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Technologies for Network Architecture and Implementation

Systems Network Architecture (SNA) provides a_ framework for constructing networks of distributed processors and terminals.
This paper discusses some of the fundamental properties of network architectures such as SNA, and the evolution of formal
descriptive methods that provide precise, complete definitions of the architecture. This has culminated in the development of a
programming language, Format and Protocol Language (FAPL), tailored for programming a reference model or meta-
implementation of an SNA node. In this form, the architecture specification is itself machine-executable. This property has led
to new software technologies that improve quality and productivity in the processes for developing a network architecture and
the product implementations derived from it. Automated protocol validation provides the tool necessary to ensure a correct and
internally consistent definition of the architecture. This definition can then be used as a standard for testing products to
determine compliance with the architecture. Direct implementation of network software by compiling the meta-implementation

program is another emerging technology. This paper reviews the current state of work in these areas.

Introduction

The continuing evolution of computer networks has made it
necessary to precisely specify the message formats and
protocols that define the services provided by the network. In
IBM, Systems Network Architecture (SNA) has evolved
since its announcement in 1974 to encompass functions for
controlling large-scale networks of distributed processors
and terminals [1, 2]. Similarly, the definition of the architec-
ture has evolved from a prose description to a formal,
state-oriented, machine-executable version written in a high-
level programming language. This has proven to have many
advantages. An architecture defined in a programming lan-
guage has an unambiguous interpretation when it is exe-
cuted. It also provides a basis for a number of tools that help
improve the quality of the architecture itself and of the
products that are derived from it.

In this paper we discuss the nature of network architecture
definitions and trace the development of a machine-executa-
ble definition of SNA. We then discuss some interesting uses
of the executable definition. The first use is for the auto-
mated validation of the architecture. For SNA a correct
definition is ensured in two ways: 1) frequent phase reviews
and intensive inspection steps in the architecture develop-
ment process, and 2) automated protocol validation. The

reviews and inspections cover issues of functional correctness
and completeness; the automated validation methods detect
errors related to the internal consistency of the detailed
design. Both methods are required to identify errors in the
architecture before their more costly discovery during the
implementation of products that conform to the architecture.
Further discussion of the techniques used to control develop-
ment of the evolving SNA can be found in Ref. [2].

Finally we discuss two uses of the executable architecture
definition that are shaping advances in software technology
for implementing network software. These are the imple-
mentation of products directly from the architecture defini-
tion (by a compilation process) and the development of tools
for testing products to determine if they comply with the
architecture.

Definition of SNA

One of the most fruitful ideas in the design of computer
systems has been Blaauw’s [3] distinction among architec-
ture, implementation, and realization. The first computer-
related use of the term “architecture™ to describe system
design came out of Project Stretch [4]. In the context of
processor hardware, architecture is the specification of the
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system’s functions and the ways in which a user invokes those
functions. It encompasses data types, addressing, instruc-
tions, 1/0, etc., as elements of a language used by the
programmer to invoke functions and combine them in useful
sequences.

A computer implementation defines the logical structure
of a machine which interprets this language and performs the
architecture. Some elements of a computer implementation
are internal registers, memory, adder, and controls. Elec-
trical and mechanical design of the physical components
from which the implementation is built is the realm of
realization. The goal of the architect is to provide for the
programming needs of the user, whereas cost, performance,
reliability, and manufacturability are major issues for those
producing the implementations and realizations.

Many implementations are possible for an architecture,
ecach having different cost/performance objectives. For
example, the several models of the IBM 308X, 303X, and
43X X systems are all implementations of System/370 archi-
tecture [5] with a wide range of cost and performance. Just
as there may be many implementations of the same architec-
ture, there may be multiple realizations of the same imple-
mentation (e.g., the same design in a newer technology).

