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Arithmetic Codes for Constrained Channels

Arithmetic codes have been studied in the context of compression coding, i.e., transformations to code strings which take up less
storage space or require less transmission time over a communications link. Another application of coding theory is that of
noiseless channel coding, where constraints on strings in the channel symbol alphabet prevent an obvious mapping of data
strings to channel strings. An interesting duality exists between compression coding and channel coding. The source alphabet
and code alphabet of a compression system correspond, respectively, to the channel alphabet and data alphabet of a constrained
channel system. The decodability criterion of compression codes corresponds to the representability criterion of constrained

channel codes, as the generalized Kraft Inequality has a dual inequality due to the senior author.

1. Introduction

The first paper dealing with a systematic approach to
construct fixed rate codes for constrained channels is [1]. A
code construction approach is developed by Franaszek in
[2, 3]. A different approach, called sliding block codes, is
described in [4]. Reference [4] provides an introduction to
constrained channel coding, complete with an extensive
bibliography. It is noted in [4] that the approach in [2, 3]
and the sliding block approach have a connection via the
Perron-Frobenius theory.

In this paper we provide another general viewpoint and
approach to constrained channel coding, which has a very
different flavor. The basic ideas appeared in an unpublished
work by the senior author [5]. This paper includes the work
in [5], plus extensions due to the coauthors. The present
approach is based on arithmetic coding, a technique origi-
nally developed for data compression. We extend arithmetic
compression coding to the constrained channel. In effect, we
replace the decodability criterion (with its roots in the Kraft
Inequality) with a representability criterion. The techniques
apply to a general class of constraints and provide the
designer with powerful new tools. With appropriate attention
to precision, the present approach can achieve very close to
channel capacity.

The task of a channel coding scheme is shown in Fig. 1. A
data string is mapped to a channel string which conforms to
the constraints. The channel string undergoes an inverse
mapping to recover the original data string. Transformation
X' is an expansion operation. Transformation X” is a com-
pression operation.

A constrained channel accepts strings of symbols from a
channel alphabet. However the “constraint” is viewed as a
mechanism for disallowing certain substring combinations.
A popular constraint, useful in magnetic recording channels,
is called a (d,k) channel. Information is transmitted as
magnetic flux changes within bit times. Due to intersymbol
interference (ISI), flux is not permitted to change in succes-
sive bit times. Flux changes too close together tend to cancel
each other, reducing the amplitude of the signal peak at the
detector. The ISI constraint requires that & bit times must
pass before the next flux change is permitted to occur. As a
consequence, adjacent peaks occur at least d + 1 bit times
apart.

We also require the information recorded on the media to
have a self-clocking property. Although the information is
recorded using a clock with a tightly controlled period (e.g.,
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30 ns), the clock period (bit time) may skew slightly due to
variations in temperature or delays in the clocking circuits,
etc. To make any necessary small adjustments to the clock
phase, a flux change is required within k bit times of the last
flux change of constrained channels called (d,k) channels.

In terms of 1’s and 0’s, (d,k) channel strings must have at
least d 0’s following every 1, but no more than & 0’s following
each 1. For example, to be allowable by a (2,4) channel, the
channel string is a concatenation of the following substrings
of Table 1. Except possibly for a beginning or ending
substring, any allowable channel string can be parsed into
this new set of symbols, i.e., the three symbols of Table |
could be considered an alternative alphabet to symbols {0,1}.

We now examine sets of allowable channel strings to see
how the constraints come into play. To describe a set of
strings, we introduce a tree. Thus, for strings which share a
common prefix, the prefix is shown only once.

Consider the set of channel strings allowed by the (2,4)
channel. The tree shown in Fig. 2 is a representation of Table
1 and can serve as a generator for a channel string tree. The
symbol A is the “null” string.

In Fig. 2, node A is the root, the other interior nodes are (),
and the leaves are []. The path segments are labeled by either
symbol 0 or 1. The concatenation of path segments gives a
path. A node or leaf is identified by its path from the root.
The root and interior nodes are further identified by the
numbers 1 through S in parentheses. These nodes are subse-
quently associated with states of a finite state machine.

The constrained channel has been studied by Shannon [6].
The channel is described in terms of a channel finite state
machine (CFSM). The CFSM differs from an ordinary
FSM. The CFSM “output” is specifically the identity of its
internal state, which places the CFSM in the Moore machine
class. However, a CFSM differs from a Moore machine in
that a value £ is associated with each input symbol. In
magnetic recording, the value 2 is the symbol duration
measured in units of time.

The description of the channel constraint is actually of the
form of a finite state transition diagram of “allowed” transi-
tions. The value ¢ enters into the rate calculation. More
precisely, the CFSM is defined as: (1) a set of states (/,/), (2)
channel symbols @, 8, ---, &, - - -, w of respective lengths (dura-
tions) £(a), 2(B3), ---, L), -+, Yw), and (3) a state transition
function 7(i,£), where T(i,£) is the state reached when
symbol £ is received in state i. The channel symbol length is
measured in integral channel time units.

In practice, the channel coding problem is to map arbi-
trary data strings into strings of allowed channel symbols.
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Figure 2 A code string tree generator for (2,4) channel.

|
Table 1 Channel alphabet of substrings for (2,4) constraints. }

001
0001
00001

The channel capacity is log W bits per channel time unit,
where W is a growth rate of allowable channel strings per
unit increase in length [6]. To achieve the channel capacity
rate, Shannon probabilities p(/,£) are associated with each
CFSM transition from channel state i/ under channel symbol

£

Many channel coding approaches [7, 8] approximate the
Shannon transition probabilities with integer length code 1
word mappings. Guazzo [9] uses the probabilities directly in ‘
an approach more closely related to this paper. Following
Guazzo, we use an “‘inverted encoder-decoder pair.”

