.) In this case, 
E ( h )  = 2. 

5. Multistate, multisymbol constrained channels 
An approach for a fixed rate L-based  code suitable for 
multistate, multisymbol channels  appears in [5].  The impor- 
tant notion is the  approximation  to W”, as in Eq. (21). 
Consider the  case of a (2,7,8) code. It is convenient to 
consider that  the symbol alphabet is not binary,  but  to use an 
extended alphabet of symbols 001,0001, ..., 00000001. Thus 
we can  treat  the  channel  as having six symbols of lengths in  
channel  time  units of 3, 4, 5 ,  6, 7, and 8. For  these symbols, 
A.  Patel has determined a 14-state  CFSM. 

Let string u applied to the  channel from state 1 leave 
recursion variables F ( u ) ,  E ( u ) ,  and X ( u ) ,  and let the 
channel be in state T ( u ) .  To  transform  the next symbol ( we 
have 

F(u.a) = ~ ( u )  + M ( T ( u ) ,  x ( u ) , E )  x 2 E ( u ) ,  (30) 

E(u.a) = L ( ! ~ ( u )  + !2([)) x J /CA , (3  la) 

X(u.a = (a(u) + a ( [ ) )  x J )  mod C. (3  1 b) 

Equation (31) constitutes  the length  recursion,  a  property of 
L-based arithmetic codes. The value M ( T ( u ) , X , ( )  x 2 - E ( u )  
is the  augend. Values of the  type M ( i , X , [ ) ,  where i is the 
state, X the  channel unit time modulo C, and E a channel 
symbol, are  the  augend  factors.  The  procedure for the 
calculation of the  augend  factors M ( i , X , ( )  is essentially an 
approximation  to P (i,[) x 2-x’c, and such  a procedure is 
given in [5]. 

A general  length-based channel code  needs an  augend 
table for M ( i , X , [ )  of n x C x (I [ I - 1) entries, where I [ I is 
the  cardinality of the set of channel symbols a, ..., (, ..., w, n 
is the  cardinality of the set of states (typical state i) ,  and  Cis 
the  denominator of the rational fixed rate J / C .  ( J  and  Care 
integers.)  There  are C possible retained  fractional lengths, 
with numerators 0, 1, ..., C - 1 (typical  numerator X ) .  The 
multiplier involving the  cardinality I [ I  of the symbol alpha- 
bet a, ..., w is decreased by one because any  augend 
M(i,X,a)  corresponding to the first symbol a has value 0. 
The  (2,7,8) code at  rate ‘12 yields 14 x 2 x (6 - 1) nonzero 
augends. A more  economical alternative  approach in terms 
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Table 3 Example:  channel  coding by decompression  algorithm. 

1 X M E Data string 

1 2 0 1010101010101 ”‘ 

2 0 0 1010101010101 _ ‘ ’  

3 1 0 1010101010101 _ ’ ’  

4 2 0 1010101010101 “ ’  

5 0 0 lo lo lo lo lo lo l  _ ’ ’  

6 1 4 1010101010101 _ ’ ’  

7 2 3 0110101010101 ” ’  

8 0 5 001 1101010101 ”‘ 

9 1 4 0001001010101 ‘ . ’  

1 2 0 0001001010101 ”. 
etc. 

0 00 

0 000 

0 000 

0 000 

0 000 

0 IO0 

0 01 I 

0 101 

1 IO0 

of table size, which also offers other  implementation  advan- 
tages, is presented in a subsequent work [ 131. 

6. Summary 
We have  adopted the notion of a constrained  channel,  as 
defined by a finite state  machine of allowed transitions. The 
CFSM is subject  to  the calculation procedure of Shannon, 
resulting in knowledge of the growth rate W of channel 
strings,  the achievable channel  capacity log W, and  the 
Shannon probabilities.  Decodability is to compression  coding 
what  representability is to  channel coding. Arithmetic  string 
coding is briefly reviewed. We  map  elements of one set of 
strings  to  elements of another set of strings, one source 
symbol a t  a time. A  connecting viewpoint is that of the 
subdivision operation on a  code space defined on the  unit 
intervel. The L-based and P-based arithmetic coding 
approaches  are covered. The notions of a subdivision gap  and 
subdivision overlap are explained. Overlap results in nondeci- 
pherability of compression codes whereas a gap results in 
nonrepresentability for constrained channel codes. This  dual- 
ity  results  from the inversion of the compression and expan- 
sion operations (see Table 1) inherent in channel coding. 
Most of Section  4 is drawn from [ 5 ] .  A simple (2,4) 
constraint is used as  an  example.  The recursions  for arith- 
metic codes are covered, and  the problem of a subdivision gap 
is illustrated (see Fig. 5) .  The  inequality  for  representability 
is given [Eqs. (13) and  (14)].  The ( d , k )  constraints  are 
particularly simple for studying  the effect of the growth rate 
W. This  study provides the basis for the simple fixed rate 
implementation of Martin’s  unit-time L-based  code for run 
length  limited (d,k) codes. 1105 
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