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Technologies  for Network Architecture  and  Implementation 

Systems Network Architecture (SNA) provides a  framework for constructing networks of distributedprocessors and terminals. 
This paper discusses some of the  fundamental properties of network architectures such as SNA,  and the evolution of formal 
descriptive methods  that provide precise, complete definitions of the architecture. This has culminated in the development of  a 
programming language, Format and Protocol Language (FAPL), tailored for programming a reference model or meta- 
implementation of an S N A  node. In this form,  the architecture specification is itself machine-executable. This property has led 
to new software technologies that improve quality and productivity in the processes for developing a network architecture and 
the product implementations derived from  it. Automatedprotocol validation provides the tool necessary to ensure a correct and 
internally consistent definition of the architecture. This definition can then be  used as a standard for testing products to 
determine compliance with the architecture. Direct implementation of network software by compiling the meta-implementation 
program is another emerging technology. This paper reviews the current state of work in these areas. 

Introduction 
The  continuing evolution of computer networks has  made it 
necessary to precisely specify the message formats  and 
protocols that define the services provided by the network. In 
IBM, Systems  Network  Architecture  (SNA)  has evolved 
since its  announcement in 1974 to encompass functions for 
controlling large-scale networks of distributed processors 
and  terminals [ 1,2]. Similarly,  the definition of the  architec- 
ture  has evolved from a  prose  description to a formal, 
state-oriented,  machine-executable version written in  a  high- 
level programming  language.  This  has proven to have  many 
advantages.  An  architecture defined in a programming  lan- 
guage  has  an  unambiguous  interpretation when it is exe- 
cuted.  It  also provides a  basis for a number of tools that  help 
improve the  quality of the  architecture itself and of the 
products  that  are derived from it. 

In this  paper we discuss the  nature of network  architecture 
definitions and  trace  the development of a machine-executa- 
ble  definition of SNA.  We  then discuss some  interesting uses 
of the  executable definition. The first  use  is  for the  auto- 
mated validation of the  architecture. For S N A  a correct 
definition is ensured  in  two ways: 1) frequent  phase reviews 
and intensive  inspection steps in the  architecture develop- 
ment process, and 2 )  automated protocol  validation. The 

reviews and inspections cover issues of functional correctness 
and completeness; the  automated validation methods  detect 
errors  related  to  the  internal consistency of the  detailed 
design. Both methods  are required to identify errors in the 
architecture before their  more costly discovery during  the 
implementation of products that  conform  to  the  architecture. 
Further discussion of the techniques  used to control develop- 
ment of the evolving SNA  can be found in Ref. [ 2 ] .  

Finally we discuss two uses of the  executable  architecture 
definition that  are’shaping  advances in software technology 
for implementing network  software. These  are  the imple- 
mentation of products directly  from  the  architecture defini- 
tion (by a  compilation process) and  the development of tools 
for  testing products to  determine if they comply  with the 
architecture. 

Definition  of SNA 
One of the most fruitful ideas  in the design of computer 
systems has been Blaauw’s [3] distinction among  architec- 
ture,  implementation,  and realization. The first computer- 
related use of the  term  “architecture”  to describe  system 
design came  out of Project  Stretch [4]. In  the  context of 
processor hardware, architecture is the specification of the 
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system’s functions  and  the ways in which a  user invokes those 
functions. It encompasses data types, addressing,  instruc- 
tions, I/O, etc., as  elements of a language used by the 
programmer  to invoke functions  and  combine  them in useful 
sequences. 

A computer implementation defines the logical structure 
of a machine which interprets  this  language  and performs the 
architecture.  Some  elements of a computer  implementation 
are  internal registers, memory,  adder,  and controls.  Elec- 
trical  and  mechanical design of the physical components 
from which the  implementation is  built is the  realm of 
realization. The  goal of the  architect is to provide  for the 
programming needs of the  user,  whereas cost, performance, 
reliability, and  manufacturability  are  major issues for those 
producing the  implementations  and realizations. 

Many  implementations  are possible for an  architecture, 
each having  different cost/performance objectives. For 
example,  the several models of the IBM 308X,  303X,  and 
43XX systems are  all  implementations of System/370  archi- 
tecture [5] with a wide range of cost and  performance.  Just 
as  there  may be many  implementations of the  same  architec- 
ture,  there  may  be  multiple  realizations of the  same imple- 
mentation (e.g., the  same design in a newer technology). 

In the  context of software  and,  more specifically,  com- 
puter network software,  the  term  “architecture”  has a richer 
meaning.  Here  the architect’s  goal is to provide product 
interconnections through a  network that  supports  general 
end-user to end-user communication.  An end-user is typi- 
cally  a person working at a terminal or a program  that 
provides some  service. Not only must network architectures 
specify what  functions  are performed and how to invoke 
them,  they  must  also provide for harmonious  communication 
among  thousands of largely independent  elements in  a  com- 
puter network. The essential role of network architects,  then, 
is to specify and  enforce a set of rules for communication  to 
which all product  designs conform.  Conformance is neces- 
sary  to avoid a  proliferation of product-specific  decisions that 
would cause  the costs of providing  interconnections to 
increase  dramatically. 