The application of the inverted encoder-decoder pair gives
rise to a dual of decodability encountered in compression 05
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Figure 3 Example prefix code. Image of source string is single
leaf. (a) Code table and prefix code; (b) code string tree.

Table 2 Compression coding versus channel coding.

Operation Input Output

Compression encoding Source Code
(AC* compression)

Compression decoding Code Source
(AC expansion)

Channel coding Data Channel
(AC expansion)

Channel decoding Channel Data

(AC compression)

*AC = arithmetic coding.

coding called representability. The Kraft Inequality also has
a dual inequality. The analogies of compression versus
channel coding are shown in Table 2, which also introduces
the terminology employed.

G. NIGEL N. MARTIN ET AL.

2. Arithmetic coding preliminaries

This section is based on [10] and is included to make the
presentation more self-contained. We review arithmetic cod-
ing for compressing source strings whose alphabet is {«, 3,
.-+, w}. Let {0,1} be the code alphabet. A coding function F
maps each string of the source alphabet to some string in the
code alphabet:

la, B, -+, w}* — {0,1}*.

Here we use * to denote the ““star” operator, which generates
all possible strings drawn from the alphabet, including null
string A. To reduce computational complexity, the mapping
of an arbitrarily long source string is not made to its image in
the set of code strings in a single step. Most coding functions
are recursive. The algorithm consists of a series of operations,
applied to each successive symbol of the source string, from
left to right. Figure 3 shows a mapping from a source string
to a binary code string for a prefix code. Figure 3(a) shows a
code word table for source symbols a, 8, and w. The coding
function F proceeds recursively, handling one source symbol
per recursion. The first symbol of string s, which is £, is
mapped to 10. For the second symbol, string S is mapped to
100, by concatenating O to 10. We handle each next source
symbol by a concatenation operation to the code string. Thus
the depth of the code tree increases each recursion. In Fig.
3(b) we highlight the branches traveled with dashes to
demonstrate that the coding process successively identifies
the underlined nodes in the code string tree. The root of the
code word tree is attached to the leaf at the current depth of
the tree, as per the previous source symbol.

Before encoding the first symbol, we are initialized at the
root of the code string tree. At initialization, the available
code space (A) is a set which consists of all finite code strings
{0,1}*. Following the encoding of the first source symbol 8,
we are at node 10, i.e., F(38) = 10. A node is identified by its
path from the root. The length of the path corresponds to the
depth of the node; here the depth is 2. The current code space
available has now been reduced from the initial code space
(all code strings) to the smaller set of all code strings whose
prefix is 10, denoted 10{0,1}*. Where the alphabet upon
which we apply the star operator is understood, we simplify
the notation to 10*. At the current state, only code strings in
10* can result from continuing the encoding process. Any
string belonging to set 10* is a continuation of node 10. We
recursively subdivide, or subset, the current code space. In
the example, the operation following that which gave us 10*
delivers a subset; the result is set 100*, a subset of set 10*.

A feature of prefix codes is that a single node in the code
space is identified as the result of the subdivision operation.
In general, each successive source string prefix s of the input
string is mapped to a single string in the set of all code strings
{0,1}*.
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® Arithmetic codes and the code space

Arithmetic codes do not map individual source string pre-
fixes to individual code strings. Instead, they map successive
source string prefixes s to a current code space A (s), which is
defined as all continuations of a set of leaves at the current
code tree depth. (We discuss later the termination operation
which converts the final code space to a single code string.)
In arithmetic codes, as opposed to prefix codes, the code
space is a set union, e.g., of 011* and 100*.

During the sequential encoding and decoding recursions,
arithmetic coding represents the current code space of the
current source prefix s as a set of adjacent leaves at the
current code tree depth. A set of adjacent leaves may be
identified in several ways: (1) the leftmost leaf and the
number of leaves to its right; (2) the rightmost leaf and the
number of leaves to its left; or (3) the leftmost and the
rightmost leaves.

We represent the set by the first method above, by
variables F(s) and A(s) defined as follows:

1. F: the path to the first (leftmost) leaf in the code space;
and
2. A:the number of leaves in the code space.

Following the step which handles source prefix s, F(s) is
analogous to the path to the first leaf and A4(s) the number of
leaves at the current depth in the current code space. See Fig.
4 for an example where the current depth is 3. As in prefix
codes, the code space is successively subdivided, as governed
by each source symbol encoded. Note that the right bound-
ary of the current code space is just outside the interval, so
the interval is open on the right. Since F(s) belongs to the
interval, it is closed on the left.

® Termination operation

When the recursion on the last source symbol has taken
place, what remains in the code string tree analogy of
arithmetic coding is a set of nodes at the current depth. We
therefore select a single code string from the current code
space during a code string termination operation. In this
light, we say prefix coding terminates the current code space
to a single node F following the recursion which encodes each
source symbol. For prefix codes, the coding process ensures
that the number A(s) is always unity.

® Mapping code strings to the unit interval

At the code string root A the initial code space {0,1}* extends
from00---0to 11 :-- I at some finite depth. We can map the
code space to the unit interval of rational numbers, beginning
with value zero and extending to, but not including, the value
one. We treat code strings as a fractional magnitude by
placing a binary point on the left. The interval shown in Fig.
3 is rewritten as [.010, .101), where the size of A4 is now the

iBM ). RES. DEVELOP. e VOL. 27 ¢ NO. 2 « MARCH 1983

0
Depth
°!_L—l' ) 1 Dep
1 ll 0 1 levels

0[ |1 or ! 0'r
L ) [ ] I L] L ] * ] L ] L) [ ]
000 001 101 110 111
010 011 100 |
Leaves
C(s)=010, A(s)=3 Set {010,3}

First leaf —T L Number of leaves

Figure 4 Arithmetic codes permit image of source string in code
string tree to be a set of leaves.

number of nodes (3) multiplied by 2™ or 3 x 1, whichis .011
in binary representation.