In the context of software and, more specifically, com-
puter network software, the term “architecture” has a richer
meaning. Here the architect’s goal is to provide product
interconnections through a network that supports general
end-user to end-user communication. An end-user is typi-
cally a person working at a terminal or a program that
provides some service. Not only must network architectures
specify what functions are performed and how to invoke
them, they must also provide for harmonious communication
among thousands of largely independent elements in a com-
puter network. The essential role of network architects, then,
is to specify and enforce a set of rules for communication to
which all product designs conform. Conformance is neces-
sary to avoid a proliferation of product-specific decisions that
would cause the costs of providing interconnections to
increase dramatically.

The key problems are representation and synchronization.
Messages flowing in a computer network contain addressing
and control information that must be interpreted at each
node in the paths to intended destinations. Architectural
specification of formats for messages is necessary for consis-
tent interpretation of this information by each product. This
part of the design is fundamental but relatively straightfor-
ward; its problems (allocation and encoding) are much the
same as those related to computer architecture for data-unit
representation and instruction formats.
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Figure 1 Interconnected protocol machines.

The hard problem is synchronization. In almost every
computer system there exists some form of concurrent opera-
tion that exploits the natural concurrency among tasks. In
many cases {e.g., concurrent process execution in operating
systems) the processes have access to shared storage, and
thus a single copy of state information (e.g., a semaphore)
that can be updated quickly and reliably is sufficient for
synchronization. In computer networks, the processes that
must be synchronized do not, in general, share any form of
durable storage because they are located in independent
network nodes. They must rely on exchanging state informa-
tion through a transmission medium that is subject to errors
and unpredictable delays. The rules devised to govern the
content and sequencing of exchanged state information are
the protocols.

Systems Network Architecture is divided into layers and
processes following well-known principles of decomposition
and modularization in the design of large-scale systems.
Gray provides an overview of these components and their
synchronization requirements in Ref. [6]. In principle, each
protocol that establishes and maintains synchronization
among a collection of processes can be specified by an
enumeration of all possible sequences of message exchanges.
If the protocols operate in an error-free environment, the set
of possible sequences is finite but very large, especially in a
functionally rich architecture such as SNA. Since the trans-
mission medium is subject to random errors and unpredict-
able delays that alter the protocol sequences, the set is at best
countably infinite; enumeration of sequences in any manner
useful to product builders is impossible.

Each protocol can, however, be modeled by abstract
machines called protocol machines that generate valid out-
put sequences in response to received inputs. To model a
two-party protocol, a pair of machines, one in each node, is
used. Further, each machine may be decomposed into gener-
ator (sender) and acceptor (receiver) machines that are
logically connected so that the output of one composite
machine is input to the other (see Fig. 1). These abstract
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Figure 2 Overview of the SNA node.

machines have finite input sets and state spaces and thus can
be modeled by the finite-state machines (FSMs) of classical
automata theory [7].

Like hardware implementations, the implementations of a
network architecture define logical structures that perform
the specified functions; the elements are data structures,
algorithms, modules, and processes. Different realizations
may be distinguished by the language used to build the
implementation (e.g., assembler or PL/I). Each SNA prod-
uct constitutes a realization of one or more layers of the
architecture. The designers of these implementations must
understand the inputs received by the product and the
outputs to be generated. The natural viewpoint is to consider
how the product must function when it is operating as a node
in the network. Moreover, the architects can prescribe the
behavior of the network by specifying the behavior of a node
in the most general case. Thus the network node is a useful
focal point for both architecture and product designs.

A node can be represented formally as a composition of
protocol machines. Figure 2 (from [8]) provides an architec-
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tural overview of an SNA node in the most general case.
Each block in the diagram represents a composite protocol
machine that can be successively refined until the most
primitive protocol machines are reached. Routing and check-
ing logic is defined to show how the protocol machines are
interconnected and the signaling paths between them. Speci-
fication of the format, content, and ordering of information
units flowing on a signaling path constitutes a protocol
boundary between protocol machines.

SNA meta-implementation

The ensemble of the node elements just described constitutes
a rigorous definition by reference to a model or meta-
implementation. A meta-implementation closely resembles
an actual implementation in that it has a well-defined
structure and is expressed using explicit data structures and
control flow. The underlying architecture is revealed when
the meta-implementation can be interpreted (executed) and
its resulting behavior (output) observed. An early example of
a formal architecture specification in a form that was
potentially machine-executable was the IBM System/360
computer architecture in APL [9].