The key problems are representation and synchronization. 
Messages flowing in a computer network contain addressing 
and  control  information  that  must  be  interpreted a t  each 
node in the  paths  to  intended  destinations.  Architectural 
specification of formats for messages is necessary for consis- 
tent  interpretation of this  information by each  product.  This 
part of the design is fundamental  but relatively straightfor- 
ward;  its problems  (allocation and  encoding)  are  much  the 
same  as those related  to  computer  architecture for data-unit 
representation  and  instruction  formats. 

Protocol generator Protocol generator - - 

I t 
Protocol acceptor Protocol acceptor w I , 

Node I Node 2 

Figure 1 Interconnected protocol  machines. 

The  hard problem is synchronization. In  almost every 
computer system there exists some  form of concurrent  opera- 
tion that exploits the  natural concurrency among tasks. In 
many  cases (e.g., concurrent process execution in operating 
systems) the processes have  access to  shared  storage,  and 
thus a  single copy of state  information (e.g., a semaphore) 
that  can be updated quickly and reliably is sufficient for 
synchronization. In  computer networks, the processes that 
must  be synchronized do not, in general,  share  any  form of 
durable  storage because they  are located in independent 
network nodes. They  must rely on exchanging state  informa- 
tion through a  transmission medium  that is subject  to  errors 
and  unpredictable delays. The rules devised to govern the 
content  and sequencing of exchanged  state information are 
the protocols. 

Systems  Network  Architecture is divided into  layers  and 
processes following well-known principles of decomposition 
and  modularization in the design of large-scale  systems. 
Gray provides an overview of these  components and  their 
synchronization requirements in Ref. [ 6 ] .  In principle, each 
protocol that establishes and  maintains synchronization 
among a collection of processes can be specified by an 
enumeration of all possible sequences of message  exchanges. 
If the protocols operate in an  error-free environment, the  set 
of possible sequences is finite but very large, especially in a 
functionally rich  architecture such as  SNA.  Since  the  trans- 
mission medium is subject  to  random  errors  and  unpredict- 
able delays that  alter  the protocol  sequences, the set  is a t  best 
countably infinite; enumeration of sequences in any  manner 
useful to  product  builders is impossible. 

Each protocol can, however, be modeled by abstract 
machines  called protocol machines that  generate valid out- 
put sequences in response to received inputs.  To model  a 
two-party  protocol,  a  pair of machines,  one in each node, is 
used. Further,  each  machine  may be decomposed into gener- 
ator  (sender)  and  acceptor (receiver) machines  that  are 
logically connected so that  the  output of one composite 
machine is input  to  the  other (see  Fig. 1). These  abstract 69 

IBM J. RES. DEVELOP. VOL. 27 NO. I JANUARY 1983 F. D. SMITH AND C. H. WEST 



Network operator End user(s) 

L C L C L C  LC LC L C L C  

Key (based onSNA  termmology): 
PU = physical unit 
SSCP = system services control p i n t  
LU = log~cal unit 
SM = services manager 
HS = half session 
DLC = data link control 
LC = link connection 

Figure 2 Overview of the SNA node. 

machines have  finite input  sets  and  state  spaces  and  thus  can 
be modeled by the  finite-state  machines  (FSMs) of classical 
automata  theory [7]. 

Like  hardware  implementations,  the  implementations of a 
network architecture define  logical structures  that  perform 
the specified functions; the  elements  are  data  structures, 
algorithms, modules, and processes. Different realizations 
may  be distinguished by the  language used to build the 
implementation (e.g., assembler  or PL/I). Each S N A  prod- 
uct  constitutes a  realization of one or more  layers of the 
architecture.  The designers of these  implementations  must 
understand  the  inputs received by the  product  and  the 
outputs  to  be  generated.  The  natural viewpoint is to consider 
how the product must function when it is operating  as a  node 
in the network.  Moreover, the  architects  can prescribe the 
behavior of the network by specifying the behavior of a  node 
in the most general case. Thus  the network  node is a  useful 
focal point for both architecture  and  product designs. 

A node can  be  represented  formally  as a  composition of 
protocol machines. Figure 2 (from [8]) provides an  architec- 

tural overview of an S N A  node  in the most general case. 
Each block in the  diagram  represents a  composite  protocol 
machine  that  can  be successively refined until  the most 
primitive  protocol machines  are  reached.  Routing  and check- 
ing logic is defined to show how the protocol  machines are 
interconnected  and  the signaling paths between them. Speci- 
fication of the  format,  content,  and  ordering of information 
units flowing on a  signaling path  constitutes a protocol 
boundary between  protocol  machines. 