This conversion to a new representation that we have just
made permits arithmetic operations on code strings. In the
example tree of Fig. 4, at a depth of 3, string F(s) is .010, and
the value of A(s) is .011. Code string prefix F(s) + A(s) =
.101 is just outside the interval defining the code space at the
current depth.

Having a correspondence between nodes of the code string
tree and the number interval, we subdivide the interval by
arithmetic operations. The arithmetic nature of the subdivi-
sion recursion gives arithmetic coding its name. Each source
symbol £ is handled by adding (instead of concatenating) a
value D(s.£) called an augend to the right end of the code
string F(s), forming F(s.£) = F(s) + D(s.£). The *.”
between the prefix of a source string and the next symbol
denotes concatenation and illustrates the source symbol £
involved in the recursion.

® Subdivision operation

For data compression, one property we wish to avoid in
subdividing the code space (current interval) is overlap. If
the code spaces for two distinct source strings overlap, then
there will be a problem for the decoder upon receipt of a
string in the overlapping space—which of two possible source
string prefixes was encoded? Thus, for decoding, we require
a subdivision into nonoverlapping parts. The danger of
overlap exists between strings which are adjacent in the
ordering.

Consider the alphabet {o,8,w} and the set of strings of
length 3 under the ordering «,3,w. The code space is subdi-
vided according to this ordering. We use s + 1 to denote the
next string after s in the ordering of the same length. If string
s = BBw, then s + 1 = Bwa. Thus the code space assigned to
s + 1 is immediately to the right of the code space assigned to
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Figure 5 Code tree refinement and subdivision of current space.

s. Similarly, s — 1 indicates the immediately preceding
string, i.e., fwa — 1 is ffw.

Consider the example of Fig. 4 and assume that the
subdivision operation does not produce either an overlap or a
gap in the leaves of the tree between the code space for string
s and the code space for s + 1. Such a subdivision is a
partition. For a partition, the sum F(s) + A(s) gives the
value of the code tree leaf just to the right of the current code
space. For Fig. 4, F(s + 1) = .101. We summarize this
below:

Partition (no gap or overlap). F(s + 1) = F(s) + A(s).

In any event, the value F(s + 1) — F(s) defines the size of
the code space which encoded continuations s* of string s can
use without overlapping the code space assigned to string
s+ 1.

‘The +1 notation, when applied to nodes on the right
boundary of the code string tree, is a special case. There are
no nodes to the right of the rightmost node at each depth or
level. Thus what do we mean by www + 1? In reality, the
s + 1 notation is used to identify some property involving the
left boundary of the code space to the right of string s, e.g.,
F(s + 1). When s = w, ww, ww, -+, w, etc., that property is
obtained by defining

FA+1)=Flw+ 1) = Flow+ 1) = --- = 1.000.

In arithmetic coding, of the initial code space, the leftmost
nodes at any level are identified as .0000 --- O, and the
rightmost nodes have the form .1111 --- 1. We initialize the F
and A values to F(A) = .0, and A(A) = 1.0. With F(A
+ 1) = 1.00, note that F(A) + A(A) = 1.00 and that 1.00is
just outside the current code space, as desired.
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® Code space refinement and realignment

In handling the next source symbol, a problem in subdividing
the code space occurs when it is represented by too few
leaves. Consequently we must increase the tree depth. Sup-
pose the two-symbol source alphabet is {o,w} and the code
space in Fig. 4 is to be partitioned according to a split for the
less probable symbol « in the range /s to 5. We lack the
precision to split three leaves in this proportion. We can solve
the precision problem by increasing the depth from 3 to 6; see
Fig. 5. This figure is very instructive. Each leaf (node) at
depth 2 is refined to 2° leaves at depth 6, without changing
the value of the current code space. By increasing the depth
from 3 to 6 for greater arithmetic precision, the code space
becomes [.010000, .101000). The effect of an increase in
depth on the code string F is to add more 0’s on the right.
There are now 3 x 8 = 24 nodes at the new depth, but size A
is the same, 24 x 275, because the depth is now 6. At depth 6,
with 24 leaves in the code space, we have enough precision to
split the code space in the desired range. In Fig. 5, we assign
« as the first symbol in the ordering, hence the left part of a
partition is assigned to « and the right part to w.

The partition shown has a single leaf in one part (in this
case the leftmost) and 23 leaves in the second (rightmost)
part and achieves a subdivision whose proportion lies within
Yie to 5. If the current source symbol is «, we keep the
smaller part, so that F(s.a) = .010000 and A(s.«r) is reduced
to ‘/26 or .000001. On the other hand, if the current symbol is
the more probable w, we keep the current code space as
defined by F(s.w) = .010001. and A(s.w) = .011000 —
.000001 = .010111.

In arithmetic coding, the source and code symbols are
ordered, an ordering which extends lexicographically to the
strings. The arithmetic coding compression operation recur-
sively maps a source string to a subset of code strings of a
given length. For each new source symbol, this code string
subset is subdivided. The length of the code string subset is
possibly increased by an operation called realignment. Re-
alignment essentially makes more strings available in the
subset, so that the subdivision operation can achieve finer
proportions.

The code string is generated recursively. A first arithmetic
recursion adds a value D (augend) to the previous code
string. A second arithmetic recursion on code space A4
controls the realignment. In probability-based arithmetic
codes, the second recursion is a product of probabilities. In
length-based arithmetic codes, the second recursion is a sum
of lengths. See [11].

® Arithmetic coding equations
The number A4 is a fraction of ¢ significant digits, whose
value corresponds roughly to the probability p(s) of the
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source string. More formally, the code string subset is the set
of code strings ¢ such that 2(c) = (F(s)), and F(s) = ¢
< F(s) + A(s).