The problems and payoffs in using a meta-implementation
form of architecture specification are discussed by Brooks
[10]. Of fundamental importance is the benefit that every
question about the system behavior has a precise answer that
can be determined quickly by executing the meta-implemen-
tation. Further, the requirement for machine execution
forces greater attention to details; there are fewer overlooked
cases. This also leads to a problem. If the meta-implementa-
tion is executed, overlooked cases produce answers that may
not be what the architect intended. Because these unintended
answers are produced by the meta-implementation they may
be credited with a false precision.

In order to obtain a machine-executable model, many
details must be filled in, including those that are options for
the implementer. Thus, the meta-implementation “over-
specifies” the architecture. For example, the architecture
may require only that data elements be stored and retrieved
in a certain order. In a meta-implementation, a particular
data structure and representation must be chosen in order to
execute the function (e.g., a doubly linked list). A product
implementation may choose a different representation (e.g.,
a fixed-size array) to meet its cost or performance objectives.
Much care must be exercised to clearly separate essential
function from optional detail. On balance, however, rigor and
completeness outweigh the problems of overspecification and
false precision.

In the early versions of the SNA meta-implementation,
line-diagram representations of FSMs were combined with
prose and other graphic tools (block-structure diagrams, flow
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charts [11]). These formal methods were developed to make
the specifications precise, complete, and capable of being
accurately communicated and understood; they were execut-
able by people but not by machines. The availability of this
form of meta-implementation, however, indicated the poten-
tial benefits of execution by a machine.

The most useful form of a meta-implementation is
obtained when the reference model is expressed conveniently
for use by implementers. Its structure should be generally
useful so product developers do not have to reinvent the basic
organization. A good global design used over and over yields
great leverage from the architecture development process.
Further, the audience for the architecture now consists
mostly of programmers because the ubiquitous microproces-
sor has led to programmed implementations of almost all
functions. Therefore, the medium for expression should be a
high-level programming language. Natural language prose,
even when augmented with diagrams and sequences, has
proven too ambiguous (or redundant) for the job. As a
consequence, the SNA architects have developed a high-level
programming language tailored for the meta-implementa-
tion of an SNA node. This language, the Format and
Protocol Language (FAPL), is discussed in the following
sections.

Format and protocol language (FAPL)

As FAPL evolved, several objectives guided the architects’
deliberations on formulating the basic language structure.
Foremost among these was to make the meta-implementa-
tion accessible to a broad audience of product implementers
in IBM, as well as to customers and others needing a
complete, precise definition of SNA. This objective led to
rejection of proposals for “new” languages in favor of
extensions to a widely understood programming language,
PL/1 [12]. Another major objective was to preserve the basic
node structure and notation already defined with the line
diagrams and flow charts of the graphic representation. In
particular, the use of FSMs to model protocols was consid-
ered essential. Another requirement was to provide language
elements that model messages and their flow from one
SNA-defined layer to another within and among network
nodes. Other considerations such as language structure for
top-down design and a rich set of data-definition facilities for
format descriptions were also important.

A relatively small subset of PL/I was chosen to provide
essential programming language capabilities for control
flow, data definition, and operations on data. The data types
of the language are integers, pointers, bit strings, and charac-
ter strings, with appropriate rules for operations and expres-
sion evaluation using these types. Data aggregates may be
defined by structures or one-dimensional arrays. The state-
ments of the language include assignments, calls, declara-
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tions, do groups, if statements, procedures, returns, and
select groups. Extensions to this subset that provide the
functions needed in FAPL are in two areas: 1) finite-state
machines, and 2) modeling messages and message flows.