SNA meta-implementation 
The  ensemble of the node elements  just described constitutes 
a  rigorous  definition by reference to a model or meta- 
implementation. A meta-implementation closely resembles 
an  actual  implementation in that  it  has a well-defined 
structure  and is expressed  using  explicit data  structures  and 
control flow. The  underlying  architecture is revealed when 
the  meta-implementation  can  be  interpreted  (executed)  and 
its  resulting behavior (output) observed. An early  example of 
a formal  architecture specification in a form  that was 
potentially machine-executable was the  IBM  System/360 
computer  architecture in APL [9]. 

The problems and payoffs in  using  a meta-implementation 
form of architecture specification are discussed by Brooks 
[lo]. Of fundamental  importance is the benefit that every 
question about  the system  behavior has a precise answer  that 
can  be  determined quickly by executing  the  meta-implemen- 
tation.  Further,  the  requirement for machine execution 
forces greater  attention  to  details;  there  are fewer overlooked 
cases. This  also leads to a  problem. If the  meta-implementa- 
tion is executed, overlooked cases  produce answers that  may 
not be  what  the  architect  intended. Because these  unintended 
answers are produced by the  meta-implementation  they  may 
be  credited with  a false precision. 

In order  to  obtain a machine-executable model, many 
details  must be filled in, including those  that  are options  for 
the  implementer.  Thus,  the  meta-implementation “over- 
specifies” the  architecture.  For example, the  architecture 
may  require only that  data  elements  be stored and retrieved 
in  a certain  order. In a meta-implementation, a particular 
data  structure  and  representation  must be chosen  in order  to 
execute  the  function (e.g.,  a  doubly  linked  list). A product 
implementation  may choose  a  different representation (e.g., 
a fixed-size array)  to  meet  its cost or performance objectives. 
Much  care  must  be exercised to  clearly  separate essential 
function  from optional detail.  On  balance, however, rigor and 
completeness  outweigh the problems of overspecification and 
false precision. 

In  the  early versions of the S N A  meta-implementation, 
line-diagram  representations of FSMs were  combined  with 
prose and  other  graphic tools (block-structure  diagrams, flow 
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charts [ 1 I ] ) .  These  formal  methods were developed to  make 
the specifications  precise, complete,  and  capable of being 
accurately  communicated  and understood; they were execut- 
able by people but  not by machines. The availability of this 
form of meta-implementation, however, indicated  the poten- 
tial benefits of execution by a  machine. 

The most  useful form of a meta-implementation is 
obtained when the reference model is expressed  conveniently 
for  use by implementers.  Its  structure should be generally 
useful so product developers do not  have to reinvent the basic 
organization. A good global  design used over and over yields 
great leverage from  the  architecture development process. 
Further,  the  audience for the  architecture now consists 
mostly of programmers because the  ubiquitous microproces- 
sor has led to  programmed  implementations of almost  all 
functions. Therefore,  the  medium for  expression  should be a 
high-level programming  language.  Natural  language prose, 
even when augmented with diagrams  and sequences, has 
proven too ambiguous (or redundant) for the  job.  As a 
consequence, the  SNA architects have developed a high-level 
programming  language tailored  for the  meta-implementa- 
tion of an  SNA node. This  language,  the  Format  and 
Protocol Language  (FAPL), is discussed in the following 
sections. 

Format and protocol language (FAPL) 
As FAPL evolved, several  objectives  guided the  architects’ 
deliberations on formulating  the basic language  structure. 
Foremost among  these was to make  the  meta-implementa- 
tion accessible to a broad  audience of product implementers 
in IBM,  as well as  to  customers  and  others needing  a 
complete,  precise  definition of SNA.  This objective led to 
rejection of proposals  for  “new” languages in favor of 
extensions to a widely understood programming  language, 
PL/I [ 121. Another  major objective  was to preserve the basic 
node structure  and notation already defined with the line 
diagrams  and flow charts of the  graphic  representation. In 
particular,  the  use of FSMs  to model protocols was consid- 
ered essential. Another  requirement was to provide language 
elements  that model  messages and  their flow from  one 
SNA-defined  layer  to  another within and  among network 
nodes. Other considerations such  as  language  structure for 
top-down design and a rich set of data-definition facilities  for 
format descriptions  were  also important. 

A  relatively small subset of PL/I was  chosen to provide 
essential programming  language  capabilities for control 
flow, data definition, and  operations on data.  The  data types 
of the  language  are integers,  pointers, bit  strings,  and  charac- 
ter  strings, with appropriate  rules for operations  and expres- 
sion evaluation  using these types. Data  aggregates  may  be 
defined by structures or one-dimensional arrays.  The  state- 
ments of the  language include assignments, calls, declara- 

tions, do  groups, if statements, procedures, returns,  and 
select  groups.  Extensions to  this  subset  that provide the 
functions needed in FAPL  are in two areas: 1) finite-state 
machines, and 2) modeling  messages and message flows. 