Given a next symbol £ to encode, [ F(s),F(s) + A(s)) is
subdivided into as many subsets as there are symbols in the
alphabet. For compression purposes A(s.£) should be such
that A(s.£)/A(s) = p(¢/s), where p(¢/s) denotes the state
dependent probability of symbol £ given the context defined
by string s.

Let subdivision operation .S act upon value A(s) to deter-
mine values A(s.a), A(s.8), -+, A(s.w): S(A(s),8) = A(s.3).
Consider the case where the space A(s) is partitioned; we
have

A(s) = A(s.a) + A(s.B) + -+ + A(5.8) + -+ + A(s.w).

For the first symbol, F(s.a«) is F(s) so the subset is
[F(s),F(s) + A(s.)). For the second symbol 3, the subset is
[F(s) + A(s.a),A(5.0)). In general,

F(s.8) = F(s) + D(s.$), (M

where D(s,£) is the sum of the code space sizes A(s.y) of all
symbols v < £ The term addend may be applied to values
A(s.y). Also,

A(s.£) = D(s.£ + 1) — D(5.8). (2)

Except for the last symbol, Eq. (2) serves as a definition of
the code space available for string s.£. The available code
space for s.w is

A(s.w) = F(s + 1) — (F(s) + D(s,w)).

For the decompression operation, we begin with a code
string F treated as a fraction. To decode the first symbol, we
apply the subdivision operation to 4(A) and determine the
largest augend D(A,£) less than F. We decode £ such that

D(AE) = F < D(AE + 1). (3)

To decode the second symbol, it is convenient to subtract
augend D(A,£) from F and compare the augends D(£,y)
against F — D(A£).

In compression coding, the transformation is decipherable
if the subdivision operation satisfies the following inequality
for the addends:

A(s) = A(s.a) + A(s.8) + - + A(s.w). 4)
Here Eq. (4) is called the decodability criterion.

® P-based coding equations

There are basically two ways to subdivide the interval A(s)

according to a set of probabilities. We first perform the
subdivision with the probability-based (P-based) technique
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A(s.£) = A(s) x p(&/s), (5)

6 9

where includes the necessary approximation such that
the precision of A(s.£) is not allowed to grow, and where
p(&/s) is the portion of the current code space allocated to
symbol £ for the iteration following those which have handled
string prefix s. In general, the binary representation of A(s.£)
will have a number of leading 0’s followed by a g-bit
mantissa whose leading bit value is 1. The subdivision
operation is then performed on the mantissa. Equation (1) is
used to encode, where augend D(s,£) is the sum of A(s.y) for
symbols v < £.

® [-based coding equations

A second approach to the subdivision operation is the basis
for the length-based (L-based) arithmetic codes. Each value
p(&/s) is represented as a length £(£/s), where

UE/s) ~ —log p(&/s). (6)

The lengths are rational, to some integer denominator C. The
size of the code space for continuations of string s is kept as
the sum L(s) of the lengths of the encoded symbols compris-
ing string s, where E(s) is the integer part and X(s)/C is the
fractional part. X(s) takes on values 0, 1, ---, C — 1. The E(s)
of L-based arithmetic codes corresponds to the numiber of
leading O’s of A(s) in P-based arithmetic codes, and the

mantissa of 4(s) corresponds roughly to the value PR
The augends D(s,£) are of the form
D(s.§) = M(X.§) x 27, M

where augend mantissas M are typically precomputed for
each symbol and each value of X and are stored in an augend
table.

3. An arithmetic coding overview of channel cod-
ing

In compression coding, if the subdivision operation partitions
the subset and assigns a partition (no gap, no overlap) to each
source symbol, then the code is decipherable and the avail-
able code space is completely utilized. If the subdivision
operation leaves no overlap but allows a gap (a subset
assigned to no next input symbol), the code is still decipher-
able. However the gaps do not utilize code space and give less
compression. If the subdivision operation permits the subsets
corresponding to two distinct input strings to overlap, then
the code is undecipherable.

In channel coding, if the subdivision operation leaves gaps,
the code is not representable. If the channel code subdivision
operation partitions the subset at each step, the code is
representable. If the subdivision operation leaves overlapping
subsets, the code is still representable but there is a reduction
in information rate.
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In the following sections we describe the coding recursions
and establish the requirements for representability. Arith-
metic coding provides more than one solution for channel
coding. One solution employs approximations to the Shannon
probabilities and a subdivision operation which recursively
partitions the subset of channel strings. A second solution is
reminiscent of a length-based arithmetic code [7]. The
second solution offers a fixed rate code.

Instead of determining how to encode data strings to the
channel, let us first consider translating channel strings back
to data strings, i.c., the mapping X of Fig. 1. This mapping is
the arithmetic coding operation. A constrained channel can
only accept a subset of strings consisting of symbols drawn
from the channel alphabet. The channel alphabet is ordered,
so we can order the channel strings u. The data string
corresponding to u is F(u). In ordinary arithmetic coding
where the probability of each string is known, F(u) is the
probability of all strings less than u in the ordering. For
channel coding, the corresponding intuitive property is: of all
long, acceptable channel strings starting with prefix u, a
fraction F(u) of acceptable channel strings precede u in the
ordering. This fraction can be expressed as a fractional
number whose radix is the cardinality of the data alphabet.
For practical purposes, we assume the data string alphabet to
be binary and the data string to be a binary fraction. As with
compression coding, the mapping is order preserving; thus, u'
< implies F(u") < F(i).

To transform a data string into a channel string u, we treat
the data string as a binary fraction F(u). We then find
channel string u such that of all long, acceptable channel
strings, the portion F(u) have an 2(u)-symbol prefix which is
less than . We perform this transformation recursively,
generating one channel symbol per recursion. The binary
representation of the fraction is decompressed by arithmetic
coding; each newly decompressed channel symbol is the next
symbol of the channel string.