® Finite-state machines

Finite-state machines are represented directly as objects in
FAPL. A two-dimensional graphic form was chosen for the
FSM definitions. In this form, horizontal and vertical lines
delineate rows and columns. The rows represent possible
inputs and the columns represent states. At each row-column
intersection is the definition of the next state and output
resulting from receiving the input (row) in that state
(column). Inside the matrix, mnemonic symbols are used to
name inputs, states, error conditions, and output-generating
procedures. Output procedures can be defined using any
FAPL statement. The matrix form has two desirable proper-
ties. For the reader it is a concise representation that allows
complex information to be referenced and easily verified for
completeness (every intersection must have a defined next
state and output). It is also a form that can be automatically
translated into executable PL/I statements.

The actions of an FSM are invoked through an extension
to the PL/I call statement. When “called,” the FSM input
and current state are used to evaluate the next-state and
output-generating functions. The new state is saved in stor-
age local to the particular FSM instance and becomes the
current state. The output may be represented by new values
of any variables in the scope of the FAPL statements used to
define the output function. Other operations are provided to
test the current state of an FSM and to perform specialized
validity checks.

® Messages and message flows

In the SNA meta-implementation it is desirable to distin-
guish the flow of messages from one layer to another from the
flow of execution control among program statements. The
flow of messages conveys vital architecture information; the
processing order among statements is needed only to under-
stand how the model executes. Using the normal PL/I
execution-control mechanism of procedure calls and returns
(passing the message as a parameter) prevents a separation
of these functions. In many cases a message is sent to another
component of the node for processing at some later (but
unspecified) time, and execution continues in the sending
component to handle related housekeeping. It is also desir-
able to show in the meta-implementation how layers and
components can operate as concurrent processes.

In order to permit a more natural model of message flow
and processing in the meta-implementation, three concepts
were introduced: 1) a SEND statement that transfers a
message to another component, 2) independently executable
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Figure 3 The system used to validate the DFC layer.

processes, and 3) queues that act as triggering mechanisms
for process execution. The queues are used to model commu-
nication and unspecified order of execution among pro-
cesses.

To model the messages and queues, two additional data
types were added to the PL/I base: lists and entities (an
entity is a data aggregate that may be placed in a list).
Originally the only planned use of entities was to represent
messages. It was soon found, however, that the generality of
the list data structure encouraged users to represent control
blocks, tables, and other forms of data internal to the node
model. Lists and entities can be created and destroyed,
entities may be added and removed from lists, all entries on a
list may be processed, and a list may be searched for a
specific entity. List-handling operations that treat lists in
insertion or priority order are provided (specialized lists may
also be manipulated directly by operations on the representa-
tion). There are also a number of built-in functions to
manipulate entities on a list and perform simple tasks such as
testing whether a list is empty. For a more detailed descrip-
tion of the language the reader is directed to Appendix N of
Ref. [8].
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Making FAPL executable

FAPL programs are translated by a preprocessor program
that generates PL/I code which is then compiled by a PL/1
compiler and executed. The preprocessor handles only those
statements that are extensions to PL/I, simply passing the
others through to the PL/I compiler. Most of the translation
is straightforward; translation of matrix-form finite-state
machines into PL/I procedures is, however, a non-trivial
process. Details of the implementation can be found in Ref.
[13].

Validation

In the SNA meta-implementation, the internal consistency
of the executable form is ensured by using automated
validation methods. Protocol validation is a form of state-
reachability analysis in which the compiled FAPL code for a
meta-implementation component is executed in an environ-
ment that simulates the remainder of the network. These
validation techniques were developed at the IBM laboratory
in Zurich [14, 15], as an extension of the techniques used to
validate the X.21 protocol [16] recommended by the Inter-
national Telegraph and Telephone Consultative Committee
(CCITT).

The first large-scale application of validation was an
investigation of the design for data-flow control functions in
SNA. Data-flow control (DFC) is an SNA layer that defines
one of the peer-to-peer (i.e., DFC-to-DFC) protocols
between the two halves of an SNA session. DFC provides
functions for sequence numbering and logical chaining of
user messages, for correlation of requests and responses
between end-users, for control of send/receive concurrency
between them, and for bracketing (or serially multiplexing)
transactions on the session [8]. DFC is the major synchroni-
zation point for controlling the order of messages exchanged
between end-users of an SNA session. Its specification
includes 30 FSMs and 3000 FAPL source statements.