0 Finite-state machines 
Finite-state machines are represented directly  as objects  in 
FAPL. A  two-dimensional graphic  form was  chosen for  the 
FSM definitions. In this  form, horizontal and vertical lines 
delineate rows and columns. The rows represent possible 
inputs  and  the columns represent  states.  At  each row-column 
intersection is the definition of the next state  and  output 
resulting from receiving the  input (row)  in that  state 
(column).  Inside  the  matrix, mnemonic  symbols are used to 
name  inputs,  states,  error conditions, and  output-generating 
procedures. Output procedures can be defined using any 
FAPL  statement.  The  matrix  form  has two desirable proper- 
ties.  For the  reader  it is a  concise representation  that allows 
complex  information to be referenced and easily verified for 
completeness  (every  intersection must have  a defined next 
state  and  output).  It is also a form  that  can  be  automatically 
translated  into  executable  PL/I  statements. 

The  actions of an  FSM  are invoked through  an extension 
to  the  PL/I  call  statement.  When “called,” the  FSM  input 
and  current  state  are used to  evaluate  the  next-state  and 
output-generating functions. The new state is saved in stor- 
age local to  the  particular  FSM  instance  and becomes the 
current  state.  The  output  may  be represented by new values 
of any  variables in the scope of the  FAPL  statements used to 
define the  output function. Other  operations  are provided to 
test  the  current  state of an  FSM  and  to perform  specialized 
validity  checks. 

0 Messages and message flows 
In the   SNA meta-implementation it is desirable  to  distin- 
guish the flow  of messages from  one  layer  to  another from the 
flow  of execution control  among  program  statements.  The 
flow  of messages conveys vital architecture  information;  the 
processing order  among  statements is needed only to  under- 
stand how the model executes.  Using the normal PL/I  
execution-control  mechanism of procedure calls and  returns 
(passing the message as a parameter) prevents  a separation 
of these  functions. In  many  cases a  message is sent  to  another 
component of the node  for processing at  some later  (but 
unspecified) time,  and execution  continues in the sending 
component to  handle  related housekeeping. It is also  desir- 
able  to show in the  meta-implementation how layers and 
components can  operate  as  concurrent processes. 

In order  to  permit a  more natural model of message flow 
and processing in the  meta-implementation,  three concepts 
were  introduced: 1) a SEND statement  that  transfers a 
message to  another component, 2) independently executable 71 
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Figure 3 The system used to validate the DFC layer. 

processes, and 3) queues  that  act  as  triggering  mechanisms 
for process execution. The  queues  are used to model commu- 
nication and unspecified order of execution among pro- 
cesses. 

To model the messages and  queues, two additional  data 
types were added  to  the  PL/I base:  lists and  entities  (an 
entity is a data  aggregate  that  may be placed  in  a list). 
Originally  the only planned  use of entities was to  represent 
messages. It was soon found, however, that  the  generality of 
the list data  structure encouraged  users to  represent  control 
blocks, tables,  and  other forms of data  internal  to  the node 
model.  Lists and  entities  can  be  created  and  destroyed, 
entities  may  be  added  and removed from lists, all  entries on a 
list may be processed, and a list may  be  searched for  a 
specific entity.  List-handling  operations  that  treat lists in 
insertion or priority  order  are provided (specialized  lists may 
also be  manipulated  directly by operations on the  representa- 
tion).  There  are  also a number of built-in functions  to 
manipulate  entities on a list and  perform  simple  tasks  such  as 
testing  whether a list is empty.  For a more  detailed descrip- 
tion of the  language  the  reader is directed  to Appendix  N of 
Ref. [ 81. 

Making FAPL executable 
FAPL  programs  are  translated by a  preprocessor program 
that  generates  PL/I code  which is then compiled by a PL/I 
compiler and executed. The preprocessor handles only  those 
statements  that  are extensions to  PL/I, simply  passing the 
others  through  to  the  PL/I compiler.  Most of the  translation 
is straightforward;  translation of matrix-form finite-state 
machines  into  PL/I  procedures is, however, a  non-trivial 
process. Details of the  implementation  can  be found  in Ref. 
~ 3 1 .  

Validation 
In  the  SNA  meta-implementation,  the  internal consistency 
of the  executable  form is ensured by using automated 
validation  methods.  Protocol  validation  is  a form of state- 
reachability analysis in which the compiled FAPL code for a 
meta-implementation component is executed in an environ- 
ment  that  simulates  the  remainder of the network. These 
validation  techniques  were developed at  the IBM laboratory 
in Zurich [ 14, 151, as  an extension of the techniques  used to 
validate  the X.21 protocol [16] recommended by the  Inter- 
national  Telegraph  and  Telephone  Consultative  Committee 
(CCITT) . 