Thus to transform a channel string # back into a data
string, we find the binary representation of fraction F(u)
such that of all long, acceptable channel strings F(u) have an
£(u)-symbol prefix less than u. Again, the transformation is
performed recursively on each channel symbol, this time by
AC compression.

Some notation is needed. Let string u.£ result from concat-
enating symbol £ to string u. Let strings 4 + 1 and u — 1,
respectively, denote the strings of length 2(%) next higher
than u in the ordering and next lower than u in the ordering.
Let A denote the empty string. The initial conditions are

F(A) = 0and 4(A) = 1.00, (8)

so that the initial space is the number line of fractional
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numbers including 0: [0, 1). If u_ is the highest string of
length 2(x_) in the ordering, then u_ + 1 is undefined. By
definition

F(u, + 1) = F(A + 1) = 1.00. 9)

4. Channel coding with arithmetic codes

The arithmetic decompression recursion generates the chan-
nel string from a data string. The compression recursion
recovers the data string from the channel string. We assume
that the channel finite state machine model for the channel
constraints has been calculated. For convenience, we assume
that the CFSM begins in state 1, and we receive channel
string u. We can simplify the next state function notation
T(1,u) by simply using 7(u). The state dependent Shannon
probability for symbol £ following string ¥ may be denoted
P&/ T(w)).

The key idea in the application of arithmetic coding to the
constrained channel is the definition of F as the fraction of
long, acceptable channel strings whose 2(u)-symbol prefix is
lower than u. It can be shown that from the channel state
T(u), in which channel code symbol ¢ occurs, the value of
Shannon probability p(¢,7(u)) is the fraction of all long,
allowable channel strings from state T(u) under symbols
preceding symbol £. Arithmetic coding provides a simple way
to implement the correspondence between an acceptable
channel string # and the number representation F(u). The
coding recursion is as follows:

F(u.g) = F(u) + D(u§), (10)

where D(u,£) is the state dependent augend representing the
portion of all channel strings which are continuations of
channel strings u.« through u.£ — 1.

® Representability of data strings
In applying the arithmetic encoding and decoding functions
to channel coding, we must ensure that all data strings can be
represented as channel strings and that the data string can be
recovered from the channel string.

Just as channel coding is a dual of compression coding, the
inverted order of the compression and expansion phases
creates a dual to the notion of decodability. Each data string
must be representable as a channel string. If there is a data
string prefix which is not the image F(u) of some channel
string u, that data string is not representable.

Decodability implies that the subdivision operation must
not create an overlap of code intervals. Similarly, in the dual
situation of channel coding, representability states that the
subdivision operation must not leave any gaps in its range,
the set of all the data strings. For channel coding, we may
subdivide a current code space A(u) such that the sum of the
sizes of the subintervals exceeds the original interval.
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We study the representability criterion for the subdivision
operation with the aid of Fig. 6. We consider an interval
between F(u) and F(u + 1) and the subdivision which
defines F(u.£) and F(u.£ + 1). Following the subdivision
operation for channel string u.£, the size of the interval taken
up by continuations of u.£ is seen to be D(u.£,w) + A(u.£.w).
If this value does not exceed the value F(u.£ + 1) — F (u.£),
corresponding to the interval to be spanned

[F(u.£), Fug + 1)),

then a nonzero gap appears as identified in Fig. 6. This gap is
zero if

F(uf + 1) — F(u.) = D(ut,w) + A(utw). (11a)

The left-hand side may be rewritten in terms of the augend
and addend values as D(u,§ + 1) — D(u,£), but the right-
hand side contains term A(u.£.w). Since w is the last symbol
in the alphabet, we have not yet defined D(u.£,w + 1) and
hence A(u.£.w). Define

D(uw + 1) = D(u,0) + D(u.ow) + D(u.w.ww) + -
(11b)

such that

A(u.w) = D(uw + 1) — D(u,w)
= D(n.ww) + D(uwww) + ---. (11¢)

In view of Fig. 5 and the above, we may rewrite Eq. (11a) as

D(ug + 1) — D(u,§) = D(wtw + 1). (12)

We leave a gap if D(u,g + 1) — D(u.§) > D(w,tw + 1). In
compression coding, the problem to avoid is an overlap
during the subdivision operation, but gaps are not disastrous.
In channel coding, the overlap is not harmful, but gaps are
disastrous. Since the decompression recursion is performed
on all data strings, the effect of overlap is to exclude certain
channel strings from the output of the channel encoder. The
greater the overlap, the less the rate. For representability,
overlap is permitted, so the equal sign of Eq. (12) can be
replaced by the < sign. The result is an important inequality
due to [5] (a dual to a generalized Kraft Inequality for
compression):

D(u,t + 1) — D(u,§) =< D(u.bw + 1). (13)

When Eq. (13) is met with equality for all values of u and &,
the subdivision operation always yields a partition with zero
overlap and zero gap. Subdivision operations which partition
the code space are suitable for either compression coding or
channel coding. Such compression codes, e.g., Guazzo [9],
are also suitable for channel coding. Also in this category is
an arithmetic compression code due to Martin [12]. In this
case the code is designed to use the Shannon probabilities
directly [9]. However, it is more interesting to consider
techniques which provide a fixed rate.
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Figure 6 Subdivision notation and illustration of gap.

For arithmetic codes, the subdivision operation is suitable
for channel coding if the sense of the decodability inequality
of Eq. (4) is reversed:

A(u) = A(u.1) + - + A(u.w). (14)

For length-based arithmetic codes which use augend tables,
the addend values in Eq. (14) may be obtained from Eqgs. (2)
or (11c).

® Fixed rate channel codes for (d,k) constraints

The arithmetic codes of the previous section can be employed
in channel coding provided the interval subdivision process
conforms to (13). There is no guarantee, however, that
the result provides a fixed rate. Moreover, the general
approaches are designed for handling general probabilities.
Since the Shannon probabilities are not arbitrary, i.e., are
derived in a structured way, some implementation advantage
is to be gained.