A detailed account of the DFC validation is given in Ref.
[13], so we discuss it only briefly here. Figure 3 shows the
main components of the validation system developed for
DFC. The validation system simulates the environment
within which DFC layers in different network nodes commu-
nicate. The network layers below DFC are represented by a
system of queues that accurately model the network delays
and message-delivery order. The DFC elements are the
compiled architecture; they communicate with the network
model and the validation driver via defined protocol bound-
aries.

The validation driver itself has a number of functions.
Starting from an initial system state, the driver can drive the
system into further reachable states until all states have been
explored. In any state it can pass to either DFC element a
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message to be transmitted and so drive the system into
further reachable states that result when the executable
DFC elements process the messages and send them through
the network. It can also define and observe the state of the
DFC elements and the network queues. As the reached-state
tree is generated, the driver examines the state definitions to
detect deadlocks, loss of synchronization, and other states
that should not occur. The validation of DFC uncovered
about 20 previously undetected synchronization errors, some
involving long, interleaved sequences of 10 or more unique
messages and an even larger number of state changes (Fig. 4
gives one such example). It is probably not possible to
routinely find such errors by manual inspection, and they
occur so infrequently that detection during tests or field
operations is extremely difficult.

Validation techniques provide a powerful tool for detect-
ing errors in the design of communication protocols. They
also provide a systematic means for exhaustively testing the
meta-implementation program. All reachable states are
explored and thus all paths through the FAPL code are
executed with all valid inputs. Very thorough component or
module testing of the FAPL code is obtained as a by-product
of validation. Our experience shows that ten or more meta-
implementation programming errors are detected for every
protocol synchronization error. Validation is applied on a
layer or component basis; system testing with sequences is
required to detect errors in the specification of protocol
boundaries between layers.

Direct implementation

In principle, a correct implementation of the architecture can
be automatically generated from a correct machine-inter-
pretable representation of the architecture. When the archi-
tecture representation is a meta-implementation, as is the
case for SNA, the generation process would appear to be a
straightforward compilation. If this can be done, only very
simple testing is required. In practice, a number of signifi-
cant problems emerge when this is attempted, largely
because of fundamental differences between an architecture
representation and the design of a product derived from it. A
product designer must optimize performance and cost; these
are of lesser importance in an architecture representation,
which must clearly and completely describe the functions of
the system without giving unnecessary details that may
restrict the optimal design of an implementation.

As a consequence of their differing purposes, it is often
desirable for an implementation to have a structure that
differs significantly from that of the architecture model. For
example, an architecture designed for a multiprocessing
environment may be considerably simplified when imple-
mented in a single-processor system. The implementation of
an allowable subset of the architecture functions may require
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much less storage than the full architecture. Such fundamen-
tal structural changes cannot be performed automatically
and require significant design effort.

Another significant problem is that computer-network
software is usually one component of a larger system (i.c., the
control program for a distributed computer). Integrating
code generated from the meta-implementation into such a
system may require extensive modifications to the code to
adapt it to existing data structure formats and content.
Additional consideration must be given to adapting the code
to use services provided by the system’s control program
(e.g., storage allocation and 1/0O).

The first attempt at direct implementation was modest in
scope but sufficiently realistic to test practical application of
the ideas. The DFC implementation in one component of the
programming support for the IBM 8100 Information System
was obtained by adapting the meta-implementation code to
run on that system. Only a subset of DFC was required, so
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the FAPL code was first manually reduced to a size of 10
FSMs and 1000 FAPL statements. Next, the meta-imple-
mentation was adapted to the data structures and control
program services used in the product code. Several exten-
sions to existing control blocks were required to provide
DFC-related data. Control program services such as storage
allocation were accessed by special macros generated for
FAPL statements requiring these services (e.g., CREATE).
Finally, the FAPL preprocessor was extended to generate
PL/DS [17].