The first  large-scale  application of validation  was an 
investigation of the design  for  data-flow  control functions in 
SNA. Data-flow control  (DFC) is an  SNA layer that defines 
one of the peer-to-peer (i.e., DFC-to-DFC) protocols 
between the two halves of an  SNA session. DFC provides 
functions for sequence numbering  and logical chaining of 
user  messages,  for correlation of requests  and responses 
between end-users, for  control of send/receive concurrency 
between them,  and for bracketing (or serially  multiplexing) 
transactions on the session [8]. DFC is the  major synchroni- 
zation point  for  controlling the  order of messages exchanged 
between  end-users of an  SNA session. Its specification 
includes 30 FSMs  and 3000 FAPL source statements. 

A detailed  account of the  DFC validation is given in Ref. 
[ 131, so we discuss it only briefly here.  Figure 3 shows the 
main components of the validation  system developed for 
DFC.  The validation  system simulates  the environment 
within which DFC layers  in  different  network nodes commu- 
nicate. The network layers below DFC  are represented by a 
system of queues  that  accurately model the network delays 
and message-delivery order.  The  DFC  elements  are  the 
compiled architecture;  they  communicate with the network 
model and  the validation driver via defined protocol bound- 
aries. 

The validation driver itself has a number of functions. 
Starting  from  an  initial  system  state,  the  driver  can drive the 
system into  further  reachable  states  until  all  states have been 
explored. In  any  state  it  can pass to  either  DFC  element a 
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message to  be  transmitted  and so drive the system into 
further  reachable  states  that result  when the  executable 
DFC  elements process the messages and send them  through 
the network. It  can  also define and observe the  state of the 
DFC  elements  and  the network  queues. As  the  reached-state 
tree is generated,  the driver examines  the  state definitions to 
detect deadlocks, loss of synchronization,  and  other  states 
that should  not  occur. The validation of DFC uncovered 
about 20 previously undetected synchronization errors,  some 
involving long, interleaved  sequences of 10 or more  unique 
messages and  an even larger  number of state  changes  (Fig. 4 
gives one such example).  It is probably  not possible to 
routinely find such  errors by manual inspection, and  they 
occur so infrequently  that  detection  during  tests  or field 
operations is extremely difficult. 

Validation techniques provide a powerful tool for detect- 
ing errors in the design of communication protocols. They 
also provide a systematic means for exhaustively testing  the 
meta-implementation  program.  All  reachable  states  are 
explored and  thus  all  paths  through  the  FAPL code are 
executed  with all valid inputs.  Very  thorough  component or 
module testing of the  FAPL code is obtained  as a  by-product 
of validation. Our experience  shows that  ten or more  meta- 
implementation  programming  errors  are  detected for  every 
protocol synchronization error. Validation is applied on a 
layer or component  basis;  system testing with  sequences is 
required to  detect  errors in the specification of protocol 
boundaries between layers. 

Direct implementation 
In principle,  a correct  implementation of the  architecture  can 
be automatically  generated  from a correct  machine-inter- 
pretable  representation of the  architecture.  When  the  archi- 
tecture  representation is  a meta-implementation,  as is the 
case for SNA,  the  generation process would appear  to  be a 
straightforward compilation.  If this  can be done, only very 
simple testing is required. In practice, a number of signifi- 
cant problems emerge when this is attempted, largely 
because of fundamental differences  between an  architecture 
representation  and  the design of a product derived from it.  A 
product designer must  optimize  performance  and cost; these 
are of lesser importance in an  architecture  representation, 
which must  clearly  and completely describe  the  functions of 
the system  without giving unnecessary details  that  may 
restrict  the  optimal design of an  implementation. 

As a  consequence of their differing  purposes, it is often 
desirable for an  implementation  to have  a structure  that 
differs  significantly from  that of the  architecture model. For 
example,  an  architecture designed  for  a  multiprocessing 
environment may  be considerably simplified when imple- 
mented in  a  single-processor  system. The  implementation of 
an allowable subset of the  architecture  functions  may  require 

Node I Node 2 
0 Request 0 

Figure 4 An architecture error found  during  validation. 

much less storage  than  the full architecture.  Such  fundamen- 
tal  structural  changes  cannot be performed automatically 
and  require significant  design  effort. 

Another significant  problem is that  computer-network 
software is usually one component of a larger system (i.e., the 
control program for  a distributed  computer).  Integrating 
code generated  from  the  meta-implementation  into such  a 
system may  require extensive modifications to  the code to 
adapt  it  to existing data  structure  formats  and  content. 
Additional consideration must  be given to  adapting  the code 
to use services provided by the system’s control program 
(e.g., storage allocation and I/O). 

The first attempt  at  direct  implementation was  modest in 
scope but sufficiently realistic  to  test  practical application of 
the ideas. The  DFC  implementation in one component of the 
programming  support for the IBM 8 100 Information  System 
was obtained by adapting  the  meta-implementation code to 
run on that system.  Only  a subset of DFC was required, so 73 
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the  FAPL code was  first manually reduced to a size of 10 
FSMs and 1000 FAPL statements. Next,  the meta-imple- 
mentation was adapted to the data structures and control 
program services  used  in the product code. Several exten- 
sions to existing control blocks were required to provide 
DFC-related data. Control program services such as storage 
allocation were  accessed by special macros generated for 
FAPL  statements requiring these services  (e.g., CREATE). 
Finally, the FAPL preprocessor  was extended to generate 
PL/DS [ 171. 