In this section, we study fixed rate codes in the context of
the (d,k) constraints. There is a particularly simple way to
take advantage of the nature of the Shannon probabilities
while at the same time providing a fixed rate code. The basis
for this approach depends upon the following:

For any CFSM, if string u of length %(u) takes the
CFSM from initial state 1 back to state 1, then current
interval size A(u) is W " Thus A(u) is dependent only
on value 2(u).

To show the above, at initial state 1, the code space is the set
of all allowable channel strings from that state. Asymptoti-
cally, there are W™ such strings of length 2(x). Since u is
one such string, ¥ represents W~ of the code space from
state 1, because we have returned to state 1. (State 1 where
we ended “spawns” the same relative number of channel
strings per unit length as the state we started with.)

For (d,k) codes, the CFSM is systematically returning to
state 1 upon receipt of a . We can take advantage of this fact
by assigning to symbol 1 the left part of the result of a
subdivision operation.
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Figure 7 Finite state machine for (2,4) channel constraint. The
channel string tree appears as in Fig. 8.
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0

1 <>
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Figure 8 Channel string tree for (2,4) constraints, 1 on left, to

depth S.
i Interval A(u) ‘I
1 1 0
-—<> 1 <> —
Aw.n=w D Aw.0)=(Aw) —w )

Figure 9 Subdivision operation for (d,k) constraints.

For the (2,4) constraints, the CFSM appears in Fig. 7.
This CFSM acts in unit time, that is, upon the basic channel
time unit symbols 0 and 1. A one-state three-symbol “‘ex-
tended alphabet” or parsed phrase CFSM could be defined
using the three phrases 001, 0001, and 00001. The channel
string tree appears as in Fig. 8.

The data string corresponding to a (d,k) channel string is
constructed as follows. For nodes (states) where the channel
symbol is certain (no choice, only one possible value), the
interval is not subdivided and nothing is added to the data

: string. For states where there is a choice, then the interval is
102 subdivided into two parts, and the size of the left part is
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W™ In other words, whenever the current interval is
subdivided, it is subdivided as shown in Fig. 9.

The only time the data string value is changed is when a
nonzero augend is added to it. Since the nonzero augend is
always W'Y the only interval subdijvision operation
required is to maintain the current value of

A(u.1) = D(u.0) = w0 — W+ (15)

A(u.1) is implementable as follows with a symbol-wise
recursion:

W = e (16)

Since W~ is constant, the value of recursion variable 4(x.1)
depends only on 2(#) + 1: we denote the recursion variable as
A(R(u) + 1). At any channel time unit, we add to F(u) either
nothing or the value of recursion variable A. If the binary
choice selects the right part of Fig. 9 (the symbol is a 0), we
add A(Q(u) + 1) to F(u) to obtain F(u.0). For the (2,4)
constraints, a choice can only occur for transitions from
states 3 or 4. Suppose a (2,4) channel string # is as follows:

001000100001001. an

The symbols governing the transitiong/f\r/omvsta}es 3 or;l
are checked and are those at lengths 3, 6, 7, 10, 11, and 15.
The symbols at lengths 1, 2, 4, 5, 8,9, 12, 13, and 14 are
constrained transitions and do not cause a subdivision; there
is no choice as to the symbol value. Of the unconstrained
transitions (involving a binary choice), only the symbols at
lengths 6, 10, and 11 are assigned the right part of a
subdivision. At these lengths, the subdivision operation
creates strings of portions

w s, w " and w",

which are lower than string u in the ordering and require a
nonzero augend. We deduce

Fu)=w'+w "+ w. (18)

Our observations for the (d,k) constraints are summarized
by Eq. (19). We describe the recursion on 2(v), the length of
the prefix of string w. If 2(v) is 1, then v is the first symbol of
u.

2(u)
Fuy= ) 5, x W', (19)
Rv)=1
where §_is zero if the last symbol of v is 1 and §, is unity only
ifvendsin0and T(v — 1,0) is among states d + 1 through k.
6, is normally zero, but it is one when the 2(v)th channel
string symbol is 0 and not constrained to be 0.

Equation (19) is valid for all (d,k) constraints and is an
interesting way of viewing (d,k) codes from an arithmetic
coding perspective. Eq. (19) generalizes to constrained
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channels whose allowable strings can be parsed to give a
one-state CFSM. When weighted by eigenvector compo-
nents of multi-state CFSM’s, Eq. (19) generalizes to more
economical coding implementations in a companion paper
[13].

The implementation of channel coding for (d.k) codes is
thus quite simple. The internal variable for the subdivision
recursion at each channel time unit involves only multiplying
the current value of W ™** by W' to obtain the new value.
Although this value only coincides with addend A(u.1) from
states which have a binary choice, we use the notation A(u)
for the internal recursion variable.

There are three problems:

1. Wis an irrational number.

2. We must avoid a “growing precision” problem. In using
finite precision arithmetic, we would prefer to keep a
fixed rate.

3. We must approximate W' and carry out the subdivision
operation such that no gaps are left, i.e., we must satisfy
the representability inequality of Martin [5].

Two means of using finite precision and performing the
subdivision suggest themselves—a multiplicative approach
and a length-oriented approach. In either case, we should
approximate W with a number slightly smaller, which means
W' should be approximated with a number slightly larger.
This ensures that the size of the interval will be slightly
larger than the ideal.

® P-based binary codes for (d k) constrained channels.
In the P-based approach, we seek a g-bit binary factor P such
that

P>w" (20)

For each channel time unit, if the symbol indicates a
binary choice 0, recursion variable A4 is added to F(«). We
also multiply 4 by P to obtain the intermediate (unnormal-
ized) product A x P. This product may have a leading O,
which means the intermediate product is normalized by a left
shift before placing it in 4. Normalizing 4(2(«) + 1) also
calls for a left shift of F(u). Without a leading 0 in the
intermediate product, no normalization shift is needed.