The results of this project were very encouraging. DFC
was compiled, tested, and shipped with no major problems.
Most errors were involved with adapting the FAPL code toa
product environment. DFC functions worked properly
largely because they had already been tested extensively by
protocol validation. The final code was within the path-
length and space budgets established for the project. Most
important, the DFC component was built and tested for
about one-third the programming resources that would have
been invested otherwise. Most of this programming effort
was spent in pioneering work associated with adapting and
translating the FAPL for a specific product environment.

To learn more about the process of direct implementation,
more experiments have been conducted outside the context of
implementing a real product. In one experiment, several
components of the meta-implementation were compiled and
tested to implement a hypothetical network node containing
only SNA functions. That is, no attempt was made to adapt
the FAPL to a product environment; the environment was a
raw machine with a given computer architecture (for con-
creteness, the 8100 architecture was chosen). Part of the
experiment was to construct a simple control program to run
the FAPL code on a real machine. The components of the
meta-implementation that were included required 10 000
FAPL source statements, including 50 FSMs. This experi-
ment confirmed that the key problems in automatic code
generation from the meta-implementation are 1) rules and
methods for automatic subsetting, 2) adapting the FAPL
run-time system to different real machines, and 3) generat-
ing code that compares favorably in space and path length
with tailored implementations.

In another experiment, automatic code generation is being
used for building development and testing tools. Develop-
ment teams building terminal devices that operate in SNA
networks must test their implementation of protocols for
communicating with other nodes. It may not be practical or
economical for these groups to install and operate real
networks just for testing. The solution is often a test tool
operating in a virtual machine environment that acts as a
surrogate for the real network node(s). Obviously, such tools
must properly implement the architecture and be economical
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to develop and use. One such internal test tool has been built
by compiling the SNA meta-implementation to generate
code. This test tool uses about 10 000 FAPL source state-
ments from the meta-implementation. An interesting side-
light is that the tool developers chose to use FAPL as a
programming language to build testing and usability fea-
tures that are outside the architectural protocols.

These early attempts at direct implementation have been
successful on a modest scale. Because of the problems
described above, the current methods for direct implementa-
tion can be applied only when development costs or time
constraints are more important than optimization of function
or performance. Advances in programming languages and
compilers, especially those that provide efficient, portable
software, may have a significant impact on the feasibility of
direct implementation [18].

Architecture compliance and testing: principles
Direct implementation from an architecture solves two
important problems, namely defining what constitutes an
implementation of the architecture and how to test that any
particular implementation complies with the architecture. If
an implementation is derived directly from the architecture,
the problem is reduced in essence to verifying a compiler. To
the degree that the development of an implementation is not
automated, and particularly when the structure of the imple-
mentation differs significantly from the architecture, verifi-
cation of architectural compliance is much more difficult.

The internal structure of most implementations differs
from that of the meta-implementation. Constraints of partic-
ular products and performance requirements dictate struc-
tural changes that may, for example, lead to the elimination
of internal protocol boundaries or the assignment of func-
tions to concurrent processes in a way that differs from that
specified by the meta-implementation.

Consequently, it is extremely difficult to define architec-
ture compliance in terms of the structure of an implementa-
tion. The only practical definition of compliance is to require
that the external behavior of an implementation correspond
to that of the meta-implementation. This definition dictates
the nature of a test for compliance. An implementation can
be tested for architectural compliance by applying a
sequence of test inputs to both the implementation and the
meta-implementation. Any difference in their behavior indi-
cates that the implementation does not comply with the
architecture.

Piatkowski [19] has indicated a problem of this approach:
If it is not possible to directly observe the internal state of an
implementation (as is generally the case), the upper limit of
the length of the test sequence needed to prove equivalence is
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approximately proportional to the cube of the number of
internal states. Even modestly complex implementations
have millions of different internal states, so it is not possible
to perform even a reasonably complete partial test in a finite
time.