The results of this project were  very encouraging. DFC 
was compiled, tested, and shipped with no major problems. 
Most errors were involved  with adapting the FAPL code to a 
product environment. DFC functions worked properly 
largely because they had already been tested extensively by 
protocol validation. The final code was within the path- 
length and space budgets established for the project. Most 
important, the  DFC component  was built and tested for 
about one-third the programming resources that would have 
been  invested otherwise. Most of this programming effort 
was spent in  pioneering  work associated with adapting and 
translating the  FAPL for a specific product environment. 

To learn more about the process of direct implementation, 
more experiments have  been conducted outside the context of 
implementing a real product. In  one experiment, several 
components of the meta-implementation were compiled and 
tested to implement a hypothetical network  node containing 
only SNA functions. That is,  no attempt was made to adapt 
the FAPL to a product environment; the environment was a 
raw machine with a given computer architecture (for  con- 
creteness, the 8100 architecture was chosen). Part of the 
experiment was to construct a simple control program to run 
the FAPL code on a real machine. The components of the 
meta-implementation that were included required 10 000 
FAPL source statements, including 50 FSMs. This experi- 
ment confirmed that the key problems in automatic code 
generation from the meta-implementation are 1) rules and 
methods for automatic subsetting, 2) adapting  the FAPL 
run-time system to different real machines, and 3) generat- 
ing  code that compares favorably in space and  path length 
with tailored implementations. 

In another experiment, automatic code generation is being 
used for building development and testing tools.  Develop- 
ment teams building terminal devices that operate in SNA 
networks must test their implementation of protocols for 
communicating with other nodes. It may not  be practical or 
economical for these groups to install and operate real 
networks just for testing. The solution  is often a test tool 
operating in a virtual machine environment that acts  as  a 
surrogate for the real network node(s). Obviously, such tools 
must properly implement the architecture  and be  economical 

to develop and use. One such internal test tool has been built 
by compiling the SNA meta-implementation to generate 
code. This test tool  uses about 10 000 FAPL source state- 
ments from the meta-implementation. An interesting side- 
light is that the tool  developers  chose to use FAPL  as  a 
programming language to build testing and usability fea- 
tures that  are outside the  architectural protocols. ' 

These early attempts at direct implementation have  been 
successful on a modest scale. Because of the problems 
described above, the  current methods for direct implementa- 
tion can be applied only  when  development  costs or time 
constraints are more important than optimization of function 
or performance. Advances  in programming languages and 
compilers, especially those that provide  efficient, portable 
software, may have a significant impact on the feasibility of 
direct implementation [ 181. 

Architecture compliance and testing: principles 
Direct implementation from an architecture solves  two 
important problems, namely defining what constitutes an 
implementation of the  architecture and how to test that any 
particular implementation complies  with the architecture. If 
an implementation is  derived directly from the architecture, 
the problem  is reduced in  essence to verifying a compiler. To 
the degree that the development of an implementation is not 
automated, and particularly when the  structure of the imple- 
mentation differs significantly from the architecture, verifi- 
cation of architectural compliance is much more  difficult. 

The internal structure of  most implementations differs 
from that of the meta-implementation. Constraints of partic- 
ular products and performance requirements dictate struc- 
tural changes that may, for example, lead to the elimination 
of internal protocol boundaries or the assignment of func- 
tions to concurrent processes in a way that differs from that 
specified by the meta-implementation. 

Consequently, it is extremely difficult to define architec- 
ture compliance in terms of the  structure of an implementa- 
tion. The only practical definition of compliance is  to require 
that the external behavior of an implementation correspond 
to that of the meta-implementation. This definition dictates 
the nature of a test for compliance. An implementation can 
be tested for architectural compliance by applying a 
sequence of test inputs to both the implementation and the 
meta-implementation. Any difference in their behavior indi- 
cates that the implementation does  not  comply  with the 
architecture. 

Piatkowski [ 191 has indicated a problem of this approach: 
If it is  not  possible to directly observe the internal state of an 
implementation (as is generally the case), the upper limit of 
the length of the test sequence needed to prove equivalence is 
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approximately proportional to  the  cube of the  number of 
internal  states. Even modestly  complex implementations 
have millions of different internal  states, SO it is not possible 
to  perform even a reasonably complete  partial  test in  a finite 
time. 