Since 2(A) = 0, we initialize recursion variable A(A) to P.
Note that were we to initialize 4 to 1.00, then the result of
the first product would be P. By initializing to P, we are one
channel time unit “ahead” in calculating the augend. That is,
after £ time units the value in A corresponds to W ~**'. In this
way, we always have the nonzero augend precalculated. This
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yields an implementation advantage; the product for the new
A((u) + 2) can be performed concurrently with the sum
F(u.0) = F(u) + A(R(x) + 1) if required.

® [-based binary codes for (d k) channels
The L-based (d,k) approach [S] precedes the P-based
approach. The factor W ™' is approximated to the number
base 2, as a negative rational power —J/C:

27w @n

For best efficiency, J/C should be such that 27/ is very close
to, but slightly smaller than, W. For ease of implementation
the value of C should be small, e.g., 2, 3, or 4.

In a sense, the information value of each channel time unit
is J/ C bits. For a channel string of length u, the value w
is approximately 27"/, which we can represent as

—E(u) —X(u)/C
2 x 2 s

where the integral division of J x 2(u) by C yields quotient
E(u) and remainder X(u). Values of X belong to the set {0,
1,---, C — 1}. Note that for fixed rate, L-based arithmetic
channel codes, E(u) and X(u) are actually independent of
the particular sequence of channel symbols comprising # and
depend only on the channel string length 2(u). In this
context, we may equivalently employ the argument £(u) in
functions £ and X without introducing ambiguities.

We generate the data string from the channel string
according to Eq. (22) below, which is Eq. (19) with our
approximation:

2u)
Flu) = Y_ 8, x 277WIe 22)
Lv)=1

We can factor augend terms

D(u) — 2—J><Q(u)/C

E(u) X(u)/C

into an integral shift 277" and fractional power 2~
Unfortunately, most values 27*Y€ are irrational and must
be approximated by rational augend factor M(X,0):

MX0)~Kx2% x=01,--,C—-1, (23)

where K is a scale factor. (The augend factors are relative,
i.e., each can undergo the same relative shift.) Now D(u.0) is
represented as

D(u.0) = M(X(1),0) x 275, (24)
We can rewrite Eq. (22) in light of this second approxima-
tion:

f(u)
Fu) = Y 8, x M(X(),0) x 275, (25)
2 =1
As in [10], from one recursion to the next we need only
remember the numerator X of the fractional power, provided

f
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we shift left F(u) to maintain proper relative alignment of
the string F with the augend factors M. Since the shift is
relative, alternatively the augend factors M may be viewed as
being shifted right. Following treatment of symbol £, the
value of the shift is E(u.£) — E(u), and the new value of the
numerator of the fractional power is X(u.£). These values are
determined from the previous value of fractional part X(u) as
follows:

E(uf) — E(u) = L(J x &) + X(w))/CJ,
X(ut) = (J x A8) + X(u)) mod C.

The notation *“L J ™ denotes the integer part of the number
inside.

We must make approximations such that the M(X,0)
satisfy the representability criterion of Eq. (13). The test
which guarantees representability is a self-consistency test.
Equation (26) below is derived from Eq. (13). Setting £ to 1
and £ + 1 to 0, we have

D(u,0) — D(u,1) < D(u.l,w + 1), which, since D(u,1) =

s

yields D(1,0) < D(u.l,w + 1). (26)

[Note that if we set £ to w in Eq. (13), the self-consistency
testis D(u,w + 1) — D(u,w) =< D(u.w,w + 1), which is true
by definition since D(u,w + 1) = D(u,w) +
D(u.ww + 1).]

Equation (26) may be rewritten using Eq. (24) and
factoring out the integral power of 2:

M(X,0) = M(Xw + 1). (27

Factor M (X,0) is the augend factor corresponding to D{(u,0)
where u is any channel string such that X = J x £ (#) mod C.
Equation (27) gives rise to C inequalities. Factor
M(X,w + 1) is calculated with the help of Eq. (11b). String
u.1 takes the CFSM to state /. We can begin in state I with
numerator X, assume receipt each channel unit time of
symbol w = 0 (when allowed), and accumulate the sum of
Eq. (25). In forming the sum we must add nothing when in
states for which 6 is 0. We may take the first C nonzero
terms of the sum, or until the CFSM returns to state /. There
is some leeway here because the set of augend factors are
self-consistent if each M(X,0) is less than or equal to a
number which itself is slightly less than M (X,w + 1).

We use Eq. (23) to assign values to M (X,0). Let the values
of M be g-bit binary representations of integers by a suitable
pick of K:

M(X,0) = round (K x 27%). (28)

We next test for self-consistency using Eq. (27). This
requires the calculation of M(X,w + 1) from Eq. (25),
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assuming proper initial conditions, as a finite number of
terms M (X(v),w) shifted by 27*“. If Eq. (27) fails, perhaps
some of the values of M can be adjusted. Otherwise, the
number of bits in the representation may be increased.
Alternatively, the rate could be reduced.

® An example with (5,12) constraints

Consider the (5,12) code, whose rate is 0.3369 bits per
channel time unit. Let rate J/C = 1/3. This means a rate of
one data bit for three channel time units. The unit-time
CFSM has states I, 2, ---, 3.

Symbol 0 is allowed in any state except /3:
0=<i=I11:TU0)=i+1.

Symbol 1 is not allowed in states / through 5. When symbol 1
is allowed, the next state is always state /:

6<i=<I3TG31l) =1

The nonzero augends D are approximations to the values
W which correspond to symbol 0 occurring when there is
a binary choice; recall Eq. (24).