It is interesting that experience has shown that most
communication systems are too complex to describe by
enumerating the sequences of messages that their compo-
nents exchange. Their architectures are, therefore, now
generally defined by the structure and algorithms in commu-
nicating processes that generate the message sequences {20].
On the other hand, compliance is defined in terms of
exchanged message sequences and does not directly refer-
ence internal node structure. It may be that definitions of
compliance and testing procedures that are closely related to
the internal structure of processes in the reference model,
rather than their external behavior, may be similarly advan-
tageous.

Architecture compliance and testing: practice
The estimates of test-sequence length given above suggest
that a thorough test of architecture compliance is impossible.
The existence of many reliably operating implementations of
the architecture demonstrates that this is not so, and there
are a number of reasons why the test-sequence-length esti-
mates provide an overly pessimistic view of testing.

The first is that they indicate the upper limit for a test
designed to demonstrate exact equivalence. Demonstrating
equivalence based on the external behavior of an implemen-
tation requires exercising and evaluating all possible message
sequences that the implementation may receive. An imple-
mentation can exhibit good reliability yet contain errors if
these are encountered only in rarely executed sequences.
Tests of reliability need not address all sequences that have a
very low probability of being encountered in normal opera-
tions.

Figure 4 shows an error found during validation of the
architecture. After an exchange of 14 messages the layer
being validated reached a state where the communicating
elements were out of synchronization. The complex inter-
leaving of the messages in the sequence leading to this error
would only occur under particular network delay and loading
conditions and would have a vanishingly small probability of
being exercised in normal operations. Even if the error had
not been found during validation, its presence in a derived
product would not significantly degrade system reliability.

The second reason why the test-sequence length estimates
are pessimistic is that it is not necessary to exercise all of the
states because individual errors can manifest themselves in
many states and must be detected only once. This can best be
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Figure 5 The general structure of a layer.

explained with reference to the architecture meta-implemen-
tation. Figure 5 (taken from Ref. [8]) shows the general
structure of an SNA layer. The layer consists of two
elements, handling respectively incoming and outgoing mes-
sages, each providing two levels of message checking: usage
checks that perform global checks on messages and state
checks that reject messages that are not acceptable in the
current state of the layer.

Messages successfully passing the checks are routed to one
or more finite-state machines that embody the layer func-
tions. The sending and receiving elements cooperate by
shared usage of appropriate finite-state machines. The num-
ber of reachable internal states of such a layer is a function of
the number of states of the individual FSMs and the degree
to which their states are correlated.
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Experience in validating architecture models of this type
indicates that the errors that are found can be characterized
as 1) errors that occur in the checking or routing logic, 2)
errors in particular states of individual finite-state machines,
or 3) errors in particular state combinations of two or more
finite-state machines. The errors are localized in their effect,
independent of the state of many of the components of the
layer, so that each error may be detected in large numbers of
different internal states.

To summarize, our experience with the executable archi-
tecture definition shows that while the number of reachable
states in a layer may be astronomical, the layer itself can be
represented by a few hundred (or at most a few thousand)
program statements, and the number of errors found by
validation (the assumption is made that all are found) is a
small fraction of the number of program statements. The
errors found are localized in their effect and each may be
detected in any one of a large number of internal states.
Exercising a subset of the internal states therefore exposes a
disproportionately large fraction of the errors.

The same may be concluded with respect to an implemen-
tation of the architecture. Much of the structure of an
implementation is copied from the architecture. Where this
is not possible, the design is still similarly structured, and the
resultant localization of errors means that individual errors
will manifest themselves in many states. The number of
errors will be similar to those found in other large software
systems; they are proportional to the number of program
statements [21].

It is thus safe to conclude that the type of testing that is
currently performed is considerably more effective than the
type of theoretical calculations presented in Ref. [19] sug-
gest. However, the arguments that support this are only
qualitative. The way in which the external behavior of a
system must be tested makes it extremely difficult to assess
to what extent a test exercises the system and how reliable
the system will be in field operations. The only guide to the
significance of a test is prior experience from testing similar
systems.