It is interesting  that experience has shown that most 
communication  systems  are too  complex to  describe by 
enumerating  the sequences of messages that  their compo- 
nents  exchange. Their  architectures  are,  therefore, now 
generally defined by the  structure  and  algorithms in commu- 
nicating processes that  generate  the message  sequences [20]. 
On the  other  hand, compliance  is  defined in terms of 
exchanged message  sequences and does  not directly  refer- 
ence  internal node structure.  It  may  be  that definitions of 
compliance  and  testing procedures that  are closely related  to 
the  internal  structure of processes in the  reference model, 
rather  than  their  external behavior, may  be  similarly  advan- 
tageous. 

Architecture compliance and testing: practice 
The  estimates of test-sequence  length given above  suggest 
that a thorough  test of architecture  compliance is impossible. 
The existence of many reliably operating  implementations of 
the  architecture  demonstrates  that  this is not so, and  there 
are a number of reasons why the test-sequence-length  esti- 
mates provide an overly  pessimistic view  of testing. 

The first is that  they  indicate  the  upper  limit  for a test 
designed to  demonstrate  exact equivalence. Demonstrating 
equivalence  based on the  external behavior of an implemen- 
tation  requires exercising and  evaluating  all possible message 
sequences that  the  implementation  may receive. An imple- 
mentation  can  exhibit good reliability  yet contain  errors if 
these are  encountered only in rarely executed  sequences. 
Tests of reliability  need not address  all sequences that have  a 
very low probability of being encountered in normal  opera- 
tions. 

Figure 4 shows an  error found during validation of the 
architecture.  After  an  exchange of 14 messages the layer 
being  validated reached a state  where  the  communicating 
elements were out of synchronization. The complex inter- 
leaving of the messages  in the  sequence  leading  to  this  error 
would only occur under  particular network delay  and loading 
conditions and would have a vanishingly small probability of 
being  exercised in normal  operations. Even if the  error  had 
not been  found during validation, its presence  in  a  derived 
product would not significantly degrade system  reliability. 

The second reason why the test-sequence length  estimates 
are pessimistic  is that  it is not necessary to exercise all of the 
states because  individual errors  can  manifest themselves  in 
many  states  and  must  be  detected only once. This  can best be 
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Figure 5 The general structure of a layer. 

explained with reference  to  the  architecture meta-implemen- 
tation.  Figure 5 (taken  from  Ref. [8]) shows the  general 
structure of an SNA layer.  The layer  consists of two 
elements, handling respectively incoming and outgoing mes- 
sages, each providing two levels of message  checking:  usage 
checks that perform  global  checks on messages and  state 
checks that  reject messages that  are not acceptable in the 
current  state of the  layer. 

Messages  successfully  passing the checks are  routed  to  one 
or more  finite-state  machines that embody the layer  func- 
tions. The  sending  and receiving elements  cooperate by 
shared  usage of appropriate  finite-state machines. The  num- 
ber of reachable  internal  states of such  a  layer is a  function of 
the  number of states of the individual FSMs  and  the  degree 
to which their  states  are  correlated. 75 
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Experience in validating  architecture models of this  type 
indicates  that  the  errors  that  are found can  be  characterized 
as 1) errors  that  occur in the checking or routing logic, 2) 
errors in particular  states of individual  finite-state  machines, 
or 3) errors in particular  state  combinations of two or more 
finite-state  machines. The  errors  are localized  in their effect, 
independent of the  state of many of the  components of the 
layer, so that  each  error  may  be  detected in large  numbers of 
different internal  states. 

To summarize, our experience with  the  executable  archi- 
tecture definition shows that while the  number of reachable 
states in a layer  may  be  astronomical,  the  layer itself can  be 
represented by a few hundred (or a t  most  a few thousand) 
program  statements,  and  the  number of errors found by 
validation (the  assumption is made  that  all  are  found) is a 
small  fraction of the  number of program  statements.  The 
errors found are localized in their effect and  each  may be 
detected in any  one of a large  number of internal  states. 
Exercising a subset of the  internal  states  therefore exposes a 
disproportionately  large  fraction of the  errors. 

The  same  may  be concluded with respect to  an implemen- 
tation of the  architecture.  Much of the  structure of an 
implementation is copied from  the  architecture.  Where  this 
is not possible, the design  is  still similarly  structured,  and  the 
resultant localization of errors  means  that individual errors 
will manifest themselves  in many  states.  The  number of 
errors will be  similar  to those  found in other  large  software 
systems; they  are proportional to  the  number of program 
statements [21]. 

It is thus  safe  to conclude that  the  type of testing  that is 
currently performed is considerably more effective than  the 
type of theoretical  calculations presented in Ref. [ 191 sug- 
gest.  However, the  arguments  that  support  this  are only 
qualitative.  The way  in  which the  external behavior of a 
system  must  be tested makes  it  extremely difficult to assess 
to  what  extent a test exercises the system and how reliable 
the system will be in field operations. The only guide  to  the 
significance of a test is  prior  experience from  testing  similar 
systems. 