With denominator C for the rate, there are only three
distinct values for the augend factors: M (0,0), M (1,0), and
M(2,0). To be self-consistent these values must satisfy
inequality (27). We employ Eq. (11b) as the basis for
conservatively approximating M (X,w + 1) by taking the
first three nonzero terms of Eq. (25).

We can relate this approach to the derivation of Eq. (27)
from Eq. (26) as follows. For the (5,12) code, five 0’s are
required following the occurrence of a 1. Therefore, the first
nonzero augend term following .1 occurs at the sixth 0, i.e.,
at string #.1.0.0.0.0.0.0. E (u) introduces a common factor on
cach side of Eq. (26) which cancels, and the left-hand side of
Eq. (26) thus becomes the same as in Eq. (27). Equation (29)
below results, showing the approximation to M(X,w + 1) as
a sum of three terms:

M(X,0) < M(X + 6 mod 3,0) x 27-%*%
+ M(X + 7mod 3,0) x 27"
+ M(X + 8 mod 3,0) x 27-**%
< MXw + 1). (29)

Let M (X,0) be integers, and try to find the smallest value
for M(0,0). Smaller integer values for M minimize the
maximum number of bits needed for the binary representa-
tion to represent each M (X,0). For the (5,12) code example,
the smallest integer augend factor M (0,0) is S, which works
with M(1,0) = 4 and M(2,0) = 3.
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® Example channel string

Let the data string to be encoded be 101010101010101010
---. The column headed i in Table 3 gives the state of the
channel, assumed to be “home” state / initially. The column
headed X gives the value of the internal variable X, which
need not be initialized to 0. Column M gives the aligned
value of the augend. Column £ gives the channel symbol
generated. The initial conditions for £ and X must be such
that D(A,w + 1) equals or exceeds unity when the data
string is viewed as a fraction. (Otherwise, data string 111111
-« will not be representable as a channel string.) In this case,
E(A) = 2.

5. Multistate, muitisymbol constrained channels
An approach for a fixed rate L-based code suitable for
multistate, multisymbol channels appears in [5]. The impor-
tant notion is the approximation to W', as in Eq. (21).
Consider the case of a (2,7,8) code. It is convenient to
consider that the symbol alphabet is not binary, but to use an
extended alphabet of symbols 001, 0001, - - -, 00000001. Thus
we can treat the channel as having six symbols of lengths in
channel time units of 3, 4, 5, 6, 7, and 8. For these symbols,
A. Patel has determined a 14-state CFSM.

Let string u applied to the channel from state / leave
recursion variables F (), E(u), and X(u), and let the
channel be in state T'(«). To transform the next symbol £ we
have

F(u.a) = F(u)y + M(T(u), X(u),£) x 27°%, (30)
E(u.a) = L(2u) + L&) x J/Ca, (3ia)
X(u.a = (u) + U%)) x J) mod C. (31b)

Equation (31) constitutes the length recursion, a property of
L-based arithmetic codes. The value M (T (u),X,£) x 27
is the augend. Values of the type M (i, X,£), where { is the
state, X the channel unit time modulo C, and ¢ a channel
symbol, are the augend factors. The procedure for the
calculation of the augend factors M (i, X,£) is essentially an
approximation to P(i,£) x 27%€ and such a procedure is
given in [5].

A general length-based channel code needs an augend
table for M (i, X,£) of n x C x (| £] — 1) entries, where | £|is
the cardinality of the set of channel symbols o, -+, &, -+, w, 1
is the cardinality of the set of states (typical state i), and Cis
the denominator of the rational fixed rate J/C. (J and C are
integers.) There are C possible retained fractional lengths,
with numerators 0, 1, ---, C — 1 (typical numerator X'). The
multiplier involving the cardinality | £] of the symbol alpha-
bet a, ---, w is decreased by one because any augend
M (i, X,a) corresponding to the first symbol « has value 0.
The (2,7,8) code at rate s yields 14 x 2 x (6 — 1) nonzero
augends. A more economical alternative approach in terms
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Table 3 Example: channel coding by decompression algorithm.

i X M £ Data string

1 2 0 1010101010101 ---
0 00

2 0 0 1010101010101 ---
0 000

3 1 0 1010101010101 ---
0 000

4 2 0 1010101010101 ---
0 000

5 0 0 1010101010101 ---
(1] 000

6 1 4 1010101010101 ---
0 100

7 2 3 0110101010101 ---
0 011

8 0 5 0011101010101 ---
0 101

9 1 4 0001001010101 ---
1 100

1 2 0 0001001010101 ---

etc.

of table size, which also offers other implementation advan-
tages, is presented in a subsequent work [13].

6. Summary

We have adopted the notion of a constrained channel, as
defined by a finite state machine of allowed transitions. The
CFSM is subject to the calculation procedure of Shannon,
resulting in knowledge of the growth rate W of channel
strings, the achievable channel capacity log W, and the
Shannon probabilities. Decodability is to compression coding
what representability is to channel coding. Arithmetic string
coding is briefly reviewed. We map elements of one set of
strings to elements of another set of strings, one source
symbol at a time. A connecting viewpoint is that of the
subdivision operation on a code space defined on the unit
intervel. The L-based and P-based arithmetic coding
approaches are covered. The notions of a subdivision gap and
subdivision overlap are explained. Overlap results in nondeci-
pherability of compression codes whereas a gap results in
nonrepresentability for constrained channel codes. This dual-
ity results from the inversion of the compression and expan-
sion operations (see Table 1) inherent in channel coding.
Most of Section 4 is drawn from [5]. A simple (2,4)
constraint is used as an example. The recursions for arith-
metic codes are covered, and the problem of a subdivision gap
is illustrated (see Fig. 5). The inequality for representability
is given [Egs. (13) and (14)]. The (d,k) constraints are
particularly simple for studying the effect of the growth rate
W. This study provides the basis for the simple fixed rate
implementation of Martin’s unit-time L-based code for run
length limited (d,k) codes.
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