The increasing complexity of networks (measured in terms
of size), the number of different types of communicating
network components, and the sophistication of the distrib-
uted functions that are supported suggest that it will be
important in the future to define compliance and testing
procedures so that quantitative measurements of compliance
are possible. Indications of the directions that may be taken
are discussed in the next section.

Improved testing methodologies
Piatkowski [19] has discussed a number of ways in which a
reference model may be used to evaluate the behavior of an
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implementation during testing. The SNA meta-implementa-
tion has been used in a number of experimental test tools to
provide a check of implementation behaviors. It has also been
compiled with special statistics-gathering facilities of FAPL
so that the coverage of functions by test cases can be directly
measured. Results indicate that special care in the develop-
ment of test tools and the writing of test sequences is
necessary if good coverage of error recovery situations is to
be obtained.

The validation technique discussed in an earlier section
makes a number of different testing techniques possible. The
meta-implementation cannot directly be used as a generator
of test sequences because it must be driven by external
inputs. A by-product of the validation procedure is a single
FSM model of the validated component in a form such that a
simple exerciser can generate from it the sequences
addressed by a validation run. When the number of
sequences corresponding to a validation is extremely large, a
variety of techniques can be used to generate a useful
subset.

Sarikayi and Bochmann [22] have recently published
results of applying a number of well-known sequence-genera-
tion techniques to a simple protocol. Such techniques could
be applied to generate test sequences from a state machine
derived from validation. Heuristic methods, possibly using
randomly generated sequences, are more appropriate for
complex problems where relatively complete coverage is not
possible.

The use of the validation technique to generate test
sequences has the advantage of producing more comprehen-
sive tests in those cases where the resources available for test
sequence production are limited. It also can probe areas of
the implementation that manually generated test sequences
may not address.

A more interesting possibility would be to replace an
architecture-defined element in a validation run with an
actual implementation. The validation system shown in Fig.
3 could equally well be used to validate the self-consistency
of an implementation of DFC with the architecture, simply
by replacing one of the DFC elements from the meta-
implementation with its corresponding implementation. This
would require that the implementation provide access to its
internal state, but not that the implementation duplicate the
architecture structure. Comparisons between validations of
architecture and implementation components would permit
more thorough testing than that obtained through observa-
tion of external behavior.

Conclusions
The development of an executable representation of SNA
has significantly improved the quality of the architecture
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definition. The requirement that the definition be compilable
and executable encouraged the architects to produce a
definition that is unambiguous and much more complete
than was previously possible using less formal techniques.
Many problems are exposed and corrected while the archi-
tecture is being defined that would otherwise stay hidden
until subsequent product development.

An executable definition is not only a clear statement of
the architecture, it is also a foundation upon which tools can
be built that improve the quality and reduce the development
cost of both the architecture itself and the products that
implement it. It is the first step in the development of a
software-engineering system for network product develop-
ment.

Automated validation of the executable architecture defi-
nition has demonstrated that it is possible to detect (and thus
correct) extremely complex errors using automated tech-
niques. Results so far indicate that the number of residual
errors in the architecture can be reduced by an order of
magnitude in this way.

The experiments in automatic generation of implementa-
tions from the architecture definition have demonstrated
feasibility and cost savings when performance is not a major
constraint. There are a number of problems to be solved if a
broad range of implementations are to be produced in this
way. Subsetting and optimizing code that is intended as a
general and easily readable definition of the architecture is
not a simple task.

Finally, the executable architecture definition can be used
as a reference model in testing products for architecture
compliance. The increasing number and sophistication of
network products are producing a need for tools that can
provide general tests of architecture compliance. A number
of test tools based on the executable architecture have been
developed that provide this function. However, testing com-
plex protocols is still an art. Deriving numerical estimates of
test coverage and estimating reliability from test results is a
challenging problem for all concerned with the development
of network systems.

We expect further developments in architecture represen-
tation and implementation in the future. Higher-level archi-
tecture definition languages, improvements in compilers, and
declining costs of large-scale integration will broaden the
applicability of direct implementation techniques that prom-
ise cheaper and more reliable network software.
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