The increasing  complexity of networks (measured in terms 
of size),  the  number of different types of communicating 
network  components, and  the sophistication of the  distrib- 
uted  functions  that  are  supported  suggest  that  it will be 
important in the  future  to define compliance  and  testing 
procedures so that  quantitative  measurements of compliance 
are possible. Indications of the  directions  that  may  be  taken 
are discussed  in the next  section. 

Improved testing methodologies 
Piatkowski [ 191 has discussed  a number of ways  in  which  a 
reference model may  be used to  evaluate  the behavior of an 76 
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implementation  during testing. The  SNA meta-implementa- 
tion has been used in  a number of experimental  test tools to 
provide a check of implementation behaviors. It  has also  been 
compiled  with  special statistics-gathering facilities of FAPL 
so that  the coverage of functions by test  cases  can  be  directly 
measured.  Results  indicate  that special care in the develop- 
ment of test tools and  the writing of test sequences is 
necessary if good coverage of error recovery situations is to 
be obtained. 

The validation technique discussed  in an  earlier section 
makes a number of different testing  techniques possible. The 
meta-implementation  cannot  directly  be used as a generator 
of test sequences  because it  must  be driven by external 
inputs.  A  by-product of the validation procedure is  a  single 
FSM model of the  validated component  in  a form  such  that a 
simple  exerciser  can  generate  from  it  the  sequences 
addressed by a  validation run.  When  the  number of 
sequences  corresponding to a  validation is extremely  large, a 
variety of techniques can be used to  generate a  useful 
subset. 

Sarikayi  and Bochmann [22] have  recently  published 
results of applying  a number of well-known sequence-genera- 
tion techniques  to a  simple protocol. Such  techniques could 
be applied  to  generate  test sequences from a state  machine 
derived from validation. Heuristic  methods, possibly using 
randomly  generated sequences, are  more  appropriate for 
complex  problems where relatively complete coverage is not 
possible. 

The  use of the validation technique  to  generate  test 
sequences has  the  advantage of producing  more comprehen- 
sive tests in those  cases where  the resources available for test 
sequence  production are limited. It  also  can  probe  areas of 
the  implementation  that  manually  generated  test sequences 
may not address. 

A more  interesting possibility would be  to  replace  an 
architecture-defined  element in a  validation run with an 
actual  implementation.  The validation  system  shown  in  Fig. 
3 could equally well be used to  validate  the self-consistency 
of an  implementation of DFC with the  architecture, simply 
by replacing  one of the  DFC  elements  from  the  meta- 
implementation with its corresponding implementation.  This 
would require  that  the  implementation provide access to  its 
internal  state,  but not that  the  implementation  duplicate  the 
architecture  structure.  Comparisons between  validations of 
architecture  and  implementation  components would permit 
more  thorough  testing  than  that  obtained  through observa- 
tion of external behavior. 

Conclusions 
The development of an  executable  representation of S N A  
has significantly  improved the  quality of the  architecture 
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definition. The  requirement  that  the definition be compilable 
and  executable  encouraged  the  architects  to  produce a 
definition that is unambiguous  and  much  more  complete 
than was previously possible using less formal techniques. 
Many problems are exposed and  corrected while the  archi- 
tecture is  being  defined that would otherwise stay hidden 
until subsequent  product development. 

An  executable definition  is not only a clear  statement of 
the  architecture,  it is also a foundation upon  which tools can 
be built that improve the  quality  and  reduce  the development 
cost of both the  architecture itself and  the  products  that 
implement it. It is the first step in the development of a 
software-engineering  system  for  network product develop- 
ment. 

Automated validation of the  executable  architecture defi- 
nition has  demonstrated  that it is possible to  detect  (and  thus 
correct)  extremely complex errors using automated tech- 
niques. Results so far  indicate  that  the  number of residual 
errors in the  architecture  can  be reduced by an order of 
magnitude in this way. 

The  experiments in automatic  generation of implementa- 
tions from  the  architecture definition  have demonstrated 
feasibility and cost  savings  when performance is not  a major 
constraint.  There  are a number of problems to be solved if a 
broad  range of implementations  are  to be produced  in this 
way. Subsetting  and optimizing  code that is intended  as a 
general  and easily readable definition of the  architecture is 
not  a  simple task. 

Finally, the  executable  architecture definition can  be used 
as a reference model  in testing products  for architecture 
compliance. The increasing number  and sophistication of 
network products  are producing  a  need for tools that  can 
provide general  tests of architecture compliance.  A number 
of test tools based  on the  executable  architecture have been 
developed that provide this  function. However, testing com- 
plex protocols is  still an  art. Deriving numerical  estimates of 
test coverage and  estimating reliability from  test  results is a 
challenging problem for  all concerned  with the development 
of network  systems. 

We expect further developments  in architecture represen- 
tation  and  implementation in the  future. Higher-level archi- 
tecture definition languages, improvements  in  compilers, and 
declining  costs of large-scale integration will broaden  the 
applicability of direct  implementation  techniques  that prom- 
ise cheaper  and  more reliable  network software. 
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